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Abstract

Closed-loop neuroscience experimentation, where recorded neural activity is used1

to modify the experiment on-the-fly, is critical for deducing causal connections and2

optimizing experimental time. A critical step in creating a closed-loop experiment3

is real-time inference of neural activity from streaming recordings. One challenging4

modality for real-time processing is multi-photon calcium imaging (CI). CI enables5

the recording of activity in large populations of neurons however, often requires6

batch processing of the video data to extract single-neuron activity from the fluo-7

rescence videos. We use the recently proposed robust time-trace estimator—Sparse8

Emulation of Unused Dictionary Objects (SEUDO) algorithm—as a basis for a9

new on-line processing algorithm that simultaneously identifies neurons in the10

fluorescence video and infers their time traces in a way that is robust to as-yet11

unidentified neurons. To achieve real-time SEUDO (realSEUDO), we optimize the12

core estimator via both algorithmic improvements and an fast C-based implementa-13

tion, and create a new cell finding loop to enable realSEUDO to also identify new14

cells. We demonstrate comparable performance to offline algorithms (e.g., CNMF),15

and improved performance over the current on-line approach (OnACID) at speeds16

of 120 Hz on average.17

1 Introduction18

Closed loop experiments enable neuroscientists to adapt presented stimuli or introduce perturbations19

(e.g., optogenetic stimulation) in real-time based on incoming observations of the neural activity.20

Such experiments are critical for both optimizing experimental time, e.g., by optimally selecting21

stimuli to fit neural response models [10], or by deducing causality by perturbing possible cause-22

and-effect hypotheses. Despite this critical need, closed loop experiments at the level of populations23

of single neurons is incredibly difficult as they require real-time processing of neural data, which24

can be computationally intensive to process. In particular, population-level recordings using modern25

technologies often require significant computation to extract individual neuronal activity traces,26

e.g., spike sorting for high-density electrode electrophysiology or cell detection in fluorescence27

microscopy [6, 9].28

One particularly challenging recording technology is fluorescence microscopy, in particular multi-29

photon calcium imaging (CI). CI has progressed significantly since its inception with optical advances30

enabling access to larger fields of view, and therefore higher data throughput. While neuroscientists31

now have access to hundreds-to-thousands of neurons at a time, the neuronal time traces embedded32

in the video as fluorescing objects. To extract each neuron’s activity, multiple methods have been33

developed, including matrix factorization approaches, deep learning approaches, and others (we refer34

to a recent review for a more complete coverage of available methods and their nuances [6]).35

Almost all current calcium image processing methods uses batch processing: i.e., using a full video36

all at once to identify the neurons in the data and their time traces. For example, a common approach37

is to identify cells in a mean image (the image containing the average fluorescence per pixel over all38
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time) and then to extract the time-trace from the video given the neuron’s location, e.g., by averaging39

pixels. Real-time processing does not afford such luxury. Instead, frames must be processed as40

they are collected. Furthermore minimal data can be stored and used, as large image batches reduce41

algorithmic speed. Finally, the incomplete knowledge of the full set of cells in the video can cause42

unintended cross-talk. Unidentified cells may overlap with known cells, causing a well-documented43

effect of false transients when the unknown cells fluoresce [12].44

We thus present an algorithm capable of demixing CI data frame-by-frame in real-time. Our design45

goals are to operate at > 30 Hz with minimal temporary data storage (e.g., no buffering or initialization46

period needed) while minimizing false transient activity. Our primary contributions are: 1) An47

optimized SEUDO algorithm for fast, robust time-trace computation, 2) A new feedback loop to48

identify cells in real-time, and 3) patch-based parallelization that enables high-throughput calcium49

trace estimation across larger fields of view.50

2 Background51

Traditionally, CI analysis has been performed on full imaging videos. The goal of these algorithms52

is to extract from a pixel-by-time data matrix Y ∈ RM×T , where M is the number of pixels in53

each frame and T is the number of frames, a set of neural profiles X ∈ RM×N (one for each of54

N neurons) and a corresponding set of time traces Φ ∈ RN×T . The former of these has, as each55

column ofX , a single component profile depicting which pixels constitute that fluorescing object,56

and how strong that pixel is fluorescing. The latter has as each row the corresponding time traces that57

represent how bright that object was at each frame. These time-traces are particularly important for58

relating neural activity to each other (i.e., modeling population dynamics) or to stimuli and behavior.59

In typical approaches, full videos are required to either 1) identify summary images (e.g., mean60

or max images [24, 11, 25, 19]) to identify cells in, 2) to create a dataset within which points are61

clustered into cells [17, 31, 22, 27, 1, 28, 3, 28, 18], or 3) to perform simultaneous cell identification62

and demixing [26, 23, 8, 15, 16, 20, 21, 29, 13] (e.g., via matrix factorization or dictionary learning).63

For example, in the latter of these classes of algorithms, the data decomposition is solved via a64

regularized optimization, e.g.,65

X̂, Φ̂ = argmin
X,Φ
∥Y −XΦ∥2F +RX(X) +RΦ(Φ), (1)

where ∥ · ∥2F is the Frobenius norm (sum of squares of all matrix elements), andRX(X) andRΦ(Φ)66

are regularization terms for the profiles and time-traces, respectively. While many regularization67

combinations exist, common terms include sparsity in the neural firing, minimal overlaps, non-68

negativity, and spatial locality. Regardless, all methods require a large number of frames to identify69

the fluorescing components, with the exception of OnACID [14] and FIOLA [7].70

OnACID and FIOLA operate in an on-line manner, utilizing the buffer of last lb residuals rt =71

yt −Xct −Bft whereX and c represent the spatial and temporal profiles of already recognized72

cells andB and f represent the spatial and temporal profiles of the known background signal. Both73

methods use a local Constrained Non-negative Matrix Factorization (CNMF) [26] in the spatial and74

temporal vicinity of that point. CNMF is an off-line algorithm that repeatedly performs alternating75

optimizations on [X,B] and on [c,f ] using the full dataset, until it converges to a designated76

precision. Both methods require initialization periods, and FIOLA further requires GPU and CPU77

optimizaiton, raising the computational infrastructure costs. We seek a solution that does not need78

any initialization data and can be run on simpler CPU machines for easier incorporation into user’s79

workflows.80

2.1 Sparse Emulation of Unknown Dictionary Objects81

One primary challenge in fully on-line settings is the incomplete knowledge of all fluorescing82

components at the experiment onset. Even in off-line methods, incomplete identification of cells83

can create scientifically impactful cross talk—termed false transients—in inferred activity [12, 16].84

Another challenge is identifying new components from few frames: ideally from individual frames85

to reduce memory usage. Recent work has provided an algorithm with the potential to solve both86

challenges: The Sparse Emulation of Unused Dictionary Objects (SEUDO) algorithm [12].87
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Figure 1: The realSEUDO algorithm. A: Real-time inference of cells and their activity from
calcium imaging is crucial to closed-loop experiments, however, Typical CI demixing requires batch
processing, e.g., via matrix factorization. B: realSEUDO builds on the robust SEUDO algorithm that
prevents activity in missing or unknown cells from creating false activity in known cells by explicitly
modeling contamination as a sparse sum of small Gaussian blobs (right). The sum of the estimated
Guassians further provides an approximation of shape of the unknown cells, which can be used to
seen new known cells. C: We propose a method based around the SEUDO estimation algorithm that
can identify cells in real time by robustly removing known cells and using the residuals to identify
new cells in the data.

