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Abstract

We explore how we can build accurate world001
models which are partially specified by lan-002
guage and how we can plan with them in the003
face of novelty and uncertainty. We propose the004
first Model-Based Reinforcement Learning ap-005
proach to tackle the environment Read To Fight006
Monsters (Zhong et al., 2019), a grounded007
policy learning problem. In RTFM an agent008
has to reason over a set of rules and a goal,009
both described in a language manual, and the010
observations, while taking into account the011
uncertainty arising from the stochasticity of012
the environment, in order to generalize suc-013
cessfully its policy to test episodes. We pro-014
vide a sample-efficient proof-of-concept of the015
model-based approach for the basic dynamic016
task of RTFM. Furthermore, we show that the017
main open challenge of RTFM is learning the018
language-dependent reward function and sug-019
gest that future research should focus primarily020
on that task.021

1 Introduction022

Intelligent agents have the ability of re-composing023

known concepts to draw conclusions about new024

problems and this translates into the acquisition of025

very robust and general behaviours. Current Re-026

inforcement Learning (RL) agents typically lack027

this ability and they need to be re-trained for every028

new problem; in contrast language models exhibit029

great generalization abilities, to the point that Large030

Language Models (LLMs) are increasingly consid-031

ered foundation models (Bommasani et al., 2021),032

which can be pre-trained once on large corpora033

of text and re-used on any downstream language034

task with very little fine-tuning (Devlin et al., 2018;035

Brown et al., 2020; Chowdhery et al., 2022). Thus036

language-conditioned RL is a flourishing area of037

research.038

On the other hand, language models are trained039

exclusively on textual inputs and struggle to ground040

the meaning of the words to real world dynamics.041

Multiple interactive environments have been pro- 042

posed as a testbed for learning how to ground lan- 043

guage (Chevalier-Boisvert et al., 2018; Zhong et al., 044

2019; Ruis et al., 2020; Küttler et al., 2020). While 045

prior work mostly focuses on Behavioural Cloning 046

or model-free RL, we argue for a Model-Based Re- 047

inforcement Learning (MBRL) approach, as this 048

effectively decouples the problem of understanding 049

how the world works from the problem of acting 050

optimally in the world in order to solve one or more 051

tasks. Concretely MBRL inherits the advantages 052

of model-free RL of learning from scratch or from 053

sub-optimal behaviour, while being orders of mag- 054

nitude more sample efficient than the model-free 055

counterpart. Furthermore it has the added value of 056

being more interpretable and explainable. In fact, 057

a decision made by a MBRL agent can be accom- 058

panied by human-interpretable examples of likely 059

future trajectories that are taken into account by the 060

model in making such a decision. 061

In this work, we focus on Read To Fight Mon- 062

sters (RTFM), a challenging benchmark for testing 063

grounded language understanding in the context of 064

reinforcement learning proposed by Zhong et al. 065

(2019). RTFM tests the acquisition of complex 066

reading skills in RL agents in order to solve com- 067

pletely new tasks based on written descriptions of 068

the task dynamics and goal. Critically, the writ- 069

ten information provided is not enough on its own 070

to obtain an optimal policy, but the agent needs 071

to cross-reference multiple times such information 072

with the current state of the environment in order 073

to figure out a plan of action. 074

In this work, we make the following contribu- 075

tions: first, we formulate a language-instructed 076

MBRL method for solving RTFM and show how to 077

train an agent in this environment (see Fig. 1). Our 078

method explicitly models the stochastic changes 079

in the discrete environment and performs plan- 080

ning with a stochastic variant of Monte Carlo Tree 081

Search (MCTS, Kocsis and Szepesvári, 2006). We 082
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Figure 1: High-level view of the proposed method. We collect trajectories in the environment with behavioural
policies, then use them to learn a discrete stochastic model of the environment and finally deploy the learned model
at test time to plan with Monte Carlo Tree Search (MCTS).

