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ABSTRACT

Large-scale multi-label text classification (LMTC) aims to associate
a document with its relevant labels from a large candidate set.
Most existing LMTC approaches rely on massive human-annotated
training data, which are often costly to obtain and suffer from a
long-tailed label distribution (i.e., many labels occur only a few
times in the training set). In this paper, we study LMTC under the
zero-shot setting, which does not require any annotated documents
with labels and only relies on label surface names and descriptions.
To train a classifier that calculates the similarity score between
a document and a label, we propose a novel metadata-induced
contrastive learning (MICoL) method. Different from previous text-
based contrastive learning techniques,MICoL exploits document
metadata (e.g., authors, venues, and references of research papers),
which are widely available on the Web, to derive similar document–
document pairs. Experimental results on two large-scale datasets
show that: (1)MICoL significantly outperforms strong zero-shot
text classification and contrastive learning baselines; (2)MICoL is
on par with the state-of-the-art supervised metadata-aware LMTC
method trained on 10K–200K labeled documents; and (3) MICoL
tends to predict more infrequent labels than supervised methods,
thus alleviates the deteriorated performance on long-tailed labels.
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• Information systems→Datamining; •Computingmethod-
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Label Name

Label Description

(a) Label “Webgraph” from Microsoft Academic (https://academic.microsoft.com/
topic/2777569578/).

Label Name

Label Description

Synonyms (also viewed 
as Label Names)

(b) Label “Betacoronavirus” from PubMed (https://meshb.nlm.nih.gov/record/ui?
ui=D000073640).

Figure 1: Two examples of labels with name(s) and descrip-

tion from Microsoft Academic [49] and PubMed [24].

1 INTRODUCTION

Large-scale multi-label text classification (LMTC) [4] aims to find
the most relevant labels to an input document given a large col-
lection of candidate labels. As a fundamental task in text mining,
LMTC has many Web-related applications such as product key-
word recommendation on Amazon [6], academic paper classifica-
tion on Microsoft Academic and PubMed [68], and article tagging
on Wikipedia [18].

Most previous attempts address LMTC in a supervised fashion
[1, 6, 17, 18, 22, 26, 32, 36, 40, 60, 62, 68], where the proposed text
classifiers are trained on a large set of human-annotated documents.
While achieving inspiring performance, these approaches have
three limitations. First, obtaining enough human-labeled training
data is often expensive and time-consuming, especially when the
label space is large. Second, the trained classifiers can only predict
labels they have seen in the training set. When new categories (e.g.,
“COVID-19”) emerge, the classifiers need to be re-trained. Third, the
label distribution is often imbalanced in LMTC. Several labels (e.g.,
“World Wide Web”) have numerous training samples, while many
others (e.g., “Bipartite Ranking”) occur only a few times. Related
studies [54, 55] have shown that supervised approaches tend to
predict frequent labels and overlook long-tailed ones.

Being aware of the annotation cost and frequent emergence of
new labels, some studies [4, 16, 34, 38] focus on zero-shot LMTC.
In their settings, annotated training documents are given for a set
of seen classes, and they are tasked to build a classifier to predict
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Figure 2: Overview of the proposedMICoL framework.

unseen classes. However, as indicated in [61], we often face a more
challenging scenario in real-world settings: all labels are unseen;
we do not have any training samples with labels. For example, on
Microsoft Academic [49], all labels are scientific concepts extracted
from research publications on the Web [43], thus no annotated
training data is available when the label space is created. Motivated
by such applications, in this paper, we study zero-shot LMTCwith a
completely new label space. The only signal we use to characterize
each label is its surface name and description. Figure 1 shows two
examples of label information from Microsoft Academic [49] and
PubMed [24].

Although relevant labels are not available for documents, there
is another type of information widely available on the Web but
less concerned in previous studies: document metadata. We take
scientific papers as an example: in addition to text information
(e.g., title and abstract), a paper is also associated with various
metadata fields such as its authors, venue, and references. As shown
in Figure 2(a), a heterogeneous network [46] can be constructed to
interconnect papers via their metadata information: papers, authors,
and venues are nodes; authored-by, published-in, and cited-by are
edges. Suchmetadata information could be strong label indicators of
a paper. For example, in Figure 2(a), the venue nodeWWW suggests
Doc1’s relevance to “World Wide Web”. Moreover, metadata could
also imply that two papers share common labels. For example, we
know Doc1 and Doc2 may have similar research topics because
they are co-authored by Andrew Tomkins and Ravi Kumar or they
are co-cited by Doc3. More generally, metadata also exist in Web
content such as e-commerce reviews (e.g., reviewer and product
information) [64], social media posts (e.g., users and hashtags) [69],
and code repositories (e.g., contributors) [70]. Although metadata
have been used in fully supervised [68] or single-label [28, 64, 66, 67]
text classification, it is largely unexplored in zero-shot LMTC.
Contributions. In this paper, we propose a novelmetadata-induced
contrastive learning (MICoL) framework for zero-shot LMTC. To

perform classification, the key module in our framework is to com-
pute a similarity score between two text units (i.e., one document
and one label name/description) so that we can produce a rank list
of relevant labels for each document.Without annotated document–
label pairs to train the similarity scorer, we leverage metadata to
generate similar document–document pairs. Inspired by the idea
of contrastive learning [7], we train the scorer by pulling similar
document closer while pushing dissimilar ones apart. For example,
in Figure 2(a), we assume two papers sharing at least two authors
are similar (this can be described by the notion of meta-paths [47]
and meta-graphs [63], which will be formally introduced in Section
2.1). The similarity scorer is trained to score (Doc1, Doc2) higher
than (Doc1, Doc8), where Doc8 is a randomly sampled paper. In the
inference phase, as shown in Figure 2(b), we first use a discrete
retriever (e.g., BM25 [39]) to select a set of candidate labels from
the large label space. Next, we utilize the trained scorer to re-rank
candidate labels to obtain the final classification results. Note that
label information is only used during inference, thus no re-training
is required when new labels emerge.

We demonstrate the effectiveness of MICoL on two datasets [68]
extracted from Microsoft Academic [49] and PubMed [24], both
with more than 15K labels. The results indicate that: (1) MICoL
significantly outperforms strong zero-shot LMTC [61] and con-
trastive learning [8, 53, 57] baselines. (2) When we use P@𝑘 and
NDCG@𝑘 as evaluation metrics, MICoL is competitive with the
state-of-the-art supervised metadata-aware LMTC algorithm [68]
trained on 10K–50K labeled documents; (3) When it is evaluated
by metrics promoting correct prediction on tail labels [18, 55],MI-
CoL is on par with the supervised method trained on 100K–200K
labeled documents. This demonstrates that MICoL tends to predict
more infrequent labels than supervised methods, thus alleviates
the deteriorated performance on tail labels.

To summarize, this work makes the following contributions:
• We propose a zero-shot LMTC framework that utilizes document
metadata. The framework does not require any labeled training
data and only relies on label surface names and descriptions
during inference.
• Wepropose a novelmetadata-induced contrastive learningmethod.
Different from previous contrastive learning approaches [14, 15,
25, 56, 58] which manipulate text only, we exploit metadata in-
formation to produce contrastive training pairs.
• We conduct extensive experiments on two large-scale datasets to
demonstrate the effectiveness of the proposedMICoL framework.

2 PRELIMINARIES

2.1 Metadata, Meta-Path, and Meta-Graph

Metadata. Documents on the Web are usually accompanied by
rich metadata information [28, 67, 68]. To provide a holistic view
of documents with metadata, we can construct a heterogeneous
information network (HIN) [46] to connect documents together.

Definition 2.1. (Heterogeneous Information Network [46]) An
HIN is a graph𝐺 = (V, E) with a node type mapping 𝜙 : V → TV
and an edge type mapping𝜓 : E → TE . Either the number of node
types |TV | or the number of edge types |TE | is larger than 1.

As shown in Figure 2(a), in our constructed HIN, each document
is a node, and each metadata field is described by either a node (e.g.,
author, venue) or an edge (e.g., reference).
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(a) meta-path: PAP (b) meta-path: P->P<-P

(c) meta-graph: P(AV)P (d) meta-graph: P<-(PP)->P
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Figure 3: Examples of meta-paths and meta-graphs. Each

meta-path/meta-graph describes one type of relation be-

tween the red paper and the blue paper.

