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Abstract
As large language models (LLMs) are deployed
more broadly, reducing the cost of inference has
become increasingly important. A common in-
ference use case involves a batch of sequences
that share a prefix, such as when reusing few-shot
examples or sampling many completions from
a single prompt. In a large-batch setting, trans-
former decoding can be bottlenecked by the at-
tention operation, which reads large key-value
(KV) caches from memory and computes ineffi-
cient matrix-vector products for every sequence
in the batch. In this work, we introduce Hydra-
gen, a hardware-aware exact implementation of
attention specialized for shared prefixes. Hydra-
gen computes attention separately over the shared
prefix and unique suffixes. This decomposition en-
ables efficient prefix attention by batching queries
together across sequences, reducing redundant
memory reads and replacing matrix-vector prod-
ucts with hardware-friendly matrix-matrix prod-
ucts. In a high-throughput setting (batch size
1K, tensor parallelism across eight A100s), our
method can improve end-to-end CodeLlama-13b
throughput by over 3x with a prefix length of
1K, and by over 30x with a prefix length of 16K.
Hydragen’s efficient processing of long shared
contexts lead to only a 15% drop in throughput
as the sequence length grows by 16x. We extend
Hydragen beyond simple prefix-suffix decompo-
sition and apply it to hierarchical sharing patterns,
which allows us to further reduce inference time
on competitive programming problems by a fur-
ther 55%.

1. Introduction
As LLMs grow proficient at a wide variety of tasks, re-
ducing the cost of deploying these models becomes in-
creasingly important. One common setting for LLM in-
ference involves generating text for a batch of sequences
that share a prefix. Examples of this use case include re-
using a few-shot prompt across multiple problems (Figure 1
left), sampling many candidate solutions to a single problem

(15), and long context document processing. In this work,
we use a hardware-aware perspective to analyze and opti-
mize the shared prefix setting, with a focus on large-batch,
throughput-oriented applications.

In transformer-based LLMs, large-batch inference is of-
ten bottlenecked by the attention operation. Since each
sequence in the batch has only a single attention query
when decoding, existing high-performance attention imple-
mentations like FlashAttention (9; 8) and PagedAttention
(14) compute attention using many independent matrix-
vector products. For large KV caches, this approach be-
comes memory-bound and moreover does not use hardware-
friendly matrix-matrix multiplications. Both of these charac-
teristics lead to poor performance on modern GPUs. Across
successive hardware generations, GPU computational capa-
bility has improved at a significantly faster rate than memory
bandwidth. Additionally, an increasingly large fraction of
total GPU floating-point operations (FLOPs) are only avail-
able when using tensor cores, a specialized hardware feature
that is dedicated to performing matrix-matrix products and
not matrix-vector products (Figure 1 bottom right).

Shared prefixes create overlaps in the attention key and
value matrices across sequences, presenting opportunities
for specialized optimizations. Existing work (14) exploits
this overlap to avoid redundant storage of the prefix KV
cache and reduce GPU memory consumption. Separate
from these memory savings, in this paper we demonstrate
that shared prefixes enable an alternative algorithm for com-
puting attention - Hydragen - that is much more hardware-
friendly (Figure 1 middle). Hydragen decomposes full-
sequence attention into separate attention computations over
the prefix and suffixes. These sub-computations can be
cheaply combined to recover the overall attention result
(Section 3.1). With attention decomposition, Hydragen is
able to efficiently compute attention over the prefix by batch-
ing together attention queries across sequences (Section 3.2).
This inter-sequence batching replaces many matrix-vector
products with fewer matrix-matrix products (Figure 1 top
right), reducing redundant reads of the prefix KV cache and
enabling the use of tensor cores. Our entire algorithm can
be implemented using existing fast attention kernels without
any new CUDA code (Appendix C).

In scenarios where large batch sizes and/or long prefix
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Q: Natalia sold clips to 48 of her... 
A: Natalia sold 48/2 = 24 clips in...

Q: Weng earns $12 an hour for... 
A: Weng earns 12/60 = $0.2 per...

Q: Betty is saving money for a new... 
A: In the beginning, Betty has only...

Q: Julie is reading a 120-page book... 
A: Maila read 12x2 = 24 pages today... 
...

Shared Pre�x Unique Su�xes

Q: James writes a...

Q: Tina makes $18...

Q: Ken created a...

Q: Joy can read 8...

Q: Each bird eats...

Shared Pre�x Setting
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Inter-Sequence
Batch (Q)
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Figure 1. Left: An example inference scenario featuring a shared prefix (the few-shot examples). Middle: An overview of Hydragen,
where overall attention is decomposed into attention over the shared prefix (batched across all queries in a batch) and attention over the
remaining suffixes (independent across sequences, as is normally done). Top Right: Hydragen’s attention decomposition allows many
matrix vector products to be replaced with fewer matrix-matrix products. Bottom Right: Using matrix-matrix products is particularly
important as GPUs dedicate an increasingly large ratio of their total FLOPS to tensor cores that are specialized in matrix multiplication.

lengths bottleneck decoding, we demonstrate that Hydragen
can improve end-to-end LLM throughput over vLLM (14),
a high-performance inference framework that avoids re-
dundant prefix storage but not redundant prefix reads. In
a high-throughput benchmarking setting (batch size 1024
with tensor parallelism across eight A100-40GB GPUs),
Hydragen increases the throughput of CodeLlama-13b (21)
by up over 3x with a prefix length of 1K and by over 30x
with a prefix length of 16K. By efficiently attending over
the shared prefix, throughput with Hydragen drops by only
15% as the prefix length grows from 1K to 16K, whereas
vLLM throughput decreases by over 90%. We also bench-
mark the Hydragen attention operation in isolation against
a state-of-the-art FlashAttention baseline (8) (Section 4.2).
While Hydragen introduces additional overhead that can
slow down attention with smaller inputs (e.g. prefix length
1K, batch size ≤ 16), performance significantly improves as
the prefix length and batch size grow. With a batch size of
4K and a prefix length of 8K, Hydragen can achieve more
than a 12x speedup over FlashAttention.

We evaluate Hydragen end-to-end on three real-world use
cases. On a batched needle-in-a-haystack document process-
ing task, we show that Hydragen can process 256 questions
about a document in less time than it takes a FlashAttention
baseline to process 64 questions (Section 4.3). Moreover,
we demonstrate that Hydragen’s attention decomposition
and batching apply to more general patterns of prompt shar-
ing than a single prefix-suffix split. When solving APPS
competitive programming problems (11), where two levels
of prompt sharing occur, we apply Hydragen hierarchically
to maximize sharing and reduce evaluation time by an ad-
ditional 55% over a single-level of prompt sharing (Sec-
tion 4.4). Using two-level Hydragen, we also measure a
2x speedup when evaluating LLMs on GSM8k with self-
consistency, relative to a FlashAttention baseline (28; 7).

2. Background
2.1. Hardware Efficiency Considerations

GPU Performance Bottlenecks: GPUs possess a limited
number of processors for performing computation and a
limited amount of bandwidth for transferring data between
processors and memory. When a program running on a GPU
is bottlenecked waiting for compute units to finish process-
ing, it can be classified as compute-bound. Alternatively,
memory-bound programs are bottlenecked accessing GPU
memory. To summarize a program’s use of hardware re-
sources, we can calculate its arithmetic intensity, defined as
the total number of arithmetic operations performed divided
by the total number of bytes transferred. Higher arithmetic
intensities imply a greater use of computational resources
relative to memory bandwidth.