then demonstrate performance compatible with the083

SOTA agent from Zhong et al. (2019), while using084

150x less data1 in the basic dynamic version of the085

RTFM environment. Furthermore, we highlight086

how predicting the reward accurately is critical for087

scaling the approach to more complex variants of088

the task, by showing a strong positive correlation089

between the reward accuracy and the win rate in090

different scenarios. Finally, we show that current091

neural architectures, based on CNNs and FiLM092

(Perez et al., 2018) or on transformers (Vaswani093

et al., 2017), are not able to learn the optimal re-094

ward function in the sample-efficient regime of095

200k samples of terminal transitions for any task096

whose manual is written in rich natural language.097

2 Related Work098

Language Grounding and Understanding099

Chevalier-Boisvert et al. (2018) proposes BabyAI,100

a benchmark for studying the sample efficiency101

of Imitation Learning and RL methods in tasks102

where the goal is specified in natural language.103

Ruis et al. (2020) instead studies the problem104

of compositional generalization in situated Lan-105

guage Understanding in a Supervised Learning106

setup with the gSCAN benchmark, where agents107

have to map language instructions to corresponding108

action sequences. Narasimhan et al. (2018) consid-109

ers a transfer learning setup between pairs of grid-110

world environments, where entities are annotated111

with language information about their role and be-112

haviour. Bahdanau et al. (2018) learns how to train113

reward models from language specifications and114

expert trajectories and shows the usefulness of such115

1We use only 1M frames while SOTA agent is trained with
150M frames in total.

reward models in training RL agents to accomplish 116

language specified tasks. 117

Our work builds on the environment RTFM, in- 118

troduced in Zhong et al. (2019), with the main 119

target of solving such environment with a model- 120

based approach instead of a model-free one. Sim- 121

ilar work on grounding language can be found in 122

Hanjie et al. (2021), which introduces the MES- 123

SENGER environment; a notable difference be- 124

tween RTFM and MESSENGER is that in the lat- 125

ter the co-reference of the entities and their names 126

is harder to learn, but the reasoning steps to per- 127

form are easier. Zhong et al. (2021) proposes 128

SILG, a unified interface for RTFM, MESSEN- 129

GER, NetHack (Küttler et al., 2020) and symbolic 130

abstractions of ALFRED (Shridhar et al., 2020) 131

and Touchdown (Chen et al., 2019); each environ- 132

ment poses its own unique challenges, like learning 133

multi-hop reasoning or grounding co-references, 134

dealing with partial observability, large action 135

spaces or rich natural language instructions and an- 136

notations. Both the baseline in Zhong et al. (2021) 137

and the following work on SILG in Zhong et al. 138

(2022) include in the benchmark only the simplest, 139

stationary variation of RTFM and focus instead on 140

finding model-free algorithms that are able to deal 141

with all 5 SILG environments. 142

In this work, we focus only on RTFM and con- 143

sider all the stochastic levels of the game, similarly 144

to Zhong et al. (2019), and we propose the first 145

model-based approach for this environment. 146

Model-based Reinforcement Learning 147

AlphaGo (Silver et al., 2016) is the first work 148

demonstrating SOTA performance of MBRL with 149

a MCTS-based agent which has access to the true 150

simulator of the game of Go and learns with neu- 151
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ral networks both a prior over promising actions152

