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Abstract
Vision Transformers (ViTs) have achieved state-
of-the-art performance for various vision tasks.
One reason behind the success lies in their abil-
ity to provide plausible innate explanations for
the behavior of neural architectures. However,
ViTs suffer from issues with explanation faithful-
ness, as their focal points are fragile to adversar-
ial attacks and can be easily changed with even
slight perturbations on the input image. In this
paper, we propose a rigorous approach to mitigate
these issues by introducing Faithful ViTs (FViTs).
Briefly speaking, an FViT should have the fol-
lowing two properties: (1) The top-k indices of
its self-attention vector should remain mostly un-
changed under input perturbation, indicating sta-
ble explanations; (2) The prediction distribution
should be robust to perturbations. To achieve this,
we propose a new method called Denoised Diffu-
sion Smoothing (DDS), which adopts randomized
smoothing and diffusion-based denoising. We the-
oretically prove that processing ViTs directly with
DDS can turn them into FViTs. We also show that
Gaussian noise is nearly optimal for both ℓ2 and
ℓ∞-norm cases. Finally, we demonstrate the effec-
tiveness of our approach through comprehensive
experiments and evaluations. Results show that
FViTs are more robust against adversarial attacks
while maintaining the explainability of attention,
indicating higher faithfulness.

1. Introduction
Transformers and attention-based frameworks have been
widely adopted as benchmarks for natural language process-
ing tasks (Kenton & Toutanova, 2019; Radford et al., 2019).
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Recently, their ideas have also been borrowed in many com-
puter vision tasks such as image recognition (Dosovitskiy
et al., 2021), objective detection (Zhu et al., 2021), image
processing (Chen et al., 2021) and semantic segmentation
(Zheng et al., 2021). Among them, the most successful
variant is the vision transformer (ViT) (Dosovitskiy et al.,
2021), which uses self-attention modules. Similar to tokens
in the text domain, ViTs divide each image into a sequence
of patches (visual tokens), and then feed them into self-
attention layers to produce representations of correlations
between visual tokens. The success of these attention-based
modules is not only because of their good performance but
also due to their “self-explanation” characteristics. Unlike
post-hoc interpretation methods (Du et al., 2019), attention
weights can intrinsically provide the “inner-workings” of
models (Meng et al., 2019), i.e., the entries in attention vec-
tor could point us to the most relevant features of the input
image for its prediction, and can also provide visualization
for “where” and “what” the attention focuses on (Xu et al.,
2015).

As a crucial characteristic for explanation methods, faithful-
ness requires that the explanation method reflects its reason-
ing process (Jacovi & Goldberg, 2020). Therefore, for ViTs,
their attention feature vectors should reveal what is essential
to their prediction. Furthermore, faithfulness encompasses
two properties: completeness and stability. Completeness
means that the explanation should cover all relevant factors
or patches related to its corresponding prediction (Sundarara-
jan et al., 2017), while stability ensures that the explanation
is consistent with humans understanding and robust to slight
perturbations. Based on these properties, we can conclude
that “faithful ViTs” (FViTs) should have the good robust-
ness performance, and certified explainability of attention
maps which are robust against perturbations.

While the self-attention module in ViTs already possesses
the property of completeness, it often suffers from stability
issues. For example, in language tasks, Wiegreffe & Pinter
(2019); Hu et al. (2022) have shown that attention is not
robust, as a slight perturbation on the embedding vector can
cause the attention vector distribution to change drastically.
Similarly, for vision tasks, we find that such a phenomenon
is not uncommon for ViTs, where attention modules are
sensitive to perturbations on input images. For instance, in
Fig. 1, we can see that a slight perturbation on the input
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Figure 1. Visualization results of the attention map on corrupted input for different methods.

image can cause the attention vector to focus on the wrong
region for the image class, leading to an incorrect interpre-
tation heat map and, consequently, confusing predictions.
Actually, interpretation instability has also been identified as
a pervasive issue in deep learning models (Ghorbani et al.,
2019), where carefully crafted small perturbations on the in-
put can significantly change the interpretation result. Thus,
stability has become an important factor for faithful inter-
pretations. First, an unstable interpretation is prone to noise
interference, hindering users’ understanding of the underly-
ing reasoning behind model predictions. Second, instability
undermines the reliability of interpretation as a diagnostic
tool for models (Ghorbani et al., 2019; Dombrowski et al.,
2019; Yeh et al., 2019; Hu et al., 2022). Therefore, it is cru-
cial to mitigate the issue of unstable explanations in ViTs.

Although ViTs have shown to be more robust in predic-
tions than convolutional neural networks (CNNs) (Bai et al.,
2021; Paul & Chen, 2022; Naseer et al., 2021), whether
they can provide faithful interpretations remains uncertain.
Compared to adversarial machine learning, which aims to
enhance the robustness of classification accuracy, mitigating
the unstable explanation issue in ViTs is more challenging.
Here, we not only aim to improve the robustness of pre-
diction performance but also, more importantly, make the
attention heat map robust to perturbations. Therefore,
a natural question arises: can we develop provable and
faithful variants of ViTs whose attention vectors and
predictions are robust to perturbations? In this paper, we
provide an affirmative answer to this question. Specifically,
our contributions can be summarized as follows.

1. We propose a formal and mathematical definition for
FViTs. Specifically, an FViT must satisfy the following
two properties for any input image: (1) It must ensure that
the top-k indices of its attention feature vector remain rela-
tively stable with perturbations, indicating interpretability
stability. (2) However, attention vector stability alone can-
not guarantee prediction robustness for FViTs. Therefore,
an FViT must also ensure that its prediction distribution
remains relatively stable under perturbations.

2. We propose a method called Denoised Diffusion Smooth-
ing (DDS) to obtain FViTs. Surprisingly, we demonstrate
that our DDS can directly transform ViTs into FViTs.
Briefly speaking, DDS involves two main components: (1)
the standard randomized smoothing with Gaussian noise and
(2) a denoising diffusion probabilistic model. It is worth
noting that prior work on randomized smoothing has fo-
cused on enhancing prediction robustness. In contrast, we
demonstrate that randomized smoothing can also enhance
the faithfulness of attention vectors in ViTs. Additionally,
we demonstrate that Gaussian noise is near-optimal for our
method in both the ℓ2-norm and ℓ∞-norm cases.

3. We conducted extensive experiments on three benchmark
datasets using ViT, DeiT, and Swin models to verify the
above two properties of the FViTs as claimed by our theo-
ries. Firstly, we demonstrate that our FViTs are more robust
to different types of perturbations than other baselines. Sec-
ondly, we show the interpretability faithfulness of FViTs
through visualization. Lastly, we verify our certified faithful
region as claimed by our theories. The results reveal that
our FViTs can provide provable faithful interpretations.

Due to space limitations, we have included details on the-
oretical proofs and additional experimental results in the
Appendix section.

2. Related Work
Interpretability for computer vision tasks. Interpreta-
tion approaches in computer vision can be broadly cat-
egorized into two classes according to the part of mod-
els they participated in: post-hoc interpretation and self-
explaining interpretation. Post-hoc interpretation methods
require post-processing the model after training to explain
the behaviors of black-box models. Typically, these meth-
ods either use surrogate models to explain local predictions
(Ribeiro et al., 2016), or adopt gradient perturbation meth-
ods (Zeiler & Fergus, 2014; Lundberg & Lee, 2017) or fea-
ture importance methods (Ross et al., 2017; Selvaraju et al.,
2017). While post-hoc approaches require additional post-
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processing steps after the training process, self-explaining
interpretation methods could be considered as integral parts
of models, and they can generate explanations and make pre-
dictions simultaneously (Li et al., 2018; Abnar & Zuidema,
2020). From this view, ViTs can be considered as self-
explaining interpretation approaches, as they use attention
feature vectors to quantify the contributions of different
tokens to their predictions.

Faithfulness in explainable methods. Faithfulness is a
crucial property that explanation models should satisfy, en-
suring that the explanation accurately reflects the true rea-
soning process of the model (Wiegreffe & Pinter, 2019;
Herman, 2017; Jacovi & Goldberg, 2020; Lyu et al., 2022).
Faithfulness is also related to other principles such as sen-
sitivity, implementation invariance, input invariance, and
completeness (Yeh et al., 2019). Completeness refers to the
explanation comprehensively covering all relevant factors
to the prediction (Sundararajan et al., 2017), while the other
three terms are all related to the stability of different kinds of
perturbations. The explanation should change if heavily per-
turbing the important features that influence the prediction
(Adebayo et al., 2018), but be stable to small perturbations
(Yin et al., 2022). Thus, stability is crucial to explanation
faithfulness. Some preliminary work has been proposed to
obtain stable interpretations. For example, Yeh et al. (2019)
theoretically analyzes the stability of post-hoc interpretation
and proposes the use of smoothing to improve interpretation
stability. Yin et al. (2022) designs an iterative gradient de-
scent algorithm to get a counterfactual interpretation, which
shows desirable stability. However, these techniques are
designed for post-hoc interpretation and cannot be directly
applied to attention-based mechanisms like ViTs.

Robustness for ViTs. There is also a substantial body of
work on achieving robustness for ViTs, including studies
such as (Mahmood et al., 2021; Salman et al., 2022; Al-
dahdooh et al., 2021; Naseer et al., 2021; Paul & Chen,
2022; Mao et al., 2022). However, these studies exclusively
focus on improving the model’s robustness in terms of its
prediction, without considering the stability of its interpre-
tation (i.e., attention feature vector distribution). While
we do employ the randomized smoothing approach com-
monly used in adversarial machine learning, our primary
objective is to maintain the top-k indices unchanged under
perturbations. And we introduce DDS, which leverages a
smoothing-diffusion process to obtain faithful ViTs while
also enhancing prediction performance.

3. Vanilla Vision Transformers
In this paper, we adopt the notation introduced in (Zhou
et al., 2022) to describe ViTs. ViTs process an input image
x by first dividing it into n uniform patches. Each patch is
then represented as a token embedding, denoted as xi ∈ Rq

for i = 1, · · · , n. The token embeddings are then fed into
a stack of transformer blocks, which use self-attention for
token mixing and MLPs for channel-wise feature transfor-
mation.