Batching: Batching is a common optimization that can in-
crease an operation’s arithmetic intensity and reduce mem-
ory bottlenecks. Consider the example of computing matrix-
vector products. To compute one product, each element of
the input matrix is read from memory but is used in only a
single multiply-accumulate. Therefore, the arithmetic inten-
sity of the operation is low, and is memory-bound on GPUs.
However, if many matrix-vector products need to be com-
puted using the same matrix, we can batch the operations
together into a single matrix-matrix product. In the batched
operation, the cost of reading the input matrix is amortized
over the batch of vectors. Each element of the input matrix
is now used for many multiply-accumulates, increasing the
arithmetic intensity of the overall operation and improving
hardware utilization.

Tensor Cores: Modern GPUs (and other AI accelerators)
are designed with specialized units for efficiently computing
matrix multiplications. Effectively using these resources can
be crucial for achieving good overall performance; on GPUs,
tensor cores dedicated to matrix multiplications can compute
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over 10x more floating-point operations per second (FLOPS)
than the rest of the GPU. This further motivates batching
matrix-vector products into matrix-matrix products.

2.2. Attention and LLM Inference

The focus of this work is optimizing attention in transformer-
based LLMs. Scaled-dot-product attention (SDPA) operates
on a sequence of queries Q ∈ RNq×d, keys K ∈ RNkv×d,
and values V ∈ RNkv×d, producing an output O ∈ RNq×d

defined as:

O = SDPA(Q,K, V ) = softmax
(
QKT

√
d

)
V (1)

We are particularly interested in the performance characteris-
tics of attention during LLM text generation. Generation be-
gins with a prefill stage that processes the starting sequence
of tokens that the LLM will complete. The prefill phase en-
codes the entire prompt in parallel using a single transformer
forward pass. Therefore, when computing attention we have
Nq = Nkv ≫ 1 and as a result the multiplications in Equa-
tion 1 involving KT and V are hardware-friendly matrix
multiplications. After the prefill stage, completion tokens
are iteratively decoded from the model, with one decoding
step producing one new token and requiring one forward
pass. Decoding is accelerated by the use of a KV cache,
which stores the attention keys and values of all previous
tokens in the sequence. The KV cache avoids the need for
reprocessing the entire sequence during every decoding step,
and instead only the most recent token is passed through
the model. However, this leads to an attention computation
where Nq = 1 while Nkv ≫ 1, making the multiplications
with KT and V matrix-vector products. Attention during de-
coding is therefore memory-bound and does not use tensor
cores.

2.3. Batched Inference

LLM inference throughput can be increased by generat-
ing text for a batch of sequences in parallel. With batched
decoding, each forward pass of the model processes the
most recent token from many sequences instead of only one.
This batching increases the arithmetic intensity of trans-
former components such as the multilayer perceptron (MLP)
blocks and allows these modules to use hardware-friendly
matrix multiplications. However, batched text generation
does not increase the intensity of attention, since every se-
quence has a distinct key and value matrix. Therefore, while
other model components are able to use tensor cores during
batched decoding, attention must be computed using many
independent matrix-vector products. With large batch sizes
or long sequence lengths, computing attention becomes
increasingly expensive relative to rest of the transformer,

decreasing throughput. Additionally, the storage footprint
of the KV cache in GPU memory can exceed that of the
model parameters when the batch size is large, imposing
constraints on the maximum number of sequences that can
be simultaneously processed.

2.4. Shared Prefixes

In this paper, we focus on improving the throughput of
batched text generation when sequences in the batch share
a common prefix. This scenario lends itself to specialized
optimizations because shared prefixes create overlaps in
attention key and value matrices across sequences. Using
methods like PagedAttention (14), this overlap can be ex-
ploited to avoid redundant storage and save GPU memory
(14). In this work, we identify an additional opportunity to
use this overlap for optimizing the attention operation itself.

3. Hydragen: Efficient Attention with Shared
Prefixes

We introduce Hydragen, an exact implementation of atten-
tion that is optimized for shared prefixes. Hydragen is a
combination of two techniques:

1. Attention Decomposition: We split full-sequence at-
tention into separate attention computations over the
shared prefix and unique suffixes that can be cheaply
combined to recover the full attention result.

2. Inter-Sequence Batching: We efficiently compute
attention over the prefix by batching together attention
queries across sequences.

Attention decomposition allows us to isolate overlapping
portions of the batch’s key and value matrices, while inter-
sequence batching exploits this overlap by replacing many
matrix-vector products with a single matrix-matrix product.
Pseudocode implementing Hydragen attention is provided
in Appendix C.

3.1. Decomposing Attention Across Subsequences

As discussed in Section 2.4, sequences that share a common
prefix have partially overlapping keys and values when com-
puting attention. Our goal is to separate this computation
with partial overlap into two separate operations: attention
over the shared prefix, where there is total key-value over-
lap, and attention over unique suffixes, where there is no
overlap.

Consider the general case where our keys K and values V
are partitioned across Nkv (the sequence/row dimension)
into:

3
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K = K1||K2 (2)
V = V1||V2 (3)

with || denoting concatenation. We wish to avoid directly
computing our desired quantity SDPA (Q,K, V ), and in-
stead calculate this value using the results of the sub-
computations SDPA (Q,K1, V1) and SDPA (Q,K2, V2).

The challenge in partitioning attention is with the softmax
operation, since the softmax denominator is calculated by
summing over all exponentiated attention scores in the se-
quence. In order to combine our sub-computations, we
use a denominator rescaling trick inspired by FlashAtten-
tion’s blocked softmax computation (9). When computing
SDPA (Q,K1, V1) and SDPA (Q,K2, V2), we additionally
compute and store the log-sum-exp (LSE(Q,K) ∈ RNq )
of the attention scores (equivalently, the log of the softmax
denominator):

LSE (Q,K) = log

(
sum

(
exp

(
QKT

√
d

)
, dim = 1

))
(4)

Given the two partitioned attention outputs and their LSEs,
we can calculate our final result SDPA (Q,K, V ) by com-
puting the full-sequence softmax denominator and rescaling
the attention outputs accordingly:

SDPA (Q,K1, V1) e
LSE(Q,K1) + SDPA (Q,K2, V2) e

LSE(Q,K2)

eLSE(Q,K1) + eLSE(Q,K2)

(5)

We prove this formula in Appendix B.

3.2. Inter-Sequence Batched Prefix Attention

With attention decomposition, we are able to compute at-
tention over the prefix as a standalone operation for every
sequence. While this decomposition does not improve per-
formance on its own (in fact, it introduces additional work
in order to combine sub-computation outputs), it can allow
us to compute prefix attention much more efficiently over a
batch of sequences.

Queries do not affect each other when computing attention,
therefore if two sets of queries attend over identical keys and
values, they can be merged into a single attention operation
with a larger number of queries. With attention decomposi-
tion, this case now applies to each sequence’s attention over
the shared prefix. Since the prefix’s keys and values across
sequences are identical, we can batch each sequence’s query

Figure 2. An example of a hierarchical sharing pattern in a com-
petitive programming setting. The few-shot prompt (orange) is
globally shared across all sequences in the batch. However, the
descriptions of each problem (green and blue) are only shared
across the candidate solutions corresponding to that problem.

vector together into one attention operation over a single
sequence. Importantly, this batching significantly raises Nq

and the arithmetic intensity of prefix attention, replacing
many separate matrix-vector products with a single matrix-
matrix product. By replacing multiple independent attention
computations over the prefix with a single batched opera-
tion, we can reduce the number of times that the prefix KV
cache is read from GPU memory. Additionally, we can now
use tensor cores during prefix attention and significantly
improve hardware utilization.