Meta-Path. With the constructed HIN, we are able to analyze var-
ious relations between documents. Due to network heterogeneity,
two documents can be connected via different paths. For example,
when two papers share a common author, they can be connected
via “paper–author–paper”; when one paper cites the other, they can
also be connected via “paper→paper”. To capture the proximity be-
tween two nodes from different semantic perspectives, meta-paths
[47] are extensively used in HIN studies.

Definition 2.2. (Meta-Path [47]) A meta-path is a pathM defined
on the graph 𝑇𝐺 = (TV ,TE ), and is denoted in the form ofM =

𝑉1
𝐸1−−→ 𝑉2

𝐸2−−→ · · · 𝐸𝑚−1−−−−→ 𝑉𝑚 , where 𝑉1, ...,𝑉𝑚 are node types and
𝐸1, ..., 𝐸𝑚−1 are edge types.

Each node is abstracted by its type in a meta-path, and a meta-
path describes a composite relation between node types 𝑉1 and 𝑉𝑚 .
Figures 3(a) and 3(b) show two examples of meta-paths. Following
previous studies [11, 47], we use initial letters to represent node
types (e.g., 𝑃 for paper, 𝐴 for author) and omit the edge types when
there is no ambiguity. The two meta-paths in Figures 3(a) and 3(b)
can be written as 𝑃𝐴𝑃 and 𝑃 → 𝑃 ← 𝑃 , respectively.1

Meta-Graph. In some cases, paths may not be sufficient to cap-
ture latent semantics between two nodes. For example, one meta-
path cannot describe the relation between two papers that share
at least two authors. Note that this relation is worth studying be-
cause two co-authors can be more informative than a single author
when we infer semantic similarities between papers. Allegedly,
one researcher may work on multiple topics during his/her career,
while the collaboration between two researchers often focuses on
a specific direction. Meta-graphs [63] are proposed to depict such
complex relations in an HIN.

Definition 2.3. (Meta-Graph [63]) A meta-graph is a directed
acyclic graph (DAG)M defined on 𝑇𝐺 = (TV ,TE ). It has a single
source node 𝑉1 and a single target node 𝑉𝑚 . Each node inM is a
node type and each edge inM is an edge type.

Figures 3(c) and 3(d) give two examples of meta-graphs. Figure
3(c) describes two papers sharing the same venue and one common
author, while Figure 3(d) shows two papers both cited by another
two shared papers. Similar to the notation of meta-paths, we denote
them as 𝑃 (𝐴𝑉 )𝑃 and 𝑃 ← (𝑃𝑃) → 𝑃 .

1Following previous studies [45, 47], we view 𝑃1 → 𝑃2 ← 𝑃3 as a “directed path”

from 𝑃1 to 𝑃3 by explaining it as 𝑃1
cites−−−→ 𝑃2

is cited by
−−−−−−−−→ 𝑃3 . In this way, 𝑃 → 𝑃 ← 𝑃

can be defined as a meta-path according to Definition 2.2. Similarly, we view 𝑃𝐴𝑃 as a

“directed path” 𝑃 writes−−−−→ 𝐴
is written by
−−−−−−−−−→ 𝑃 . Using the same explanation, both 𝑃 (𝐴𝑉 )𝑃

and 𝑃 ← (𝑃𝑃 ) → 𝑃 in Figure 3 can be viewed as a DAG, thus they are meta-graphs
according to Definition 2.3.

Reachability. We assume that two documents connected via a
certain meta-path/meta-graph share similar topics. Formally, we
introduce the concept of “reachable”.

Definition 2.4. (Reachable) Given a meta-path/meta-graphM
and two documents 𝑑1, 𝑑2, we say 𝑑2 is reachable from 𝑑1 viaM if
and only if we can find a path/DAGM0 in the HIN such that: (1) 𝑑1
is the source node ofM0; (2) 𝑑2 is the target node ofM0; (3) when
each node inM0 is abstracted by its node type,M0 becomesM.

We use 𝑑1 →M 𝑑2 to denote that 𝑑2 is reachable from 𝑑1 viaM,
and we use NM (𝑑1) to denote the set of nodes that are reachable
from 𝑑1 (i.e., NM (𝑑1) = {𝑑2 | 𝑑1 →M 𝑑2, 𝑑2 ≠ 𝑑1}).

2.2 Problem Definition

Zero-shot multi-label text classification [50] aims to tag each docu-
ment with labels that are unseen during training time but available
for prediction. Most previous studies [4, 16, 34, 38] assume that
there is a set of seen classes, each of which has some annotated doc-
uments. Trained on these documents, their proposed text classifiers
are expected to transfer the knowledge from seen classes to the
prediction of unseen ones.

In this paper, we study a more challenging setting (proposed in
[61] previously), where all labels are unseen. In other words, given
the label space L, we do not have any training sample for 𝑙 ∈ L.
Instead, we assume a large-scale unlabeled corpus D is given, and
each document 𝑑 ∈ D is associated with metadata information. As
mentioned in Section 2.1, with such metadata, we can construct an
HIN 𝐺 = (V, E) to describe the relations between documents. We
aim to train a multi-label text classifier 𝑓 based on both the text
information D and the network information 𝐺 . As an inductive
task, the classifier 𝑓 needs to predict its relevant labels given a new
document 𝑑 ∉ D.

Since no training data is available to characterize a given label,
same as previous studies [38, 61], we assume each label 𝑙 has some
text information to describe its semantics, such as label names 𝑛𝑙
[42, 61] and descriptions 𝑠𝑙 [3, 6].2 Examples of such label informa-
tion have been shown in Figure 1. To summarize, our task can be
formally defined as follows:

Definition 2.5. (Problem Definition) Given an unlabeled corpus
D with metadata information 𝐺 = (V, E), and a label space L
with label names and descriptions {𝑛𝑙 , 𝑠𝑙 |𝑙 ∈ L}, our task is to learn
a multi-label text classifier 𝑓 that can map a new document 𝑑 ∉ D
to its relevant labels L𝑑 ⊆ L.

3 THE MICOL FRAMEWORK

3.1 A Two-Stage Framework

As shown in Figure 2(b), in the proposed MICoL framework, the
LMTC problem is formulated as a ranking task. Specifically, given a
new document (i.e., the “query”), our task is to predict top-ranked la-
bels (i.e., the “items”) that are relevant to the document. Note that in
LMTC, the label space L (i.e., the “item pool”) is large. For example,
in both the Microsoft Academic and PubMed datasets [68], there
are more than 15,000 labels. Given a large item pool, recent ranking
approaches are usually pipelined [13, 35], consisting of a first-stage
discrete retriever (e.g., BM25 [39]) that efficiently generates a set
2Label names are required in ourMICoL framework, but label descriptions are optional.
That being said, MICoL is still applicable with label names only (i.e., 𝑠𝑙 = ∅).
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of candidate items followed by a continuous re-ranker (e.g., BERT
[10]) that selects the most promising items from the candidates.
Such design is a natural choice due to the effectiveness-efficiency
trade-off among different ranking models: discrete rankers based
on lexical matching are faster but less accurate; continuous rankers
can perform latent semantic matching but are much slower.

Following such prevalent approaches,MICoL adopts a two-stage
ranking framework, with a discrete retrieval stage and a continuous
re-ranking stage. The major novelty of MICoL is that, with doc-
ument metadata information, a new contrastive learning method
is developed to significantly improve the re-ranking stage perfor-
mance upon BERT-based models.

3.2 The Retrieval Stage

Since the main goal of this paper is to develop a novel contrastive
learning framework for re-ranking, we do not aim at a compli-
cated design of the retrieval stage. Therefore, we adopt two simple
strategies: exact name matching and sparse retrieval.
Exact Name Matching. Given a document 𝑑 and a label 𝑙 , if the
label name 𝑛𝑙 appears in the document text, we add 𝑙 as a candi-
date of 𝑑’s relevant labels.3 We use Cexact (𝑑) to denote the set of
candidate labels obtained by exact name matching.
Sparse Retrieval. We cannot expect all relevant labels of a doc-
ument explicitly appear in its text. To increase the recall of our
retrieval stage, we adopt BM25 [39] to allow partial lexical match-
ing between documents and labels. Specifically, we concatenate
the name and the description together as the text information 𝑡𝑙
of each label (i.e., 𝑡𝑙 = 𝑛𝑙 | | 𝑠𝑙 ).4 Then, the score between 𝑑 and 𝑙 is
calculated as

BM25(𝑑, 𝑙) =
∑

𝑤∈𝑑∩𝑡𝑙
IDF(𝑤) TF(𝑤, 𝑡𝑙 ) · (𝑘1 + 1)

TF(𝑤, 𝑡𝑙 ) · 𝑘1 (1 − 𝑏 + 𝑏
|L |

𝑎𝑣𝑔𝑑𝑙
)
. (1)

Here, 𝑘1 = 1.5 and 𝑏 = 0.75 are parameters of BM25; 𝑎𝑣𝑔𝑑𝑙 =
1
|L |

∑
𝑙 ∈L |𝑡𝑙 | is the average length of label text information. Note

that in classification tasks, documents are “queries” and labels are
“items” being ranked.When the BM25 score between𝑑 and 𝑙 exceeds
a certain threshold 𝜂, we add 𝑙 as a candidate of 𝑑’s relevant labels.
Formally,

CBM25 (𝑑) = {𝑙 | 𝑙 ∈ L, BM25(𝑑, 𝑙) > 𝜂}. (2)
Given a document 𝑑 , its candidate label set C(𝑑) = Cexact (𝑑) ∪

CBM25 (𝑑) (i.e., the union of candidates obtained by exact name
matching and by sparse retrieval).