and an evaluation function to estimate the values of153

game configurations. MuZero (Schrittwieser et al.,154

2019) lifts the constraint of having access to a simu-155

lator of the environment, by learning a latent model156

of it and using it to perform a variant of MCTS in157

the latent space with the aid of a value function and158

a policy.159

In this work, for simplicity we do not use pol-160

icy and value functions as it is not our focus, but161

they could be beneficial to reduce the simulation162

budget of our MCTS agent further and they would163

certainly be necessary to scale up this approach164

to higher dimensional action-spaces and longer-165

horizon tasks. Overall our contribution is orthog-166

onal to the learning of policy and value networks167

for MCTS algorithms, as we aim to learn a good168

model of a stochastic environment and a complex169

language-dependent reward function that is able to170

generalize to new environments.171

Most works in MBRL assume a deterministic172

environment (as it is the case for example in chess173

and Go) or weakly stochastic (as Atari) and show174

dramatic drops in performance when applied to175

stochastic ones. Ozair et al. (2021) demonstrates176

how MuZero performance deteriorates when play-177

ing chess if the opponent is considered part of178

the environment (version of chess denoted single179

player) and the algorithm cannot enumerate its ac-180

tions, but has to learn to model them as possible181

stochastic outcomes.182

The Vector Quantized Model (VQM) in Ozair183

et al. (2021) probably has the most similar approach184

to ours, learning a "State VQVAE" to extract dis-185

crete latent codes and then learning a "Transition186

model" which, given a latent state-action pair and a187

discrete latent code, produces the next latent state.188

Another notable line of work capable of deal-189

ing with stochastic environments can be found190

in Hafner et al. (2018), Hafner et al. (2019) and191

Hafner et al. (2020) . These works are based on the192

Recurrent State Space Model (Hafner et al., 2018)193

and of particular interest is Hafner et al. (2020),194

as it also uses discrete latent variables to capture195

the stochasticity in the environment dynamics. The196

discrete variables are trained with straight-through197

gradients and the obtained model is used to produce198

synthetic data in the latent space to train a model-199

free algorithm instead of being used for planning.200

However, none of these models involves language.201

Goal: Fight the order of the forest.
Manual: Fire monsters are weak against gleaming items.
Lightning monsters are defeated by grandmasters
items. Use shimmering items for poison monsters.
Rebel enclave has the following members: demon.
Dragon are star alliance. Jinn are on the order of
the forest team. Cold monsters are weak against
blessed items.
Inventory: empty.

Figure 2: Example of a frame from the RTFM environ-
ment with two monsters in the natural language version.
Together with the grid observation (above), the agent is
provided with the goal, manual and the inventory (be-
low).

3 Read To Fight Monsters 202

Read To Fight Monsters (RTFM) is a challenging 203

benchmark proposed by Zhong et al. (2019) for 204

testing grounded language understanding in the 205

context of RL. RTFM tests the acquisition of com- 206

plex reading skills in RL agents in order to solve 207

completely new tasks based on written descriptions 208

of the task dynamics and goal. 209

Crucially, it is not enough to consult the written 210

information in order to obtain an optimal policy, but 211

the agent needs to perform a multi-step reasoning 212

between such information and the current state of 213

the environment in order to figure out a plan of 214

action. 215

To elucidate the reasoning steps and reading 216

skills needed to win an episode, we go through 217

the concrete example reported in Fig. 2. 218

1. From the goal extract which team to defeat 219

(order of the forest). 220

2. Search in the manual which monster is as- 221

signed to that team (jinn). 222
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3. Find in the map the element type of the target223