Token mixing. A ViT makes use of the self-attention mech-
anism to aggregate global information. Given an input to-
ken embedding tensor X = [x1, · · · , xn] ∈ Rq×n, self-
attention applies linear transformations with parameters
WK , WQ, to embed X into a key K = WKX ∈ Rq×n

and a query Q = WQX ∈ Rq×n respectively. The self-
attention module then calculates the attention matrix and
aggregates the token features as follows:

Z⊤ = self-attention(X) = softmax(
Q⊤K
√
q

)V ⊤WL, (1)

where Z = [z1, · · · , zn] is the aggregated token feature,
WL ∈ Rq×q is a linear transformation, and

√
q is a scaling

factor. The output of the self-attention is normalized with
Layer-norm and fed into an MLP to generate the input for
the next block. At the final layer, the ViT outputs a predic-
tion vector. It is worth highlighting that the self-attention
mechanism can be viewed as a function that maps each im-
age X ∈ Rq×n to an attention feature vector Z(X) ∈ Rn.

4. Towards Faithful Vision Transformers
As mentioned in the introduction, improving the stability
and robustness of the self-attention modules in ViTs is cru-
cial for making them more faithful. However, when it comes
to explanation methods, it is not only important to consider
the robustness of the model’s prediction under perturba-
tions but also the sensitivity and stability of its explanation
modules. Specifically, the explanation modules should
be sensitive enough to important token perturbations
while remaining stable under noise perturbations. As
the attention mechanism in ViTs outputs a vector indicating
the importance of each visual token, it is necessary to recon-
sider the robustness of both the attention module and ViTs.
In general, a faithful ViT should satisfy the following two
properties:

1. The magnitude of each entry in the attention vector in-
dicates the importance of its associated patch. To ensure
interpretability robustness, it is sufficient to maintain the
order of leading entries. We measure interpretability robust-
ness by computing the overlap of the top-k indices between
the attention vector of the original input and the perturbed
input, where k is a hyperparameter.

2. The attention vector is fed to an MLP for prediction. In
addition to the robustness for top-k indices, a robust atten-
tion vector should also preserve the final model prediction.
Specifically, we aim for the prediction distribution based
on the robust attention under perturbations is almost the
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same as the distribution without perturbation. We measure
the similarity or closeness between these distributions using
different divergences.

4.1. Motivation and Challenges

Motivation. Although some literature has addressed meth-
ods to improve the robustness of ViTs, to the best of our
knowledge, this is the first paper to propose a solution that
enhances the faithfulness of ViTs while providing provable
FViTs. Our work fills a gap in addressing both the robust-
ness and interpretability of ViTs, as demonstrated through
both theoretical analysis and empirical experiments.

Why stability of attention vectors’ top-k indices cannot
imply the robustness of prediction? While ensuring the
stability of the top-k indices of the attention vectors is cru-
cial for interpretability, it does not necessarily guarantee
the robustness of the final prediction. This is because the
stability of the prediction is also dependent on the magni-
tude of the entries associated with the top-k indices. For
instance, consider the vectors v1 = (0.1, 0.2, 0.5, 0.7) and
v2 = (0.2, 0.8, 0.9, 2), which have the same top indices.
However, the difference in their magnitudes can signifi-
cantly affect the final prediction. Therefore, in addition to
ensuring the stability of the top-k indices, an FViT should
also meet the requirement that its prediction distribution
remains relatively unchanged under perturbations to achieve
robustness.

Technical Challenges. The technical challenges of this pa-
per are twofold. First, we need to give a definition of FViTs,
which contains the conditions that can quantify the stability
of both the attention vectors and the model prediction under
perturbations. This is challenging because we need to bal-
ance the sensitivity and stability of the explanation modules,
and also consider the trade-off between interpretability and
utility. Addressing these technical challenges is critical to
achieving the main objective of this paper, which is to pro-
vide faithful ViTs. Second, we need to design an efficient
and effective algorithm to generate noise to preserve the
robustness and interpretability of ViTs. This is challeng-
ing because standard noise methods may cause significant
changes to the attention maps, which could lead to inaccu-
rate and misleading explanations. To tackle this challenge,
we introduce a mathematically proven approach for noise
generation and leverage denoised diffusion to balance the
utility and interpretability trade-off, which is non-trivial and
provable. Also, this study is the first to demonstrate its ef-
fectiveness in enhancing explanation faithfulness, providing
rigorous proof, and certifying the faithfulness of ViTs.

4.2. Definition of FViTs

In the following, we will mathematically formulate our
above intuitions. Before that, we first give the definition of

the top-k overlap ratio for two vectors.

Definition 4.1. For vector x ∈ Rn, we define the set of
top-k component Tk(·) as

Tk(x) = {i : i ∈ [d] and {|{xj ≥ xi : j ∈ [n]}| ≤ k}}.

And for two vectors x, x′, their top-k overlap ratio Vk(x, x
′)

is defined as Vk(x, x
′) = 1

k |Tk(x) ∩ Tk(x
′)|.

Definition 4.2 (Faithful ViTs). We call a function f :
Rq×n 7→ Rn is an (R,D, γ, β, k, ∥ · ∥)- faithful attention
module for ViTs if for any given input data x and for all
x′ ∈ Rq×n such that ∥x− x′∥ ≤ R, f(x′) satisfies

1. (Top-k Robustness) Vk(f(x
′), f(x)) ≥ β.

2. (Prediction Robustness) D(ȳ(x), ȳ(x′)) ≤ γ, where
ȳ(x), ȳ(x′) are the prediction distribution of ViTs based on
f(x), f(x′) respectively.

We also call the vector f(x) as an (R,D, γ, β, k, ∥ · ∥)-
faithful attention for x, and the models of ViTs based on f
as faithful ViTs (FViTs).

We can see there are several terms in the above definition.
Specifically, R represents the faithful radius, which mea-
sures the faithful region; D is a metric of the similarity
between two distributions, which could be a distance or a
divergence; γ measures the closeness of the two prediction
distributions; 0 < β < 1 is the robustness of top-k indices;
∥ · ∥ is some norm. When γ is smaller or β is larger, then
the attention module will be more robust and thus will be
more faithful. In this paper, we will focus on the case where
divergence D is the Rényi divergence and ∥ · ∥ is either the
ℓ2-norm or the ℓ∞-norm (if we consider x as a d = q × n
dimensional vector), as we can show if the prediction distri-
bution is robust under Rényi divergence, then the prediction
will be unchanged with perturbations on input (Li et al.,
2019).

Definition 4.3. Given two probability distributions P and
Q, and α ∈ (1,∞), the α-Rényi divergence Dα(P ||Q) is
defined as Dα(P ||Q) = 1

α−1 logEx∼Q(
P (x)
Q(x) )

α.

Theorem 4.4. If a function is a (R,Dα, γ, β, k, ∥ · ∥)-
faithful attention module for ViTs, then if

γ ≤ − log(1− p(1) − p(2) + 2(
1

2
(p1−α

(1) + p1−α
(2) ))

1
1−α ),

we have for all x′ such that where ∥x− x′∥ ≤ R,

argmax
g∈G

P(ȳ(x) = g) = argmax
g∈G

P(ȳ(x′) = g),

where G is the set of classes, p(1) and p(2) refer to the largest
and the second largest probabilities in {pi}, where pi is the
probability that ȳ(x) returns the i-th class.
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5. Finding Faithful Vision Transformers
5.1. ℓ2-norm Case

In the previous section, we introduced faithful attention and
FViTs, now we want to design algorithms to find such a
faithful attention module. We notice that in faithful atten-
tion, the condition of prediction robustness is quite close to
adversarial machine training which aims to design classi-
fiers that are robust against perturbations on inputs. Thus,
a natural idea is to borrow the approaches in adversarial
machine training to see whether they can get faithful atten-
tion modules. Surprisingly, we find that using randomized
smoothing to the vanilla ViT, which is a standard method
for certified robustness (Cohen et al., 2019), and then ap-
plying a denoised diffusion probabilistic model (Ho et al.,
2020) to the perturbed input can adjust it to an FViT. And its
corresponding attention module becomes a faithful attention
module. Specifically, for a given input image x, we pre-
process it by adding some randomized Gaussian noise, i.e.,
x̃ = x+ z with z ∼ N (0, σ2Iq×n). Then we will denoise
x̃ via some denoised diffusion model to get x̂, and feed the
perturbed-then-denoised x̂ to the self-attention module Z
in (1) and process to later parts of the original ViT to get
the prediction. Thus, in total, we can represent the attention
module as w̃(x) = Z(T (x + z)), where T represents the
denoised diffusion method. Here, we mainly adopt the de-
noising diffusion probabilistic model in (Nichol & Dhariwal,
2021; Ho et al., 2020; Carlini et al., 2023), which leverages
off-the-shelf diffusion models as image denoiser. Specifi-
cally, it has the following steps after we add Gaussian noise
to x and get x̃.

In the first step, we establish a connection between the
noise models utilized in randomized smoothing and dif-
fusion models. Specifically, while randomized smooth-
ing augments data points with additive Gaussian noise
i.e., xrs ∼ N (x, σ2I), diffusion models rely on a noise
model of the form xt ∼ N (

√
αtx, (1 − αt)I), where the

factor αt is a constant derived from the timestamp t (i.e.,
αt :=

∏t
s=1 1− βs). To employ a diffusion model for ran-

domized smoothing, DDS scales xrs by
√
αt and adjusts

the variances to obtain the relationship σ2 = 1−αt

αt
. The for-

mula for this equation may vary depending on the schedule
of the αt terms employed by the diffusion model, but it can
be calculated in closed form.

Using this calculated timestep, we can then compute xt⋆ =√
αt⋆(x + δ), where δ ∼ N (0, σ2I), and apply a diffu-

sion denoiser on xt⋆ to obtain an estimate of the denoised
sample, x̂ = denoise(xt⋆ ; t

⋆). To further enhance the
robustness, we repeat this denoising process multiple times
(e.g., 100,000). The details of our method, namely Denoised
Diffusion Smoothing (DDS), are shown in Algorithm 1 in
the Appendix.