Note that we are unable to apply inter-sequence batching
when computing attention over suffixes, since the keys and
values in each sequence’s suffix are not identical. Suffix
attention is therefore computed normally, with a single query
per sequence.

3.3. Hierarchical Sharing

So far, we have focused on the setting where all sequences
in the batch share a common starting subsequence followed
by suffixes that are distinct from one another. However, this
excludes other forms of sharing that appear in important use
cases. Sequences in the batch may not all start with a global
prefix, and instead the batch may be divided into groups
of overlapping sequences. Additionally, sharing may be
more fine-grained than a simple prefix-suffix decomposition,
with the overlap between sequences forming a tree structure
where each node contains a token sequence that is shared by
all descendants (see Figure 3.3 for an example). These forms
of sharing are increasingly relevant as LLMs are applied in
more complicated inference/search algorithms (29; 4; 17).

Hydragen naturally generalizes to these richer forms of
sharing as well. To apply Hydragen to a tree of sequences,
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we replace attention decomposition over the prefix and suffix
with attention decomposition at every vertex in the tree. We
can then use inter-sequence batching across levels of the
tree, so that the keys and values associated with one node
in the tree are shared across the queries of all descendant
nodes.

3.4. Implementation

We implement Hydragen for the Llama family of models
(25; 26; 21). We highlight that our implementation is simple:
we use no custom CUDA code and write Hydragen entirely
in PyTorch1 plus calls to a fast attention primitive. This
contrasts with more sophisticated algorithms like PagedAt-
tention, which require bespoke GPU kernels to read from
and update the paged KV cache. We believe that Hydra-
gen’s simplicity will allow it to be easily ported to other
hardware platforms such as TPUs, which also have hardware
dedicated to fast matrix multiplications. In our implemen-
tation, we use version 2.3.6 of the flash-attn package
when attending over the prefix, and a Triton kernel from
xformers when attending over the suffix. The second
kernel allows us to have changing sequence lengths in the
suffix KV cache across decoding steps while still adhering
to the constraints required to use CUDA graphs.

4. Experiments
4.1. End-To-End Throughput

We benchmark end-to-end LLM throughput in the setting
where many completions are sampled from a single prompt.
This is a common technique for improving a model’s ability
at solving math and coding problems (21; 15). Our bench-
marks evaluate Hydragen against four baselines:

1. FlashAttention: We perform inference without any
shared prefix optimizations, as if all sequences in the
batch were fully distinct. We compute full-sequence
attention using the Triton kernel that Hydragen uses for
suffix attention, and otherwise use the same codebase
as Hydragen. This baseline redundantly stores the
prefix’s keys and values for every sequence in the batch,
causing this method to run out of memory quickly.

2. vLLM: We use version 0.2.7 of the vllm package,
which uses the PagedAttention algorithm. vLLM
avoids redundant storage of the prefix, allowing much
larger batch sizes to be tested. Additionally, because
of this non-redundant storage, PagedAttention can
achieve a higher GPU cache hit rate when reading
the prefix, reducing the cost of redundant reads.

1For non-hierarchical inputs, we’ve also written a Triton kernel
for combining softmax denominators.

3. vLLM without Detokenization: We disable incre-
mental detokenization in vLLM (accomplished by com-
menting out one line in the vLLM codebase), which
we observed to improve throughput.

4. No Attention: We skip all self-attention computations
in the transformer. This (functionally incorrect) base-
line provides a throughput ceiling and helps to illustrate
the cost of different attention implementations relative
to the rest of the transformer. Note that the query, key,
value, and output projections in the attention block are
still performed.

We run our benchmarks on CodeLlama-13b (21) and dis-
tribute the model with tensor parallelism across eight A100-
40GB GPUs in order to have enough GPU memory to store
the KV cache with large batch sizes. In Figure 4.1, we
fix the prefix length to 2048 and sweep over the batch size
while generating 128 tokens per completion. When the
batch size is small, non-attention operations contribute sig-
nificantly to decoding time, with all methods reaching at
least half of the throughput of no-attention upper bound.
At these low batch sizes, Hydragen, the vLLM baselines,
and the FlashAttention baselines have similar throughputs.
However, as the batch size grows and attention over the
prefix becomes increasingly expensive, Hydragen begins to
significantly outperform the other baselines.

In Figure 4.1, we run a similar experiment, except now we
hold the batch size constant at 1024 and sweep over the
shared prefix length. The throughput of vLLM decreases as
the prefix grows, from just under 5k tokens/second with a
prefix length of 1024 to less than 500 tokens/second with a
prefix length of 16256. However, with Hydragen, through-
put is much less affected despite the prefix growing by
over 15k tokens. Moreover, across all sequence lengths
tested, Hydragen throughput is always within 70% of the
no-attention ceiling. We perform more in-depth sweeps over
different models, prefix lengths, batch sizes, and numbers
of generated tokens in Appendix D.1 - for smaller mod-
els and shorter completions lengths, Hydragen’s speedup
can exceed 50x. Additional evaluation setup details are in
Appendix E.1.

4.2. Microbenchmarking Attention

We also perform more granular benchmarks comparing Hy-
dragen attention against FlashAttention in order to more
precisely demonstrate the performance characteristics of
our method. Our microbenchmarks run on a single A100-
40GB using eight query attention heads, one key and value
head, and a head dimension of 128 (matching the setting of
CodeLlama-34b when distributed with tensor parallelism
across eight GPUs). We sweep over different batch sizes,
prefix lengths, and suffix lengths, reporting our results in
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Figure 3. End-to-end decoding throughput with CodeLlama-13b
when generating multiple completions from a prompt contain-
ing 2048 tokens. An “x” indicates that FlashAttention does not
have enough memory to run. As the batch size grows, Hydragen
achieves a higher throughput than all baselines. Throughput with
Hydragen always remains within 50% of the upper bound where
attention is entirely removed from the model.
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Figure 4. Comparing CodeLlama-13b decoding throughput where
the batch size is fixed at 1024 and we sweep over prefix lengths. As
the prefix grows from 1024 to 16256 tokens, Hydragen throughput
drops by less than 15%.

Figures 5(a) and 5(b). Our microbenchmarks corroborate
our end-to-end measurements from Section 4.1, showing
that speedup with Hydragen increases as the batch size and
prefix lengths grow. Additionally, our results highlight the
significant impact of the suffix length on inference time.
Hydragen computes attention over suffixes using memory-
bound FlashAttention (without inter-sequence batching). As
the suffix lengths grow, reading this portion of the KV cache
becomes an increasingly significant contributor to total de-
coding time. When generating text using Hydragen, this
means that the first tokens decoded by the model are gener-
ated the fastest, with throughput decreasing over time as the
lengths of completions (and therefore the lengths of suffixes)
grow.

We also note that with small KV cache sizes (e.g. the results
in Figure 5(b) where the prefix length is 1K and the batch
size is 16 or less), the additional overhead of performing
attention decomposition outweighs the benefits of shared
prefix attention, resulting in a decrease in speed relative to
FlashAttention. However, at these small input sizes, atten-

tion is not commonly a major contributor to decoding time
(relative to other factors such as reading the model weights
from GPU memory), regardless of whether Hydragen is
used or not.