monster (fire).224

4. Search in the manual which modifier beats the225

target monster’s type (gleaming).226

5. Find in the map the item with the correct mod-227

ifiers (gleaming sword).228

6. Pick up the correct item (gleaming229

sword).230

7. Engage the correct monster (fire jinn)231

in combat with the correct item (gleaming232

sword).233

The agent is given a reward of +1 if it engages234

the correct monster in combat while carrying the235

correct item, −1 in any other encounter with a236

monster and a reward of 0 for all intermediate steps.237

As every episode contains a procedurally gener-238

ated set of (monster, element) pairs, (item, modi-239

fier) pairs, goal and manual entries, the agent can-240

not solve new episodes memorizing what is the241

right pair of item to take and monster to fight, but242

it has to learn to read the goal and the manual and243

cross-reference them with the environment observa-244

tion. The agent’s performance is tested on episodes245

generated in such a way that no assignments of246

monster-team-modifier-element are ever seen dur-247

ing training, to test whether the agent is able to248

generalize via reading to new environments with249

unseen dynamics.250

We consider two variants of the original RTFM,251

the dynamical version with simple language sl and252

the natural language dynamical version nl; these253

correspond respectively to dyna and dyna+nl in254

the notation used by Zhong et al. (2019).255

There are two differences between sl and nl256

tasks and they both concern the way in which the257

manual and the goal are expressed. The first dif-258

ference is that sl uses fixed language templates259

like "gleaming beats fire" instead of one260

of multiple crowd-sourced natural language refor-261

mulations, like "fire monsters are weak262

against gleaming items". The second263

difference is that in sl the sentences of the manual264

are always ordered in a specific way (e.g. the first265

sentence always refers to monsters of the cold266

element and the last sentence to which monster is267

part of the star alliance), whereas in the nl268

task the order of the sentences is always shuffled.269

We find the importance of this second point to be270

underappreciated in Zhong et al. (2019) and we in- 271

troduce a new variant of the task named nl + no 272

shuffle where we ablate the shuffling factor, in 273

order to disentangle this factor from the natural 274

language one. 275

For more in depth description of the environ- 276

ment and how it is generated the reader can refer 277

to Zhong et al. (2019). 278

During training we modify the environment such 279

that in the terminal transitions, when the agent in- 280

teracts with a monster, the entity that has been 281

defeated is not removed from the terminal state. 282

However, the trained agent during the evaluation 283

procedure doesn’t need to use the modified envi- 284

ronment, as terminal states are used only to train 285

the representation encoder, whereas the transition 286

model never takes them as input. 287

4 Language-conditioned world model 288

The goal of any RL agent is to find a policy π(a|s) 289

that maximizes the expected cumulative reward 290

Eπ[
∑T

t=0Rt] received from the environment in 291

an episode if all actions are taken according to 292

such policy. In this work, we take the model-based 293

approach to RL: we learn a language-conditioned 294

stochastic model of the environment and use it to 295

plan with a stochastic version of vanilla MCTS. 296

We name our method as Reader (for REinforce- 297

ment learning Agent for Discrete Environments 298

with wRitten instructions)2. It is composed of a 299

world model and uses MCTS as its planning algo- 300

rithm. The world model consists of three compo- 301

nents (see Fig. 3). 302

1. the representation model which encodes the 303

grid-world observations st into discrete codes 304

zt: 305

p(zt | st, st−1, at−1), 306

2. the transition model that predicts the next state 307

st+1: 308

p(st+1 | st, at,m), 309

3. the reward model predicts the current-step re- 310

ward: 311

p(rt | st−1, st, at−1,m, g). 312

Note that in contrast to existing model-based 313

agents, our world model is conditioned on the 314

2Inspired by Dreamer (Hafner et al., 2019).
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ŝ1 a0

reward

r1

s2

a1

z2
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Figure 3: Components of language-conditioned world
model.