In the following, we will show w̃ is a faithful attention
module. Before showing the results, we first provide some
notations. For input image x, we denote w̃i∗ as the i-th
largest component in w̃(x). Let k0 = ⌊(1 − β)k⌋ + 1 as
the minimum number of changes on w̃(x) to make it violet
the β-top-k overlapping ratio with w̃(x). Let S denote the
set of last k0 components in top-k indices and the top k0
components out of top-k indices.

Theorem 5.1. Consider the function w̃ where w̃(x) =
Z(T (x+z)) with Z in (1), T as the denoised diffusion model
and z ∼ N (0, σ2Iq×n). Then, it is an (R,Dα, γ, β, k, ∥ ·
∥2)-faithful attention module for ViTs for any α > 1 if for
any input image x we have

σ2 ≥ max{αR2/2(
α

α− 1
ln(2k0(

∑
i∈S

w̃α
i∗)

1
α

+ (2k0)
1
α

∑
i ̸∈S

w̃i∗)−
1

α− 1
ln(2k0)), αR

2/2γ}.

Theorem 5.1 indicates that w̃(x) will be faithful attention
for input x when σ2 is large enough. Equivalently, based
on Theorem 5.1 and 4.4, we can also find a faithful region
given β and k. Note that in practice, it is hard to determine
the specific α in Rényi divergence. Thus, we can take the
supreme w.r.t all α > 1 in finding the faithful region. See
Algorithm 2 in Appendix for details.

We have shown that adding some Gaussian noise to the
original data could get faithful attention through the original
attention module. A natural question is whether adding
Gaussian noise can be further improved by using other kinds
of noise. Below, we show that Gaussian noise is already
near optimal for certifying a faithful attention module via
randomized smoothing.

Theorem 5.2. Consider any function w̃ : Rq×n 7→ Rn

where w̃(x) = Z(T (x+ z)) with some random noise z, T
as the denoised diffusion model and Z in (1). Then if it
is an (R,Dα, γ, β, k, ∥ · ∥2)-faithful attention module for
ViTs with sufficiently large α and E[∥z∥max] ≤ τ holds for
sufficiently small τ = O(1). Then it must be true that

τ ≥ Ω(

√
αR
√
γ

).

Here for an matrix z ∈ Rq×n, ∥z∥max is defined as
maxi∈[q],j∈[n] ∥zi,j∥ is the maximal magnitude among all
the entries in z.

Note that in Theorem 5.1 we can see when γ is small enough
then w̃ will be a (R,Dα, γ, β, k, ∥ · ∥2)-faithful attention
module if z ∼ N (0, σ2Iq×n) with σ = αR2

2γ . In this case

we can see E∥z∥max = O( log (q·n)
√
αR√

γ ). Thus, the Gaus-
sian noise is optimal up to some logarithmic factors.
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Dog: clean→

Dog: poisoned→
7/255

Figure 2. Class-specific explanation heat map visualizations under adversarial corruption. For each image, we present results for two
different classes. Other baselines either give inconsistent interpretations or show wrong focus class regions under adversarial perturbations.
While our method gives a consistent interpretation map and is robust against adversarial attacks.

5.2. ℓ∞-norm Case

In this section we consider the ℓ∞-norm instead of the ℓ2-
norm. Surprisingly, we show that using the same method as
above, we can still get a faithful attention module. Moreover,
the Gaussian noise is still near-optimal.

Theorem 5.3. Consider the function w̃ where w̃(x) =
Z(T (x+z)) with Z in (1), T as the denoised diffusion model
and z ∼ N (0, σ2Iq×n). Then it is an (R,Dα, γ, β, k, ∥ ·
∥∞)-faithful attention module for ViTs for α > 1 if for any
input image x we have the following, where d = q · n.

σ2 ≥ max{dαR2/2(
α

α− 1
ln(2k0(

∑
i∈S

w̃α
i∗)

1
α

+ (2k0)
1
α

∑
i ̸∈S

w̃i∗)−
1

α− 1
ln(2k0)), dαR

2/2γ}.

Compared with the result in Theorem 5.1 for the ℓ2-norm
case, we can see there is the additional factor of d in the
bound of the noise. This means if we aim to achieve the
same faithful level as in the ℓ2-norm case, then in the ℓ∞-
norm case, we need to enlarge the noise by a factor of d.
Equivalently, if we add the same scale of noise, then the
faithful region for ℓ∞-norm will be shrunk by a factor of d
of the region for ℓ2-norm. See Algorithm 2 for details.

Theorem 5.4. Consider any function w̃ : Rq×n 7→ Rn

where w̃(x) = Z(T (x + z)) with some random noise z
and Z in (1). Then if it is an (R,Dα, γ, β, k, ∥ · ∥∞)-
faithful attention module for ViTs with sufficiently large
α and E[∥z∥max] ≤ τ holds for sufficiently small τ ≤ O(1).
Then it must be true that

τ ≥ Ω(

√
αR√
dγ

).

Theorem 5.1 we can see when γ is small enough then w̃
will an (R,Dα, γ, β, k, ∥ · ∥∞)-faithful attention module if

z ∼ N (0, σ2Iq×n) with σ = dαR2

2γ . In this case we can see

E∥z∥max = O( log (q·n)
√
dαR√

γ ). Thus, the Gaussian noise is
optimal up to some logarithmic factors.

6. Experiments
In this section, we present experimental results on evaluat-
ing the interpretability and utility of our FViTs on various
datasets and tasks. More details are in the Appendix.

6.1. Experimental Setup

Datasets, tasks, and network architectures. We consider
two different tasks: classification and segmentation. For
the classification task, we use ILSVRC-2012 ImageNet.
And for segmentation, we use ImageNet-segmentation sub-
set (Guillaumin et al., 2014), COCO (Lin et al., 2014),
and Cityscape (Cordts et al., 2016). To demonstrate our
method is architectures-agnostic, we use three different ViT-
based models, including Vanilla ViT (Dosovitskiy et al.,
2021), DeiT (Touvron et al., 2021), and Swin ViT (Liu et al.,
2021b).

Threat model. We focus on l2-norm bounded and l∞-norm
bounded noises under a white-box threat model assumption
for adversarial perturbations. Mathematically, with the same
noise level, l∞-norm ball B∞ is a superset of the l2-norm
ball B2. Thus, we show the performance under l∞-norm
threat model, and we report the l2-norm case in the appendix
H.2. The radius of adversarial noise ρu was set as 8/255 by
default. We employ the PGD (Madry et al., 2017) algorithm
to craft adversarial examples with a step size of 2/255 and
a total of 10 steps.

Baselines and attention map backbone. Since our DDS
method can be used as a plugin to provide certified faithful-
ness for interpretability under adversarial attacks, regardless
of the method used to generate attention maps. We set the
standard deviation δ = 8/255 for the Gaussian noise in
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Model Method ImageNet Cityscape COCO

Cla. Acc. Pix. Acc. mIoU mAP Pix. Acc. mIoU Pix. Acc. mIoU

ViT

Raw Attention 0.78 0.65 0.54 0.82 0.72 0.62 0.8 0.7
Rollout 0.79 0.67 0.56 0.84 0.74 0.64 0.82 0.72

GradCAM 0.8 0.69 0.58 0.86 0.76 0.66 0.84 0.74
LRP 0.81 0.71 0.6 0.88 0.78 0.68 0.86 0.76
VTA 0.82 0.73 0.62 0.9 0.8 0.7 0.88 0.78
Ours 0.85 0.76 0.65 0.93 0.83 0.73 0.91 0.81

DeiT

Raw Attention 0.79 0.66 0.55 0.83 0.73 0.63 0.81 0.71
Rollout 0.8 0.68 0.57 0.85 0.75 0.65 0.83 0.73

GradCAM 0.81 0.7 0.59 0.87 0.77 0.67 0.85 0.75
LRP 0.82 0.72 0.61 0.89 0.79 0.69 0.87 0.77
VTA 0.83 0.74 0.63 0.91 0.81 0.71 0.89 0.79
Ours 0.86 0.77 0.66 0.94 0.84 0.74 0.89 0.79

Swin

Raw Attention 0.8 0.67 0.56 0.84 0.74 0.64 0.82 0.72
Rollout 0.81 0.69 0.58 0.86 0.76 0.66 0.84 0.74

GradCAM 0.82 0.71 0.6 0.88 0.78 0.68 0.86 0.76
LRP 0.83 0.73 0.62 0.9 0.8 0.7 0.88 0.78
VTA 0.84 0.75 0.64 0.92 0.82 0.72 0.9 0.8
Ours 0.87 0.78 0.67 0.95 0.85 0.75 0.93 0.83

Table 1. Performance comparison of different methods on ImageNet, Cityscape, and COCO under the default attack.

our method as default. In this paper, we leverage Trans.
Att. (Chefer et al., 2021) as our explanation tool, which
is a state-of-the-art method for generating class-aware in-
terpretable attention maps. We include five baselines for
comparison, including Raw Attention (Vaswani et al., 2017),
Rollout (Abnar & Zuidema, 2020), GradCAM (Selvaraju
et al., 2017), LRP (Binder et al., 2016), and Vanilla Trans.
Att. (VTA) (Chefer et al., 2021).

Evaluation metrics. To show the utility of our approach,
we report the classification accuracy on test data for classifi-
cation tasks. As for the interpretability of our approach, we
seek to evaluate the explanation map by leveraging the label
of segmentation task as ‘ground truth’ following (Chefer
et al., 2021). To be specific, we compare the explanation
map with the ground truth segmentation map. We measure
the interpretability using pixel accuracy, mean intersection
over union (mIoU) (Varghese et al., 2020), and mean aver-
age precision (mAP) (Henderson & Ferrari, 2017). Note that
pixel accuracy is calculated by thresholding the visualization
by the mean value, while mAP uses the soft-segmentation
to generate a score that is not affected by the threshold. Fol-
lowing conventional practices, we also report the results
for negative and positive perturbation (pixels-erasing) tests
(Chefer et al., 2021). The area-under-the-curve (AUC) mea-
sured by erasing between 10%− 90% of the pixels is used
to indicate the performance of explanation methods for both
perturbations. For negative perturbation, a higher AUC
indicates a more faithful interpretation since a good expla-
nation should maintain accuracy after removing unrelated
pixels (also referred to as input invariance (Kindermans
et al., 2019)). On the other hand, for positive perturbations,
we expect to see a steep decrease in performance after re-
moving the pixels that are identified as important, where a

lower AUC indicates the interpretation is better. We term
the AUC of such perturbation tests as P-AUC and plot the
P-AUC-radius curve under adversarial perturbations.