3.3 The Re-ranking Stage

Encouraged by the success of BERT [10] in a wide range of text
mining tasks, we build our re-ranker upon BERT-based pre-trained
language models. In general, our proposed re-ranking stage can be
instantiated by any variant of BERT (e.g., SciBERT [2], BioBERT
[23], and RoBERTa [21]). In our experiments, since documents from
both Microsoft Academic and PubMed are scientific papers, we
adopt SciBERT [2] as our building block.

3On PubMed, as shown in Figure 1, each label can have more than one name because
both “MeSH heading” and “entry term(s)” are viewed as label names. In this case, we
add 𝑙 as a candidate if any of its names appears in the document text.
4On PubMed, instead of concatenating all label names into 𝑡𝑙 , we use the “MeSH
heading” only as 𝑛𝑙 , which achieves better performance in experiments.
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Figure 4: Two architectures that compute the similarity be-

tween a document 𝑑 and a candidate label 𝑙 .

3.3.1 Bi-Encoder and Cross-Encoder. To improve the performance
of BERT, two architectures are typically used for fine-tuning: Bi-
Encoders and Cross-Encoders. Bi-Encoders [8, 37] perform self
attention over two text units (e.g., query and item) separately and
compute the similarity between their representation vectors at the
end. Cross-Encoders [13, 61], in contrast, perform self attention
within as well as across two text units at the same time. Below we
introduce how to apply these two architectures to our task.
Bi-Encoder. Given a document 𝑑 and a candidate label 𝑙 ∈ C(𝑑)
(obtained in the retrieval stage), we use BERT to encode them
separately to generate two representation vectors.

𝒆𝑑 = BERT(𝑑), 𝒆𝑙 = BERT(𝑡𝑙 ). (3)
To be specific, given the document text 𝑑 (resp., the label name and
description 𝑡𝑙 ), we use the sequence “[CLS] 𝑑 [SEP]” (resp., “[CLS]
𝑡𝑙 [SEP]”) as the input into BERT and take the output vector of the
“[CLS]” token from the last layer as the document representation 𝒆𝑑
(resp., label representation 𝒆𝑙 ). The score between 𝑑 and 𝑙 is defined
as the cosine similarity of their representation vectors.

𝑠𝑐𝑜𝑟𝑒 (𝑑, 𝑙) = cos(𝒆𝑑 , 𝒆𝑙 ) . (4)

Cross-Encoder. To better utilize the fully connected attention
mechanism of BERT-based models, we can concatenate document
and label text information together and encode it using one BERT.

𝒆𝑑 | |𝑡𝑙 = BERT(𝑑 | | 𝑡𝑙 ). (5)
Here, (𝑑 | | 𝑡𝑙 ) denotes the input sequence “[CLS] 𝑑 [SEP] 𝑡𝑙 [SEP]”.
Again, we take the output vector of the “[CLS]” token as 𝒆𝑑 | |𝑡𝑙 . The
score between 𝑑 and 𝑙 is then obtained by adding a linear layer
upon BERT:

𝑠𝑐𝑜𝑟𝑒 (𝑑, 𝑙) = 𝒘⊤𝒆𝑑 | |𝑡𝑙 , (6)
where𝒘 is a trainable vector.

The architectures of Bi-Encoder and Cross-Encoder are illus-
trated in Figure 4.

3.3.2 Metadata-Induced Contrastive Learning (MICoL). Now we
aim to fine-tune Bi-Encoder and Cross-Encoder to improve their
re-ranking performance. (For Cross-Encoder, especially, we cannot
even run it without fine-tuning because𝒘 needs to be learned.) If our
task were fully supervised, we would have positive document–label
training pairs (𝑑, 𝑙) indicating 𝑑 is labeled with 𝑙 , and the training
objective would be maximizing 𝑠𝑐𝑜𝑟𝑒 (𝑑, 𝑙) for these positive pairs.
However, we do not have any annotated documents with the zero-
shot setting. In this case, to fine-tune above two architectures, we
adopt a contrastive learning framework.
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Linear Layer

score(d, d҆)>

(b) Cross-Encoder fine-tuning

Figure 5:Metadata-induced contrastive learning to fine-tune

Bi-Encoder and Cross-Encoder usingM = 𝑃 (𝐴𝐴)𝑃 .

Instead of learning “what is what”, contrastive learning [7] tries
to learn “what is similar to what”. In our problem setting, we assume
there is a collection of document pairs (𝑑, 𝑑+), where 𝑑 and 𝑑+ are
similar to each other, e.g., 𝑑+ is reachable from 𝑑 via a specified
meta-path or meta-graph. For each 𝑑 , we can also randomly sample
a set of documents {𝑑−

𝑖
}𝑁
𝑖=1 from the whole corpus D. Contrastive

learning aims to learn effective representations by pulling 𝑑 and 𝑑+
together while pushing 𝑑 and 𝑑−

𝑖
apart. Taking Bi-Encoder as an

example, we first use BERT to encode all documents.
𝒆𝑑 = BERT(𝑑), 𝒆𝑑+ = BERT(𝑑+), 𝒆𝑑−

𝑖
= BERT(𝑑−𝑖 ) . (7)

Following Chen et al.’s seminal work [7], the contrastive loss can
be defined as

− log exp(cos(𝒆𝑑 , 𝒆𝑑+ )/𝜏)
exp(cos(𝒆𝑑 , 𝒆𝑑+ )/𝜏) +

∑𝑁
𝑖=1 exp(cos(𝒆𝑑 , 𝒆𝑑−𝑖 )/𝜏)

, (8)

where 𝜏 is a temperature hyperparameter.
Now the problem becomes how to define similar document–

document pairs (𝑑, 𝑑+). In Chen et al.’s original paper [7], they
focus on learning visual representations, so they take two random
transformations (e.g., cropping, distortion, rotation) of the same
image as positive pairs. A similar approach has been adopted in
learning language representations [15, 25, 56, 58], but transfor-
mation techniques become word insertion, deletion, substitution,
reordering [53], and back translation [57].

Instead of using those purely text-based techniques, we propose
a simple but novel approach based on document metadata. That
is, given a meta-path or a meta-graphM, we define (𝑑, 𝑑+) as a
similar document–document pair if and only if 𝑑+ is reachable from
𝑑 viaM (i.e., 𝑑+ ∈ NM (𝑑), Definition 2.4).

Formally, for Bi-Encoder, the metadata-induced contrastive loss
is defined as

JBi = E
𝑑+∈NM (𝑑 )

𝑑−
𝑖
∼D

[
−log exp(cos(𝒆𝑑 , 𝒆𝑑+ )/𝜏)

exp(cos(𝒆𝑑 , 𝒆𝑑+ )/𝜏) +
∑𝑁

𝑖=1 exp(cos(𝒆𝑑 , 𝒆𝑑−𝑖 )/𝜏)

]
.

(9)
Similarly, for Cross-Encoder, we first compute 𝑠𝑐𝑜𝑟𝑒 (𝑑, 𝑑+) and

𝑠𝑐𝑜𝑟𝑒 (𝑑, 𝑑−
𝑖
).

𝒆𝑑 | |𝑑+ = BERT(𝑑 | | 𝑑+), 𝒆𝑑 | |𝑑−
𝑖
= BERT(𝑑 | | 𝑑−𝑖 ),

𝑠𝑐𝑜𝑟𝑒 (𝑑, 𝑑+) = 𝒘⊤𝒆𝑑 | |𝑑+ , 𝑠𝑐𝑜𝑟𝑒 (𝑑, 𝑑−𝑖 ) = 𝒘⊤𝒆𝑑 | |𝑑−
𝑖
.

