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Abstract

We explore how we can build accurate world
models which are partially specified by lan-
guage and how we can plan with them in the
face of novelty and uncertainty. We propose the
first Model-Based Reinforcement Learning ap-
proach to tackle the environment Read To Fight
Monsters (Zhong et al., 2019), a grounded
policy learning problem. In RTFM an agent
has to reason over a set of rules and a goal,
both described in a language manual, and the
observations, while taking into account the
uncertainty arising from the stochasticity of
the environment, in order to generalize suc-
cessfully its policy to test episodes. We pro-
vide a sample-efficient proof-of-concept of the
model-based approach for the basic dynamic
task of RTFM. Furthermore, we show that the
main open challenge of RTFM is learning the
language-dependent reward function and sug-
gest that future research should focus primarily
on that task.

1 Introduction

Intelligent agents have the ability of re-composing
known concepts to draw conclusions about new
problems and this translates into the acquisition of
very robust and general behaviours. Current Re-
inforcement Learning (RL) agents typically lack
this ability and they need to be re-trained for every
new problem; in contrast language models exhibit
great generalization abilities, to the point that Large
Language Models (LLMs) are increasingly consid-
ered foundation models (Bommasani et al., 2021),
which can be pre-trained once on large corpora
of text and re-used on any downstream language
task with very little fine-tuning (Devlin et al., 2018;
Brown et al., 2020; Chowdhery et al., 2022). Thus
language-conditioned RL is a flourishing area of
research.

On the other hand, language models are trained
exclusively on textual inputs and struggle to ground
the meaning of the words to real world dynamics.

Multiple interactive environments have been pro-
posed as a testbed for learning how to ground lan-
guage (Chevalier-Boisvert et al., 2018; Zhong et al.,
2019; Ruis et al., 2020; Kiittler et al., 2020). While
prior work mostly focuses on Behavioural Cloning
or model-free RL, we argue for a Model-Based Re-
inforcement Learning (MBRL) approach, as this
effectively decouples the problem of understanding
how the world works from the problem of acting
optimally in the world in order to solve one or more
tasks. Concretely MBRL inherits the advantages
of model-free RL of learning from scratch or from
sub-optimal behaviour, while being orders of mag-
nitude more sample efficient than the model-free
counterpart. Furthermore it has the added value of
being more interpretable and explainable. In fact,
a decision made by a MBRL agent can be accom-
panied by human-interpretable examples of likely
future trajectories that are taken into account by the
model in making such a decision.

In this work, we focus on Read To Fight Mon-
sters (RTFM), a challenging benchmark for testing
grounded language understanding in the context of
reinforcement learning proposed by Zhong et al.
(2019). RTEM tests the acquisition of complex
reading skills in RL agents in order to solve com-
pletely new tasks based on written descriptions of
the task dynamics and goal. Critically, the writ-
ten information provided is not enough on its own
to obtain an optimal policy, but the agent needs
to cross-reference multiple times such information
with the current state of the environment in order
to figure out a plan of action.

In this work, we make the following contribu-
tions: first, we formulate a language-instructed
MBRL method for solving RTFM and show how to
train an agent in this environment (see Fig. 1). Our
method explicitly models the stochastic changes
in the discrete environment and performs plan-
ning with a stochastic variant of Monte Carlo Tree
Search (MCTS, Kocsis and Szepesvéri, 2006). We
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Figure 1: High-level view of the proposed method. We collect trajectories in the environment with behavioural
policies, then use them to learn a discrete stochastic model of the environment and finally deploy the learned model
at test time to plan with Monte Carlo Tree Search (MCTS).

then demonstrate performance compatible with the
SOTA agent from Zhong et al. (2019), while using
150x less data' in the basic dynamic version of the
RTFM environment. Furthermore, we highlight
how predicting the reward accurately is critical for
scaling the approach to more complex variants of
the task, by showing a strong positive correlation
between the reward accuracy and the win rate in
different scenarios. Finally, we show that current
neural architectures, based on CNNs and FiLM
(Perez et al., 2018) or on transformers (Vaswani
et al., 2017), are not able to learn the optimal re-
ward function in the sample-efficient regime of
200k samples of terminal transitions for any task
whose manual is written in rich natural language.