6.2. Evaluating Interpretability and Utility
Classification and segmentation results. Based on the
results shown in Table 1, it is obvious that our method is
more robust and effective for all three datasets. Moreover,
across all metrics, our method consistently outperforms
other methods for all model architectures. For example, on
ImageNet, our method achieves the highest classification
accuracy (0.85) and pixel accuracy (0.76) for the ViT model
and the highest mean IoU (0.66) and mean AP (0.94) for the
DeiT model. These results suggest that our method could
even outperform the previous methods on accuracy, and it
is more faithful in identifying the most relevant features for
image classification under malicious attacks compared to
other methods. Please refer to Table 4 and 7 in the Appendix
for complete results across different levels of perturbation.

Additionally, Figure 5,7,8 in Appendix demonstrate visual
comparisons of our method with baselines under adversarial
attacks. It is clear that the baseline methods produce incon-
sistent results, while our method produces more consistent
and clear visualizations even under data corruption. More-
over, as shown in Figure 2 (more results are in Appendix
Figure 4,6,10), when analyzing images with two objects
from different classes under adversarial perturbations, all
previous methods produce similar but worse visualizations
for each class. Surprisingly, our method is able to provide ac-
curate and distinct visualization maps for each class despite
adversarial perturbations. This indicates that our method is
more faithful which is robust class-aware under attacks.

Perturbation tests. The results on Pos. perturbation in
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Figure 3. (a) and (b) are results of the perturbation test. (c) is the sensitivity analysis results.

Figure 3(a) show that the P-AUC of our method consistently
achieves the lowest value when we perform attacks with a
radius ranging from 0/255 to 32/255, which suggests that
our method are more faithful and interpretable. Similarly, as
for Neg. perturbation, the results in Figure 3(b) also suggest
that our method is more robust than other baselines when
removing unrelated pixels, and indicate that our method can
identify important pixels under corruptions.

Classification Segementation Perturbation Tests

Rob.Acc Rob.Acc mIOU Pos. Neg.

Ours 99.5 97.8 0.985 15.29 63.23
−smoothing 98.2 96.3 0.977 18.51 54.65
−denosing 96.4 94.7 0.965 21.36 50.53
−both 92.1 90.5 0.947 38.13 48.58

Table 2. Results of the ablation study on classification, segmenta-
tion, and perturbation tests.
Ablation study. The results are shown in Table 2, highlight-
ing the crucial role that the denoising diffusion model and
randomized smoothing play in the effectiveness of DDS.
As we can see from the table, removing either of the com-
ponents leads to a significant decrease in performance (un-
der adversarial attacks) across all three evaluation metrics:
classification accuracy, segmentation accuracy, and P-AUC.
In particular, the classification and segmentation accuracy
will decrease by 3.1% when the denoising step is removed,
and by 1.3% and 1.5%, respectively when the randomized
smoothing is eliminated. Moreover, we visualized the ab-
lated version of our method in Figure 9. It is noteworthy that
the performance degradation becomes more pronounced
when both components are removed, compared to when
only a single component is removed. This suggests that
these two components are highly effective in improving the
faithfulness of model prediction and explanation.

Sensitivity analysis. To evaluate the sensitivity of standard
deviation δ of the added Gaussian noise, we conduct ad-
versarial attacks on the ImageNet dataset with different δ
for a certain number of data samples. We conduct testing
under δ ∈ {4/255, 6/255, 8/255, 10/255, 12/255} and at-
tack radius ρa ∈ {0, 2/255, 4/255, 6/255, 8/255, 10/255}.
The results in Figure 3(c) suggest that, for the cases of
δ = 4/255 and δ = 6/255, compared to the vanilla base-
line, i.e., without any processing of images, our method is

able to prevent the testing accuracy from dropping signifi-
cantly as the attack radius increase. However, we find that
larger δ does not significantly decrease test accuracy when
δ exceeds some threshold (δ = 8/255− 12/255). These re-
sults suggest that our method is sensitive to the selection of δ
when δ is small, and it becomes insensitive when δ is larger.
Nevertheless, across different δ, our method outperforms
the baseline in terms of utility.

Verifying faithful region. To verify the proposed faithful
region estimation in Algorithm 2, we conduct an adversar-
ial attack using projected gradient descent on our denoised
smoothing classifier following (Cohen et al., 2019). Given
the faithful region radius R(δ) = min{P (δ), Q(δ)} ob-
tained in Algorithm 2, we attempt to find an adversarial
example for our denoised smoothing classifier within radii
of 1.5R or 2R, under the condition that the example has
been correctly classified within faithful region R. We suc-
ceed in finding such adversarial examples 23% of the time
at a radius 1.5R and 64% of the time in a radius 2R on
the ImageNet. These results empirically demonstrate the
tightness of our proposed faithful bound.

6.3. Computational Cost
Our denoising algorithm is quite fast. For example, under
the noise level of 8

255 , in each denoising trail, it only requires
one forward step in adding a random Gaussian noise and
t∗ = 45 backward steps for denoising, which empirically
takes about 0.32 seconds per images (256x256) on ImageNet
3. This shows that our methods are efficient and promising
for real-world applications with large-scale data.

||δ||∞ 2/255 4/255 8/255 12/255 16/255

t∗ 0 8 45 107 193
Total Time(s) 0.60 3.18 3.20 3.25 3.33
Per Sample(s) 0.060 0.318 0.320 0.325 0.333

Table 3. The time cost of denoising under different noise levels
with a total sample size of 10.

7. Conclusion
We proposed FViTs to improve faithfulness in vanilla ViTs.
We first gave a rigorous definition for FViTs and then pro-
posed a method with theoretical proof to achieve robustness
for both explainability and prediction, and finally, we con-
ducted comprehensive experiments to prove our claim.
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Impact Statement
Our research enhances both the interpretation faithfulness
and prediction robustness of vision transformers. Given
that vision transformers constitute a major component of re-
cent Large Vision-Language Models (LVLMs), our method
holds general applicability, potentially fostering alignment
and safety within these models. Employing our denois-
ing and smoothing techniques can bolster decision-making
robustness in LVLMs and enhance their resilience against
malicious manipulation, thereby contributing to the trustwor-
thiness and superalignment of emergent superintelligences.
We believe this work does not present significant ethical
concerns.
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Schütt, K. T., Dähne, S., Erhan, D., and Kim, B. The
(un) reliability of saliency methods. In Explainable AI:
Interpreting, Explaining and Visualizing Deep Learning,
pp. 267–280. Springer, 2019.

Lee-Thorp, J., Ainslie, J., Eckstein, I., and Ontanon, S. Fnet:
Mixing tokens with fourier transforms. arXiv preprint
arXiv:2105.03824, 2021.

Li, B., Chen, C., Wang, W., and Carin, L. Certified adversar-
ial robustness with additive noise. In Advances in Neural
Information Processing Systems, pp. 9459–9469, 2019.

Li, K., Wu, Z., Peng, K.-C., Ernst, J., and Fu, Y. Tell me
where to look: Guided attention inference network. In
Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, pp. 9215–9223, 2018.

Lin, T.-Y., Maire, M., Belongie, S., Hays, J., Perona, P., Ra-
manan, D., Dollár, P., and Zitnick, C. L. Microsoft coco:
Common objects in context. In European conference on
computer vision, pp. 740–755. Springer, 2014.

Liu, A., Chen, X., Liu, S., Xia, L., and Gan, C. Certifiably
robust interpretation via renyi differential privacy. arXiv
preprint arXiv:2107.01561, 2021a.

Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin,
S., and Guo, B. Swin transformer: Hierarchical vision
transformer using shifted windows. In Proceedings of the
IEEE/CVF International Conference on Computer Vision,
pp. 10012–10022, 2021b.

Lundberg, S. M. and Lee, S.-I. A unified approach to inter-
preting model predictions. Advances in neural informa-
tion processing systems, 30, 2017.

Lyu, Q., Apidianaki, M., and Callison-Burch, C. Towards
faithful model explanation in nlp: A survey. arXiv
preprint arXiv:2209.11326, 2022.

Madry, A., Makelov, A., Schmidt, L., Tsipras, D., and
Vladu, A. Towards deep learning models resistant to
adversarial attacks. arXiv preprint arXiv:1706.06083,
2017.

Mahmood, K., Mahmood, R., and Van Dijk, M. On the
robustness of vision transformers to adversarial examples.
In Proceedings of the IEEE/CVF International Confer-
ence on Computer Vision, pp. 7838–7847, 2021.

Mao, X., Qi, G., Chen, Y., Li, X., Duan, R., Ye, S., He,
Y., and Xue, H. Towards robust vision transformer. In
Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pp. 12042–12051, 2022.

Meng, L., Zhao, B., Chang, B., Huang, G., Sun, W., Tung,
F., and Sigal, L. Interpretable spatio-temporal atten-
tion for video action recognition. In Proceedings of the
IEEE/CVF International Conference on Computer Vision
Workshops, pp. 0–0, 2019.
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A. Algorithms

Algorithm 1 FViTs via Denoised Diffusion Smoothing
1: Input: x; A standard deviation σ > 0.
2: t∗, find t s.t. 1−αt

αt
= σ2.

3: xt∗ =
√
αt∗(x̃+N (0, σ2I)).

4: x̂ = denoise(xt∗ ; t
∗).

5: w = self-attention(x̂).
6: Return: attention weight w.