Our microbenchmarks are influenced by the hardware plat-
form that they are run on. GPUs with a higher ratio of
compute to memory bandwidth benefit more from Hydra-
gen eliminating memory bottlenecks when attending over
the prefix. We report results on other GPUs in Appendix D.2
and provide more evaluation details in Appendix E.2.
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Figure 5. Microbenchmarking the Hydragen attention operation
relative to a FlashAttention baseline on a single A100-40GB GPU.
In the special case of a suffix length of zero, we only benchmark
prefix attention (since there is no suffix to attend over and combine
the results of).
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4.3. Long Document Processing

Additionally, we explore the performance of Hydragen on
workloads involving very long documents. This setup re-
sembles a “needle-in-a-haystack” evaluation, except we
have embedded many needles into our document, which
we retrieve in parallel in a single batch. We construct a
document by embedding synthetic facts into an excerpt of
War and Peace (24). Our shared prefix, totalling 19947
tokens, contains both the document as well as five few-
shot examples of question/answer pairs. Our benchmark
evaluates Yi-6B-200k (1) on its ability to answer questions
based on the embedded facts. We run this benchmark across
four A100-40GB GPUs using Hydragen in addition to our
FlashAttention and no-attention baselines. Results are re-
ported in Figure 4.2. We observe that processing time for
the FlashAttention baseline rapidly grows far beyond the
time of the no-attention baseline, highlighting how attention
is the dominant operation for this configuration. Mean-
while, Hydragen’s processing time remains within 60% of
the no-attention optimum. Notably, Hydragen can process
256 questions in less time than it takes the FlashAttention
baseline to process 64 questions. We provide additional
evaluation details in Appendix E.3.

4.4. Hierarchical Sharing in Competitive Programming
and Self-Consistency Evaluation

We lastly demonstrate the benefits of applying Hydragen in
settings with hierarchical sharing (described in Section 3.3).
Competitive programming was a motivating application for
developing our method, since current state-of-the-art sys-

Figure 7. Measuring inference time for solving 120 programming
problems. The batch size refers to the number of problems pro-
cessed simultaneously. By sharing both the few-shot examples
across all sequences and the problem description across generated
candidate solutions, two-level Hydragen decreases overall infer-
ence time by an extra 55% over single-level Hydragen (which only
shares the few-shot prompt).

tems can sample thousands or more candidate programs
from prompts that can contain thousands of tokens (15; 21).
Self-consistency similarly harnesses multiple samples to
improve model capabilities by conducting majority voting
to determine a final answer (28). In both of these set-
tings, when multiple problems are processed in a single
batch, prompt overlap occurs across two levels: the few-
shot prompt is shared across all sequences in the batch,
while each problem’s description is shared across all of that
problem’s candidate solutions (see Figure 4.4).

For competitive programming, we benchmark the total time
required to evaluate CodeLlama-7b (using tensor parallelism
across 8 A100-40GB GPUs) on 120 problems from the
APPS dataset (11). We use a two-shot prompt and 128
candidate programs per problem. We benchmark Hydragen
using two approaches:

1. Single-Level Hydragen: We use a single-level ver-
sion of Hydragen to share the few-shot prompt across
all sequences in the batch, but not share problem de-
scriptions across candidate solutions. This leads to
redundant storage of the problem description across all
candidate solutions, reducing the maximum batch size
that can be used.

2. Two-Level Hydragen: We apply Hydragen across
both levels of prompt overlap. This has the dual ben-
efits of improving attention efficiency (by increasing
the degree of sharing) as well as avoiding redundant
storage, which allows us to increase the batch size used
for evaluation. We avoid conflating these benefits by
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evaluating two-level Hydragen twice: once with the
same batch size used for single-level Hydragen, and
once with an enlarged batch size.

We report our results in Figure 4.4 and Table 1. We see
that even when the batch size is held constant, adding a
second level of sharing to Hydragen can improve attention
efficiency and decrease dataset evaluation time by 18%. Fur-
thermore, the memory saved due to not redundantly storing
the problem description allows us to increase the batch size,
which in turn results in an additional 45% reduction in eval-
uation time. We provide additional evaluation details in
Appendix E.4.

For benchmarking self-consistency, we follow the original
paper’s procedure for evaluation on GSM8k (7), using an
eight-shot prompt and sampling 40 completions per problem.
We evaluate the 7b and 13b models in the Llama 2 family,
benchmarking a FlashAttention baseline and Hydragen with
two levels of prompt sharing. We again benchmark Hydra-
gen at the same batch size as our baseline and additionally
with the new largest batch size that can fit. We report our
results in Table 1. Like with code generation, we observe
a speedup with Hydragen even when the batch size is held
constant with the baseline, with the speedup increasing to
over 2x when the batch size is further increased.

5. Related Work
Transformers and Language Models: The transformer
architecture has enabled significant improvements in state-
of-the-art language models (27). A defining feature of trans-
formers is that their performance consistently improves
when scaling up data and model size (20; 5; 6; 12; 18).
LLM-powered assistants such as ChatGPT have been widely
adopted and are currently used by over a hundred million
users (16), motivating research into how these models can
be deployed more efficiently.

KV Cache Management: Managing large KV caches is a
challenge when deploying LLMs. MQA (22) and GQA (2)
modify the transformer architecture in order to reduce the
KV cache size. These techniques decrease the number of
key-value attention heads and assign multiple query heads
to a single key-value head. Alternative approaches operate
at a systems level, dynamically moving keys and values
between GPU memory, CPU memory, and disk (23; 3; 13).
vLLM (14) introduces a virtual paging system that enables
fine-grained KV cache management. This virtual paging
can also avoid redundant storage of a prefix’s keys and val-
ues. SGLang (30) also investigates and optimizes inference
with sequences that have complicated prompt sharing pat-
terns. Their RadixAttention algorithm dynamically scans
incoming requests to find the largest subsequence that has
already been processed, avoiding the recomputation of over-

lapping keys and values. Importantly, while both vLLM
and RadixAttention avoid redundant storage of overlapping
keys and values, they do not optimize the decoding attention
computation itself.

Hardware-Aware Algorithms: Algorithms that leverage
an understanding of the underlying hardware platform
can significantly improve device utilization. Hardware-
awareness has significantly improved the efficiency of the
attention operation (19; 9; 8), reducing the memory require-
ments from O(N2) to O(N) while improving execution
time by avoiding redundant memory transfers. In addition
to improving input-output (IO) transfers, many GPU-aware
algorithms (including Hydragen) focus on leveraging tensor
cores (10), which can achieve over 10x more FLOPS than
the rest of the GPU.

LLM Algorithms: Recent work has demonstrated that
LLM capabilities can be improved when many potential
solutions are explored when solving a problem. Self-
consistency (28) improves performance on arithmetic rea-
soning tasks by sampling many solutions to a single problem
and using a majority-voting protocol. On competitive pro-
gramming problems, LLMs perform substantially better
when many different attempts to a problem are sampled
(21). AlphaCode (15), a state-of-the-art competitive pro-
gramming system, samples as many as a million programs
to solve a single problem. Tree-of-Thoughts (29) introduces
an explicit tree-based search algorithm for solving problems
that can be decomposed into discrete decision points. All of
these scenarios involve performing batched text generation
with overlapping prefixes, which Hydragen is specifically
optimized for.

6. Conclusion
In this work we introduced Hydragen, an exact, hardware-
aware implementation of attention for batches of sequences
that share common prefixes. Our method separates attention
over shared prefixes from attention over unique suffixes.
This allows us to batch attention queries across sequences
when attending over the prefix, reducing redundant memory
reads and enabling the use of tensor cores.