2 Related Work

Language Grounding and Understanding

Chevalier-Boisvert et al. (2018) proposes BabyAl,
a benchmark for studying the sample efficiency
of Imitation Learning and RL methods in tasks
where the goal is specified in natural language.
Ruis et al. (2020) instead studies the problem
of compositional generalization in situated Lan-
guage Understanding in a Supervised Learning
setup with the gSCAN benchmark, where agents
have to map language instructions to corresponding
action sequences. Narasimhan et al. (2018) consid-
ers a transfer learning setup between pairs of grid-
world environments, where entities are annotated
with language information about their role and be-
haviour. Bahdanau et al. (2018) learns how to train
reward models from language specifications and
expert trajectories and shows the usefulness of such

'We use only 1M frames while SOTA agent is trained with
150M frames in total.

reward models in training RL agents to accomplish
language specified tasks.

Our work builds on the environment RTFM, in-
troduced in Zhong et al. (2019), with the main
target of solving such environment with a model-
based approach instead of a model-free one. Sim-
ilar work on grounding language can be found in
Hanjie et al. (2021), which introduces the MES-
SENGER environment; a notable difference be-
tween RTFM and MESSENGER is that in the lat-
ter the co-reference of the entities and their names
is harder to learn, but the reasoning steps to per-
form are easier. Zhong et al. (2021) proposes
SILG, a unified interface for RTFM, MESSEN-
GER, NetHack (Kiittler et al., 2020) and symbolic
abstractions of ALFRED (Shridhar et al., 2020)
and Touchdown (Chen et al., 2019); each environ-
ment poses its own unique challenges, like learning
multi-hop reasoning or grounding co-references,
dealing with partial observability, large action
spaces or rich natural language instructions and an-
notations. Both the baseline in Zhong et al. (2021)
and the following work on SILG in Zhong et al.
(2022) include in the benchmark only the simplest,
stationary variation of RTFM and focus instead on
finding model-free algorithms that are able to deal
with all 5 SILG environments.

In this work, we focus only on RTFM and con-
sider all the stochastic levels of the game, similarly
to Zhong et al. (2019), and we propose the first
model-based approach for this environment.

Model-based Reinforcement Learning

AlphaGo (Silver et al., 2016) is the first work
demonstrating SOTA performance of MBRL with
a MCTS-based agent which has access to the true
simulator of the game of Go and learns with neu-



ral networks both a prior over promising actions
and an evaluation function to estimate the values of
game configurations. MuZero (Schrittwieser et al.,
2019) lifts the constraint of having access to a simu-
lator of the environment, by learning a latent model
of it and using it to perform a variant of MCTS in
the latent space with the aid of a value function and
a policy.

In this work, for simplicity we do not use pol-
icy and value functions as it is not our focus, but
they could be beneficial to reduce the simulation
budget of our MCTS agent further and they would
certainly be necessary to scale up this approach
to higher dimensional action-spaces and longer-
horizon tasks. Overall our contribution is orthog-
onal to the learning of policy and value networks
for MCTS algorithms, as we aim to learn a good
model of a stochastic environment and a complex
language-dependent reward function that is able to
generalize to new environments.

Most works in MBRL assume a deterministic
environment (as it is the case for example in chess
and Go) or weakly stochastic (as Atari) and show
dramatic drops in performance when applied to
stochastic ones. Ozair et al. (2021) demonstrates
how MuZero performance deteriorates when play-
ing chess if the opponent is considered part of
the environment (version of chess denoted single
player) and the algorithm cannot enumerate its ac-
tions, but has to learn to model them as possible
stochastic outcomes.

The Vector Quantized Model (VQM) in Ozair
etal. (2021) probably has the most similar approach
to ours, learning a "State VQVAE" to extract dis-
crete latent codes and then learning a "Transition
model" which, given a latent state-action pair and a
discrete latent code, produces the next latent state.

Another notable line of work capable of deal-
ing with stochastic environments can be found
in Hafner et al. (2018), Hafner et al. (2019) and
Hafner et al. (2020) . These works are based on the
Recurrent State Space Model (Hafner et al., 2018)
and of particular interest is Hafner et al. (2020),
as it also uses discrete latent variables to capture
the stochasticity in the environment dynamics. The
discrete variables are trained with straight-through
gradients and the obtained model is used to produce
synthetic data in the latent space to train a model-
free algorithm instead of being used for planning.
However, none of these models involves language.
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Goal: Fight the order of the forest.