(10)

Then, the metadata-induced contrastive loss is

JCross = E
𝑑+∈NM (𝑑 )

𝑑−
𝑖
∼D

[
− log exp(𝑠𝑐𝑜𝑟𝑒 (𝑑,𝑑+))

exp(𝑠𝑐𝑜𝑟𝑒 (𝑑,𝑑+)) +∑𝑁
𝑖=1 exp(𝑠𝑐𝑜𝑟𝑒 (𝑑,𝑑−𝑖 ))

]
.

(11)
The BERT model is thus fine-tuned by minimizing the contrastive
loss in Eq. (9) or (11). Figure 5 illustrates the fine-tuning process of
both Bi-Encoder and Cross-Encoder usingM = 𝑃 (𝐴𝐴)𝑃 .

Due to the space constraint, the training and inference proce-
dures of theMICoL framework are formally summarized in Appen-
dix A.2; the optimization details of MICoL (i.e., Eqs. (9) and (11))
are provided in Appendix A.3.

4 EXPERIMENTS

4.1 Setup

Datasets. Given the task of metadata-aware LMTC, following [68],
we perform evaluation on two large-scale datasets.
• MAG-CS [49]. TheMicrosoft Academic Graph (MAG) has a web-
scale collection of scientific papers from various fields. In [68],
705,407 MAG papers published at 105 top CS conferences from
1990 to 2020 are selected to form a dataset with 15,808 labels.5
• PubMed [24]. PubMed has a web-scale collection of biomedical
literature from MEDLINE, life science journals, and online books.
In [68], 898,546 PubMed papers published in 150 top medicine
journals from 2010 to 2020 are selected to form a dataset with
17,963 labels (i.e., MeSH terms [9]).
Under the fully supervised setting, Zhang et al. [68] split both

datasets into training, validation, and testing sets. In this paper, we
focus on the zero-shot setting. Therefore, we combine their training
and validation sets together as our unlabeled input corpus D (that
being said, we do not know the labels of these documents, and
we only utilize their text and metadata information). We use their
testing set as our testing documents 𝑑 ∉ D. Dataset statistics are
briefly listed in Table 1. More details are in Appendix A.4.

Table 1: Dataset statistics.

Dataset #Training
(Unlabeled) #Testing #Labels Labels/Doc Words/Doc

MAG-CS [49] 634,874 70,533 15,808 5.59 126.55
PubMed [24] 808,692 89,854 17,963 7.80 199.14

Compared Methods. We evaluate MICoL against a variety of
baseline methods using text embedding, pre-trained language mod-
els, and text-based contrastive learning. Since the major technical
contribution of MICoL is in the re-ranking stage, all the baselines

5Originally, there were 15,809 labels in MAG-CS, but the label “Computer Science”
is removed from all papers because it is trivial to predict.
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Table 2: P@𝑘 and NDCG@𝑘 scores of compared algorithms on MAG-CS and PubMed. Bold: the highest score of zero-shot

approaches. *: MICoL (Cross-Encoder, 𝑃 → 𝑃 ← 𝑃) is significantly better than this algorithm with p-value < 0.05. **: MICoL

(Cross-Encoder, 𝑃 → 𝑃 ← 𝑃 ) is significantly better than this algorithm with p-value < 0.01.

Algorithm

MAG-CS [49] PubMed [24]

P@1 P@3 P@5 NDCG@3 NDCG@5 P@1 P@3 P@5 NDCG@3 NDCG@5

Ze
ro
-s
ho

t

Doc2Vec [31] 0.5697** 0.4613** 0.3814** 0.5043** 0.4719** 0.3888** 0.3283** 0.2859** 0.3463** 0.3252**
SciBERT [2] 0.6440** 0.5030** 0.4011** 0.5545** 0.5061** 0.4427** 0.3572** 0.3031** 0.3809** 0.3510**

ZeroShot-Entail [61] 0.6649** 0.5003** 0.3959** 0.5570** 0.5057** 0.5275** 0.4021 0.3299 0.4352 0.3913

SPECTER [8] 0.7107** 0.5381** 0.4184** 0.5979** 0.5365** 0.5286** 0.3923** 0.3181** 0.4273** 0.3815**
EDA [53] 0.6442** 0.4939** 0.3948** 0.5471** 0.5000** 0.4919 0.3754* 0.3101* 0.4058* 0.3667*
UDA [57] 0.6291** 0.4848** 0.3897** 0.5362** 0.4918** 0.4795** 0.3696** 0.3067** 0.3986** 0.3614**

MICoL (Bi-Encoder, 𝑃 → 𝑃 ← 𝑃 ) 0.7062* 0.5369* 0.4184* 0.5960* 0.5355* 0.5124** 0.3869* 0.3172* 0.4196* 0.3774*
MICoL (Bi-Encoder, 𝑃 ← (𝑃𝑃 ) → 𝑃 ) 0.7050* 0.5344* 0.4161* 0.5937* 0.5331* 0.5198** 0.3876* 0.3172* 0.4215* 0.3786*
MICoL (Cross-Encoder, 𝑃 → 𝑃 ← 𝑃 ) 0.7177 0.5444 0.4219 0.6048 0.5415 0.5412 0.4036 0.3257 0.4391 0.3906

MICoL (Cross-Encoder, 𝑃 ← (𝑃𝑃 ) → 𝑃 ) 0.7061 0.5376 0.4187 0.5964 0.5357 0.5218 0.3911 0.3172* 0.4249 0.3794

Su
pe
rv
ise

d MATCH [68] (10K Training) 0.4423** 0.2851** 0.2152** 0.3375** 0.3003** 0.6915 0.3869* 0.2785** 0.4649 0.3896
MATCH [68] (50K Training) 0.6215** 0.4280** 0.3269** 0.4987** 0.4489** 0.7701 0.4716 0.3585 0.5497 0.4750
MATCH [68] (100K Training) 0.8321 0.6520 0.5142 0.7342 0.6761 0.8286 0.5680 0.4410 0.6405 0.5626

MATCH [68] (Full, 560K+ Training) 0.9114 0.7634 0.6312 0.8486 0.8076 0.9151 0.7425 0.6104 0.8001 0.7310

below are used as re-rankers after the same retrieval stage proposed
in Section 3.2.
• Doc2Vec [20] is a text embedding method. We use it to embed
documents and labels into a shared semantic space according
to their text information. Then, for each document, we rank all
candidate labels according to their cosine similarity with the
document in the embedding space.
• SciBERT [2] is a BERT-based language model pre-trained on
a large set of computer science and biomedical papers. Taking
it as a baseline, we do not perform fine-tuning, so it can only
be used in Bi-Encoder. (In Cross-Encoder, the linear layer is not
pre-trained, thus cannot be used without fine-tuning.)
• ZeroShot-Entail [61] is a pre-trained language model for zero-
shot text classification. It is a textual entailment model that pre-
dicts to what extent a document (as the premise) can entail the
template “this document is about {label_name}” (as the hypothesis).
To make this method more competitive, we change its internal
BERT-base-uncased model to RoBERTa-large-mnli.
• SPECTER [8] is a pre-trained language model for scientific doc-
uments that leverages paper citation information. It is built upon
SciBERT and takes citation prediction as the pre-training objec-
tive. We use it in the Bi-Encoder architecture without fine-tuning.
• EDA [53] is a text data augmentation method. Given a document,
it proposes four simple operations – synonym replacement, ran-
dom insertion, random swap, and random deletion – to create
a new artificial document. We view the original document and
the new one as a positive document–document pair and use all
these pairs to perform contrastive learning to fine-tune SciBERT.
• UDA [57] is another text data augmentation method. It performs
back translation and TF-IDF word replacement to generate new
documents that are similar to the original one. We use these
pairs to perform contrastive learning to fine-tune SciBERT. Both
EDA and UDA can be leveraged to fine-tune a Bi-Encoder or a
Cross-Encoder, and we report the higher performance between
the two architectures.
• MICoL is our proposed framework. We study the performance
of 10 meta-paths/meta-graphs {𝑃 → 𝑃, 𝑃 ← 𝑃, 𝑃𝐴𝑃, 𝑃𝑉𝑃, 𝑃 →
𝑃 ← 𝑃, 𝑃 ← 𝑃 → 𝑃, 𝑃 (𝐴𝐴)𝑃, 𝑃 (𝐴𝑉 )𝑃, 𝑃 → (𝑃𝑃) ← 𝑃, 𝑃 ←
(𝑃𝑃) → 𝑃} when fine-tuning Bi-Encoder and Cross-Encoder. We
choose SciBERT as our base model to be fine-tuned.

