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Abstract

Recent efforts in natural language processing (NLP) com-
monsense reasoning research have yielded a considerable
number of new datasets and benchmarks. However, most of
these datasets formulate commonsense reasoning challenges
in artificial scenarios that are not reflective of the tasks which
real-world NLP systems are designed to solve. In this work,
we present CROW, a manually-curated, multi-task bench-
mark that evaluates the ability of models to apply common-
sense reasoning in the context of six real-world NLP tasks.
CROW is constructed using a multi-stage data collection
pipeline that rewrites examples from existing datasets us-
ing commonsense-violating perturbations. We use CROWto
study how NLP systems perform across different dimensions
of commonsense knowledge, such as physical, temporal, and
social reasoning. We find a significant performance gap when
NLP systems are evaluated on CROWcompared to humans,
showcasing that commonsense reasoning is far from being
solved in real-world task settings. We make our dataset and
leaderboard available to the research community.1

Introduction
Commonsense reasoning is a long-standing challenge in ar-
tificial intelligence (AI) and NLP (McCarthy 1960; Wino-
grad 1974; Davis and Marcus 2015; Choi 2022), resulting
in a large number of datasets and benchmarks designed to
evaluate how AI systems reason in commonsense scenar-
ios described in natural language (Davis 2023). Recently,
large language models (LLMs) such as GPT-3 (Brown et al.
2020) and PaLM (Chowdhery et al. 2022), have demon-
strated near-human performance on many of these bench-
marks (Lourie et al. 2021). However, these models can still
be brittle in practical deployments, raising questions about
how reliably these commonsense benchmarks truly evaluate
the commonsense reasoning abilities of models.

Part of this issue stems from the practice that most com-
monsense datasets are designed to evaluate reasoning in arti-
ficial task settings that are not reflective of the real-world use
cases in which NLP systems are deployed. In real-world set-
tings, one almost never directly observes a test of common-
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sense knowledge in isolation. In this paper, we argue instead
that commonsense reasoning benchmarks should evaluate
commonsense reasoning in the tasks in which these abili-
ties are required. The necessity of commonsense to solve
real-world tasks has been extensively argued since the early
stages of AI, notably by Bar-Hillel (1960) in the context
of machine translation. However, despite these early argu-
ments, only recently was there an attempt to construct a
commonsense reasoning dataset for machine translation (He
et al. 2020), an effort which concluded that the common-
sense reasoning abilities of modern models were still in their
infancy when applied in real NLP tasks.

In this work, we build on these original ideas and in-
troduce CROW: a Commonsense Reasoning Benchmark
for Real-World Tasks, a benchmark containing high-quality
datasets for six real-world NLP tasks: machine translation
(MT), open-domain dialogue (DG), dialogue summarization
(DS), intent detection (ID), stance classification (SC), and
safety detection (SD). We design a flexible multi-stage data
collection pipeline to build CROW. Inspired by Winograd
schemas (Levesque, Davis, and Morgenstern 2011), we ap-
ply commonsense-based minimal perturbations on examples
from existing datasets for each task. Then, we crowdsource
collections of potential target references, each grounded to
a particular commonsense violation with respect to the orig-
inal context. We categorize these commonsense violations
across six dimensions — temporal, causal, attribution, com-
parison, physical, social — ensuring a diverse breakdown of
commonsense reasoning types.

Our empirical study across 13 state-of-the-art (SoTA) sys-
tems (including GPT-4) shows that CROW is a challeng-
ing commonsense reasoning testbed, with the highest per-
forming model scoring ∼18% lower than humans on indi-
vidual examples and ∼37% lower on our more restrictive
metric that evaluates situational robustness. Consequently,
we provide CROW to the community as the first common-
sense benchmark specifically formed to test commonsense
knowledge and reasoning abilities in the same contexts as
real-world deployments of NLP systems.

Benchmark
In order to construct CROW, we take the simple and ef-
fective idea of commonsense-violating minimal perturba-
tions used in the earlier benchmarks to generate Winograd-



Models MT DG DS SC SD ID CROW CROW
Zh-En En-Fr En-De En-Ru Score (-MT) Score

LLaMA-33B∗ 50.5 / 1.2 – – – 50.5 / 2.6 48.2 / 7.8 57.1 / 0.0 44.1 / 4.1 42.4 / 1.2 48.5 / 3.1 48.8 / 2.8
Flan-T5-11B∗ 45.5 / 10.1 – – – 70.4 / 42.0 66.9 / 33.1 76.5 / 51.6 83.8 / 34.9 84.3 / 57.7 76.4 / 43.9 71.2 / 38.2
PaLM-1-540B 52.7 / 5.7 50.2 / 0.4 50.0 / 0.0 50.0 / 0.0 63.4 / 24.7 61.2 / 20.2 51.3 / 19.1 49.5 / 7.7 70.4 / 32.3 59.2 / 20.8 55.4 / 12.2
GPT-3.5 66.6 / 38.7 50.1 / 18.2 50.6 / 18.0 48.9 / 13.2 67.6 / 36.5 68.7 / 31.9 67.7 / 36.0 85.6 / 40.0 76.4 / 41.7 73.2 / 37.2 64.7 / 30.5
GPT-4 75.9 / 57.9 54.5 / 21.5 54.4 / 20.5 54.1 / 19.7 72.4 / 46.5 89.6 / 75.3 79.6 / 54.7 89.7 / 51.9 84.0 / 57.2 83.1 / 57.1 72.7 / 45.0
GPT-4-CoT 71.6 / 52.2 64.7 / 42.6 57.1 / 34.2 57.3 / 30.0 55.3 / 22.8 88.6 / 70.6 84.3 / 60.7 87.8 / 47.3 84.0 / 57.0 80.0 / 51.7 72.3 / 46.4