Manual: Fire monsters are weak against gleaming items.
Lightning monsters are defeated by grandmasters
items. Use shimmering items for poison monsters.
Rebel enclave has the following members: demon.
Dragon are star alliance. Jinn are on the order of
the forest team. Cold monsters are weak against
blessed items.

Inventory: empty.

Figure 2: Example of a frame from the RTFM environ-
ment with two monsters in the natural language version.
Together with the grid observation (above), the agent is
provided with the goal, manual and the inventory (be-
low).

3 Read To Fight Monsters

Read To Fight Monsters (RTFM) is a challenging
benchmark proposed by Zhong et al. (2019) for
testing grounded language understanding in the
context of RL. RTFM tests the acquisition of com-
plex reading skills in RL agents in order to solve
completely new tasks based on written descriptions
of the task dynamics and goal.

Crucially, it is not enough to consult the written
information in order to obtain an optimal policy, but
the agent needs to perform a multi-step reasoning
between such information and the current state of
the environment in order to figure out a plan of
action.

To elucidate the reasoning steps and reading
skills needed to win an episode, we go through
the concrete example reported in Fig. 2.

1. From the goal extract which team to defeat
(order of the forest).

2. Search in the manual which monster is as-
signed to that team (jinn).



3. Find in the map the element type of the target
monster (fire).

4. Search in the manual which modifier beats the
target monster’s type (gleaming).

5. Find in the map the item with the correct mod-
ifiers (gleaming sword).

6. Pick up the correct item (gleaming
sword).

7. Engage the correct monster (fire jinn)
in combat with the correct item (gleaming
sword).

The agent is given a reward of +1 if it engages
the correct monster in combat while carrying the
correct item, —1 in any other encounter with a
monster and a reward of 0 for all intermediate steps.

As every episode contains a procedurally gener-
ated set of (monster, element) pairs, (item, modi-
fier) pairs, goal and manual entries, the agent can-
not solve new episodes memorizing what is the
right pair of item to take and monster to fight, but
it has to learn to read the goal and the manual and
cross-reference them with the environment observa-
tion. The agent’s performance is tested on episodes
generated in such a way that no assignments of
monster-team-modifier-element are ever seen dur-
ing training, to test whether the agent is able to
generalize via reading to new environments with
unseen dynamics.

We consider two variants of the original RTFM,
the dynamical version with simple language s1 and
the natural language dynamical version n1; these
correspond respectively to dyna and dyna+nl in
the notation used by Zhong et al. (2019).

There are two differences between s1 and nl
tasks and they both concern the way in which the
manual and the goal are expressed. The first dif-
ference is that s1 uses fixed language templates
like "gleaming beats fire" instead of one
of multiple crowd-sourced natural language refor-
mulations, like "fire monsters are weak
against gleaming items". The second
difference is that in s1 the sentences of the manual
are always ordered in a specific way (e.g. the first
sentence always refers to monsters of the cold
element and the last sentence to which monster is
part of the star alliance), whereas in the nl
task the order of the sentences is always shuffled.
We find the importance of this second point to be

underappreciated in Zhong et al. (2019) and we in-
troduce a new variant of the task named n1 + no
shuffle where we ablate the shuffling factor, in
order to disentangle this factor from the natural
language one.

For more in depth description of the environ-
ment and how it is generated the reader can refer
to Zhong et al. (2019).

During training we modify the environment such
that in the terminal transitions, when the agent in-
teracts with a monster, the entity that has been
defeated is not removed from the terminal state.
However, the trained agent during the evaluation
procedure doesn’t need to use the modified envi-
ronment, as terminal states are used only to train
the representation encoder, whereas the transition
model never takes them as input.

4 Language-conditioned world model

The goal of any RL agent is to find a policy 7(a|s)
that maximizes the expected cumulative reward
E.[>[_, Ri] received from the environment in
an episode if all actions are taken according to
such policy. In this work, we take the model-based
approach to RL: we learn a language-conditioned
stochastic model of the environment and use it to
plan with a stochastic version of vanilla MCTS.

‘We name our method as Reader (for REinforce-
ment learning Agent for Discrete Environments
with wRitten instructions)?. It is composed of a
world model and uses MCTS as its planning algo-
rithm. The world model consists of three compo-
nents (see Fig. 3).