Algorithm 2 Finding the Faithfulness Region in FViTs
1: Input: Original self-attention module Z; the standard deviation σ > 0; classifier of the original ViT ȳ; Number of

repetitions m. Input image x.
2: for i ∈ [m] do
3: Sample a Gaussian noise zi ∼ N (0, σ2Iq×n) and add it to the input image x. Then get an attention vector

w̃i = Z(T (x+zi)) via Algorithm 1 and feed it to the original ViT and get the prediction ci = argmaxg∈G ȳ(x+zi).
4: end for
5: Estimate the distribution of the output as pj =

#{ci=j;i=1,...,m}
m . Compute the average of w̃i: w̃ = 1

m

∑m
i=1 w̃m.

6: For the ℓ2-norm case: Calculate the upper bound P as the following:

sup
α>1

[−2σ2

α
ln(1− p(1) − p(2) + 2(

1

2
(p1−α

(1) + p1−α
(2) ))

1
1−α )]1/2,

where p(1) and p(2) are the first and the second largest values in {pi}. Then calculate the upper bound Q as

sup
α>1

[
2σ2

α
(

α

α− 1
ln(2k0(

∑
i∈S

w̃α
i∗)

1
α + (2k0)

1
α

∑
i ̸∈S

w̃i∗)−
1

α− 1
ln(2k0))]

1/2,

where w̃i∗ is the i-th largest component in w̃, k0 = ⌊(1 − β)k⌋ + 1, and S denotes the set of last k0 components in
top-k indices and the top k0 components out of top-k indices.

7: For the ℓ∞-norm case: Calculate P = P̃
d and Q = Q̃

d , where P̃ and Q̃ is equivalent to P and Q in the ℓ2-norm case
respectively, d = q × n.

8: Return: The tolerable size of the attack min{P,Q}.

B. Proof of Theorem 5.1
Proof. Firstly, we know that the α-Rényi divergence between two Gaussian distributions N (0, σ2Id) and N (µ, σ2Id) is
bounded by α∥µ∥2

2

2σ2 . Thus by the postprocessing property of Rényi divergence, we have

Dα(w̃(x), w̃(x
′)) = Dα(Z(T (x+ z)), Z(T (x′))) ≤ Dα(x+ z, x′ + z)

≤ α∥x− x′∥2F
2σ2

≤ αR2

2σ2
.

Thus, when αR2

2σ2 ≤ γ it satisfies the utility robustness.

Second, we show it satisfies the prediction robustness. We first recall the following lemma which shows a lower bound
between the Rényi divergence of two discrete distributions:

Lemma B.1 (Rényi Divergence Lemma (Li et al., 2019)). Let P = (p1, p2, ..., pk) and Q = (q1, q2, ..., qk) be two
multinomial distributions. If the indices of the largest probabilities do not match on P and Q, then the Rényi divergence

12
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between P and Q, i.e., Dα(P ||Q)1, satisfies

Dα(P ||Q) ≥ − log(1− p(1) − p(2) + 2(
1

2
(p1−α

(1) + p1−α
(2) ))

1
1−α ).

where p(1) and p(2) refer to the largest and the second largest probabilities in {pi}, respectively.

By Lemma B.1 we can see that as long as Dα(w̃(x), w̃(x
′)) ≤ − log(1− p(1) − p(2) + 2( 12 (p

1−α
(1) + p1−α

(2) ))
1

1−α ) we must

have the prediction robustness. Thus, if αR2

2σ2 ≤ − log(1− p(1) − p(2) + 2( 12 (p
1−α
(1) + p1−α

(2) ))
1

1−α ) we have the condition.

Finally we proof the Top-K robustness. The idea of the proof follows (Liu et al., 2021a). We proof the following lemma first

Lemma B.2. Consider the set of all vectors with unit ℓ1-norm in RT , Q. Then we have

min
q∈Q,Vk(ŵ,q)≥β

Dα(ŵ, q) =
α

α− 1
ln(2k0(

∑
i∈S

w̃α
i )

1
α + (2k0)

1
α

∑
i ̸∈S

w̃i)−
1

α− 1
ln(2k0),

where Dα(ŵ, q) is the α-divergence of the distributions whose probability vectors are ŵ and q.

Now we back to the proof, we know that Dα(x+z, x′+z) ≤ αR2

2σ2 . And Dα(Z(T (x+z)), Z(T ((x′+z))) ≤ Dα(x+z, x′+

z). Thus, if αR2

2σ2 ≤ α
α−1 ln(2k0(

∑
i∈S w̃α

i )
1
α +(2k0)

1
α

∑
i ̸∈S w̃i)− 1

α−1 ln(2k0), we must have Vk(g(x+z), g(x′+z)) ≥
β.

Proof of Lemma B.2. We denote mT = (m1,m2, · · · ,mT ) and qT = (q1, · · · , qT ). W.l.o.g we assume that m1 ≥ · · · ≥
mT . Then, to reach the minimum of Rényi divergence we show that the minimizer q must satisfies q1 ≥ · · · ≥ qk−k0−1 ≥
qk−k0 = · · · = qk+k0+1 ≥ qk+k0+2 ≥ qT . We need the following statements for the proof.

Lemma B.3. We have the following statements:

1. To reach the minimum, there are exactly k0 different components in the top-k of w̃ and q.

2. To reach the minimum, qk−k0+1, · · · , qk are not in the top-k of q.

3. To reach the minimum, qk+1, · · · , qk+k0 must appear in the top-k of q.

4. (Li et al., 2019) To reach the minimum, we must have qi ≥ qj for all i ≤ j.

Thus, based on Lemma B.3, we only need to solve the following optimization problem to find a minimizer q:

min
q1,··· ,qT

=

T∑
i=1

qi(
w̃i

qi
)α

s.t.
T∑

i=1

qi = 1

s.t. qi ≤ qj , i ≥ j

s.t. qi ≥ 0

s.t. qi − qj = 0,∀i, j ∈ S = {k − k0 + 1, · · · , k + k0}

Solve the above optimization by using the Lagrangian method, we can get

qi =
s

2k0s+ (2k0)
1
α

∑
i ̸∈S w̃i

,∀i ∈ S, (2)

qi =
(2k0)

1
α w̃i

2k0s+ (2k0)
1
α

∑
i̸∈S w̃i

,∀i ̸∈ S (3)

1For α ∈ (1,∞), Dα(P ||Q) is defined as Dα(P ||Q) = 1
α−1

logEx∼Q(
P (x)
Q(x)

)α.

13
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where s = (
∑

i∈S w̃α
i )

1
α . We can get in this case Dα(w̃, q) =

α
α−1 ln(2k0s+ (2k0)

1
α

∑
i ̸∈S w̃i)− 1

α−1 ln(2k0).

Proof of Lemma B.3. We first proof the first item:

Assume that i1, · · · , ik0+j are the j components in the top-k of w̃ but not in the top-k of q, and i′1, · · · , i′k0+j are the
components in the top-k of q but not in the top-k of w̃. Consider we have another vector q1 with the same value with q while
replace qik0+j

with qi′k0+j
. Thus we have

e(α−1)Dα(w̃,q1) − e(α−1)Dα(w̃,q)

= (
w̃α

ik0+j

qα−1
i′k0+j

+
w̃α

i′k0+j

qα−1
ik0+j

)− (
w̃α

ik0+j

qα−1
ik0+j

+
w̃α

i′k0+j

qα−1
i′k0+j

)

= (w̃α
ik0+j

− w̃α
i′k0+j

)(
1

qα−1
i′k0+j

− 1

qα−1
ik0+j

) < 0,

since w̃ik0+j
≥ w̃i′k0+j

and qi′k0+j
≥ qik0+j

. Thus, we know reducing the number of misplacement in top-k can reduce the
value Dα(w̃, q) which contradict to q achieves the minimal. Thus we must have j = 0.

We then proof the second statement.

Assume that i1, · · · , ik0
are the k0 components in the top-k of w̃ but not in the top-k of q, and i′1, · · · , i′k0

are the components
in the top-k of q but not in the top-k of w̃. Consider we have another unit ℓ1-norm vector q2 with the same value with q
while qij is replaced by qj′ where w̃j′ ≥ w̃ij and j′ is in the top-k component of q (there must exists such index j′). Now
we can see that q2j′ is no longer a top-k component of q2 and q2ij is a top-k component. Thus we have

e(α−1)Dα(w̃,q2) − e(α−1)Dα(w̃,q)

= (
w̃α

ij

qα−1
j′

+
w̃α

j′

qα−1
ij

)− (
w̃α

ij

qα−1
ij

+
w̃α

j′

qα−1
j′

)

= (w̃α
ij − w̃α

j′)(
1

qα−1
j′

− 1

qα−1
ij

) ≥ 0.

Now we back to the proof of the statement. We first proof qk is not in the top-k of q. If not, that is k ̸∈ {i1, · · · , ik0
} and all

ij < k. Then we can always find an ij < k such that w̃k ≤ w̃ij , we can find a vector q̃ by replacing qij with qk. And we
can see that Dα(w̃, q̃)−Dα(w̃, q) ≤ 0, which contradict to that q is the minimizer.

We then proof qk−1 is not in the top-k of q. If not we can construct q̃ by replacing qk with qk−1. Since qk is not in top-k and
w̃k ≤ w̃k−1. By the previous statement we have Dα(w̃, q̃) −Dα(w̃, q) ≤ 0, which contradict to that q is the minimizer.
Thus, qk−1 is not in the top-k of q. We can thus use induction to proof statement 2.

Finally we proof statement 3. We can easily show that qi ≥ qk+1 for i ≤ k, and qi ≤ qk+1 for i ≥ k + 2. Thus, q1, · · · , qk
are greater than the left entries. Since by Statement 2 we have qk−k0

, · · · qk are not top k. Thus we must have qk+1, · · · qk+k0

must be top-k of q.

C. Proof of Theorem 5.2
Proof. For simplicity in the following we think the data x as a d-dimensional vector and thus the Frobenious norm now
becomes to the ℓ2-norm of the vector and the max norm becomes to the ℓ∞-norm of the vector.

We first show that, in order to prove Theorem 5.2, we only need to prove Theorem C.1. Then we show that, to prove
Theorem C.1, we only need to prove Theorem C.2. Finally, we give a formal proof of Theorem C.2.
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Theorem C.1. For any γ ≤ O(1), if a randomized (smoothing) mechanism M(x) = x + z : {0, R
2
√
d
}d 7→ Rd that

Dα(M(x),M(x′)) ≤ γ for all ∥x− x′∥2 ≤ R. Moreover, if we have for any x ∈ {0, R
2
√
d
}d,

E[∥z∥∞] = E[∥M(x)− x∥∞] ≤ τ

for some τ ≤ O(1). Then it must be true that τ ≥ Ω(
√
αR√
γ ).