Hydragen can improve LLM throughput in scenarios where
attention is a significant contributor to decoding time, with
the greatest speedup occurring when the batch size is large,
the shared prefix lengths are long, and the unique suffix
lengths are short. In settings where the batch size is small
and/or the sequence lengths are short, attention is often only
a minor contributor to throughput and Hydragen’s effects
will be minimal (or even detrimental, see Figure 5(b)). For
example, interactive chatbots may use a smaller batch size
than fits in GPU memory in order to satisfy latency con-
straints. Therefore, although this application can feature a

8



440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494

Hydragen: High-Throughput LLM Inference with Shared Prefixes

Model Attention Algorithm Batch Size (sequences) Eval Time (mins) Speedup
Llama-2-7b-chat FlashAttention 360 41.63 1
Llama-2-7b-chat Hydragen 360 28.39 1.47
Llama-2-7b-chat Hydragen 1200 19.94 2.09
Llama-2-13b-chat FlashAttention 240 70.49 1
Llama-2-13b-chat Hydragen 240 51.31 1.37
Llama-2-13b-chat Hydragen 720 32.88 2.14

Table 1. Measuring the time required to run evaluation on the GSM8k test set using self-consistency.

significant amount of prompt sharing (system instructions
which are shared across user requests can often be quite
long), it may not be able to benefit from Hydragen to the
same degree as purely throughput-oriented applications. We
provide an extended discussion of the settings where Hydra-
gen is applicable in Appendix A.

We hope that our work inspires new LLM algorithms that
leverage efficient handling of shared prefixes. Hydragen’s
ability to significantly expand the shared prefix without
a significant throughput penalty should allow models to
be provided with much more context than was previously
practical. Moreover, we hope that Hydragen’s ability to
generalize to tree-shaped sharing patterns can assist with
research that uses LLMs to explore many possible solutions
before deciding on a final output.
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A. Estimating Throughput Improvements with Hydragen
Hydragen can significantly improve the efficiency of attention with shared prefixes relative to approaches that compute
attention independently for every sequence (see Section 4.2). However, translating this targeted efficiency into end-to-end
throughput improvements depends strongly on the details of the inference setting being considered. In order for Hydragen to
meaningfully improve decoding speed in a particular setting, attention must be a major contributor to decoding time. For
example, with small batch sizes and/or short sequence lengths, decoding speed is often bottlenecked not by attention, but
by reading the parameters of the model from GPU memory. The benefits of Hydragen in this scenario will therefore be
minimal. Similarly, given a fixed batch size and sequence length, we expect Hydragen to improve throughput more on a
model that uses multi-headed attention than a similarly-sized model that uses multi-query attention (22) or grouped-query
attention (2) in order to reduce the size of the KV cache. However, reducing the KV cache size allows for a larger batch size
to fit within GPU memory constraints, which can further increase the speedup of using Hydragen.

As discussed in Section 2.3, the cost of attention becomes disproportionately high as the batch size grows, since the
arithmetic intensity of most transformer operations increase while attention remains memory-bound. Hydragen greatly
improves the hardware utilization of attention, making the comparison of attention FLOPs to other model FLOPs more
useful when determining the maximum achievable speedup. In several experiments in Section 4, we include a “No Attention”
baseline that only runs the non-attention components of the transformer in order to establish an upper bound for attainable
throughput.

Another important consideration when predicting the benefits of Hydragen is the relative number of prefix (shared) tokens
compared to suffix (unshared) tokens. Since Hydragen makes no optimizations to attention over suffixes, long suffixes can
decrease generation throughput. We explore the impact of suffix length on attention speed in Section 4.2.

B. Proving the Correctness of Attention Decomposition
We start by explicitly expressing softmax as an exponentiation followed by a normalization:

softmax
(
QKT

√
d

)
=
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(
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√
d

)
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(6)

Therefore we can rewrite Equation 1 as:
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We can then expand Equation 5:
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as required.

C. Hydragen Pseudocode
We provide PyTorch-style pseudocode implementing Hydragen attention below. We highlight that Hydragen can be
implemented easily and efficiently in existing machine learning libraries, as long as there is a fast attention primitive that
returns the LSE needed for softmax recombination.

1 import torch
2 from torch import Tensor
3

4 def attention(q: Tensor, k: Tensor, v: Tensor) -> tuple[Tensor, Tensor]:
5 """
6 Placeholder for some fast attention primitive
7 that also returns LSEs. We use the flash-attn
8 package in our implementation.
9

10 q shape: [batch, qseq_len, qheads, dim]
11 k shape: [batch, kvseq_len, kvheads, dim]
12 v shape: [batch, kvseq_len, kvheads, dim]
13 """
14 pass
15

16 def combine_lse(
17 out1: Tensor,
18 lse1: Tensor,
19 out2: Tensor,
20 lse2: Tensor,
21 ):
22 """
23 Combines two attention results using their LSEs.
24

25 Out1/2 shape: [batch, seq_len, qheads, hdim]
26 lse1/2 shape: [batch, seq_len, qheads]
27 """
28 max_lse = torch.maximum(lse1, lse2)
29

30 adjust_factor1 = (lse1 - max_lse).exp()
31 adjust_factor2 = (lse2 - max_lse).exp()
32

33 new_denominator = adjust_factor1 + adjust_factor2
34

35 aggregated = (
36 out1 * adjust_factor1.unsqueeze(-1) + out2 * adjust_factor2.unsqueeze(-1)
37 ) / new_denominator.unsqueeze(-1)
38

39 return aggregated
40

41

42 def hydragen_attention(
43 q: Tensor,
44 prefix_k: Tensor,
45 prefix_v: Tensor,
46 suffix_k: Tensor,
47 suffix_v: Tensor,
48 ):
49 """
50 q: shape [batch, num_queries (1 during decoding), qheads, dim]
51

52 prefix_k: shape [prefix_len, kvheads, dim]
53 prefix_v: shape [prefix_len, kvheads, dim]
54

55 suffix_k: shape [batch, suffix_len, kvheads, dim]
56 suffix_v: shape [batch, suffix_len, kvheads, dim]
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Hydragen: High-Throughput LLM Inference with Shared Prefixes

57 """
58

59 b, nq, hq, d = q.shape
60

61 # inter-sequence batching: merge attention queries
62 # as if they all came from the same sequence.
63 batched_q = q.view(1, b * nq, hq, d)
64

65

66 # efficient attention over prefixes
67 # prefix_out: shape [1, batch * nq, hq, dim]
68 # prefix_lse: shape [1, batch * nq, hq]
69 prefix_out, prefix_lse = attention(
70 batched_q,
71 prefix_k.unsqueeze(0),
72 prefix_v.unsqueeze(0),
73 )
74

75

76 # normal attention over suffixes
77 # suffix_out: shape [batch, suffix_len, hq, dim]
78 # suffix_lse: shape [batch, suffix_len, hq]
79 suffix_out, suffix_lse = attention(
80 batched_q,
81 suffix_k,
82 suffix_v,
83 )
84

85 # unmerge prefix attention results and combine
86 # softmax denominators
87 aggregated = combine_lse(
88 prefix_out.view(b, nq, hq, d),
89 prefix_lse.view(b, nq, hq),
90 suffix_out,
91 suffix_lse,
92 )
93