SEUDO is a robust time-trace estimator for neuronal time traces. Given a single fluorescence88

video frame yt, and a set of known profiles X , SEUDO models contamination from unknown89

profiles asWc whereW is a basis of small Gaussian bumps that linearly construct the interfering90

components, weighted by the sparse coefficients c (i.e., most c values are zero). SEUDO then solves91

the optimization92

ϕ̂t = arg min
ϕ,c≥0

[
min

[
∥yt −Xϕt∥22, ∥yt −Xϕt −Wc∥22 + λ∥c∥1 + γ

]]
, (2)

where λ and γ are model parameters and the internal min selects from the two internal expression93

that which has the minimal value. Since SEUDO operates per-frame, yt, Phi, c are all vectors.94

While SEUDO has demonstrated the ability to remove false transients [12], SEUDO’s application95

has been limited to off-line post-processing due to: (1) slow computational speed, and (2) the need96

for pre-defined profilesX .97

2.2 The FISTA Algorithm98

The computational bottleneck in SEUDO is a weighted LASSO [32] optimization, which can be99

implemented with the Fast Iterative Shrinkage-Thresholding Algorithm (FISTA), which implements100

a momentum gradient descent [4]. FISTA optimizes101

min
[
F (x) ≡ f(x) + g(x) : x ∈ Rn

]
, (3)

where f(x) is a smooth convex function with Lipschitz constant L > 0, such that ∥∇f(x) −102

∇f(y)∥ ≤ L∥x − y∥∀x, y ∈ Rn, e.g. in SEUDO f(x) = ∥yt −Xϕt −Wc∥22, and g(x) is a103

continuous convex function that is typically non-smooth, e.g., g(x) = λ∥x∥1. Each descent step of104

FISTA consists of an ISTA descent step and a momentum step:105

xk = argmin
x

g(x) + L

2

∥∥∥∥∥x−
(
yk −

1

L
∇f(yk)

)∥∥∥∥∥
2
 (4)

yk+1 = xk + ηk(xk − xk−1), (5)

where the parameter ηk gradually reduces with ηk = tk−1
tk+1

, tk+1 =
1+
√

1+4t2k
2 , t1 = 1.106

3 Real-time SEUDO107

Here we develop Real-time SEUDO (realSEUDO) that resolves the primary limitations of SEUDO108

and extends the algorithm significantly from a time-trace estimator to a real-time cell identification109
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method. Specifically we improve the computationally intensive momentum descent algorithm used to110

solve Equation (2) by reducing the number of steps of momentum descent, implementing parallelism,111

optimizing internal computations (e.g., of smoothness parameters), and reducing the complexity of112

the original fitting problem without a substantial loss of quality by manipulating its inputs. Moreover113

we add a new algorithm that automatically recognizes the neurons that have not previously been seen114

and adds them to the dictionary of known components. Finally, we implement our framework with a115

patch-based parallelism that avoids the computational scaling of LASSO in higher dimensions.116

At a high level, the realSEUDO algorithm (Alg. 1, Fig. 1) operates as follows: realSEUDO is117

initialized with zero known components (an empty set). When fluorescence activity in a frame118

reaches threshold, an event is triggered that saves the activity profile of that event as a temporary119

candidate profile. Profiles are moved from the temporary profiles to the static set of profiles if they120

remain active for a sufficient number of frames . The static profile set is then used to identify the121

activity of those components in future frames, with unexplained components becoming candidate122

profiles and cycling back into the temporary profiles, followed by an update of the static profile set.123

3.1 SEUDO optimization124

The first requirement of realSEUDO is a fast implementation of SEUDO that can operate at > 30 fps.125

We achieved this requirement through a combination of efficient implementations, algorithmic126

optimization, and updates to the base SEUDO model.127

C++ implementation: The original SEUDO implementation used the TFOCS MATLAB library [5].128

We thus first improved SEUDO’s run-time by switching from MATLAB’s interpreted programming129

language running TFOCS to a fast implementation of LASSO [32] via FISTA [4] in the C++ compiled130

language. To further improve performance, we optimized the C++ code with the use of templates131

to eliminate the function call overhead in tight loops, and also employ parallelism, based on the132

POSIX threads with TPOPP library wrapper [2]. To prevent a bottleneck from the passing of data133

through Matlab’s OOP API at the MATLAB/C++ interface, we switched to the non-OOP version of134

the MATLAB-to-C API.135

While beneficial, the C++ SEUDO implementation did not alone achieve the desired processing rate.136

We further improved runtimes by optimizing the cost function and derivative computations. The137

partial LASSO component of SEUDO that performs optimization at each frame y using FISTA can138

be written as argmin f(ψ)+λg(ψ), where f = ∥y−χψ∥22 is the least-squares term and g = ∥ψ∥1139

is the ℓ1 penalty. In FISTA, the profile time traces and Gaussian kernels are unified in one vector, i.e.,140

ψ is a concatenation of Φ and c, and χ = [X,W ]. With M as the number of pixels per frame, N as141

the number of neurons, and K as the number of Gaussian kernels, the set of problem dimensions are142

y ∈ RM , χ ∈ RM×(N+K), ψ ∈ RN+K , λ ∈ RN+K , with the first N elements of λ corresponding143

to Φ being equal to 0.144

In FISTA, a number of internal computations become bottlenecks; in particular computing the145

gradients ∇ψf and ∇ψ(f + g), the Lipshitz smoothness estimation, and the momentum/stopping146

criteria.147

Gradient computation: We reduce the burden of the gradient computations by both reducing the148

number of times the gradient must be used, and by improving the internal gradient computation. For149

the former, we note that naive implementations compute both a step in the direction of ∇ψf and150

then in the direction of ∇ψ(f + λg). Moreover, we note that these two steps in slightly different151

directions cause the gradient to dither around the optimum. We thus instead only take a step in the152

direction of ∇ψ(f + λg) (similar to [4]). For the latter, computing ∇ψ(f + λg) requires matrix153

vector multiplications with χ and its transpose. Since χ is sparse, we save memory and computation,154

by generating χ on-the-fly via convolutions instead of storing it in memory. Specifically, the gradient155