For any M(x) = x+ z : Rd 7→ Rd, in Theorem C.1, we only consider the expected ℓ∞-norm of the noise added by M(x)
on x ∈ {0, R

2
√
d
}d. Thus, the τ in Theorem C.1 should be less than or equal to the τ in Theorem 5.2 (on x ∈ Rd). Therefore,

the lower bound for the τ in Theorem C.1 (i.e., Ω(
√
αR√
γ )) is also a lower bound for the τ in Theorem 5.2. That is to say, if

Theorem C.1 holds, then Theorem 5.2 also holds true.

Next, we show that if Theorem C.2 holds, then Theorem C.1 also holds.

Theorem C.2. For any γ ≤ O(1), if a randomized (smoothing) mechanism M(x)2 : {0, R
2
√
d
}d 7→ [0, R

2
√
d
]d that

Dα(M(x),M(x′)) ≤ γ for all ∥x− x′∥2 ≤ R. Moreover, if for any x ∈ {0, R
2
√
d
}d

E[∥z∥∞] = E[∥M(x)− x∥∞] ≤ τ

for some τ ≤ O(1). Then it must be true that τ ≥ Ω(
√
αR√
γ ).

Proof of Theorem C.1 For any M(x) = x+z : {0, R
2
√
d
}d 7→ Rd considered in Theorem C.1 that Dα(M(x),M(x′)) ≤

γ for all ∥x− x′∥2 ≤ R, there randomized mechanism M′′(x) : {0, R
2
√
d
}d 7→ [0, R

2
√
d
]d considered in Theorem C.2 such

that for all x ∈ {0, R
2
√
d
}d

E[∥M′′(x)− x∥∞] ≤ E[∥M(x)− x∥∞].

To prove the above statement, we first let a = R
2
√
d

and M′(x) = min{M(x), a}, where min is a coordinate-wise operator.
Now we fix the randomness of M(x) (that is M(x) is deterministic), and we assume that ∥M(x)− x∥∞ = |Mj(x)− xj |,
∥M′(x) − x∥∞ = |M′

i(x) − xi|. If Mi(x) < a, then by the definitions, we have ∥M′(x) − x∥∞ = |M′
i(x) − xi| =

|Mi(x)−xi| ≤ ∥M(x)−x∥∞. If Mi(x) ≥ a, then we have |M′
i(x)−xi| = |a−xi|. Since xi ∈ {0, a} and Mi(x) ≥ a,

|Mi(x)− xi| ≥ |a− xi|. ∥M(x)− x∥∞ ≥ |Mi(x)− xi| ≥ |a− xi|. Thus, E[∥M′(x)− x∥∞] ≤ E[∥M(x)− x∥∞].

Then, we let M′′(x) = max{M′(x), 0} where max is also a coordinate-wise operator. We can use a similar
method to prove that E[∥M′′(x) − x∥∞] ≤ E[∥M′(x) − x∥∞] ≤ E[∥M(x) − x∥∞]. Also, we can see that
M′′(x) = max{0,min{M(x), a}}, which means M′′ satisfies Dα(M′′(x),M′′(x′)) ≤ γ for all ∥x − x′∥2 ≤ R
due to the postprocessing property.

Since E[∥M′′(x) − x∥∞] ≤ E[∥M(x) − x∥∞], and M′′(x) is a randomized mechanism satisfying the conditions in
Theorem C.2, the τ in Theorem C.2 should be less than or equal to the τ in Theorem C.1. Therefore, the lower bound for the
τ in Theorem C.2 is also a lower bound for the τ in Theorem C.1. That is to say, if Theorem C.2 holds, then Theorem C.1
also holds.

Finally, we give a proof of Theorem C.2. Before that we need to review some definitions of Differnetial Privacy (Dwork
et al., 2006).

Definition C.3. Given a data universe X , we say that two datasets D,D′ ⊂ X are neighbors if they differ by only one
entry, which is denoted by D ∼ D′. A randomized algorithm M is (ϵ, δ)-differentially private (DP) if for all neighboring
datasets D,D′ and all events S the following holds

P (M(D) ∈ S) ≤ eϵP (M(D′) ∈ S) + δ.

Definition C.4. A randomized algorithm M is (α, ϵ)-Rényi differentially private (DP) if for all neighboring datasets D,D′

the following holds
Dα(M(D)∥M(D′)) ≤ ϵ.

Lemma C.5 (From RDP to DP (Mironov, 2017)). If a mechanism is (α, ϵ)-RDP, then it also satifies (ϵ+ log 1
δ

α−1 , δ)-DP.
2This mechanism might not be simply x+ z since it must involve operations to clip the output into [0, R

2
√
d
]d
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Proof of Theorem C.2 Since M satisfies Dα(M(x),M(x′)) ≤ γ for all ∥x − x′∥2 ≤ R on {0, r
2
√
d
}d, and for any

xi, xj ∈ {0, R
2
√
d
}d, ∥xi − xj∥2 ≤ R (i.e., xj ∈ B2(xi, R)), we can see M is (α, γ)-RDP on {0, r

2
√
d
}d. Thus by Lemma

C.5 we can see M is (γ + 2
log 1

δ

α−1 , δ)-DP on {0, r
2
√
d
}d.

Then let us take use of the above condition by connecting the lower bound of the sample complexity to estimate one-way
marginals (i.e., mean estimation) for DP mechanisms with the lower bound studied in Theorem C.2. Suppose an n-size
dataset X ∈ Rn×d, the one-way marginal is h(D) = 1

n

∑n
i=1 Xi, where Xi is the i-th row of X . In particular, when n = 1,

one-way marginal is just the data point itself, and thus, the condition in Theorem C.2 can be rewritten as

E[∥M(D)− h(D)∥∞] ≤ α. (4)

Based on this connection, we first prove the case where r = 2
√
d, and then generalize it to any r. For r = 2

√
d, the

conclusion reduces to τ ≥ Ω(
√

d
ϵ ). To prove this, we employ the following lemma, which provides a one-way margin

estimation for all DP mechanisms.

Lemma C.6 (Theorem 1.1 in (Steinke & Ullman, 2016)). For any ϵ ≤ O(1), every 2−Ω(n) ≤ δ ≤ 1
n1+Ω(1) and every

α ≤ 1
10 , if M : ({0, 1}d)n 7→ [0, 1]d is (ϵ, δ)-DP and E[∥M(D)− h(D)∥∞] ≤ τ , then we have n ≥ Ω(

√
d log 1

δ

ϵτ ).

Setting n = 1, ϵ = γ + 2
log 1

δ

α−1 in Lemma C.6, we can see that if E[∥M(x)− x∥∞] ≤ τ , then we must have

1 ≥ Ω(

√
d log 1

δ

(γ + 2
log 1

δ

α−1 )τ
) ≥ Ω(

√
α
√
d

√
γτ

),

where the last inequality holds if α is sufficiently large and γ is sufficiently small. Therefore, we have the following theorem,

Theorem C.7. For all M satisfies Dα(M(x),M(x′)) ≤ γ for all ∥x− x′∥2 ≤ 2
√
d on {0, 1}d such that

E[∥M(x)− x∥∞] ≤ τ, (5)

for some τ ≤ O(1). Then τ ≥ Ω(
√
αd√
γ ).

Apparently, Theorem C.7 is special case of Theorem C.2 where R = 2
√
d. Now we come back to the proof for any

M(x) : {0, r
2
√
d
}d 7→ [0, r

2
√
d
]d satisfies Dα(M(x),M(x′)) ≤ γ for all ∥x − x′∥2 ≤ R. We substitute 2

√
d

R x with

x̃ ∈ {0, 1}d and construct M̃ as M̃(x̃) = 2
√
d

R M(x) ∈ [0, 1]d. Since M(x) satisfies

E[∥M(x)− x∥∞] ≤ τ,

then we have

E[∥M̃(x̃)− x̃∥∞] = E[∥2
√
d

R
M(x)− 2

√
d

R
x∥∞] ≤ 2

√
d

R
α.

By the postprocessing property of Rényi divergence we can see Dα(M̃(x),M̃(x′)) ≤ γ for all ∥x− x′∥2 ≤ 2
√
d.

Considering M̃ : {0, 1}d 7→ [0, 1]d in Theorem C.7 with τ = 2
√
d

r τ ≤ O(1) (because E[∥M̃(x̃) − x̃∥∞] ≤ 2
√
d

R τ ), we
have

2
√
d

R
τ ≥ Ω(

√
αd

√
γ
). (6)

Therefore, Theorem C.2 holds true, thus, Theorem C.1 also holds true, and Theorem 5.2 is proved.
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D. Proof of Theorem 5.3
Proof. We can see the dataset as a d-dimensional vector by unfolding it. Thus, now the max norm of a matrix becomes to
the ℓ∞-norm of a vector. Firstly, we know that the α-Rényi divergence between two Gaussian distributions N (0, σ2Id) and
N (µ, σ2Id) is bounded by α∥µ∥2

2

2σ2 ≤ αdR2

2σ2 . Thus by the postprocessing property of Rényi divergence we have

Dα(w̃(x), w̃(x
′)) = Dα(Z(T (x+ z)), Z(T (x′))) ≤ Dα(x+ z, x′ + z)

≤ α∥x− x′∥2F
2σ2

≤ αdR2

2σ2
.

Thus, when dαR2

2σ2 ≤ γ it satisfies the utility robustness. For the prediction and top-k robustness we can use the similar proof
as in Theorem 5.1. We omit it here for simplicity.

E. Proof of Theorem 5.4
Proof. Similar to the proof of Theorem 5.2, in order to prove Theorem 5.4, we only need to prove the following theorem:

Theorem E.1. If there is a randomized (smoothing) mechanism M(x) : {0, r
2}

d 7→ [0, r
2 ]

d such that Dα(M(x),M(x′)) ≤
γ for all ∥x− x′∥∞ ≤ R for any x ∈ {0, r

2}
d, the following holds

E[∥z∥∞] = E[∥M(x)− x∥∞] ≤ γ

for some γ ≤ O(1). Then it must be true that γ ≥ Ω(
√
αd√
γ ).