1. the representation model which encodes the
grid-world observations s; into discrete codes
Zt.

p(2t | 81,811, a1-1),

2. the transition model that predicts the next state
St4+1-
p(3t+1 | St, at, m):

3. the reward model predicts the current-step re-
ward:

p(rt | St—1,St, At—1, mag)

Note that in contrast to existing model-based
agents, our world model is conditioned on the

Inspired by Dreamer (Hafner et al., 2019).
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Figure 3: Components of language-conditioned world
model.

episode-specific textual descriptions: the manual
m which describes the roles of the monsters and
the rules of the episode and the the sentence g de-
scribing the agent’s goal.

4.1 Representation model

Our representation model is based on vector-
quantized variational autoencoders (VQVAE,
van den Oord et al., 2017), a latent variable model
with discrete latent codes. The VQVAE architec-
ture is composed of an encoder, a decoder and a
vector quantization layer in between. Similarly to
(Ozair et al., 2021), we condition the representation
z; of the current state s; on the previous state s;_1:

2t = f(St, St—1, at—l)

where z; is a discrete code produced by the en-
coder f. The decoder d is trained to reconstruct the
original state from the discrete code z; given the
previous state and action:

8¢ = d(zt, 5t-1,a4-1)-

The discrete codes are produced by the encoder
in the same way it was done in the original VQ-
VAE paper (van den Oord et al., 2017) by keeping
a trained codebook of prototypes vectors and se-
lecting as a representation the prototype with the
smallest distance to a continuous encoder output.
We train the model end-to-end using the straight-
through approximation for the vector quantization
function when back-propagating through it. We use
the three losses that were proposed by van den Oord
et al. (2017) and implement the encoder and the

decoder using a transformer architecture (Vaswani
et al., 2017).

Since the RTFM environments has two sources
of stochasticity (which correspond to two mon-
sters), the quantization layer of our VQVAE pro-
duces two codes z7, z2, such that the continuous
output of the encoder is split into parts and the
quantization is performed for the two parts indepen-
dently. This choice gives a combinatorial inductive
bias to the representations we are learning.

4.2 Transition model

The purpose of the transition model p(si1 |
St, 2t, at,m) is to predict possible values of the
next state sy given the current state and the taken
action. We implement the model by using an ad-
ditional block (the green block in Fig. 3) which
predicts the discrete representation z;,1 of the next
state s¢41

p(ze41 | s, ar)

We condition the transition model only on the man-
ual m of the episode but not on the goal g, as the
goal of the episode affects only the reward func-
tion. To simulate the next state s;11 at the planning
stage, the output of this transition block is passed
though the decoder of the representation model.

We train the transition model concurrently with
training the representation model, using the codes
produced by the VQVAE as the model targets. We
stop the gradients such that the existence of the
transition model does not affect the learned repre-
sentations. We use a transformer architecture for
the transition model.

4.3 Reward model

A key aspect of RTFM is to model correctly the
language-instructed reward function. Since the en-
vironment is stochastic, a natural choice for the
reward function is p(riy1 | S¢, S¢41, a1, M, g), @S
including the next state s,y lets us predict a differ-
ent reward for every possible stochastic outcome.
This is only possible because we can predict the
next state s¢y1 with our stochastic transition model.

We train the reward model concurrently with
the other two models and during training we use
the true next state for s;;1. The main neural ar-
chitecture that we consider is a transformer. For
additional studies, we also consider as an ablation
an architecture comprising CNN and FiLM layers,
which draws inspiration from the txt27 actor-critic
architecture proposed in Zhong et al. (2019), but



processes a; and s;41 as additional inputs and pre-
dicts the distribution of the reward 7,1, instead
of the policy and value of the actor-critic case.
We refer to the models using this architecture as
CNN+FiLM.

With the same model we also predict if the next
state is terminal or not and what are the legal ac-
tions that can be taken in the next state. Both of
these predictions are trivial, as they do not depend
on the language.

Furthermore, since RTFM gives non-zero re-
wards only for terminal transitions, empirically we
find beneficial in terms of sample efficiency and
performance to train the reward function only on
those transitions. For planning, we first predict if a
transition is terminal or not; if the transition is non-
terminal, we assign a reward of 0, if it is terminal,
we predict the reward with the reward model.