∇ψf requires computing χTχψ, which we reorganize to compute in two passes:156

vj =
∑

1≤i≤N+K

yj − χjiψi,
df

dψm
= 2

∑
1≤j≤M

χjmvj . (6)

The first pass (Eqn. 6, left) computes a set of intermediary variables, and the second pass (Eqn. 6,157

right) uses these values to compute the gradient dimensions. The two pass approach factors out158

repeated computations, reducing the complexity from O(n3) to O(n2). Moreover, the computation159
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of each pass is highly parallelizable by partitioning of the first pass by j, the second by m, and160

efficiently skipping the iterations over the zero elements in the sparse matrix χ.161

Lipshitz constant: To improve the efficiency of estimating the Lipschitz constant L, note that162

L = max(∥∇f(x1)−∇f(x2)∥/∥x1 − x2∥). For our cost function, we can approximate L with163

independent computations in each dimension. This estimation reduced the number of steps by as164

much as 30% over typical computations of L before each step based on the local gradient.165

Momentum: The momentum descent central to solving the partial LASSO tends to spend many166

steps on stopping the momentum, especially with the large values of the Lipshitz constant L (i.e. the167

non-momentum steps are small). One such case is “circling the drain” around the minimum, with the168

momentum causing the overshoot in one dimension while another dimension is stopping. Another169

case is when a dimension is moved past the boundary (e.g., x ≥ 0 for SEUDO), where the solution170

pushes past the boundary into negative values. This produces suboptimal solutions and increasing the171

number of steps necessary. FISTA includes a parameter η that progressively limits the top speed of172

descent to reduce such problems. We improved these cases by resetting the momentum to zero on a173

dimension when it either attempts to cross into the negative values or when its gradient changes sign.174

The dimensional momentum stopping stops abruptly at the right time, obviating the need for slowing175

and thus we can simplify FISTA by fixing η = 1.176

Our momentum stopping can further extend to broader optimization problems. We demonstrated this177

ability on momentum optimization in neural network training (see Supplement), where it provided a178

substantial improvement. Our modified FISTA produced the same error rate and squared mean error179

as gradient descent in about 10 times fewer training passes, or about 10 times lower error rate and 1.5180

times lower mean square error in the same number of passes. The full modified FISTA algorithm is181

presented in Algorithm 2 (see Supplement).182

SEUDO model adjustments: As a third step, we modified the SEUDO optimization program to183

achieve the final speedups. The original SEUDO spaced the Gaussian components in W by one184

pixel, which we found to be highly redundant. The kernels with radius r cover (π ∗ r2) pixels, and185

thus each pixel is covered by (π ∗ r2) kernels. This redundancy results in FISTA continuing to adjust186

the kernel coefficients c after the neural activations x converge. Reducing the number of kernels thus187

reduces both the number of gradient descent steps and the per-step cost, accelerating the computation188

more than quadratically. For a kernel with diameter of 30 pixels this improves the performance by a189

factor of over 100 without substantial degradation of false transients removal or the recognition of the190

interfering components’ shapeWc.191

We benchmarked our speedups against the original SEUDO on 45000 frames across 50 cells from [12].192

SEUDO ran at 5.8-6.9 s/cell on a Macintosh M1. The optimized C++ implementation without the193

MATLAB C++ API reduced the runtime to 0.9-1.1 s/cell (a 6-7x improvement). Sparse SEUDO194

provided further acceleration to a run time of 0.2 s, with 0.1 s for the computation and 0.1 s for the195

overhead of converting data between Matlab and native code; a total of a 29-34.5x speed-up, allowing196

SEUDO to run in real time.197

3.2 Automatic cell recognition198

We next developed the cell recognition feedback loop that completes the realSEUDO algorithm. To199

minimize data storage and compute, we designed realSEUDO to run on a frame-by-frame basis. At200

a high level, our automatic cell recognition first runs SEUDO on the current incoming (denoised)201

frame given the currently identified profilesXstab. The loop then identifies contiguous bright areas202

in the residual frames, i.e., the SEUDO cells Wc, and places them in a ‘temporary profile’ array203

Xtemp. The temporary profiles are then updated (via merging with new potential profiles) given204

new, incoming, frames until they are stable and moved to the stable, known profile listXstab that is205

updated less frequently by addition, merging and splitting of temporary profiles.206

Procedurally, we first preprocess each incoming frame to reduce noise and improve profile recognition.207

Calcium imaging analysis often uses running averages in space and time for noise reduction. We thus208

implement both a spatial Gaussian filter, as well as a running average of several sequential frames. We209

keep the window length as a tunable parameter that can be set to one for frame-by-frame processing210

with minimize temporal blurring.211
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We estimate the activation level in the denoised frame for each of the stable profilesXstab using the212

our fast SEUDO implementation. SEUDO returns the activation level ϕkt for the kth profile at time213

t along with a robust residual that contains the structured fluorescence not captured byXstab. We214

then run the residual through SEUDO a second time using the temporary profiles Xtemp to test if215

any temporary profile matches the frame’s fluorescence and should be moved fromXtemp toXstab.216

The residual after the second SEUDO application represents completely unknown profiles and are217

analyzed separately to determine if a new member ofXtemp should be created.218

The detection of new temporary profiles is based on finding the areas of the image above the noise219

level. The noise level is evaluated by noting that most of each video frame has no activity, indicating220

that the median pixel value will be very close to the median value of the pixels in an all-dark frame221

containing the same noise. The half-amplitude of the noise σ1/2 can be estimated as:222

σ1/2 = median(yt)−min(yt). (7)

In some cases different areas of the image may contain a different amount of background lighting223

(e.g., changes in neuropil), which can skew the noise estimate. To overcome this challenge, we224

split the larger image into sections, with each section computing a local median which is smoothly225

interpolated between section of the image. This can be thought as either a krigging procedure or a226

cheap approximation to a local median evaluated independently for each pixel in the image.227

To merge new profiles into the exiting profiles when adding new profiles toXtemp, we compute an228

overlap score. The scores aims to capture the following logic: If two temporal profiles are a close229

match in cross-section, they likely represent the same cell and should be merged. If they overlap only230

partially, they likely represent separate cells. If one cross-section is inside the other, look at relative231

brightness: if the smaller cross-section is also weaker, it’s likely a weaker partial activation of the232

same cell and should be merged, if the smaller cross-section has a close or higher brightness, the233

larger cross-section likely represents an intertwining of two cells that has to be split.234

The overlap computation thus is not a plain spatial overlap but includes a heuristics that identifies235

when one profile is mostly contained in another. The condition for merging two profiles inXtemp is236

based on the comparison of numbers of common and unique pixels between profiles, where P1 and237