We also report the performance of a fully supervised method for
reference.
• MATCH [68] is the state-of-the-art supervised approach for
metadata-aware multi-label text classification. Because we do
not consider label hierarchy in our problem setting, we report
the performance of MATCH-NoHierarchy with various sizes of
training data for comparison.

Evaluation Metrics. Following the commonly used evaluation on
multi-label text classification [22, 62, 68], we adopt two rank-based
metrics: P@𝑘 and NDCG@𝑘 , where 𝑘 = 1, 3, 5. For a document 𝑑 ,
let𝒚𝑑 ∈ {0, 1} |L | be its ground truth label vector and rank(𝑖) be the
index of the 𝑖-th highest predicted label according to the re-ranker.

P@𝑘 =
1
𝑘

𝑘∑
𝑖=1

𝑦𝑑,rank(𝑖 ) .

DCG@𝑘 =

𝑘∑
𝑖=1

𝑦𝑑,rank(𝑖 )
log(𝑖 + 1) , NDCG@𝑘 =

DCG@𝑘∑min(𝑘,| |𝒚𝑑 | |0 )
𝑖=1

1
log(𝑖+1)

.

4.2 Performance Comparison

Table 2 shows P@𝑘 and NDCG@𝑘 scores of compared algorithms
on MAG-CS and PubMed. We run each experiment three times
with the average score reported. (SciBERT, Zero-Shot-Entail, and
SPECTER are deterministic according to our usage, so we run them
only once.) To show statistical significance, we conduct two-tailed
unpaired t-tests to compare the best performed MICoL model and
other approaches including MATCH. (When comparing MICoL
with three deterministic approaches, we conduct two-tailed Z-tests
instead.) The significance level of each result is marked in Table 2.
ForMICoL, we show the performance of onemeta-path 𝑃 → 𝑃 ← 𝑃

and onemeta-graph 𝑃 ← (𝑃𝑃) → 𝑃 here. The performance of other
meta-paths/meta-graphs will be presented in Table 4 and discussed
in Section 4.4.

From Table 2, we observe that: (1) MICoL (Cross-Encoder, 𝑃 →
𝑃 ← 𝑃 ) significantly outperforms all zero-shot baselines in most
cases, except that it is slightly worse than ZeroShot-Entail on
PubMed in terms of P@5 and NDCG@5. (2) On MAG-CS, MI-
CoL (Cross-Encoder, 𝑃 → 𝑃 ← 𝑃 ) performs significantly better
than the supervised MATCH model with 50K labeled training data.
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Table 3: PSP@𝑘 and PSN@𝑘 scores of compared algorithms on MAG-CS and PubMed. Bold, *, and **: the same meaning as in

Table 2. We also show the ratio PSP@1/P@1. The higher PSP@𝑘/P@𝑘 is, the more infrequent the correctly predicted labels are.

Algorithm

MAG-CS [49] PubMed [24]

PSP@1 PSP@3 PSP@5 PSN@3 PSN@5 PSP@1
P@1 PSP@1 PSP@3 PSP@5 PSN@3 PSN@5 PSP@1

P@1

Ze
ro
-s
ho

t

Doc2Vec [31] 0.4287** 0.4623** 0.4656** 0.4450** 0.4425** 0.75 0.2717** 0.2948** 0.3029** 0.2856** 0.2879** 0.70
SciBERT [2] 0.4668** 0.4958** 0.4843** 0.4788** 0.4667** 0.72 0.3149** 0.3231** 0.3221** 0.3174** 0.3131** 0.71

ZeroShot-Entail [61] 0.4796** 0.4892** 0.4759** 0.4777** 0.4644** 0.72 0.3617** 0.3498** 0.3389** 0.3492** 0.3378** 0.69
SPECTER [8] 0.5304 0.5334* 0.5059* 0.5223 0.4988* 0.75 0.3907** 0.3638** 0.3442** 0.3666** 0.3489** 0.74
EDA [53] 0.4916** 0.4968** 0.4821** 0.4859** 0.4708** 0.76 0.3572* 0.3451* 0.3334* 0.3442* 0.3322* 0.73
UDA [57] 0.4850** 0.4907** 0.4771** 0.4797** 0.4654** 0.77 0.3547** 0.3423** 0.3311** 0.3416** 0.3298** 0.74

MICoL (Bi-Encoder, 𝑃 → 𝑃 ← 𝑃 ) 0.5176 0.5311 0.5065 0.5175 0.4963 0.73 0.3676** 0.3559** 0.3423* 0.3550** 0.3418** 0.72
MICoL (Bi-Encoder, 𝑃 ← (𝑃𝑃 ) → 𝑃 ) 0.5160 0.5281 0.5037 0.5150 0.4940 0.73 0.3780** 0.3589* 0.3423* 0.3597** 0.3450** 0.73
MICoL (Cross-Encoder, 𝑃 → 𝑃 ← 𝑃 ) 0.5375 0.5415 0.5118 0.5302 0.5052 0.75 0.4105 0.3807 0.3558 0.3841 0.3625 0.76

MICoL (Cross-Encoder, 𝑃 ← (𝑃𝑃 ) → 𝑃 ) 0.5326 0.5363 0.5087 0.5249 0.5013 0.75 0.3871 0.3664 0.3462 0.3677 0.3496 0.74

Su
pe
rv
ise

d MATCH [68] (10K Training) 0.1978** 0.1807** 0.1712** 0.1850** 0.1764** 0.45 0.2840** 0.2138** 0.1870** 0.2332** 0.2139** 0.41
MATCH [68] (50K Training) 0.2854** 0.2830** 0.2738** 0.2838** 0.2780** 0.46 0.3201** 0.2715** 0.2532** 0.2848** 0.2713** 0.42
MATCH [68] (100K Training) 0.4271** 0.4750** 0.4737* 0.4624** 0.4635** 0.51 0.3576** 0.3579** 0.3456* 0.3584** 0.3507** 0.43
MATCH [68] (200K Training) 0.4695** 0.5401 0.5530 0.5217 0.5325 0.54 0.3732** 0.3988 0.3905 0.3913 0.3882 0.44

MATCH [68] (Full, 560K+ Training) 0.5501 0.6397 0.6627 0.6171 0.6345 0.60 0.4371 0.5188 0.5200 0.4978 0.5011 0.48

On PubMed,MICoL can be competitive with MATCH trained on
more than 10K annotated documents in terms of P@3, P@5, and
NDCG@5. (3) Using purely text-based augmentation approaches
(i.e., EDA and UDA) to perform contrastive learning is not con-
sistently beneficial. In fact, EDA and UDA perform even worse
than unfine-tuned SciBERT on MAG-CS. In contrast, our proposed
metadata-induced contrastive learning consistently boosts the per-
formance of SciBERT, and the improvements are much more sig-
nificant than those of text-based contrastive learning. (4) For both
𝑃 → 𝑃 ← 𝑃 and 𝑃 ← (𝑃𝑃) → 𝑃 , Cross-Encoder performs better
than Bi-Encoder within theMICoL framework. In Section 4.4, we
will show that this observation is generalizable to most meta-paths
and meta-graphs we use.

4.3 Performance on Tail Labels

Tail labels refer to those labels relevant to only a few documents
in the dataset. They are usually more fine-grained and informa-
tive than head labels (i.e., frequent ones). However, predicting tail
labels is less “rewarding” for models to achieve high P@𝑘 and
NDCG@𝑘 scores. Therefore, new scoring functions are designed to
promote infrequent label prediction by giving the model a higher
“reward” when it predicts a tail label correctly. Propensity-scored
P@𝑘 (PSP@𝑘) and propensity-scored NDCG@𝑘 (PSNDCG@𝑘 , ab-
breviated to PSN@𝑘 in this paper) are thus proposed in [18] and
widely used in LMTC evaluation [16, 32, 40, 55, 62]. PSP@𝑘 and
PSN@𝑘 are defined as follows.6

1
𝑝𝑙

= 1 +𝐶 (𝑁𝑙 + 𝐵)−𝐴, PSP@𝑘 =
1
𝑘

𝑘∑
𝑖=1

𝑦𝑑,rank(𝑖 )
𝑝𝑑,rank(𝑖 )

.