episode-specific textual descriptions: the manual315

m which describes the roles of the monsters and316

the rules of the episode and the the sentence g de-317

scribing the agent’s goal.318

4.1 Representation model319

Our representation model is based on vector-320

quantized variational autoencoders (VQVAE,321

van den Oord et al., 2017), a latent variable model322

with discrete latent codes. The VQVAE architec-323

ture is composed of an encoder, a decoder and a324

vector quantization layer in between. Similarly to325

(Ozair et al., 2021), we condition the representation326

zt of the current state st on the previous state st−1:327

zt = f(st, st−1, at−1)328

where zt is a discrete code produced by the en-329

coder f . The decoder d is trained to reconstruct the330

original state from the discrete code zt given the331

previous state and action:332

ŝt = d(zt, st−1, at−1).333

The discrete codes are produced by the encoder334

in the same way it was done in the original VQ-335

VAE paper (van den Oord et al., 2017) by keeping336

a trained codebook of prototypes vectors and se-337

lecting as a representation the prototype with the338

smallest distance to a continuous encoder output.339

We train the model end-to-end using the straight-340

through approximation for the vector quantization341

function when back-propagating through it. We use342

the three losses that were proposed by van den Oord343

et al. (2017) and implement the encoder and the344

decoder using a transformer architecture (Vaswani 345

et al., 2017). 346

Since the RTFM environments has two sources 347

of stochasticity (which correspond to two mon- 348

sters), the quantization layer of our VQVAE pro- 349

duces two codes z1, z2, such that the continuous 350

output of the encoder is split into parts and the 351

quantization is performed for the two parts indepen- 352

dently. This choice gives a combinatorial inductive 353

bias to the representations we are learning. 354

4.2 Transition model 355

The purpose of the transition model p(st+1 | 356

st, zt, at,m) is to predict possible values of the 357

next state st+1 given the current state and the taken 358

action. We implement the model by using an ad- 359

ditional block (the green block in Fig. 3) which 360

predicts the discrete representation zt+1 of the next 361

state st+1 362

p(zt+1 | st, at) 363

We condition the transition model only on the man- 364

ual m of the episode but not on the goal g, as the 365

goal of the episode affects only the reward func- 366

tion. To simulate the next state st+1 at the planning 367

stage, the output of this transition block is passed 368

though the decoder of the representation model. 369

We train the transition model concurrently with 370

training the representation model, using the codes 371

produced by the VQVAE as the model targets. We 372

stop the gradients such that the existence of the 373

transition model does not affect the learned repre- 374

sentations. We use a transformer architecture for 375

the transition model. 376

4.3 Reward model 377

A key aspect of RTFM is to model correctly the 378

language-instructed reward function. Since the en- 379

vironment is stochastic, a natural choice for the 380

reward function is p(rt+1 | st, st+1, at,m, g), as 381

including the next state st+1 lets us predict a differ- 382

ent reward for every possible stochastic outcome. 383

This is only possible because we can predict the 384

next state st+1 with our stochastic transition model. 385

We train the reward model concurrently with 386

the other two models and during training we use 387

the true next state for st+1. The main neural ar- 388

chitecture that we consider is a transformer. For 389

additional studies, we also consider as an ablation 390

an architecture comprising CNN and FiLM layers, 391

which draws inspiration from the txt2π actor-critic 392

architecture proposed in Zhong et al. (2019), but 393
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processes at and st+1 as additional inputs and pre-394

dicts the distribution of the reward rt+1, instead395

of the policy and value of the actor-critic case.396

We refer to the models using this architecture as397

CNN+FiLM.398

With the same model we also predict if the next399

state is terminal or not and what are the legal ac-400

tions that can be taken in the next state. Both of401

these predictions are trivial, as they do not depend402

on the language.403

Furthermore, since RTFM gives non-zero re-404

wards only for terminal transitions, empirically we405

find beneficial in terms of sample efficiency and406

performance to train the reward function only on407

those transitions. For planning, we first predict if a408

transition is terminal or not; if the transition is non-409

terminal, we assign a reward of 0, if it is terminal,410

we predict the reward with the reward model.411

4.4 Transformer baseline world model412

A possible alternative is to have a model learn di-413

rectly the joint distribution over st+1 and rt+1 auto-414

regressively:415

p(st+1, rt+1|ct) =p(rt+1|st+1, ct)·
H∗W∏
ij=1

p(st+1,ij |st+1,<ij , ct),

(1)