P2 are numbers of pixels in each of two profiles, U1 and U2 are the numbers of unique pixels in each238

profile, C is the number of common pixels, B1 and B2 are the perimeters of bounding boxes for each239

profile, and ktemp is a constant with an empirically chosen value of 0.75:240

U1 ≤ B1 ∗ 0.5 or U2 ≤ B2 ∗ 0.5 or C ≥ ktemp ∗min(P1, P2) (8)

After a profile is moved fromXtemp toXstab, a different score is computed pair-wise between the241

new profile and each existing profile, to decide whether they should be left separate, or merged, or242

one of profiles split. If a merge or split is performed, the original profiles are removed fromXstab243

and the results entered recursively intoXstab as new profiles. The score for two profiles A and B in244

Xstab is computed based on the brightness and measures of least-squares fit of the cells into each245

other 1) as whole cells (i.e., αAB = ⟨A,B⟩/⟨A,A⟩) and 2) using only the overlapping region (i.e.,246

βAB = ⟨Aol, B⟩/⟨Aol, Aol⟩ where Aol is the profile A restricted to the region overlapping with B).247

βAB is used as a measure of difference in brightness, against which the fit of the whole cells αAB is248

compared as a measure of proximity in shape. Specifically we compute two ratios ρAB and ρBA are249

computed as250

ρAB =
αAB

βAB
, ρBA =

αBA

βBA
. (9)

A higher value of ρAB (which is always ≤ 1) means that cell A fits better inside cell B. The value of251

1 means that it fits entirely inside cell B. The same principle applies symmetrically to ρBA.252

3.3 Patching and profile matching253

realSEUDO, although highly efficient for smaller patches, is still based on the LASSO algorithm that254

reduces in efficiency with much larger frames. Thus we adopt a patching scheme that breaks each255

frame into small patches that can be parallelized to maintain the high framerate by utilizing the multi-256

threading in many modern processors. Patching, however, requires matching profiles across patches.257

Traditionally profiles discovered in data split into patches is to add overlap margins to the patches258

and to use profiles overlap in this region to determine matchings in neighboring patches. Additional259

margins, however, introduces redundant computation and decreases computational efficiency.260
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In realSEUDO we note that the logic behind the scoring we use to merge profiles in Xstab and261

Xtemp within each patch can also be used to score the match of profiles across patches. Specifically,262

we extend the matching to include the profile temporal activity as an additional dimension to find263

matching cells in neighboring patches via consecutive gluing of the profiles. The highest score264

is assigned to the bidirectional match of both spatial and temporal dimensions, a lower score to265

symmetrical match of spatial dimensions and asymmetrical match of temporal dimension, a yet lower266

score to an asymmetrical match of both kinds of dimensions. We have observed successful matches267

even with zero margin, using the neighboring strips of pixels around the perimeters of the patches as268

the spatial dimension for matching.269

4 Results270

Validation metrics: To validate our approach we note that the main goal of realSEUDO, as with271

most functional imaging analyses, primarily aims to recover the time-traces of neural activity as272

accurately as possible [6, 12]. This means while the general location of neurons is important, metrics273

such as the the Intersection over Union (IoU) are too strong; i.e., the full set of pixels identified is not274

necessarily the important quantity. We instead compute the “unique neurons found”. This metric275

aims to capture the need to know that the time-traces 1) correspond to real neurons in the data and276

2) accurately reflect the temporal activity that will be used to study neural activity with respect to277

stimuli and behavior. The Unique Neurons Found (as defined in [30]) requires both that ROIs well278

align with known ROIs spatially (overlap of at least 50% of pixels) and that the time-trace correlation279

exceeds 0.5.280

Simulated data experiments: We first applied all three algorithms to a simulated video created with281

Neural Anatomy and Optical Microscopy simulation (NAOMi) [30]. Specifically we simulated the282

neural activity over 20000 frames at 30Hz with fame size of 500x500 pixels. There are approximately283

450 cells visible in this dataset (i.e. fluorescing cells intersecting the plane of imaging). We284

benchmarked the patch-based parallel processing of realSEUDO 80x80 pixel patches. For comparison285

we ran the off-line CNMF (a staple batch-based calcium imaging demixing algorithm) and OnACID,286

the computationally similar on-line method. realSEUDO found 201 true cells, identified as strongly287

correlated with ground-truth cells, while OnACID found 152 and CNMF (the offline method) found288

308 (Fig. 2A-B). Furthermore, both realSEUDO and OnACID found many fewer false positives289

than CNMF, presumably because they cannot be fooled by small fluctuations integrated over the290

full recording (Fig. 2C-D). Note that to remove the confound of post-processing we followed prior291

work [30] in using the CNMF raw fluorescence traces instead of the model-based denoised traces.292

On average, realSEUDO processed 67.8 frames per second end-to-end, while OnACID ran at 9.2 fps.293

Applications to in-vivo mouse CA1 recordings We applied realSEUDO to an in vivo calcium294

imaging recordings from mouse hippocampal area CA1 previously described in Gauthier et al.295

2022 [12]. They consisted of 36 videos, each sized 90x90 pixels with 41750 frames sampled at 30 Hz.296

The outputs had previously been verified manually by Gauthier et al. 2022 [12] with human labeling297

of CNMF outputs. We applied realSEUDO to all videos and compared the outputs with the current298

online cell demixing algorithm OnACID [14], as well as a popular offline algorithm, CNMF [13], as299

an additional baseline.300

We benchmarked realSEUDO against OnACID (an online analysis tool) and CNMF (an offline301

analysis tool) on real in-vivo calcium imaging movies (Fig. 3). Algorithmic performance was302

measured on an x86-64 computer with 48 CPU cores (Intel Xeon 6248R), 2 hyperthreads per core,303

78 GB of memory, and without the use of a GPU. The initialization times were not included. On304

average, realSEUDO processed 162 frames per second compared to 26 processed by OnACID and 13305

by CNMF: an improvement of 6.5x and 12.5x respectively (Fig. 3C). Quality-wise, we found that306

OnACID exhibited difficulties with adapting to larger ranges of pixel brightness, sometimes missing307

bright cells. Scaling pixel values improved OnACID results, but only mildly (one additional cell).308

Numerically OnACID and CNMF appear similar but they identified different components. SEUDO309

results were most similar to CNMF, and with additional cells identified, and less false positives310

(Fig. 3B). Finally, the per-transient manual classification provided by [12] enabled us to assess if311

realSEUDO inherited the false transient removal properties of SEUDO. For a reasonable value of312

λ = 0.15, realSEUDO had a true positive rate of 75% and a false positive rate of 24%. While these313

numbers are a bit lower than the numbers reported in [12], in that study the authors average N=3314

frames to reduce noise, while maintained single-frame analysis. This can be evident by the fact that315
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Figure 2: NAOMi results: A) Found cells in NAOMi for CNMF, OnACID and realSEUDO separated
into Hits (strong or weakly correlated) and false alarms (uncorrelated). B) realSEUDO finds more
cells than OnACID with minimal false positives. C) Temporal correlations for found “hits”. D)
Examples time-traces show correlation to ground truth.