94 return aggregated

D. Additional Results
D.1. End-to-End Throughput

We expand on the end-to-end throughput experiments discussed in Section 4.1. We report additional results with more
model sizes when generating 128 and 256 tokens. These results are displayed in Table 2 and Table 3 for CodeLlama-7b,
Table 4 and Table 5 for CodeLlama-13b, and Table 6 and Table 7 for CodeLlama-34b, respectively (21). Note that in the
tables where 128 tokens are generated per sequence, the “16K” column corresponds to a prefix length of 16256 tokens,
while for the tables with 256 generated tokens per sequence, this corresponds to 16128 tokens (this is done to accommodate
the 16384 max sequence length of the CodeLlama models).
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FlashAttention Hydragen vLLM (No Tokenization) vLLM Upper Bound (No Attention)
Batch Prefix length Prefix length Prefix length Prefix length Prefix length
Size 1K 2K 4K 8K 16K 1K 2K 4K 8K 16K 1K 2K 4K 8K 16K 1K 2K 4K 8K 16K All

32
2.5
±
0.0

2.2
±
0.0

1.8
±
0.0

1.3
±
0.0

0.9
±
0.0

2.7
±
0.0

2.7
±
0.0

2.6
±
0.0

2.6
±
0.0

2.5
±
0.0

1.7
±
0.0

1.8
±
0.0

1.7
±
0.1

0.6
±
0.0

0.4
±
0.0

1.6
±
0.0

1.6
±
0.0

1.5
±
0.0

0.6
±
0.0

0.3
±
0.0

3.1 ± 0.0

64
4.2
±
0.0

3.4
±
0.0

2.6
±
0.0

1.7
±
0.0

X
5.0
±
0.0

4.9
±
0.0

4.9
±
0.1

4.8
±
0.0

4.6
±
0.0

3.5
±
0.1

3.5
±
0.1

2.9
±
0.1

0.7
±
0.0

0.4
±
0.0

2.9
±
0.0

2.8
±
0.1

2.1
±
0.2

0.7
±
0.0

0.4
±
0.0

5.7 ± 0.0

128
5.7
±
0.0

4.2
±
0.0

2.7
±
0.0

X X
8.6
±
0.0

8.5
±
0.0

8.4
±
0.0

8.3
±
0.0

8.0
±
0.0

6.1 5.5 3.2 0.8 0.4 4.9 4.5 2.7 0.7 0.4 10.3 ± 0.0

256
8.1
±
0.0

5.7
±
0.0

X X X
13.3
±
0.0

13.3
±
0.0

13.1
±
0.0

12.8
±
0.0

12.3
±
0.0

8.9 5.6 3.1 0.8 0.4 6.9 4.2 2.5 0.8 0.4 15.8 ± 0.0

512 X X X X X
19.6
±
0.0

19.4
±
0.0

19.1
±
0.0

18.5
±
0.0

17.5
±
0.0

4.7 2.8 1.5 0.8 0.4 4.2 2.5 1.4 0.8 0.4 23.2 ± 0.0

1024 X X X X X
25.3
±
0.0

25.1
±
0.0

24.7
±
0.0

23.9
±
0.0

22.4
±
0.0

4.9 2.8 1.5 0.8 0.4 4.2 2.5 1.4 0.7 0.4 30.1 ± 0.0

2048 X X X X X
27.9
±
0.0

27.5
±
0.0

26.7
±
0.0

25.3
±
0.0

22.8
±
0.0

4.9 2.8 1.5 0.8 0.4 4.2 2.5 1.4 0.7 0.4 32.9 ± 0.0

Table 2. End-to-end decoding throughput (thousands of tokens per second) with CodeLlama-7B on 8xA100 40 GB GPUs when generating
128 tokens. An x indicates the model does not have the required memory to run.

FlashAttention Hydragen vLLM (No Tokenization) vLLM Upper Bound (No Attention)
Batch Prefix length Prefix length Prefix length Prefix length Prefix length
Size 1K 2K 4K 8K 16K 1K 2K 4K 8K 16K 1K 2K 4K 8K 16K 1K 2K 4K 8K 16K All

32
2.4
±
0.0

2.2
±
0.0

1.8
±
0.0

1.3
±
0.0

0.9
±
0.0

2.6
±
0.0

2.6
±
0.0

2.6
±
0.0

2.5
±
0.0

2.4
±
0.0

1.7
±
0.0

1.8
±
0.0

1.7
±
0.0

0.6
±
0.0

0.4
±
0.0

1.6
±
0.0

1.5
±
0.0

1.5
±
0.0

0.6
±
0.0

0.3
±
0.0

3.1 ± 0.0

64
3.9
±
0.0

3.4
±
0.0

2.5
±
0.0

1.7
±
0.0

X
4.8
±
0.0

4.8
±
0.0

4.8
±
0.0

4.7
±
0.0

4.5
±
0.0

3.4
±
0.0

3.3
±
0.0

2.7
±
0.0

0.7
±
0.0

0.4
±
0.0

2.8
±
0.1

2.8
±
0.0

2.3
±
0.0

0.6
±
0.0

0.4
±
0.0

5.7 ± 0.0

128
5.3
±
0.0

4.1
±
0.0

2.7
±
0.0

X X
8.2
±
0.0

8.2
±
0.0

8.1
±
0.0

7.9
±
0.0

7.7
±
0.0

6.3 5.0 2.9 0.8 0.4 4.8 4.0 2.5 0.7 0.4 10.2 ± 0.0

256
7.4
±
0.0

X X X X
12.7
±
0.0

12.6
±
0.0

12.5
±
0.0

12.2
±
0.0

11.8
±
0.0

8.8 5.5 3.1 0.8 0.4 6.5 4.2 2.5 0.7 0.4 15.7 ± 0.0

512 X X X X X
18.4
±
0.0

18.2
±
0.0

18.0
±
0.0

17.5
±
0.0

16.6
±
0.0

4.6 2.8 1.6 0.8 0.4 3.8 2.4 1.4 0.7 0.4 23.2 ± 0.0

1024 X X X X X
23.4
±
0.0

23.2
±
0.0

22.9
±
0.0

22.2
±
0.0

21.0
±
0.0

4.8 2.8 1.6 0.8 0.4 3.9 2.4 1.4 0.7 0.4 30.0 ± 0.0

Table 3. End-to-end decoding throughput (thousands of tokens per second) with CodeLlama-7B on 8xA100 40 GB GPUs when generating
256 tokens. An x indicates the model does not have the required memory to run.

FlashAttention Hydragen vLLM (No Tokenization) vLLM Upper Bound (No Attention)
Batch Prefix length Prefix length Prefix length Prefix length Prefix length
Size 1K 2K 4K 8K 16K 1K 2K 4K 8K 16K 1K 2K 4K 8K 16K 1K 2K 4K 8K 16K All