Since M satisfies Dα(M(x),M(x′)) ≤ γ for all ∥x−x′∥∞ ≤ R on {0, r
2}

d, and for any xi, xj ∈ {0, R
2 }

d, ∥xi−xj∥2 ≤ R

(i.e., xj ∈ B2(xi, R)), we can see M is (α, γ)-RDP on {0, r
2}

d. Thus by Lemma C.5 we can see M is (γ + 2
log 1

δ

α−1 , δ)-DP
on {0, r

2}
d.

We first consider the case where r = 2. By setting n = 1 and γ = γ + 2
log 1

δ

α−1 in Lemma C.6, we have a similar result as in
Theorem C.7:

Theorem E.2. For all M satisfies Dα(M(x),M(x′)) ≤ γ for all ∥x− x′∥∞ ≤ 2 on {0, 1}d such that

E[∥M(x)− x∥∞] ≤ τ, (7)

for some τ ≤ O(1). Then τ ≥ Ω(
√
αd√
γ ).

For general R, similar to the proof of Theorem C.2, we substitute 2
Rx with x̃ ∈ {0, 1}d and construct M̃ as M̃(x̃) =

2
RM(x) ∈ [0, 1]d. Since M(x) satisfies

E[∥M(x)− x∥∞] ≤ α,

then we have

E[∥M̃(x̃)− x̃∥∞] = E[∥ 2

R
M(x)− 2

R
x∥∞] ≤ 2

R
α.

Also, M̃ : {0, 1}d 7→ [0, 1]d satisfies Dα(M̃(x),M̃(x′)) ≤ γ for all ∥x− x′∥∞ ≤ R on {0, R
2 }

d. Thus by Theorem E.2
with α = 2

Rα we have

α ≥ Ω(
R
√
αd

√
γ

),

thus we have Theorem E.1.
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F. Baseline Methods
Five baseline methods are considered in this paper. The implementation and parameter setting of each method is based
on the corresponding official code. Note that in this paper, we did not involve compression with Shapely-value methods
(Lundberg & Lee, 2017) due to the large computational complexity and sub-optimal performance (Chen et al., 2018).

1. Raw Attention (Vaswani et al., 2017). It is common practice to consider the raw attention value as a relevancy score
for a single attention layer in both visual and language domains (Xu et al., 2015). However, for the case of multiple
layers, the attention score in deeper layers may be unreliable for explaining the importance of each token due to the
token mixing property (Lee-Thorp et al., 2021) of the self-attention mechanism. Based on observations in (Chefer
et al., 2021), we consider the raw attention in the first layer since they are more faithful in explanation compared to
deeper layers.

2. Rollout (Abnar & Zuidema, 2020). To compute the attention weights from positions in layer li to positions in layer
lj in a Transformer with L layers, we multiply the attention weights matrices in all the layers below the layer li. If
i > j, we multiply by the attention weights matrix in the layer li−1, and if i = j, we do not multiply by any additional
matrices. This process can be represented by the following equation:

Ã(li) =

{
A(li)Ã(li−1) if i > j
A(li) if i = j

3. GradCAM (Selvaraju et al., 2017). The main motivation of the Class Activation Mapping (CAM) approach is to
obtain a weighted map based on the feature channels in one layer. The derived map can explain the importance of each
pixel of the input image based on the intuition that non-related features are filtered in the channels of the deep layer.
GradCAM (Selvaraju et al., 2017) proposes to leverage the gradient information by globally averaging the gradient
score as the weight. To be more specific, the weight of channel k with respect to class c is calculated using

αc
k =

1

Z

∑
i

∑
j

∂yc

∂Ak
ij

,

where αc
k is the attention weight for feature map k of the final convolutional layer, for class c. yc is the output class

score for class c, and Ak
ij is the activation at location (i, j) in feature map k. The summation over i and j indicates that

the gradient is computed over all locations in the feature map. The normalization factor Z is the sum of all the attention
weights for the feature maps in the final convolutional layer.

4. LRP (Bach et al., 2015). Layer-wise Relevance Propagation (LRP) method propagates relevance from the predicated
score in the final layer to the input image based on the Deep Taylor Decomposition (DTD) (Montavon et al., 2017)
framework. Specifically, to compute the relevance of each neuron in the network, we iteratively perform backward
propagation using the following equation:

Rj =
∑
k

ujwjk∑
j ajwjk + ϵ · sign(ajwjk)

Rk,

where Rj and Rk are the relevance scores of neurons j and k, respectively, in consecutive layers of the network. a
represents the activation of neuron j, wj,k is the weight between neurons j and k, and ϵ is a small constant used as a
stabilizer to prevent numerical degeneration. For more information on this technique, please see the original paper.

5. VTA (Chefer et al., 2021). Vanilla Trans. Att. (VTA) uses a LRP-based relevance score to evaluate the importance
of each attention head in each layer. These scores are then integrated throughout the attention graph by combining
relevancy and gradient information in an iterative process that eliminates negative values.

G. Implementation details
Diffusion Denoiser Implementation. For COCO and CitySpace, we trained the diffusion models from scratch following
(Ho et al., 2020). For ImageNet, we leverage the pre-trained diffusion model released in the guided-diffusion.
Spcificly, the 256x256 diffusion uncond is used as a denoiser. To resolve the size mismatch, we resize the images
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each time of their inputs and outputs from the diffusion model. The diffusion model we adopted uses a linear noise schedule
with β1 = 0.0001 and βN = 0.02. The sampling steps N are set to 1000. We clip the optimal t∗ when it falls outside the
range of [0, N − 1].

Max-fuse with lowest pixels drop. After obtaining explanation maps with a number of sampled noisy images, instead
of fusing these maps with mean operation, we leverage the approach of max fusing with the lowest pixels drop following
(Jacobgil). Specifically, we drop the lowest 10% unimportant pixels for each map and apply element-wise maximum on the
set of modified maps. The element of the final map is re-scaled to [0, 1] using min-max normalization.

Model Training Details. We use the pre-trained backbones in the timm library for feature extractor of classification and
segmentation. As for different ViT, we both leverage the base version with a patch size of 16 and an image size of 224. For
the downstream dataset, we then fine-tuned these models using the Adam optimizer with a learning rate of 0.001 for a total
of 50 epochs, with a batch size of 128. To prevent overfitting, we implemented early stopping with a criterion of 20 epochs.
For data augmentation, we follow the common practice: Resize(256) → CenterCrop(224) → ToTensor → Normalization.
And the mean and stand deviation of normalization are both [0.5, 0.5, 0.5].

Adversarial Perturbation. The perturbation radius is denoted by ρu and is set to 8/255 unless otherwise stated. For
CIFAR-10, ImageNet, and COCO, the step size is set to ρu/5, and the total number of steps is set to 10. For the Cityscape
dataset, the step size was set to ρu/125, and the total number of steps was set to 250.

H. More Results
In this section, we provide more results to demonstrate the performance of our methods in terms of both model prediction
and explainability. First, we aim to evaluate whether our method will affect utility when no attack is presented. We evaluate
this on the ImageNet classification dataset using three different kinds of model architectures. Then we ablate the component
proposed in our method to study their individual contributions.

H.1. Clean Utility

As we can see from Table 4, our method outperforms the Vanilla approach under a relatively small smoothing radius,
δ = 2/255. This result suggests that our method is able to enhance the classification utility with appropriate δ. However,
we also find that, as δ increases to δ = 5/255, there is a slight performance drop. And as the δ increases to δ = 10/255,
the testing accuracy drops more, which indicates the necessity of choosing the right δ. Since too large δ might lead to the
smoothed images being overwhelmed with noise, which will lead to lower classification confidence. In a word, the results
show that our method can even improve clean utility with appropriate small δ.

Method δ
Model

ViT DeiT Swin

Vanilla - 85.22 85.80 86.40

Ours
2/255 86.35 86.50 87.20
5/255 84.83 84.51 85.84
10/255 79.59 80.89 81.25

Table 4. The testing accuracy of our method and vanilla approach on ImageNet using three different ViT-based models under no attack.

H.2. Results of l2-norm

Mathematically, with the same noise level, l∞-norm ball B∞ is a superset of the l2-norm ball B2. Thus, it will lead to more
powerful attacks. Thus, by showing the effectiveness under l∞-norm threat model, we can also bound the performance of
FViT under l2-norm threat model. We additionally present more results in Tab. 6, which demonstrates this statement since
the faithfulness score yield from l2-norm threat model is consistently higher than that from l∞-norm threat model.
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Input Clean PGD FGSM AutoAttack

SFaith - 4.60 4.45 4.22

Table 5. Faithfulness score SFaith and visualization results of FViT under additional adversarial attack methods with ℓ∞-norm threat
model and ρu = 8

255
. SFaith is reciprocal to the average of the absolute difference between the ground-truth heat map and the predicted

one. The higher the score, the more faithful the explanation.

Norm type 2/255 4/255 6/255 8/255 10/255

ℓ2 29.16 12.63 10.56 5.62 6.30
ℓ∞ 3.27 11.90 8.79 4.74 4.70

Table 6. Faithfulness score of FViT under ℓ∞ and ℓ2-norm.

H.3. Ablation Study

As shown in Table 7, it suggests that our method outperforms all other baselines on all three datasets under adversarial
attacks with different budgets. In particular, On the ImageNet dataset, the ViT model with our method has the highest pixel
accuracy at 64%, while the DeiT model with our method had the highest mIoU at 46%. On the Cityscape dataset, the ViT
model with Ours had the highest mIoU at 59%. On the COCO dataset, the ViT model with Ours had the highest pixel
accuracy at 74% and the highest mIoU at 76%. Moreover, we visualized the ablated version of our method in Figure 9.
Overall, our method consistently outperforms all other methods, indicating its superiority in accuracy and robustness.