416

where ct = (st, at,wiki,goal) is the condi-417

tional information available, using for example a418

single Transformer model (Vaswani et al., 2017).419

While this model is possibly more general and420

it can be trained in teacher-forcing mode to cap-421

ture correctly the stochasticity of the environment,422

its auto-regressive modeling over the entire next423

state makes it impractical for planning, where a424

model can be used hundreds if not thousands of425

times during planning for every single time-step.426

We nonetheless consider this model as a baseline,427

dubbed "Transformer baseline".428

5 MCTS planning with the learned world429

model430

To use the model for planning, we need to predict431

the next state st+1 and reward rt+1 given the infor-432

mation available at the current step, that is st, at,433

m and g. We do that by first using the transition434

model to sample the next discrete latent code ẑt+1,435

then using the decoder to get ŝt+1 and finally the436

reward model to get r̂t+1.437

To extend MCTS to stochastic transitions, we 438

use two types of nodes in the tree: state nodes and 439

state-action nodes. The tree branches at state nodes 440

by considering different actions and it branches at 441

state-action nodes by looking at different stochastic 442

outcomes. While we have control over the actions 443

that we choose, the outcomes and corresponding 444

rewards are always sampled by using the learned 445

model. We index the possible outcomes from a 446

state-action node based on the indices of the pair 447

of discrete codes (z1, z2) sampled by the transition 448

model; if the codes have been already sampled, we 449

continue traversing the already-expanded tree, oth- 450

erwise we expand the newly-sampled state node. 451

6 Experiments 452

In this section, we conduct experiments to answer 453

the following research questions: What is the ac- 454

curacy and data efficiency of the MBRL method 455

in the RTFM environment, and how does that com- 456

pare with existing model-free approaches? What 457

is currently the limiting factor that needs to be ad- 458

dressed when scaling MBRL sample-efficiently to 459

more complex RTFM tasks? 460

To address these questions, we consider the 461

RTFM environment of two levels of complex- 462

ity: first, a basic version that uses simplified lan- 463

guage (sl) is used to validate the model and 464

compare it with alternatives; second, a more 465

complex version that uses full natural language 466

(nl) is used to investigate the limits and scala- 467

bility of the current MBRL solution. We do not 468

present results for many-to-one entities assign- 469

ment tasks (referred in Zhong et al. (2019) as 470

dyna+groups and dyna+groups+nl), as em- 471

pirically we find that the gap in performance from 472

sl to dyna+groups much smaller than from sl 473

to nl and we hypothesize that simply scaling up 474

the resources allocated to the task would be enough 475

to solve it optimally. We furthermore consider the 476

natural language variant without the wiki shuffling 477

nl + no shuffle described in Sec 3. 478

6.1 Training 479

To ease the computational demands of the full RL 480

pipeline, we consider an offline RL setup. We first 481

collect a dataset of trajectories for each task, then 482

train the model on it without ever directly interact- 483

ing with the real environment and then evaluate the 484

MCTS agent equipped with the learned model by 485

playing 1000 episodes in the test environment. 486
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To collect the datasets we use a random pol-487

icy for 50% of the episodes and a vanilla MCTS488

policy3 with access to a simulator of the real en-489

vironment for the remaining 50% of the trajecto-490

ries. Each dataset is composed of 200k episodes,491

or roughly 1M frames; full details are reported in492

Table 3 in the appendix.493

We train the model with mini-batches of 1-494

timestep transitions sampled from the dataset and495

train the model components as described in Sec 4.496

Following Zhong et al. (2019), we optionally make497

use of a curriculum to train the model on the harder498

variations of the environment. Specifically we first499

train from scratch over sl, then we continue train-500

ing the model on nl and nl + no shuffle;501

when doing so, we add + curriculum to the502

name of the task.503

6.2 Results504

In the first experiment we train our Reader model505

on the sl task and evaluate its performance with506

MCTS, using 400 simulations per time step. We507

compare against two strong agents: the first, which508

we call Oracle MCTS, uses the same MCTS algo-509

rithm of our agents, but instead of using a learned510

model of the environment, it is using the ground-511

truth simulator; this represents an upper bound for512

the performance of our agent, since the planning513

algorithm is identical and the model is perfect; the514

second is the model-free agent txt2π proposed in515

(Zhong et al., 2019), which detains the state-of-the-516

art in RTFM environment. We also compare to517

our model-based Transformer baseline described in518

Sec. 4.4; this model is also evaluated with MCTS,519

but we use only 100 simulations per time step, as520

planning with a full auto-regressive transformer521

model is much slower than planning with Reader.522

We report the results in Table 1. Reader achieves523

results comparable with model-free SOTA agent524

txt2π from (Zhong et al., 2019), while using only525

1M frames instead of the 150M used to train txt2π.526

Furthermore, Reader is better than the Transformer527

baseline, both in terms of win rate and wall-clock528

time for planning and comes close to the perfor-529

mance of the Oracle MCTS agent. This result vali-530

dates our method and serves as a proof-of-concept531

for sample-efficient MBRL in language-instructed532

environments.533

3We restrict the computational budget per action of the
MCTS policy in such a way that it is not optimal.

Models Win rate
txt2π (Zhong et al., 2019) 0.85 (0.09)
Reader 0.82 (0.02)
Transformer baseline 0.76 (0.05)
Oracle MCTS 0.85 (0.01)

Table 1: Comparison of methods (sl). We evaluated
every model with 5 independent training runs and report
the average and standard deviation (over the 5 runs) of
the win rate over 1000 episodes. The Reader and the
Transformer baseline were trained with 1M frames. The
txt2π was trained for 100M frames on a static version
of the sl task and then for another 50M frames on sl;
the reported results are from (Zhong et al., 2019).

In our second experiment we show how the test 534

accuracy of the reward function is predictive of the 535

win rate of the agent. 536

We define 5 mutually exclusive logical cases that 537

fully partition the set of terminal transitions; the 538

first case is when the agent interacts with any mon- 539

ster while having an empty inventory and the other 540

4 cases are all the combinations of interacting with 541

the right or wrong monster while carrying the right 542

or the wrong item in the inventory. The reason be- 543

hind this choice for the metric is that it re-weights 544

the accuracies over different transitions, making the 545

metric more robust against distribution shifts be- 546

tween the offline test set (collected by behavioural 547

policies) and the set of trajectories produced by the 548

trained agent during its online evaluation. 549

Figure 4: Importance of reward accuracy. We
train 5 random seeds for the Reader model, the Trans-
former baseline and the CNN + FiLM ablation for
the sl, nl + curriculum and nl + shuffle
+ curriculum tasks. We plot the win rate as a func-
tion of the average reward case accuracy for each indi-
vidual run.