4.4 Transformer baseline world model

A possible alternative is to have a model learn di-
rectly the joint distribution over sy and r4y1 auto-
regressively:

P(se41, rer1lcd) =p(rega|sesrs co)-
H+xW

H D(St41,i5]St41,<ij> Ct),
=1
)]

where ¢, = (sy,a;,wiki,goal) is the condi-
tional information available, using for example a
single Transformer model (Vaswani et al., 2017).
While this model is possibly more general and
it can be trained in teacher-forcing mode to cap-
ture correctly the stochasticity of the environment,
its auto-regressive modeling over the entire next
state makes it impractical for planning, where a
model can be used hundreds if not thousands of
times during planning for every single time-step.
We nonetheless consider this model as a baseline,
dubbed "Transformer baseline".

S MCTS planning with the learned world
model

To use the model for planning, we need to predict
the next state s;11 and reward r4;; given the infor-
mation available at the current step, that is s¢, ay,
m and g. We do that by first using the transition
model to sample the next discrete latent code 2; 1,
then using the decoder to get 5;41 and finally the
reward model to get 74 1.

To extend MCTS to stochastic transitions, we
use two types of nodes in the tree: state nodes and
state-action nodes. The tree branches at state nodes
by considering different actions and it branches at
state-action nodes by looking at different stochastic
outcomes. While we have control over the actions
that we choose, the outcomes and corresponding
rewards are always sampled by using the learned
model. We index the possible outcomes from a
state-action node based on the indices of the pair
of discrete codes (z1, z2) sampled by the transition
model; if the codes have been already sampled, we
continue traversing the already-expanded tree, oth-
erwise we expand the newly-sampled state node.

6 Experiments

In this section, we conduct experiments to answer
the following research questions: What is the ac-
curacy and data efficiency of the MBRL method
in the RTFM environment, and how does that com-
pare with existing model-free approaches? What
is currently the limiting factor that needs to be ad-
dressed when scaling MBRL sample-efficiently to
more complex RTFM tasks?

To address these questions, we consider the
RTFM environment of two levels of complex-
ity: first, a basic version that uses simplified lan-
guage (sl) is used to validate the model and
compare it with alternatives; second, a more
complex version that uses full natural language
(nl) is used to investigate the limits and scala-
bility of the current MBRL solution. We do not
present results for many-to-one entities assign-
ment tasks (referred in Zhong et al. (2019) as
dyna+groups and dyna+groups+nl), as em-
pirically we find that the gap in performance from
s1 to dyna+groups much smaller than from s1
to n1 and we hypothesize that simply scaling up
the resources allocated to the task would be enough
to solve it optimally. We furthermore consider the
natural language variant without the wiki shuffling
nl + no shuffle described in Sec 3.

6.1 Training

To ease the computational demands of the full RL
pipeline, we consider an offline RL setup. We first
collect a dataset of trajectories for each task, then
train the model on it without ever directly interact-
ing with the real environment and then evaluate the
MCTS agent equipped with the learned model by
playing 1000 episodes in the test environment.



To collect the datasets we use a random pol-
icy for 50% of the episodes and a vanilla MCTS
policy? with access to a simulator of the real en-
vironment for the remaining 50% of the trajecto-
ries. Each dataset is composed of 200k episodes,
or roughly 1M frames; full details are reported in
Table 3 in the appendix.

We train the model with mini-batches of 1-
timestep transitions sampled from the dataset and
train the model components as described in Sec 4.
Following Zhong et al. (2019), we optionally make
use of a curriculum to train the model on the harder
variations of the environment. Specifically we first
train from scratch over s1, then we continue train-
ing the model on nl1 and n1 + no shuffle;
when doing so, we add + curriculum to the
name of the task.

6.2 Results

In the first experiment we train our Reader model
on the s1 task and evaluate its performance with
MCTS, using 400 simulations per time step. We
compare against two strong agents: the first, which
we call Oracle MCTS, uses the same MCTS algo-
rithm of our agents, but instead of using a learned
model of the environment, it is using the ground-
truth simulator; this represents an upper bound for
the performance of our agent, since the planning
algorithm is identical and the model is perfect; the
second is the model-free agent txt27 proposed in
(Zhong et al., 2019), which detains the state-of-the-
art in RTFM environment. We also compare to
our model-based Transformer baseline described in
Sec. 4.4; this model is also evaluated with MCTS,
but we use only 100 simulations per time step, as
planning with a full auto-regressive transformer
model is much slower than planning with Reader.

We report the results in Table 1. Reader achieves
results comparable with model-free SOTA agent
txt27 from (Zhong et al., 2019), while using only
1M frames instead of the 150M used to train txt27.
Furthermore, Reader is better than the Transformer
baseline, both in terms of win rate and wall-clock
time for planning and comes close to the perfor-
mance of the Oracle MCTS agent. This result vali-
dates our method and serves as a proof-of-concept
for sample-efficient MBRL in language-instructed
environments.