PSDCG@𝑘 =

𝑘∑
𝑖=1

𝑦𝑑,rank(𝑖 )
𝑝𝑑,rank(𝑖 ) log(𝑖 + 1)

, PSN@𝑘 =
PSDCG@𝑘∑min(𝑘,| |𝒚𝑑 | |0 )

𝑖=1
1

log(𝑖+1)

.

Here, 1
𝑝𝑙

is the “reward” of predicting the label 𝑙 correctly; 𝑁𝑙 is the
number of documents relevant to 𝑙 in the training set. Following
previously established parameter values [18, 55, 62], we set𝐴 = 0.55,
𝐵 = 1.5, and𝐶 = (log |D| − 1) (𝐵 + 1)𝐴 . Therefore, the less frequent
6When reporting PSP@𝑘 and PSN@𝑘 , previous studies [16, 32, 40, 55, 62] normalize
the original PSP@𝑘 and PSN@𝑘 scores by their maximum possible values (just like
how DCG@𝑘 is normalized to NDCG@𝑘). Following these studies, we perform the
same normalization in our calculation.

a label is, the higher reward one can get by predicting it correctly.
Table 3 shows the PSP@𝑘 and PSN@𝑘 scores of compared methods.

As shown in Table 3, when we use PSP@𝑘 and PSN@𝑘 as eval-
uation metrics, MICoL becomes more powerful. MICoL (Cross-
Encoder, 𝑃 → 𝑃 ← 𝑃 ) significantly outperforms all zero-shot base-
lines, and it is on par with MATCH trained on 100K–200K labeled
documents. According to the definition of PSP@𝑘 and P@𝑘 , the
ratio PSP@𝑘/P@𝑘 reflects the average “reward” a model gets from
its correctly predicted labels. The higher PSP@𝑘/P@𝑘 is, the more
infrequent the correctly predicted labels are. We show PSP@1/P@1
in Table 3. We observe that labels predicted by MICoL (and all
other zero-shot methods) are much more infrequent than labels
predicted by the supervised MATCH model. The reason could be
that zero-shot methods cannot see any labeled data during training,
thus they get no hints of frequent labels and are not biased towards
head labels. This helps alleviate the deteriorated performance of
supervised models on long-tailed labels as observed in [54, 55].

4.4 Effect of Meta-Path and Meta-Graph

Table 4 shows the performance of all 20MICoL variants (2 architec-
tures × 10 meta-paths/meta-graphs). We have the following obser-
vations: (1) All meta-paths and meta-graphs used inMICoL, except
𝑃𝑉𝑃 , can improve the classification performance upon unfine-tuned
SciBERT. For 𝑃𝑉𝑃 , the unsatisfying performance is expected be-
cause venue information alone (e.g., ACL) is too weak to distinguish
between fine-grained labels (e.g., “Named Entity Recognition”
and “Entity Linking”). In Appendix A.1, we provide a mathe-
matical interpretation of why some meta-paths/meta-graphs (e.g.,
𝑃𝑉𝑃 or 𝑃 (𝐴𝐴𝐴𝐴𝐴)𝑃 ) may not perform well within our MICoL
framework. In short, the results in Table 4 demonstrate the effec-
tiveness of MICoL across different meta-paths/meta-graphs. (2)
Cross-Encoder models perform better than their Bi-Encoder coun-
terparts in most cases (8 out of 10 meta-paths/meta-graphs on
MAG-CS and 10 out of 10 on PubMed, in terms of P@1). (3) In
contrast to the gap between Bi-Encoder and Cross-Encoder, the
difference among citation-based meta-paths and meta-graphs is
less significant. It would be an interesting future work to automati-
cally select the most effective meta-paths/meta-graphs, although
related studies on heterogeneous network representation learning
[11, 51, 59] often require users to specify them.
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Table 4: P@𝑘 and NDCG@𝑘 scores of MICoL using different meta-paths/meta-graphs. Bold: the best model. *: significantly

worse than the best model with p-value < 0.05. **: significantly worse than the best model with p-value < 0.01. All meta-paths

and meta-graphs, except 𝑃𝑉𝑃 , can improve the classification performance upon unfine-tuned SciBERT.

Algorithm

MAG-CS [49] PubMed [24]

P@1 P@3 P@5 NDCG@3 NDCG@5 P@1 P@3 P@5 NDCG@3 NDCG@5
Unfine-tuned SciBERT 0.6599** 0.5117** 0.4056** 0.5651** 0.5136** 0.4371** 0.3544** 0.3014** 0.3775** 0.3485**

MICoL (Bi-Encoder, 𝑃𝐴𝑃 ) 0.6877** 0.5285** 0.4143** 0.5852** 0.5280** 0.4974** 0.3818** 0.3154* 0.4122** 0.3727**
MICoL (Bi-Encoder, 𝑃𝑉𝑃 ) 0.6589** 0.5123** 0.4063** 0.5656** 0.5145** 0.4440** 0.3507** 0.2966** 0.3761** 0.3458**
MICoL (Bi-Encoder, 𝑃 → 𝑃 ) 0.7094 0.5391 0.4190 0.5982 0.5367 0.5200* 0.3903* 0.3195 0.4240* 0.3808*
MICoL (Bi-Encoder, 𝑃 ← 𝑃 ) 0.7095* 0.5374* 0.4178* 0.5970* 0.5356* 0.5195** 0.3905* 0.3192 0.4240* 0.3806*

MICoL (Bi-Encoder, 𝑃 → 𝑃 ← 𝑃 ) 0.7062* 0.5369* 0.4184* 0.5960* 0.5355* 0.5124** 0.3869* 0.3172* 0.4196* 0.3774*
MICoL (Bi-Encoder, 𝑃 ← 𝑃 → 𝑃 ) 0.7039* 0.5379* 0.4187* 0.5963* 0.5356* 0.5174** 0.3886* 0.3187* 0.4220* 0.3795*
MICoL (Bi-Encoder, 𝑃 (𝐴𝐴)𝑃 ) 0.6873** 0.5272** 0.4130** 0.5840** 0.5269** 0.4963** 0.3794** 0.3139** 0.4101** 0.3711**
MICoL (Bi-Encoder, 𝑃 (𝐴𝑉 )𝑃 ) 0.6832** 0.5263** 0.4135** 0.5823** 0.5263** 0.4894** 0.3743** 0.3099** 0.4045** 0.3664**

MICoL (Bi-Encoder, 𝑃 → (𝑃𝑃 ) ← 𝑃 ) 0.7015** 0.5334** 0.4160** 0.5920** 0.5322** 0.5163** 0.3879* 0.3172* 0.4211* 0.3781*
MICoL (Bi-Encoder, 𝑃 ← (𝑃𝑃 ) → 𝑃 ) 0.7050* 0.5344* 0.4161* 0.5937* 0.5331* 0.5198** 0.3876* 0.3172* 0.4215* 0.3786*

MICoL (Cross-Encoder, 𝑃𝐴𝑃 ) 0.7034* 0.5355 0.4168 0.5943 0.5337 0.5212** 0.3921* 0.3207 0.4255* 0.3818*
MICoL (Cross-Encoder, 𝑃𝑉𝑃 ) 0.6720* 0.5203* 0.4103* 0.5750* 0.5210* 0.4668** 0.3633** 0.3051** 0.3908** 0.3574**
MICoL (Cross-Encoder, 𝑃 → 𝑃 ) 0.7033* 0.5391 0.4201 0.5971* 0.5365* 0.5266 0.3946 0.3207 0.4286 0.3830
MICoL (Cross-Encoder, 𝑃 ← 𝑃 ) 0.7169 0.5430 0.4214 0.6033 0.5406 0.5265 0.3924 0.3186 0.4268 0.3811

MICoL (Cross-Encoder, 𝑃 → 𝑃 ← 𝑃 ) 0.7177 0.5444 0.4219 0.6048 0.5415 0.5412 0.4036 0.3257 0.4391 0.3906

MICoL (Cross-Encoder, 𝑃 ← 𝑃 → 𝑃 ) 0.7045 0.5356* 0.4168* 0.5944* 0.5336* 0.5243* 0.3932* 0.3190* 0.4271* 0.3814*
MICoL (Cross-Encoder, 𝑃 (𝐴𝐴)𝑃 ) 0.7028 0.5351 0.4171 0.5939 0.5338 0.5290* 0.3937 0.3201 0.4285* 0.3830
MICoL (Cross-Encoder, 𝑃 (𝐴𝑉 )𝑃 ) 0.7024* 0.5354* 0.4177 0.5940* 0.5343* 0.5164** 0.3897* 0.3195* 0.4225* 0.3797*