H.4. Clean Accuracy Comparison

Besides comparing different explanation methods, we also involve an ablation study that respectively removes the two key
modules in our method, i.e., the Gaussian noise smoothing and the diffusion-based smoothing, that can be viewed as a
comparison to two variants based on previous posthoc adversarially robust methods, Random Smoothing (Cohen et al.,
2019) and DiffPure (Nie et al., 2022). We further summarize the comparison in Table 8 to wrap up the results. For clean
accuracy, please refer to the second column of Table 8 for capturing the performance gap.

H.5. Robustness Against Natural Perturbations

In terms of robustness against natural perturbation, our method is designed to counterpart the worst-case adversarial
perturbation, which indicates its robustness against a wide range of sub-optimal perturbations. To demonstrate the stability
of our method under natural perturbations like Gaussian noise, we also conduct experiments with different levels of Gaussian
noise and uniform noise. The results are shown in Table 9. The results show that the proposed FViT is more stable against
those perturbations.

H.6. Robustness Against Different Adversarial Attacks

We study the adversarial perturbation with a common-used PGD algorithm under ℓp constrain setting, and our defense is
generalizable to a wide range of error-maximizing adversarial attacks. We additionally present the results of our method
against other attack algorithms in Table 10. The results show that our method can defend widely against adversarial attack
variants. Defending against more free-form adversarial attacks, like in-painting and physical adversarial objects, is out of
the scope of this paper and will be studied in future work.
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Input Raw Attention Rollout GradCAM LRP VTA Ours

Cat: clean→

Cat: poisoned→
7/255

Dog: clean→

Dog: poisoned→
7/255

Figure 4. Class-specific explanation heat map visualizations under adversarial corruption. For each image, we present results for two
different classes. Other baselines either give inconsistent interpretations or show wrong focus class regions under adversarial perturbations.
While our method gives a consistent interpretation map and is robust against adversarial attacks.

Corrupted Input Raw Attention Rollout GradCAM LRP VTA Ours

Figure 5. Visualization results of the attention map on corrupted input for different methods.
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Noise
Radius Model Method ImageNet Cityscape COCO

Cla. Acc. (%) Pix. Acc. (%) mIoU mAP Cla. Acc. (%) Pix. Acc. (%) mIoU mAP Cla. Acc. (%) Pix. Acc. (%) mIoU mAP

ρu = 9/255

VIT

Raw Attention 0.6 0.5 0.42 0.77 0.66 0.62 0.46 0.75 0.78 0.65 0.63 0.81
Rollout 0.72 0.56 0.42 0.76 0.79 0.55 0.51 0.76 0.82 0.64 0.53 0.85

GradCAM 0.64 0.49 0.5 0.78 0.79 0.64 0.5 0.75 0.74 0.78 0.67 0.91
LRP 0.7 0.54 0.43 0.78 0.68 0.68 0.52 0.86 0.82 0.69 0.7 0.81
VTA 0.64 0.56 0.43 0.77 0.7 0.74 0.58 0.89 0.8 0.82 0.67 0.88
Ours 0.69 0.64 0.48 0.73 0.74 0.71 0.59 0.9 0.88 0.74 0.76 0.97

DeiT

Raw Attention 0.63 0.6 0.42 0.68 0.75 0.56 0.49 0.71 0.83 0.64 0.57 0.79
Rollout 0.7 0.57 0.38 0.66 0.69 0.64 0.53 0.76 0.82 0.76 0.57 0.76

GradCAM 0.67 0.52 0.46 0.81 0.81 0.66 0.55 0.83 0.76 0.71 0.57 0.91
LRP 0.63 0.63 0.46 0.78 0.81 0.66 0.63 0.79 0.78 0.73 0.66 0.86
VTA 0.77 0.68 0.54 0.72 0.71 0.71 0.58 0.79 0.82 0.71 0.61 0.86
Ours 0.8 0.64 0.5 0.81 0.83 0.72 0.67 0.83 0.81 0.72 0.72 0.84

Swin

Raw Attention 0.65 0.49 0.41 0.76 0.69 0.67 0.44 0.79 0.85 0.72 0.58 0.82
Rollout 0.62 0.56 0.4 0.81 0.72 0.56 0.52 0.84 0.76 0.69 0.62 0.81

GradCAM 0.77 0.58 0.4 0.8 0.68 0.68 0.51 0.88 0.87 0.76 0.65 0.86
LRP 0.67 0.58 0.48 0.74 0.72 0.63 0.52 0.84 0.84 0.79 0.66 0.82
VTA 0.7 0.59 0.56 0.83 0.85 0.65 0.62 0.88 0.87 0.74 0.72 0.83
Ours 0.78 0.63 0.49 0.9 0.74 0.78 0.56 0.81 0.86 0.74 0.75 0.93

ρu = 10/255

VIT

Raw Attention 0.57 0.38 0.34 0.53 0.57 0.46 0.38 0.67 0.74 0.62 0.45 0.66
Rollout 0.58 0.43 0.38 0.67 0.6 0.55 0.36 0.7 0.66 0.6 0.48 0.69

GradCAM 0.52 0.39 0.3 0.6 0.57 0.57 0.46 0.63 0.65 0.63 0.45 0.8
LRP 0.62 0.5 0.38 0.6 0.66 0.57 0.51 0.77 0.65 0.57 0.55 0.71
VTA 0.52 0.5 0.34 0.68 0.63 0.6 0.46 0.75 0.7 0.69 0.57 0.75
Ours 0.59 0.54 0.36 0.78 0.74 0.59 0.45 0.72 0.76 0.73 0.63 0.74

DeiT

Raw Attention 0.53 0.46 0.25 0.62 0.55 0.5 0.39 0.6 0.68 0.63 0.44 0.75
Rollout 0.6 0.42 0.33 0.66 0.67 0.5 0.44 0.63 0.73 0.55 0.47 0.72

GradCAM 0.64 0.52 0.37 0.69 0.63 0.54 0.46 0.75 0.67 0.58 0.54 0.72
LRP 0.65 0.55 0.4 0.73 0.58 0.51 0.53 0.66 0.74 0.65 0.52 0.74
VTA 0.58 0.54 0.42 0.66 0.64 0.61 0.44 0.68 0.69 0.59 0.5 0.75
Ours 0.65 0.48 0.47 0.73 0.69 0.66 0.49 0.85 0.76 0.72 0.51 0.85

Swin

Raw Attention 0.6 0.41 0.3 0.55 0.7 0.54 0.37 0.64 0.63 0.65 0.47 0.72
Rollout 0.57 0.43 0.36 0.66 0.63 0.51 0.47 0.64 0.64 0.66 0.49 0.7

GradCAM 0.6 0.47 0.31 0.58 0.58 0.54 0.5 0.67 0.7 0.68 0.48 0.76
LRP 0.53 0.53 0.32 0.63 0.67 0.6 0.52 0.69 0.72 0.64 0.59 0.84
VTA 0.59 0.6 0.48 0.68 0.75 0.54 0.51 0.73 0.71 0.61 0.63 0.74
Ours 0.63 0.54 0.41 0.77 0.78 0.63 0.49 0.79 0.7 0.65 0.62 0.83

Table 7. Comparison of different explanation methods on multiple datasets using VIT, DeiT, and Swin models

Method Attack Radius ρa 0/255 (Clean Acc.) 2/255 4/255 6/255 8/255 10/255

Vanilla VTA 95.74 2.12 0.0 0.0 0.0 0.0
VTA + Random Smoothing - 2.12 2.12 0.0 0.0 0.0
VTA + DiffPure - 82.97 80.85 78.72 80.85 74.46
FViT (VTA + DDS) - 89.36 87.23 85.10 82.97 80.85

Table 8. Comparison of FViT with VTA + Random Smoothing and VTA + DiffPure under different perturbation radii. The accuracy (%)
of the ImageNet-1k sampled validation set is reported.

Noise Type σ of FViT 0/255 (Villna ViT) 2/255 4/255 10/255 12/255

Gaussian Noise 95.74 95.74 95.74 91.48 87.23
Uniform Noise 95.74 93.61 95.74 89.36 89.36

Table 9. Stability of FViT under natural perturbation, including Gaussian noise and uniform noise with the magnitude of 4/255. The
accuracy of the ImageNet-1k sampled validation set is reported.

Attacking Algorithms ρa 2/255 4/255 6/255 8/255 10/255

PGD 87.23 82.98 82.98 80.85 80.85
FGSM 91.49 85.11 85.11 82.98 74.47
AutoAttack 89.36 87.23 87.23 82.98 85.11

Table 10. Robustness of FViT against three different adversarial attack algorithms. The accuracy (%) on the ImageNet-1k sampled
validation set is reported.
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Input Raw Attention Rollout GradCAM LRP VTA Ours

Dog: clean→

Dog: poisoned→
7/255

Cat: clean→

Cat: poisoned→
7/255

Elephant: clean→

Elephant: poisoned→
7/255

Zebra: clean→

Zebra: poisoned→
7/255

Figure 6. Class-specific visualizations under adversarial corruption.
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Corrupted Input Raw Attention Rollout GradCAM LRP VTA Ours
Clean→

Poisoned→ 1/255

Poisoned→ 2/255

Poisoned→ 3/255

Poisoned→ 4/255

Poisoned→ 5/255

Figure 7. Visualization results of the attention map on corrupted input for different methods under different attack radii.
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Corrupted Input Raw Attention Rollout GradCAM LRP VTA Ours
Clean→

Poisoned→ 6/255

Poisoned→ 7/255

Poisoned→ 8/255

Poisoned→ 9/255

Poisoned→ 10/255

Figure 8. Visualization results of the attention map on corrupted input for different methods under different attack radii.
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Corrupted Input Ours Our w/o Denoising Our w/o Guassian smoothing

Figure 9. Visualization results of the attention map on corrupted input for the ablated version of our method.
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Input Raw Attention Rollout GradCAM LRP VTA Ours

Wolf: clean→

Wolf: poisoned→
7/255

Deer: clean→

Deer: poisoned→
7/255

Tiger: clean→

Tiger: poisoned→
7/255

Zebra: clean→

Zebra: poisoned→
7/255

Figure 10. Class-specific visualizations under adversarial corruption. For each image, we present results for two different classes.
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