For each case of terminal transitions, we com- 550
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Models sl nl nl nl + no shuffle
+ curriculum + curriculum

Transformer 0.99 (0.01) 0.71 (0.01) 0.79 (0.06) 0.96 (0.07)
CNN + FiLM 0.85 (0.02) 0.69 (0.03) 0.84 (0.01) 0.86 (0.05)

Table 2: Average reward case accuracy. We split the terminal transitions in the test set in 5 mutually exclusive
logical cases in which the terminal transitions can be classified; we compute the accuracy over each case and then
take the average. We evaluate every model with 5 independent training runs and report the average and standard
deviation (over the 5 runs) of the accuracy.

pute the reward accuracy, then we compute the aver-551

age among the cases and call this measure "average552

reward case accuracy". We train the Reader agent,553

the Transformer baseline agent and an ablation of554

Reader using the CNN+FiLM reward model on555

the environments sl, nl + curriculum and556

nl + no shuffle + curriculum and re-557

port the win rate of individual runs as a function558

of the average reward case accuracy in Fig. 4. Our559

experiment shows how, regardless of the model560

(Reader or Transformer baseline) and regardless561

of the reward model architecture (transformer or562

CNN+FiLM), the average reward case accuracy is563

strongly and positively correlated with the win rate564

of the agent.565

Finally we study the impact of model on reward566

prediction accuracy by training the transformer re-567

ward model and the CNN+FiLM reward model568

on datasets of 200k samples containing only the569

terminal transitions for the environments sl, nl,570

nl + curriculum and nl + no shuffle571

+ curriculum and report the results in Table 2.572

We find that both the transformer and the573

CNN+FiLM architectures are not able to gen-574

eralize to the test set for the tasks featuring575

natural language. While training via curricu-576

lum from the sl environment helps, we notice577

that in nl a good part of the difficulty is due578

to the shuffling of the sentences in the manual.579

The transformer architecture trained on nl + no580

shuffle + curriculum mostly retains the581

accuracy achieved in sl, while this is not the case582

for the CNN+FiLM model. This experiment high-583

lights how the reward prediction task is the current584

bottleneck in solving the RTFM tasks with natural585

language and suggests that focusing on a Super-586

vised Learning setup for the reward prediction and587

using a dataset of terminal transitions are promis-588

ing approaches to isolate the core challenge of the589

RTFM environment.590

7 Discussion and Conclusions 591

RL environments such as RTFM are great for de- 592

veloping models capable of natural language un- 593

derstanding. Prior work shows that the model-free 594

approach might work well in those benchmarks, 595

but it requires a large number of samples in order 596

to work and it is not insightful with regard to the 597

agent’s understanding capabilities. On the other 598

hand the model-based approach is a promising one 599

for multiple reasons: first one can leave aside the 600

exploration problem, which might not be crucial for 601

simple environments such as RTFM, by using of- 602

fline experience collected from simple behavioural 603

policies. Second, one can decouple the planning 604

task from the task of model building and even that 605

can be split in multiple components. This lets us 606

for example learn independently the stochastic dy- 607

namics and the reward model, which we show is a 608

crucial component for a strong agent in RTFM. 609

For RTFM, we observe that a model’s accuracy 610

in the reward prediction task correlates well with 611

the final performance in the RL task. Thus, in order 612

to understand the limitations of the existing archi- 613

tectures applicable to grounded language learning 614

it makes sense to focus on the reward prediction 615

task. Our experiments show that existing archi- 616

tectures (built on CNN+FiLM and transformers) 617

need a large number of samples to learn the RTFM 618

reward. For example, the transformer model has 619

the tendency to overfit to positional information: 620

the performance drops significantly with the per- 621

mutation of sentences. Therefore, more research is 622

needed to improve the sample efficiency of models 623

for grounded language learning; leveraging the out- 624

of-the-box representation learning capabilities of 625

pre-trained large language models seems a promis- 626

ing direction to explore. 627
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A Offline trajectories datasets791