missed transients were very small: realSEUDO kept 98% of real fluorescence and only 15% of false316

fluorescence.317

Additional in-vivo tests: As final test we applied all three algorithms (realSEUDO, OnACID, CNMF)318

to a 2000-frame mesoscope video example collected by the Yuste lab at Columbia University and319

provided with the OnACID github package as a demo. For this example we similarly saw improved320

cell detection and runtime improvement in terms of fps (Fig. 3B).321

5 Discussion322

We present here an online method for cell detection and fluorescence time-trace estimation from323

streaming CI data: realSEUDO. realSEUDO is based on the SEUDO robust time-trace estimator that324

reduces bias due to unknown cells while also providing approximate shapes of the unknown fluoresc-325

ing objects. To build realSEUDO we 1) improved SEUDO’s runtime via significant modifications at326

the code, algorithmic, and model levels 2) built a new feedback loop that allowed SEUDO (that has327

no cell finding component currently) to identify cells in real-time. Overall, realSEUDO can achieve328

frame processing rates of 80-200 fps, depending on cell density. While our goal was to exceed the329

typical 30 Hz data collection rate common to many experiments, the high processing efficiency leaves330
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additional time to compute feedback in future closed loop systems. Moreover, realSEUDO can scale331

with faster recording rates as calcium indicators become faster, e.g., GCaMP8 [33].332

realSEUDO’s implementation exhibits a higher degree of parallelism than OnACID, however both333

are likely constrained by the employed tools. Specifically, the measurements in Fig. 3C show very334

little fps fluctuation with respect to cell count for OnACID, which can be due to a bottleneck in a335

single thread. realSEUDO has a lower latency to the first events for a new cell, OnACID requires a336

history of 100 frames to recognize a cell, while realSEUDO would produce the first events starting337

with the first frame that passes the low brightness threshold. Alternatively, OnACID has a higher338

native scalability with respect to the frame area, conditioned on similar cell counts. This likely result339

from OnACID’s algorithm restriction of processing to areas in the immediate vicinity of known340

cells. realSEUDO can still achieve a high processing efficiency with reasonable hardware with our341

parallelization. Future work may further improve realSEUDO runtime by blanking out entire patches342

until activity is detected via simpler detectors.343

One strength of realSEUDO is that it can be initialized with either an empty profile set. This ability344

to start from nothing will be useful in mesoscope settings when the field-of-view can be changed345

on-the-fly. Not requiring an initialization step will reduce start-up overhead at new fields of view.346

Furthermore, many of our speed adaptions deviate from the traditional gradient descent approach.347

In particular the Lipshitz constant approximation and the changes in the momentum and stopping348

criteria. In other domains, in particular for training deep neural networks, these deviations may also349

provide significant speedups, the extent of which should be quantified across broader applications in350

future work.351

Limitations: While our results achieve the design criteria we initially set out, there are some potential352

barriers. For one, as with many real-time systems, the compute environment is very important to353

configure correctly. We have found the importance of explicitly setting the Linux CPU manager to354

enable the performance mode. The default automatic adaptable mode does not react properly to CPU355

loads of less than 100% of the whole capacity, and significantly skews the benchmarking by running356

the CPUs at low frequency. These challenges are unfortunately necessary to achieve high levels of357

throughput without specialized hardware. Future work should develop walkthroughs and automated358

tools to guide the installation of the tools.359
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While our core algorithm is written completely in C++, and thus open source, we have found360

MATLAB convenient and efficient as a wrapper for prototyping wrappers for our core functions.361

Further work will add Python wrappers to allow for seamless integration into both MATLAB and362

Python pipelines, enabling realSEUDO to be more widely used.363

Finally, we focused here only on cell detection, assuming access to the on-line motion correction364

algorithm from OnAcid. This focus may require additional packages to be handled by users for365

motion correction. We will further aim in future iterations to extend the core package to include366

motion correction and delta-F over F computations in order to reduce communication overhead and367

ease adoption by users. Moreover, to fully optimize the package for speed, these steps should be368

more holistically incorporated in C++ as well.369
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A Appendix468

Algorithm 1 realSEUDO Algorithm

1: Initialize: Xtemp ← [];Xstab ← []
2: for each frame yt do
3: Denoise yt
4: Identify the profiles in the current frame
5: for all new profiles do
6: if current profile overlaps any ofXtemp then
7: Merge newXtemp profiles into the currentXtemp

8: else
9: Add the current profile toXtemp

10: end if
11: end for
12: for all profiles inXtemp that have not been updated in the last few frames do
13: Move them fromXtemp toXstab

14: Merge the moved profiles with existingXstab profiles
15: end for
16: ϕt, rt ← SEUDO(yt,Xstab)
17: Report ϕt as detections
18: ϕ′

t ← SEUDO(rt,Xtemp)
19: for each profile k inXtemp do
20: if the ϕ′

kt > γ or this profile was previously active then
21: Report this activation as early detection
22: end if
23: end for
24: end for

A.1 Application of modified FISTA to neural network optimization469

We further tested the modified FISTA momentum descent algorithm to problems outside of470

neuroscience—the training of neural networks—to evaluate the scope of applicability of our471

improvements. We used the problem of recognition of handwritten digits on a data set472

from AT&T Research available at https://hastie.su.domains/StatLearnSparsity_files/473

DATA/zipcode.html, reduced to 8x8 pixels, with a training set of 7291 images. The neural network474

(NN) model used the Leaky ReLU activation, with layer sizes 64, 64, 32, 10.475

The common approach to training NNs uses stochastic gradient descent, including stochastic momen-476

tum methods. Thus to compare to a non-stochastic momentum method we established a non-stochastic477

baseline.478

The dynamic estimation of the Lipshitz constant L from TFOCS cannot be applied to the neural479

network optimization because the optimization cost is highly non-linear. The multi-dimensional480

estimation of L is also computed only for the specific SEUDO function. The common practice is481

to use a fixed descent rate, which serves as an analog of 1
2L . Estimating the highest descent rate is482

still not a fully solved problem. Algorithms for dynamic evaluation of the descent rate do exist (e.g.,483

the ADAM algorithm in Kingma & Ba, 2015), however they rely on a constant to be picked for a484

particular problem.485

The advantage of stochastic methods is that they can use a higher descent rate without diverging, as486

seen by observing the dependency of logarithm of mean square error from the number of training487

passes for various descent rates (Fig 6). In these results we ensure that we start from the same fixed488

randomized initial state since different initial states can produce wildly different results.489