32
1.7
±
0.0

1.4
±
0.0

1.1
±
0.0

0.7
±
0.0

X
2.0
±
0.0

2.0
±
0.0

1.9
±
0.0

1.8
±
0.0

1.8
±
0.0

1.8
±
0.0

1.8
±
0.0

1.8
±
0.0

0.6
±
0.0

0.4
±
0.0

1.6
±
0.0

1.6
±
0.0

1.5
±
0.0

0.5
±
0.0

0.3
±
0.0

2.3 ± 0.0

64
2.9
±
0.0

2.3
±
0.0

1.6
±
0.0

X X
3.6
±
0.0

3.6
±
0.0

3.6
±
0.0

3.4
±
0.0

3.4
±
0.0

3.5
±
0.1

3.5
±
0.0

2.9
±
0.1

0.7
±
0.0

0.4
±
0.0

3.0
±
0.0

2.9
±
0.1

2.4
±
0.0

0.6
±
0.0

0.4
±
0.0

4.2 ± 0.0

128
4.0
±
0.0

2.9
±
0.0

X X X
5.8
±
0.0

5.7
±
0.2

5.6
±
0.0

5.6
±
0.0

5.7
±
0.0

5.5
4.7
±
0.1

3.0 0.8 0.4 4.8
3.8
±
0.1

2.6 0.7 0.4 6.8 ± 0.0

256
5.7
±
0.0

X X X X
9.6
±
0.0

9.3
±
0.0

9.4
±
0.0

9.2
±
0.0

8.8
±
0.0

8.0
5.5
±
0.1

3.2 0.8 0.4 6.1
4.3
±
0.1

2.7 0.7 0.4 11.4 ± 0.0

512 X X X X X
13.4
±
0.0

13.3
±
0.0

13.2
±
0.0

12.9
±
0.0

12.3
±
0.0

4.7
2.7
±
0.0

1.6 0.8 0.4 4.1
2.4
±
0.0

1.4 0.8 0.4 16.1 ± 0.0

1024 X X X X X
15.6
±
0.0

15.5
±
0.0

15.3
±
0.0

14.8
±
0.0

14.0
±
0.0

4.9
±
0.0

2.8
±
0.0

1.6
±
0.0

0.8
±
0.0

0.4
±
0.0

4.2
±
0.0

2.5
±
0.0

1.4
±
0.0

0.7
±
0.0

0.4
±
0.0

18.5 ± 0.0

Table 4. End-to-end decoding throughput (thousands of tokens per second) with CodeLlama-13B on 8xA100 40 GB GPUs when generating
128 tokens. An x indicates the model does not have the required memory to run.
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FlashAttention Hydragen vLLM (No Tokenization) vLLM Upper Bound (No Attention)
Batch Prefix length Prefix length Prefix length Prefix length Prefix length
Size 1K 2K 4K 8K 16K 1K 2K 4K 8K 16K 1K 2K 4K 8K 16K 1K 2K 4K 8K 16K All

32
1.7
±
0.0

1.4
±
0.0

1.1
±
0.0

0.7
±
0.0

X
1.9
±
0.0

1.9
±
0.0

1.9
±
0.0

1.8
±
0.0

1.8
±
0.0

1.8
±
0.0

1.7
±
0.0

1.8
±
0.0

0.5
±
0.0

0.3
±
0.0

1.6
±
0.0

1.6
±
0.0

1.5
±
0.0

0.5
±
0.0

0.3
±
0.0

2.3 ± 0.0

64
2.8
±
0.0

2.2
±
0.0

1.6
±
0.0

X X
3.5
±
0.0

3.5
±
0.0

3.4
±
0.0

3.2
±
0.0

3.3
±
0.0

3.4
±
0.1

3.4
±
0.0

2.9
±
0.0

0.7
±
0.0

0.4
±
0.0

3.0
±
0.1

2.7
±
0.2

2.2
±
0.1

0.6
±
0.0

0.4
±
0.0

4.2 ± 0.0

128
3.8
±
0.0

2.8
±
0.0

X X X
5.6
±
0.0

5.5
±
0.0

5.3
±
0.0

5.4
±
0.0

5.2
±
0.0

5.4 4.6 3.0 0.8 0.4 4.6 3.7 2.4 0.7 0.4 6.8 ± 0.0

256
5.4
±
0.0

X X X X
8.9
±
0.0

8.7
±
0.0

8.8
±
0.0

8.7
±
0.0

8.4
±
0.0

7.6 5.5 3.1 0.8 0.4 5.9 4.3 2.5 0.7 0.4 11.3 ± 0.0

512 X X X X X
12.3
±
0.0

12.3
±
0.0

12.2
±
0.0

12.0
±
0.0

11.4
±
0.0

4.4 2.7 1.5 0.8 0.4 3.8 2.4 1.4 0.7 0.4 16.1 ± 0.0

Table 5. End-to-end decoding throughput (thousands of tokens per second) with CodeLlama-13B on 8xA100 40 GB GPUs when generating
256 tokens. An x indicates the model does not have the required memory to run.

FlashAttention Hydragen vLLM (No Tokenization) vLLM Upper Bound (No Attention)
Batch Prefix length Prefix length Prefix length Prefix length Prefix length
Size 1K 2K 4K 8K 16K 1K 2K 4K 8K 16K 1K 2K 4K 8K 16K 1K 2K 4K 8K 16K All

32
1.4
±
0.0

1.4
±
0.0

1.2
±
0.0

1.0
±
0.0

0.8
±
0.0

1.4
±
0.0

1.4
±
0.0

1.4
±
0.0

1.4
±
0.0

1.4
±
0.0

1.5
±
0.0

1.4
±
0.0

1.2
±
0.0

0.5
±
0.0

0.3
±
0.0

1.5
±
0.0

1.3
±
0.0

1.1
±
0.0

0.5
±
0.0

0.3
±
0.0

1.6 ± 0.0

64
2.5
±
0.0

2.3
±
0.1

2.1
±
0.0

1.8
±
0.0

1.3
±
0.0

2.6
±
0.0

2.6
±
0.0

2.5
±
0.0

2.5
±
0.0

2.5
±
0.0

2.6
±
0.0

2.3
±
0.0

1.9
±
0.0

0.7
±
0.0

0.4
±
0.0

2.4
±
0.0

2.1
±
0.1

1.6
±
0.0

0.6
±
0.0

0.4
±
0.0

2.9 ± 0.0

128
3.8
±
0.0

3.4
±
0.0

2.8
±
0.0

2.1
±
0.0

X
4.2
±
0.0

4.1
±
0.0

4.1
±
0.0

4.0
±
0.0

3.9
±
0.0

3.8 3.0 2.3 0.8 0.4 3.4 2.7 2.0 0.7 0.4 4.4 ± 0.3

256
6.0
±
0.0

5.3
±
0.0

4.4
±
0.0

X X
6.6
±
0.0

6.6
±
0.0

6.5
±
0.0

6.3
±
0.0

5.9
±
0.0

5.1 3.9 2.8 0.8 0.4 4.4 3.3 2.4 0.8 0.4 7.2 ± 0.2

512
7.0
±
0.0

6.0
±
0.0

X X X
8.2
±
0.0

8.1
±
0.0

8.0
±
0.0

7.8
±
0.0

7.3
±
0.0

4.2 2.7 1.5 0.8 0.4 3.6 2.4 1.4 0.8 0.4 8.8 ± 0.1

1024 X X X X X
9.4
±
0.0

9.2
±
0.0

9.0
±
0.0

8.5
±
0.0

7.6
±
0.0

4.3 2.8 1.6 0.8 0.4 3.7 2.5 1.4 0.8 0.4 9.9 ± 0.2

2048 X X X X X
10.4
±
0.0

10.3
±
0.0

10.0
±
0.0

9.4
±
0.0

8.5
±
0.0

4.3 2.7 1.5 0.8 0.4 3.7 2.4 1.4 0.8 0.4 11.0 ± 0.0

4096 X X X X X
11.1
±
0.0

11.0
±
0.0

10.7
±
0.0

10.2
±
0.0

9.4
±
0.0

4.0 2.6 1.4 0.8 0.4 3.5 2.3 1.3 0.7 0.4 11.6 ± 0.0

Table 6. End-to-end decoding throughput (thousands of tokens per second) with CodeLlama-34B on 8xA100 40 GB GPUs when generating
128 tokens. An x indicates the model does not have the required memory to run.