To collect the datasets we use a random policy for792

50% of the episodes and a vanilla MCTS policy793

with access to a simulator of the real environment794

for the remaining 50% of the trajectories.795

The MCTS policy used to collect data specif- 796

ically uses 30 internal simulations per time-step, 797

maximum rollout length of 10, a discount factor 798

of 0.9 and the Upper Confidence Bound constant 799

c = 1. 800

We report in Table 3 the dataset statistics for the 801

sl environment. Since all other dynamical variants 802

of RTFM have the same underlying mechanics (e.g. 803

2 monsters and 2 items placed randomly in a grid 804

world, the monsters move stochastically according 805

to an unknown policy which is always the same in 806

all the variants), all the dataset statistics are identi- 807

cal, up to stochastic fluctuations, for nl and nl + 808

no shuffle.

Dataset sl
Tot. frames 971k
Non-terminal 771k
Successes 77k (8%)
Failures 123k (13%)
Win rate (random) 4.6%
Win rate (MCTS) 71.0%

Table 3: Datasets collected for offline training of the
model and relative statistics.

809

B Training details 810

We report in the following section the summary de- 811

tails about the architectures and training procedures 812

used in this work. 813

Encoder and Decoder of the representation 814

model: two transformer encoder layers each, model 815

dimension of 128, feed-forward dimension of 256, 816

gelu activation function, dropout of 0.1. 817

Transition model: two transformer encoder lay- 818

ers and two transformer decoder layers, model di- 819

mension of 128, feed-forward dimension of 256, 820

gelu activation function, dropout of 0.1. 821

Reward model (transformer): six transformer 822

encoder layers, model dimension of 256, feed- 823

forward dimension of 1024, gelu activation func- 824

tion, dropout of 0.1. 825

Reward model (CNN+FiLM): embedding di- 826

mension of 30, dimension of small RNN of 10, 827

dimension of Bi-LSTM of 100 and dimension of 828

final representations of 400. For more details about 829

the architecture, please refer to (Zhong et al., 2019). 830

Vector Quantization layer: 2 codebooks of 32 831

codes with feature dimension 64 (half of the model 832

dimension of the encoder and decoder model di- 833

mension). We use a commitment loss coefficient 834
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β = 0.25 and a codebook learning rate multiplier835

λ = 5. Following (Lancucki et al., 2020), we use836

KMeans ++ to reinitialize the codes during the first837

50 epochs, once every 50 forward passes.838

Transformer baseline: we use a encoder-decoder839

architecture, plus the reward model from Reader.840

Encoder and decoder use two layers, the reward841

model six. All layers use model dimension of 256,842

feed-forward dimension of 1024, gelu activation843

function, dropout of 0.1.844

We report the other hyper-parameters used dur-845

ing training in Tab 4.

Hyper-parameters Values
Batch size 500
Optimizer Adam
Learning rate 10−4

Lr warm-up steps 400
Epochs 250

Table 4: Hyper-parameters used.
846

C Computational resources used847

GPU resources used for Tab. 1 and Fig 4 are re-848

ported in Tab 5, whereas the CPU resources for849

the MCTS evaluation of the agents are reported in850

Tab 6.851

Model single (h) total (h)
Reader 23 345
Transformer baseline 20 300
CNN+FiLM 4.3 65
Total 710

Table 5: GPU resources used for Tab. 1 and Fig 4. We
use 5 random seeds and train on 3 tasks.

Model single (h) total (h)
Reader (20) 2.5 750
Transformer baseline (40) 5 3000
CNN+FiLM (20) 1.5 450
Total 4200

Table 6: CPU resources used for Tab. 1 and Fig 4. We
use 5 random seeds and evaluate on 3 tasks. Number
of CPU cores used for every run is reported between
parenthesis after the name of the model.

The resources used for Tab. 2 are reported in852

Tab. 7.853

All experiments use the Tesla V100 GPU model854

and the total amount of resources used to obtain the855

Model single (h) total (h)
Transformer 10 200
CNN+FiLM 4.3 86.6
Total 286.6

Table 7: GPU resources used for Tab. 2 . We use 5
random seeds and train on 4 tasks.

reported results is approximately 1000 GPU hours 856

and 4200 CPU hours. 857
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