Human 87.9 / 78.0 83.0 / 82.9 89.9 / 82.0 89.9 / 86.0 87.0 / 86.9 98.9 / 96.4 88.1 / 69.6 97.8 / 93.9 93.9 / 80.7 93.1 / 85.5 90.7 / 84.0

Table 1: Macro-F1 / Situational Accuracy (i.e., results aggregated per context instead of per sample) for all examined models
across CROW tasks. The performance of the highest scoring model is bolded for each task. Models noted with ∗ are open-
source. Since they are trained only on English data, we don’t evaluate them on MT tasks except the one translating to English.
Due to the cost of expert evaluation, our Human study is only evaluated on 100 instances per task.

style schemas (Davis 2023) and apply it in real-world tasks.
We employ crowdsourcing to generate Winograd-style per-
turbed examples, but instead of asking crowdworkers to per-
turb the given sentences directly, we design a data collec-
tion pipeline that breaks down the schema construction into
two independent stages: Commonsense Knowledge Anno-
tation and Winograd-style Schema Generation, each of
which is followed by a complementary validation stage. For
a given task example, we define the context as the unchanged
part of the example and the target as the candidate for
commonsense-based minimal perturbation. In the first stage
of our pipeline, we explicitly annotate implicit common-
sense knowledge connecting a context and a target in real-
world task datasets. In the second stage, we present workers
with the context, the target, and the associated commonsense
knowledge from the previous stage, and ask them to rewrite
the target such that it satisfies the following four conditions.
The new target must (1) minimally differ from the original
target (i.e., by edit distance of at most five words), (2) di-
rectly violate the given commonsense knowledge, (3) be an
incorrect answer for the given context, and (4) be contextu-
ally relevant.

We use Amazon Mechanical Turk as a crowdsourcing
platform. Our final benchmark contains ∼5K unique con-
texts with ∼500 unique contexts per task (on average) and
∼16K examples (i.e., context-target pairs) in total. Follow-
ing is an example from our benchmark for Intent Detection
task: Headline (context): Remote glaciers in China melt-
ing at ’shocking’ pace, risking water shortages, True Intent
(target): Climate change is real and is showing its effects,
Knowledge: water shortages IsA effect, False Intent (tar-
get): Climate change is real and is showing its causes.

Experiments and Results
All tasks in CROW are treated as binary classification tasks.
Given a context, a model must predict whether a provided
target is a suitable response for the corresponding real-world
task. For instance, in machine translation, given an English
sentence and a translated sentence in French, the model must
predict whether the translation is valid.

Evaluation Metrics. We evaluate models on CRoW using
two scores: Macro-F1 (valid or invalid targets), and Situ-
ational Accuracy, a stringent metric that reports whether
the model correctly identifies the validity (or invalidity) of

all targets for a given context (similar to Storks and Chai
2021’s strict coherence score). A single mistake on any tar-
get results in a score of 0 for that context. We design this
metric to account for the fact that robust commonsense rea-
soning would provide the model with a full situational un-
derstanding of the context. The CROW score is computed as
a macro-average of the task scores. We evaluate the human
performance on each task of the benchmark using two expert
annotators who each evaluate 100 random task samples.

Results We evaluate a series of language models that are
diverse in terms of scale, training, and data. Table 1 reports
results for a few of the latest LLMs across all tasks. For all
results, we refer the reader to our full paper.2 In general, we
observe that models vary in their ability to correctly iden-
tify the correct responses in the tasks. As expected, GPT-4
outperforms most other models. Even among stronger mod-
els, though, while performance is higher for individual ex-
amples (as measured by Macro-F1), the situational accuracy
is significantly lower, often below 50%. This gap suggests
that these models are not robust and fail to grasp a full sit-
uational understanding of the contexts with which they are
presented (even as they may correctly classify some individ-
ual cases). In contrast, humans tend to perform well on both
metrics. We also perform an analysis on the effect of oracle
commonsense knowledge and show that models can lever-
age it to improve their performance. Our qualitative analysis
on the other hand reveals some patterns (e.g. less plausible
reasoning due to imagining sarcastic scenarios) underlying
the surprisingly weaker performance of GPT-4 with chain-
of-thought reasoning with respect to GPT-4 with standard
prompting (especially, on Dialogue task).

Conclusion
In this work, we propose CROW, a multi-task common-
sense reasoning benchmark consisting of six real-world
tasks. To construct our benchmark, we design a data collec-
tion pipeline to systematically crowdsource Winograd-style
schemas based on commonsense-violating minimal pertur-
bations. Our evaluation of recent LLMs on our benchmark
shows that the performance of state-of-the-art models still
falls far below human performance with respect to common-
sense reasoning in real-world contexts.

2https://aclanthology.org/2023.emnlp-main.607
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