We observe that for the same descent rate (0.05 per pass), the stochastic and non-stochastic methods490

produce very similar error values, however the graph for the stochastic method is more smooth.491

The roughness of the graph represents the small divergences that manage to converge again over492

time, and shows that the descent rate is close to the maximum. However the stochastic method can493

accommodate a 100 times higher descent rate without diverging, and even a 1000 higher descent494
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Algorithm 2 Modified FISTA algorithm

1: Initialize t = 1; x[] = (initial values); diff[] = [0]; gradient_last[] = [0]
2: for step = 1 to maxstep do
3: tnext =

1+
√
1+t2∗4
2

4: η = t−1

tnext

5: if step ̸= 1 then
6: t = tnext
7: end if
8: x[] = x[] + η ∗ diff[]
9: for each i in dimensions of x do

10: if x[i] < 0 then
11: x[i] = 0; diff[i] = 0;
12: end if
13: end for
14: gradient[] = compute_gradient_f(x[])
15: x[] = x[]− gradient[]

L
16: for each i in dimensions of x do
17: if x[i] < 0 then
18: x[i] = 0; diff[i] = 0; gradient[i] = 0
19: else
20: if gradient[i] ∗ gradient_last[i] < 0 then
21: diff[i] = 0
22: else
23: diff[i] = diff[i]− gradient[i]

L
24: end if
25: end if
26: end for
27: gradient_last[] = gradient[]
28: end for

Method error log(error)
stochastic 0.0956 -2.3476
baseline non-stochastic 0.0952 -2.3515
FISTA 0.1662 -1.7946
momentum+stop on gradient sign change 0.0699 -2.6607
momentum+stop on gradient sign change + η = 1 0.0701 -2.6578
momentum+stop on gradient sign change + η = 1 at 4x rate 0.0751 -2.5889
auto-adjusted rate for momentum+stop on gradient sign change 0.0631 -2.7630
auto-adjusted rate for momentum+stop on gradient sign change + η = 1 0.0654 -2.7272

Table 1: Performance of algorithms on handwritten dataset

rate becomes rough but still converges. The non-stochastic method is able to make the passes faster,495

because it performs the same accumulation of partial gradients, but saves the overhead of updating496

the weights after each training case (or batch). However even adjusted for time, the stochastic method497

performs faster. It is possible to compute the non-stochastic gradient in parallel by multiple threads498

but we have not implemented this. We used this example of the non-stochastic descent as a baseline499

for the FISTA-based momentum methods.500

The summary of training errors in the momentum methods can be found in Figure 7A, and the mean501

square errors after 10,000 training passes are listed in the Table 1.502

The unmodified FISTA algoithm with λ = 0 performed on this task out of its domain worse than the503

non-momentum baseline. Adding the momentum stop in the dimenstions with gradient sign change504

produced a substantial improvement over the baseline. Fixing the parameter η = 1 produced a close505

result to not fixing η, but with a less rough curve. We tested if the smoothness indicated that setting506
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η = 1 could accommodate a substantial increase in descent rate by re-running the algorithm at a 4x507

rate (0.2 instead of 0.05), and while this run did not diverge, we did observe a higher error rate.508

Finally, we attempted to devise an algorithm that acts similar to the TFOCS dynamic evaluation of509

L but using the ratios of mean square values of gradient dimensions that change or not change sign510

as an indication of roughness. The rapid growth of gradient dimensions after sign change is seen511

as a beginning of a divergence, that causes the reduction of descent rate. This algorithm allowed512

training at a substantially higher rate in the first few thousands of passes but then flattened out. The513

automatically determined rate is close to the empirically found 0.05, and is higher in the initial passes514

where it reaches higher values, but then drops to the lower values (Fig. 7B). It is possible that the515

chosen criteria were not aggressive enough, and can be improved.516

While event with the momentum descent the stochastic methods specialized for NN training can still517

achieve faster speeds (Fig. 7C-D), we have demonstrated that our more general optimization still518

represent a major improvement over both simple gradient descent and plain FISTA in a different519

domain.520
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in one movie, with selected time traces of matching cells.
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Figure 6: Comparison of different algorithm’s learning curves on handwritten datasets. Left: mean-
squared error (MSE) as a function of optimization time. Right: MSE as a function of training passes.
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Figure 7: Comaprison of training curves for different algorithms. A: Training MSE as a function of
training passes for different variants of the improved FISTA algorithm. B: Training MSE improvement
when setting η = 1. C: Training MSE as a function of training passes for the best tested non-stochastic
methods vs. momentum-improved FISTA D: Training MSE as a function of optimization time for the
best tested non-stochastic methods vs. momentum-improved FISTA
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NeurIPS Paper Checklist521

1. Claims522

Question: Do the main claims made in the abstract and introduction accurately reflect the523

paper’s contributions and scope?524

Answer: [Yes] ,525

Justification: This work claims to provide a new algorithm for real-time processing of526

calcium imaging data. The results show processing speeds of 80-200 Hz, far exceeding the527

>30 Hz minimum for real-time processing.528

Guidelines:529

• The answer NA means that the abstract and introduction do not include the claims530

made in the paper.531

• The abstract and/or introduction should clearly state the claims made, including the532

contributions made in the paper and important assumptions and limitations. A No or533

NA answer to this question will not be perceived well by the reviewers.534

• The claims made should match theoretical and experimental results, and reflect how535

much the results can be expected to generalize to other settings.536

• It is fine to include aspirational goals as motivation as long as it is clear that these goals537

are not attained by the paper.538

2. Limitations539

Question: Does the paper discuss the limitations of the work performed by the authors?540

Answer: [Yes]541

Justification: We provide a discussion in the discussion section that discusses explicitly our542

limitations.543

Guidelines:544

• The answer NA means that the paper has no limitation while the answer No means that545

the paper has limitations, but those are not discussed in the paper.546

• The authors are encouraged to create a separate "Limitations" section in their paper.547

• The paper should point out any strong assumptions and how robust the results are to548

violations of these assumptions (e.g., independence assumptions, noiseless settings,549

model well-specification, asymptotic approximations only holding locally). The authors550

should reflect on how these assumptions might be violated in practice and what the551

implications would be.552

• The authors should reflect on the scope of the claims made, e.g., if the approach was553

only tested on a few datasets or with a few runs. In general, empirical results often554

depend on implicit assumptions, which should be articulated.555

• The authors should reflect on the factors that influence the performance of the approach.556