MICoL (Cross-Encoder, 𝑃 → (𝑃𝑃 ) ← 𝑃 ) 0.7076* 0.5379* 0.4188 0.5971* 0.5363* 0.5186 0.3924* 0.3184* 0.4254* 0.3800*
MICoL (Cross-Encoder, 𝑃 ← (𝑃𝑃 ) → 𝑃 ) 0.7061 0.5376 0.4187 0.5964 0.5357 0.5218 0.3911 0.3172* 0.4249 0.3794

5 RELATEDWORK

Zero-ShotMulti-Label Text Classification. Yin et al. [61] divide
existing studies on zero-shot text classification into two settings:
the restrictive setting [50] assumes training documents are given
for some seen classes and the trained classifier should be able to
predict unseen classes; the wild setting does not assume any seen
classes and the classifier needs to make prediction without any
annotated training data. Most previous studies on zero-shot LMTC
[4, 16, 33, 34, 38] focus on the restrictive setting, while this paper
studies the more challenging wild setting. Under the wild setting, a
pioneering approach is dataless classification [5, 44] which maps
documents and labels into the same space of Wikipedia concepts.
Recent studies further leverage convolutional networks [29] or pre-
trained language models [27, 30, 52]. While these models rely on
label names only, they all assume that each document belongs to
one category, thus are not applicable to the multi-label setting. Yin
et al. [61] propose to treat zero-shot text classification as a textual
entailment problem and leverage pre-trained language models to
solve it; Shen et al. [42] further extend the idea to hierarchical zero-
shot text classification. Compared with their studies, we utilize
document metadata as complementary signals to the text.
Metadata-Aware Text Classification. In some specific classifica-
tion tasks, document metadata have been used as label indicators
(e.g., reviewer and product information in review sentiment anal-
ysis [48], user profile information in tweet localization [41, 69]).
Kim et al. [19] propose a generic approach to add categorical meta-
data into neural text classifiers. Zhang et al. [68] further study
metadata-aware LMTC. However, all these studies focus on the
fully supervised setting. Some studies [64–67] leverage metadata
in few-shot text classification. Nevertheless, in LMTC, since the
label space is large, it becomes prohibitive to provide even a few
training samples for each label. Mekala et al. [28] consider metadata
in zero-shot single-label text classification given a small label space,
but their approach can hardly be generalized to LMTC.

Text Contrastive Learning. Recently, contrastive learning has
become a promising trend in unsupervised text representation
learning. The general idea is to use various data augmentation
techniques [12, 53, 57] to generate similar text pairs and find a
mapping function to make them closer in the representation space
while pushing away dissimilar ones. Therefore, the major novelty
of those studies is often the data augmentation techniques they
propose. For example, DeCLUTR [15] samples two text spans from
the same document; CLEAR [56] adopts span deletion, span re-
ordering, and synonym substitution; DECA [25] uses synonym
substitution, antonym augmentation, and back translation; SimCSE
[14] applies two different hidden dropout masks when encoding the
same sentence; ConSERT [58] employs token reordering, deletion,
dropout, and adversarial attack. However, all these data augmen-
tation approaches manipulate text information only to generate
artificial sentences/documents, while ourMICoL exploits metadata
information to find real documents that are similar to each other.

6 CONCLUSIONS AND FUTUREWORK

In this paper, we study zero-shot multi-label text classification with
document metadata as complementary signals, which avail us with
heterogeneous network information besides corpus. Our setting
does not require any annotated training documents with labels and
only relies on label names and descriptions. We propose a novel
metadata-induced contrastive learning (MICoL) method to train a
BERT-based document–label relevance scorer. We study two types
of architectures (i.e., Bi-Encoder and Cross-Encoder) and 10 differ-
ent meta-paths/meta-graphs within the MICoL framework. MICoL
achieves strong performance on two large datasets, outperform-
ing competitive baselines under the zero-shot setting and being
on par with the supervised MATCH model trained on 10K–200K
labeled documents. In the future, it is of interest to extendMICoL to
zero-shot hierarchical text classification and explore whether label
hierarchy could provide additional signals to contrastive learning.
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A SUPPLEMENTARY MATERIAL

A.1 Interpretation of MICoL

We have proposed the MICoL objective (i.e., Eq. (9) or (11)) to fine-
tune BERT. Here, we provide the interpretation of this objective
function by answering the following two questions.

• Q1. MICoL does not require any labeled data during fine-tuning.
What is the relationship between MICoL and supervised fine-
tuning approaches?
• Q2. Under what conditions will the MICoL objective be closer
to the supervised objective (thusMICoL may perform better in
classification)?

To answer these two questions, let us first consider how super-
vised approaches fine-tune BERT in multi-label text classification.
Assume each document 𝑑 ∈ D is annotated with its relevant la-
bels L𝑑 . We can sample a positive label 𝑙+ from L𝑑 and several
negative labels {𝑙−

𝑖
}𝑁
𝑖=1 from L. The supervised learning process

learns effective representations by pulling 𝑑 and 𝑙+ together while
pushing 𝑑 and 𝑙−

𝑖
apart. Using either Bi-Encoder (Eqs. (3) and (4))

or Cross-Encoder (Eqs. (5) and (6)), the learning objective can be
defined as

JSup = E
𝑙+∈L𝑑
𝑙−
𝑖
∼L

[
− log exp(𝑠𝑐𝑜𝑟𝑒 (𝑑, 𝑙+))

exp(𝑠𝑐𝑜𝑟𝑒 (𝑑, 𝑙+)) +∑𝑁
𝑖=1 exp(𝑠𝑐𝑜𝑟𝑒 (𝑑, 𝑙−𝑖 ))

]
. (12)

If we view each label 𝑙 ’s text information (i.e., label name and
description) as a “document”, it is natural to assume this “document”
𝑡𝑙 is relevant to the label 𝑙 . For example, in Figure 1, the description
of “Webgraph” can be viewed as a “document” specifically relevant
to “Webgraph” itself. Therefore, if we follow the notation of L𝑑
and use L𝑙 to denote the set of labels relevant to 𝑡𝑙 , it is equivalent
to have L𝑙 = {𝑙}. In this case, we have 𝑙 ∈ L𝑑 if and only if
L𝑑 ∩ L𝑙 ≠ ∅. Then, the supervised loss in Eq. (12) is equivalent to

JSup = E
L𝑑∩L𝑙+≠∅

𝑙−
𝑖
∼L

[
− log exp(𝑠𝑐𝑜𝑟𝑒 (𝑑, 𝑙+))

exp(𝑠𝑐𝑜𝑟𝑒 (𝑑, 𝑙+)) +∑𝑁
𝑖=1 exp(𝑠𝑐𝑜𝑟𝑒 (𝑑, 𝑙−𝑖 ))

]
.

(13)
If we replace 𝑙+ and 𝑙−

𝑖
in Eq. (13) with 𝑑+ and 𝑑−

𝑖
, respectively,

(in other words, if we replace label text information with real doc-
uments), the supervised loss can be rewritten into the following
form.

J′Sup = E
L𝑑∩L𝑑+≠∅

𝑑−
𝑖
∼D

[
− log exp(𝑠𝑐𝑜𝑟𝑒 (𝑑,𝑑+))

exp(𝑠𝑐𝑜𝑟𝑒 (𝑑,𝑑+)) +∑𝑁
𝑖=1 exp(𝑠𝑐𝑜𝑟𝑒 (𝑑,𝑑−𝑖 ))

]
.

(14)
By comparing Eq. (14) with Eq. (9) (when 𝜏 = 1) and Eq. (11), we

can answer Q1: MICoL and supervised loss share the same func-
tional format, and the only difference is the distribution of training
data (𝑑, 𝑑+) pairs. For supervised loss, annotated documents are
available, so positive document–document pairs (𝑑,𝑑+) can be de-
rived using their labels; forMICoL, there are no annotated training
samples, positive document–document pairs (𝑑, 𝑑+) are derived
from metadata instead.

Now we proceed to Q2. Given the answer of Q1, the key dif-
ference between JBi (or JCross) and J ′Sup is how we sample the
positive partner 𝑑+ for each document 𝑑 . Let us explicitly write

down the two distributions for sampling 𝑑+. For MICoL, the distri-
bution is

PMICoL (𝑑+ |𝑑) =
{
1/𝑋, 𝑑+ ∈ NM (𝑑);
0, 𝑑+ ∉ NM (𝑑) .