FlashAttention Hydragen vLLM (No Tokenization) vLLM Upper Bound (No Attention)
Batch Prefix length Prefix length Prefix length Prefix length Prefix length
Size 1K 2K 4K 8K 16K 1K 2K 4K 8K 16K 1K 2K 4K 8K 16K 1K 2K 4K 8K 16K All

32
1.4
±
0.0

1.3
±
0.0

1.2
±
0.0

1.1
±
0.0

0.8
±
0.0

1.4
±
0.0

1.4
±
0.0

1.4
±
0.0

1.4
±
0.0

1.3
±
0.0

1.5
±
0.0

1.4
±
0.0

1.2
±
0.0

0.5
±
0.0

0.3
±
0.0

1.5
±
0.0

1.3
±
0.1

1.1
±
0.0

0.5
±
0.0

0.3
±
0.0

1.5 ± 0.1

64
2.5
±
0.0

2.4
±
0.0

2.1
±
0.0

1.8
±
0.0

1.3
±
0.0

2.5
±
0.0

2.5
±
0.0

2.5
±
0.0

2.5
±
0.0

2.4
±
0.0

2.6
±
0.0

2.3
±
0.0

1.8
±
0.0

0.7
±
0.0

0.4
±
0.0

2.3
±
0.1

2.0
±
0.0

1.6
±
0.0

0.6
±
0.0

0.4
±
0.0

2.8 ± 0.1

128
3.8
±
0.0

3.4
±
0.0

2.8
±
0.0

2.1
±
0.0

X
4.1
±
0.0

4.1
±
0.0

4.0
±
0.0

4.0
±
0.0

3.8
±
0.0

3.7 3.0 2.2 0.7 0.4 3.2 2.6 2.0 0.7 0.4 4.5 ± 0.1

256
5.8
±
0.0

5.3
±
0.0

4.3
±
0.0

X X
6.5
±
0.0

6.5
±
0.0

6.4
±
0.0

6.2
±
0.0

5.8
±
0.0

5.0 3.9 2.7 0.8 0.4 4.2 3.3 2.3 0.7 0.4 7.1 ± 0.2

512
6.8
±
0.0

5.9
±
0.0

X X X
8.0
±
0.0

8.0
±
0.0

7.9
±
0.0

7.6
±
0.0

7.2
±
0.0

3.9 2.6 1.5 0.8 0.4 3.5 2.3 1.4 0.7 0.4 8.8 ± 0.1

1024 X X X X X
9.2
±
0.0

9.1
±
0.0

8.8
±
0.0

8.3
±
0.0

7.5
±
0.0

3.9 2.6 1.4 0.8 0.4 3.6 2.4 1.4 0.7 0.4 9.9 ± 0.0

2048 X X X X X
10.3
±
0.0

10.1
±
0.0

9.8
±
0.0

9.3
±
0.0

8.4
±
0.0

4.0 2.6 1.5 0.8 0.4 3.6 2.4 1.4 0.7 0.4 11.0 ± 0.0

Table 7. End-to-end decoding throughput (thousands of tokens per second) with CodeLlama-34B on 8xA100 40 GB GPUs when generating
256 tokens. An x indicates the model does not have the required memory to run.
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Hydragen: High-Throughput LLM Inference with Shared Prefixes

Figure 8. Speedup of Hydragen attention over FlashAttention for various batch sizes, shared prefix lengths and suffix lengths on an H100
(left) and an L40S (right) GPU.

D.2. Microbenchmarks

We repeat the A100 microbenchmark experiment from Section 4.2 on H100 and L40S GPUs, reporting our results in
Figure 8. The L40S has the highest ratio of FLOPs to memory bandwidth of the three GPUs and therefore derives the most
benefit from Hydragen’s elimination of memory bottlenecks. While the compute-to-bandwidth ratio is higher on an H100
than on an A100, we measure similar speedups on both cards. This stems from the fact that the flash-attn package that
we use is not currently optimized for Hopper GPUs, and therefore achieves a lower device utilization on an H100 vs an
A100.

E. Experiment Details
E.1. End-to-End Benchmarks

Our end-to-end benchmarks only measure decoding throughput and exclude the time required to compute the prefill. We
measure “decode-only” time by initially benchmarking the time required to generate one token from a given prompt and
subtracting that value from the time it takes to generate the desired number of tokens. This subtraction is particularly
important in order to fairly evaluate vLLM baselines, since it appears that vLLM redundantly detokenizes the prompt for
every sequence in the batch at the beginning of inference (this can take minutes for large batch sizes and sequence lengths).
For our “vLLM no detokenization” baseline, we disable incremental detokenization in vLLM by commenting out this line.

For all FlashAttention and No Attention datapoints, we run 10 warmup iterations and use the following 10 iterations to
compute throughput. For Hydragen datapoints, we run 10 warmup and 10 timing iterations when the batch size is less than
256, and for larger batch sizes we use three warmup and three timing iterations. We observe that shorter-running Hydragen
benchmarks (those with smaller batch sizes, sequence lengths, model sizes, or completion lengths) can occasionally produce
longer outlier times. This seems to be related not to decoding time itself, but to variations in prefilling time before decoding.
For vLLM baselines (both with and without incremental detokenization), we use three warmup and timing iterations for all
batch sizes below 128, as well as for all datapoints that are used in Figures 4.1 and 4.1. The longest-running vLLM runs
can take many minutes to complete a single iteration, so for baselines above a batch size of 128 that only appear in the
supplementary tables of Appendix D.1, we use one warmup and one timing iteration.

E.2. Microbenchmarks

In each microbenchmark, we run 1000 iterations of warmup before reporting the mean running time across 1000 trials.
Between iterations, we flush the GPU L2 cache by writing to a 128MiB tensor. We use CUDA graphs when benchmarking
in order to reduce CPU overhead, which can be important since some benchmarks can complete a single iteration in tens of
microseconds.
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https://github.com/vllm-project/vllm/blob/2e0b6e775756345aa1d39f772c186e00f8c29e92/vllm/engine/llm_engine.py#L468
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E.3. Long document retrieval

To demonstrate the throughput benefits of using Hydragen to answer questions about a long document, we construct a
document (with 19974 tokens) that contains arbitrary facts from which question/answer pairs can be easily generated.

Prefix and Suffix Content: The content of the document is a subset of War and Peace (24), modified to include procedurally
generated facts of the form “The dog named {name} has fur that is {color}”. The questions are of the form “What color
is the fur of the dog named {name}?”, with the corresponding answer being {color}. We construct 261 questions (256
testable questions plus five for the few-shot examples) and interleave these throughout sentences of the document. When
benchmarking with a greater number of questions than 256, we duplicate questions when querying the model - this is instead
of adding more questions to the document in order to constrain total document length.

Model and Accelerator Choice: We choose the Yi-6B-200k model because it is small enough to fit a large KV cache
in memory (important when running baselines that redundantly store the document) while also supporting a long enough
context to process our document. We distribute the model across four A100-40GB GPUs in order to maximize possible KV
cache size (the model only has four key/value attention heads, preventing us from easily using tensor parallelism across
more GPUs). Our reported measurements use the mean of five timing runs after ten warmup iterations.

E.4. Hierarchical Sharing in Competitive Programming

The dataset of 120 problems that we use for this benchmark comes from the introductory difficulty split of APPS. We filter
out problems that include starter code. We use two few-shot examples (2400 tokens long) that come from the training split
of APPS, while all of the eval examples come from the test split. We sample 512 tokens for every completion. We run
this experiment using CodeLlama-7b on eight A100-40GB GPUs. We measure the total time to run inference on all 120
questions, excluding tokenization and detokenization time.
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