For example, a facial recognition algorithm may perform poorly when image resolution557

is low or images are taken in low lighting. Or a speech-to-text system might not be558

used reliably to provide closed captions for online lectures because it fails to handle559

technical jargon.560

• The authors should discuss the computational efficiency of the proposed algorithms561

and how they scale with dataset size.562

• If applicable, the authors should discuss possible limitations of their approach to563

address problems of privacy and fairness.564

• While the authors might fear that complete honesty about limitations might be used by565

reviewers as grounds for rejection, a worse outcome might be that reviewers discover566

limitations that aren’t acknowledged in the paper. The authors should use their best567

judgment and recognize that individual actions in favor of transparency play an impor-568

tant role in developing norms that preserve the integrity of the community. Reviewers569

will be specifically instructed to not penalize honesty concerning limitations.570

3. Theory Assumptions and Proofs571

Question: For each theoretical result, does the paper provide the full set of assumptions and572

a complete (and correct) proof?573
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Answer:[NA]574

Justification: Our paper is based on developing a new algorithm, and we do not include575

theoretical claims.576

Guidelines:577

• The answer NA means that the paper does not include theoretical results.578

• All the theorems, formulas, and proofs in the paper should be numbered and cross-579

referenced.580

• All assumptions should be clearly stated or referenced in the statement of any theorems.581

• The proofs can either appear in the main paper or the supplemental material, but if582

they appear in the supplemental material, the authors are encouraged to provide a short583

proof sketch to provide intuition.584

• Inversely, any informal proof provided in the core of the paper should be complemented585

by formal proofs provided in appendix or supplemental material.586

• Theorems and Lemmas that the proof relies upon should be properly referenced.587

4. Experimental Result Reproducibility588

Question: Does the paper fully disclose all the information needed to reproduce the main ex-589

perimental results of the paper to the extent that it affects the main claims and/or conclusions590

of the paper (regardless of whether the code and data are provided or not)?591

Answer: [Yes]592

Justification: The data from this paper is open and available and full pseudo-code and all593

parameter selections are provided in the main text or supplementary.594

Guidelines:595

• The answer NA means that the paper does not include experiments.596

• If the paper includes experiments, a No answer to this question will not be perceived597

well by the reviewers: Making the paper reproducible is important, regardless of598

whether the code and data are provided or not.599

• If the contribution is a dataset and/or model, the authors should describe the steps taken600

to make their results reproducible or verifiable.601

• Depending on the contribution, reproducibility can be accomplished in various ways.602

For example, if the contribution is a novel architecture, describing the architecture fully603

might suffice, or if the contribution is a specific model and empirical evaluation, it may604

be necessary to either make it possible for others to replicate the model with the same605

dataset, or provide access to the model. In general. releasing code and data is often606

one good way to accomplish this, but reproducibility can also be provided via detailed607

instructions for how to replicate the results, access to a hosted model (e.g., in the case608

of a large language model), releasing of a model checkpoint, or other means that are609

appropriate to the research performed.610

• While NeurIPS does not require releasing code, the conference does require all submis-611

sions to provide some reasonable avenue for reproducibility, which may depend on the612

nature of the contribution. For example613

(a) If the contribution is primarily a new algorithm, the paper should make it clear how614

to reproduce that algorithm.615

(b) If the contribution is primarily a new model architecture, the paper should describe616

the architecture clearly and fully.617

(c) If the contribution is a new model (e.g., a large language model), then there should618

either be a way to access this model for reproducing the results or a way to reproduce619

the model (e.g., with an open-source dataset or instructions for how to construct620

the dataset).621

(d) We recognize that reproducibility may be tricky in some cases, in which case622

authors are welcome to describe the particular way they provide for reproducibility.623

In the case of closed-source models, it may be that access to the model is limited in624

some way (e.g., to registered users), but it should be possible for other researchers625

to have some path to reproducing or verifying the results.626

5. Open access to data and code627
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Question: Does the paper provide open access to the data and code, with sufficient instruc-628

tions to faithfully reproduce the main experimental results, as described in supplemental629

material?630

Answer: [No]631

Justification: While the data is all freely available, the implementation will be released upon632

publication. We do, however, provide full algorithmic and parameter selection details in the633

paper.634

Guidelines:635

• The answer NA means that paper does not include experiments requiring code.636

• Please see the NeurIPS code and data submission guidelines (https://nips.cc/637

public/guides/CodeSubmissionPolicy) for more details.638

• While we encourage the release of code and data, we understand that this might not be639

possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not640

including code, unless this is central to the contribution (e.g., for a new open-source641

benchmark).642

• The instructions should contain the exact command and environment needed to run to643

reproduce the results. See the NeurIPS code and data submission guidelines (https:644

//nips.cc/public/guides/CodeSubmissionPolicy) for more details.645

• The authors should provide instructions on data access and preparation, including how646

to access the raw data, preprocessed data, intermediate data, and generated data, etc.647

• The authors should provide scripts to reproduce all experimental results for the new648

proposed method and baselines. If only a subset of experiments are reproducible, they649

should state which ones are omitted from the script and why.650

• At submission time, to preserve anonymity, the authors should release anonymized651

versions (if applicable).652

• Providing as much information as possible in supplemental material (appended to the653

paper) is recommended, but including URLs to data and code is permitted.654

6. Experimental Setting/Details655

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-656

parameters, how they were chosen, type of optimizer, etc.) necessary to understand the657

results?658

Answer: [Yes]659

Justification: Our method provides all parameter selections. Note that these parameters were660

not fit to data in the optimization sense but rather selected based on rules of thumb for the661

classes of algorithms used (sparse inference).662

Guidelines:663

• The answer NA means that the paper does not include experiments.664

• The experimental setting should be presented in the core of the paper to a level of detail665

that is necessary to appreciate the results and make sense of them.666

• The full details can be provided either with the code, in appendix, or as supplemental667

material.668

7. Experiment Statistical Significance669

Question: Does the paper report error bars suitably and correctly defined or other appropriate670

information about the statistical significance of the experiments?671

Answer: [Yes]672

Justification: Where applicable (e.g., timing assessment etc.) error bars are provided.673

Guidelines:674

• The answer NA means that the paper does not include experiments.675

• The authors should answer "Yes" if the results are accompanied by error bars, confi-676

dence intervals, or statistical significance tests, at least for the experiments that support677

the main claims of the paper.678
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• The factors of variability that the error bars are capturing should be clearly stated (for679

example, train/test split, initialization, random drawing of some parameter, or overall680

run with given experimental conditions).681

• The method for calculating the error bars should be explained (closed form formula,682

call to a library function, bootstrap, etc.)683

• The assumptions made should be given (e.g., Normally distributed errors).684

• It should be clear whether the error bar is the standard deviation or the standard error685

of the mean.686

• It is OK to report 1-sigma error bars, but one should state it. The authors should687

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis688

of Normality of errors is not verified.689

• For asymmetric distributions, the authors should be careful not to show in tables or690

figures symmetric error bars that would yield results that are out of range (e.g. negative691

error rates).692

• If error bars are reported in tables or plots, The authors should explain in the text how693

they were calculated and reference the corresponding figures or tables in the text.694