(15)

Here, 𝑋 = |NM (𝑑) |.
For the supervised loss in Eq. (14), the distribution is

PSup (𝑑+ |𝑑) =
{
1/𝑌, L𝑑 ∩ L𝑑+ ≠ ∅;
0, L𝑑 ∩ L𝑑+ = ∅.

(16)

Here, 𝑌 = |{𝑑+ |L𝑑 ∩ L𝑑+ ≠ ∅}|.
It is straightforward to compute the Jensen-Shannon (JS) diver-

gence between PMICoL and PSup.

𝐽𝑆 (PMICoL | |PSup) =
1
2 log 2𝑋

𝑋 + 𝑌 +
1
2

∑
𝑑+∈NM (𝑑)
L𝑑∩L𝑑+=∅

1
𝑋

log
(
1 + 𝑋

𝑌

)
+

1
2 log 2𝑌

𝑋 + 𝑌 +
1
2

∑
L𝑑∩L𝑑+≠∅
𝑑+∉NM (𝑑)

1
𝑌
log

(
1 + 𝑌

𝑋

)
.

(17)
When 𝐽𝑆 (PMICoL | |PSup) is small, PMICoL is close to PSup, thus the
MICoL objective JBi or JCross is similar to the supervised objec-
tive J ′Sup. To make 𝐽𝑆 (PMICoL | |PSup) smaller, the meta-path/meta-
graphM should satisfy the following two properties as close as
possible:

Property 1: 𝑑+ ∈ NM (𝑑) ⇒ L𝑑 ∩ L𝑑+ ≠ ∅. Intuitively, this
property means that if 𝑑+ is reachable from 𝑑 viaM, then 𝑑 and
𝑑+ should have similar topic labels. When this property is perfectly
satisfied, the second term in Eq. (17) is 0.

Property 2 (the inverse of Property 1):L𝑑∩L𝑑+ ≠ ∅ ⇒ 𝑑+ ∈
NM (𝑑). This property implies that if 𝑑 and 𝑑+ have similar labels,
then 𝑑+ should be reachable from 𝑑 viaM. When this property is
perfectly satisfied, the fourth term in Eq. (17) is 0.

For example, when the label space is fine-grained, usingM =

𝑃𝑉𝑃 may not be a good choice because sharing the same venue
is not sufficient to conclude that two papers have similar fine-
grained labels. 𝑃𝑉𝑃 actually violates Property 1 in this case. On
the other hand, when the label space is coarse-grained, usingM =

𝑃 (𝐴𝐴𝐴𝐴𝐴)𝑃 may not be suitable because two papers in the same
category do not necessarily have so many common authors. In this
case, 𝑃 (𝐴𝐴𝐴𝐴𝐴)𝑃 violates Property 2.

A.2 Training and Inference Procedures of

MICoL

We summarize the complete training and inference procedures in
Algorithms 1 and 2, respectively. The goal of training is to obtain
a fine-tuned BERT model, which is later used in the re-ranking
stage of inference. Note that during the model training phase, we
calculate the similarity score between two documents, while during
the inference phase, we calculate the score between a document
and a label (represented by its name and description).

A.3 Implementation

A.3.1 Optimization of MICoL. To approximate the expectation in
Eqs. (9) and (11) during optimization, we adopt a sampling strategy.
Specifically, we first sample a set of documents from D. For each
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Algorithm 1:MICoL Training
Input: An unlabeled corpus D with metadata𝐺 = (V, E) ;

a meta-path/meta-graphM;
the pre-trained BERT model.

Output: A fine-tuned BERT model.
1 Sample 𝑑 , 𝑑+, and {𝑑−

𝑖
}𝑁
𝑖=1 from D according toM;

2 if using Bi-Encoder for fine-tuning then

3 𝒆𝑑 , 𝒆𝑑+ , {𝒆𝑑−𝑖 }
𝑁
𝑖=1 ← Eq. (7);

4 Fine-tuning BERT by optimizing Eq. (9);
5 else if using Cross-Encoder for fine-tuning then

6 𝑠𝑐𝑜𝑟𝑒 (𝑑,𝑑+) , 𝑠𝑐𝑜𝑟𝑒 (𝑑,𝑑−
𝑖
) ← Eq. (10);

7 Fine-tuning BERT by optimizing Eq. (11);
8 Return the fine-tuned BERT;

Algorithm 2:MICoL Inference
Input: A label space L with label names and descriptions 𝑡𝑙 ;

the fine-tuned BERT model;
a new document 𝑑 ∉ D.

Output: 𝑑 ’s relevant labels L𝑑 ⊆ L.
1 // The Retrieval Stage;
2 Cexact (𝑑) ← exact label name matching;
3 CBM25 (𝑑) ← Eq. (2);
4 C(𝑑) = Cexact (𝑑) ∪ CBM25 (𝑑) ;
5 // The Re-ranking Stage;
6 for 𝑙 ∈ C(𝑑) do
7 if using Bi-Encoder then
8 𝒆𝑑 , 𝒆𝑙 ← Eq. (3) using the fine-tuned BERT model;
9 𝑠𝑐𝑜𝑟𝑒 (𝑑, 𝑙) ← Eq. (4);

10 else if using Cross-Encoder then
11 𝒆𝑑 | |𝑡𝑙 ← Eq. (5) using the fine-tuned BERT model;
12 𝑠𝑐𝑜𝑟𝑒 (𝑑, 𝑙) ← Eq. (6);
13 Rank 𝑙 ∈ C(𝑑) according to 𝑠𝑐𝑜𝑟𝑒 (𝑑, 𝑙) ;
14 Return L𝑑 = {top-𝑘 ranked labels in C(𝑑) };

sampled document 𝑑 , we pick one 𝑑+ from NM (𝑑) as 𝑑’s positive
partner (if NM (𝑑) ≠ ∅). When fine-tuning the Bi-Encoder, follow-
ing [7], 𝑑’s negative partners {𝑑−

𝑖
}𝑁
𝑖=1 are the positive partner of

other documents in the same training batch. Each 𝑑 has 1 positive
partner and (𝛽 − 1) negative partners, where 𝛽 is the batch size.
Therefore, within each batch, to calculate Eq. (9), we need to call
BERT 2𝛽 times (i.e., computing 𝒆𝑑 and 𝒆𝑑+ for each 𝑑). When fine-
tuning the Cross-Encoder, however, we would call BERT 𝛽2 times
within each batch if we used the same approach to obtain negative
partners. To make the optimization process more efficient, for each
𝑑 , we directly sample one negative partner 𝑑− from D. Each 𝑑 has
1 positive partner and 1 negative partner. In this way, we only need
to call BERT 2𝛽 times within each batch (i.e., encoding (𝑑 | | 𝑑+)
and (𝑑 | | 𝑑−) for each 𝑑).

A.3.2 Parameter Settings ofMICoL. For both Bi-Encoder andCross-
Encoder, we sample 50,000 (𝑑, 𝑑+) pairs for training and 5,000
(𝑑, 𝑑+) pairs for validation. The training batch size 𝛽 is 8 and 4
for Bi-Encoder and Cross-Encoder, respectively. The maximum
length of SciBERT in Bi-Encoder is 256; the maximum length of
SciBERT in Cross-Encoder is 512 (i.e., 256 for each document be-
fore concatenation). The temperature hyperparameter 𝜏 = 0.05. We

train the model for 3 epochs using Adam as the optimizer. During
inference, the threshold of BM25 scores is 𝜂 = 400.

A.4 Datasets

Table 1 mainly summarizes text and label statistics (where La-
bels/Doc and Words/Doc refer to the statistics in the testing set). In
Table 5, we list metadata-related statistics of the training corpus D.

Table 5: Metadata-related statistics of the training corpus.

Dataset MAG-CS [49] PubMed [24]

# Authors 762,259 2,068,411
# Author–Paper Edges 2,047,166 5,391,314

# Venues 105 150
# Venue–Paper Edges 634,874 808,692
# Paper→Paper Edges 1,219,234 3,615,220

A.5 Additional Experiments: Combining

Top-Performing Meta-Paths/Meta-Graphs

Figure 6 compares P@𝑘 and NDCG@𝑘 scores of top-3 performing
meta-paths/meta-graphs and the combination of them. We combine
them by putting document–document pairs induced by different
meta-paths/meta-graphs together to train the model. In Figure 6,
we cannot observe consistent and significant benefit of combining
meta-paths/meta-graphs, possibly because two documents judged
as similar by one meta-path may be viewed as dissimilar by another,
which may confuse our model during training.
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Figure 6: P@𝑘 and NDCG@𝑘 scores of top-3 performing

meta-paths/meta-graphs and the combination of them.
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