8. Experiments Compute Resources695

Question: For each experiment, does the paper provide sufficient information on the com-696

puter resources (type of compute workers, memory, time of execution) needed to reproduce697

the experiments?698

Answer: [No]699

Justification: A number of compute infrastructures were used to compute the results, and no700

special hardware was needed (e.g., GPUs).701

Guidelines:702

• The answer NA means that the paper does not include experiments.703

• The paper should indicate the type of compute workers CPU or GPU, internal cluster,704

or cloud provider, including relevant memory and storage.705

• The paper should provide the amount of compute required for each of the individual706

experimental runs as well as estimate the total compute.707

• The paper should disclose whether the full research project required more compute708

than the experiments reported in the paper (e.g., preliminary or failed experiments that709

didn’t make it into the paper).710

9. Code Of Ethics711

Question: Does the research conducted in the paper conform, in every respect, with the712

NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?713

Answer: [Yes]714

Justification: This paper does not use human subjects, private or protected data, or provide715

any capability in that might compromise safety or security. This work is squarely in the716

scientific microscopy analysis domain for non-human experiments.717

Guidelines:718

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.719

• If the authors answer No, they should explain the special circumstances that require a720

deviation from the Code of Ethics.721

• The authors should make sure to preserve anonymity (e.g., if there is a special consid-722

eration due to laws or regulations in their jurisdiction).723

10. Broader Impacts724

Question: Does the paper discuss both potential positive societal impacts and negative725

societal impacts of the work performed?726

Answer: [NA]727

Justification: This work describes the broader scientific impacts, but the advances are728

squarely in the imaging and optimization domain.729
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Guidelines:730

• The answer NA means that there is no societal impact of the work performed.731

• If the authors answer NA or No, they should explain why their work has no societal732

impact or why the paper does not address societal impact.733

• Examples of negative societal impacts include potential malicious or unintended uses734

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations735

(e.g., deployment of technologies that could make decisions that unfairly impact specific736

groups), privacy considerations, and security considerations.737

• The conference expects that many papers will be foundational research and not tied738

to particular applications, let alone deployments. However, if there is a direct path to739

any negative applications, the authors should point it out. For example, it is legitimate740

to point out that an improvement in the quality of generative models could be used to741

generate deepfakes for disinformation. On the other hand, it is not needed to point out742

that a generic algorithm for optimizing neural networks could enable people to train743

models that generate Deepfakes faster.744

• The authors should consider possible harms that could arise when the technology is745

being used as intended and functioning correctly, harms that could arise when the746

technology is being used as intended but gives incorrect results, and harms following747

from (intentional or unintentional) misuse of the technology.748

• If there are negative societal impacts, the authors could also discuss possible mitigation749

strategies (e.g., gated release of models, providing defenses in addition to attacks,750

mechanisms for monitoring misuse, mechanisms to monitor how a system learns from751

feedback over time, improving the efficiency and accessibility of ML).752

11. Safeguards753

Question: Does the paper describe safeguards that have been put in place for responsible754

release of data or models that have a high risk for misuse (e.g., pretrained language models,755

image generators, or scraped datasets)?756

Answer: [NA]757

Justification: This algorithm does not need safeguards as it is made for microscopy for758

non-human applications.759

Guidelines:760

• The answer NA means that the paper poses no such risks.761

• Released models that have a high risk for misuse or dual-use should be released with762

necessary safeguards to allow for controlled use of the model, for example by requiring763

that users adhere to usage guidelines or restrictions to access the model or implementing764

safety filters.765

• Datasets that have been scraped from the Internet could pose safety risks. The authors766

should describe how they avoided releasing unsafe images.767

• We recognize that providing effective safeguards is challenging, and many papers do768

not require this, but we encourage authors to take this into account and make a best769

faith effort.770

12. Licenses for existing assets771

Question: Are the creators or original owners of assets (e.g., code, data, models), used in772

the paper, properly credited and are the license and terms of use explicitly mentioned and773

properly respected?774

Answer: [Yes]775

Justification: Everyone who contributed is properly referenced.776

Guidelines:777

• The answer NA means that the paper does not use existing assets.778

• The authors should cite the original paper that produced the code package or dataset.779

• The authors should state which version of the asset is used and, if possible, include a780

URL.781

• The name of the license (e.g., CC-BY 4.0) should be included for each asset.782
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• For scraped data from a particular source (e.g., website), the copyright and terms of783

service of that source should be provided.784

• If assets are released, the license, copyright information, and terms of use in the785

package should be provided. For popular datasets, paperswithcode.com/datasets786

has curated licenses for some datasets. Their licensing guide can help determine the787

license of a dataset.788

• For existing datasets that are re-packaged, both the original license and the license of789

the derived asset (if it has changed) should be provided.790

• If this information is not available online, the authors are encouraged to reach out to791

the asset’s creators.792

13. New Assets793

Question: Are new assets introduced in the paper well documented and is the documentation794

provided alongside the assets?795

Answer: [NA]796

Justification: No new assets are presented!797

Guidelines:798

• The answer NA means that the paper does not release new assets.799

• Researchers should communicate the details of the dataset/code/model as part of their800

submissions via structured templates. This includes details about training, license,801

limitations, etc.802

• The paper should discuss whether and how consent was obtained from people whose803

asset is used.804

• At submission time, remember to anonymize your assets (if applicable). You can either805

create an anonymized URL or include an anonymized zip file.806

14. Crowdsourcing and Research with Human Subjects807

Question: For crowdsourcing experiments and research with human subjects, does the paper808

include the full text of instructions given to participants and screenshots, if applicable, as809

well as details about compensation (if any)?810

Answer: [NA]811

Justification: No crowdsourcing was used.812

Guidelines:813

• The answer NA means that the paper does not involve crowdsourcing nor research with814

human subjects.815

• Including this information in the supplemental material is fine, but if the main contribu-816

tion of the paper involves human subjects, then as much detail as possible should be817

included in the main paper.818

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,819

or other labor should be paid at least the minimum wage in the country of the data820

collector.821

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human822

Subjects823

Question: Does the paper describe potential risks incurred by study participants, whether824

such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)825

approvals (or an equivalent approval/review based on the requirements of your country or826

institution) were obtained?827

Answer: [NA]828

Justification: No IRB was needed.829

Guidelines:830

• The answer NA means that the paper does not involve crowdsourcing nor research with831

human subjects.832
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• Depending on the country in which research is conducted, IRB approval (or equivalent)833

may be required for any human subjects research. If you obtained IRB approval, you834

should clearly state this in the paper.835

• We recognize that the procedures for this may vary significantly between institutions836

and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the837

guidelines for their institution.838

• For initial submissions, do not include any information that would break anonymity (if839

applicable), such as the institution conducting the review.840
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