3We restrict the computational budget per action of the
MCTS policy in such a way that it is not optimal.

Models Win rate
txt27 (Zhong et al., 2019)  0.85 (0.09)
Reader 0.82 (0.02)
Transformer baseline 0.76 (0.05)
Oracle MCTS 0.85 (0.01)

Table 1: Comparison of methods (s1). We evaluated
every model with 5 independent training runs and report
the average and standard deviation (over the 5 runs) of
the win rate over 1000 episodes. The Reader and the
Transformer baseline were trained with 1M frames. The
txt27 was trained for 100M frames on a static version
of the s1 task and then for another 50M frames on s1;
the reported results are from (Zhong et al., 2019).

In our second experiment we show how the test
accuracy of the reward function is predictive of the
win rate of the agent.

We define 5 mutually exclusive logical cases that
fully partition the set of terminal transitions; the
first case is when the agent interacts with any mon-
ster while having an empty inventory and the other
4 cases are all the combinations of interacting with
the right or wrong monster while carrying the right
or the wrong item in the inventory. The reason be-
hind this choice for the metric is that it re-weights
the accuracies over different transitions, making the
metric more robust against distribution shifts be-
tween the offline test set (collected by behavioural
policies) and the set of trajectories produced by the
trained agent during its online evaluation.

Win rate vs reward accuracy
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Figure 4: Importance of reward accuracy. We
train 5 random seeds for the Reader model, the Trans-
former baseline and the CNN + FiLM ablation for
the s1, nl + curriculum and nl + shuffle
+ curriculum tasks. We plot the win rate as a func-
tion of the average reward case accuracy for each indi-
vidual run.

For each case of terminal transitions, we com-



Models sl nl nl nl + no shuffle
+ curriculum + curriculum

Transformer  0.99 (0.01) 0.71 (0.01) 0.79 (0.06) 0.96 (0.07)

CNN + FILM  0.85 (0.02) 0.69 (0.03) 0.84 (0.01) 0.86 (0.05)

Table 2: Average reward case accuracy. We split the terminal transitions in the test set in 5 mutually exclusive
logical cases in which the terminal transitions can be classified; we compute the accuracy over each case and then
take the average. We evaluate every model with 5 independent training runs and report the average and standard

deviation (over the 5 runs) of the accuracy.

pute the reward accuracy, then we compute the aver-
age among the cases and call this measure "average
reward case accuracy”. We train the Reader agent,
the Transformer baseline agent and an ablation of
Reader using the CNN+FiLM reward model on
the environments s1, nl + curriculum and
nl + no shuffle + curriculum and re-
port the win rate of individual runs as a function
of the average reward case accuracy in Fig. 4. Our
experiment shows how, regardless of the model
(Reader or Transformer baseline) and regardless
of the reward model architecture (transformer or
CNN+FiLM), the average reward case accuracy is
strongly and positively correlated with the win rate
of the agent.

Finally we study the impact of model on reward
prediction accuracy by training the transformer re-
ward model and the CNN+FiLM reward model
on datasets of 200k samples containing only the
terminal transitions for the environments s1, nl,
nl + curriculumandnl + no shuffle
+ curriculum and report the results in Table 2.

We find that both the transformer and the
CNN+FIiLM architectures are not able to gen-
eralize to the test set for the tasks featuring
natural language. While training via curricu-
lum from the s1 environment helps, we notice
that in n1 a good part of the difficulty is due
to the shuffling of the sentences in the manual.
The transformer architecture trained on n1 + no
shuffle + curriculum mostly retains the
accuracy achieved in s 1, while this is not the case
for the CNN+FiLM model. This experiment high-
lights how the reward prediction task is the current
bottleneck in solving the RTFM tasks with natural
language and suggests that focusing on a Super-
vised Learning setup for the reward prediction and
using a dataset of terminal transitions are promis-
ing approaches to isolate the core challenge of the
RTFM environment.

7 Discussion and Conclusions

RL environments such as RTFM are great for de-
veloping models capable of natural language un-
derstanding. Prior work shows that the model-free
approach might work well in those benchmarks,
but it requires a large number of samples in order
to work and it is not insightful with regard to the
agent’s understanding capabilities. On the other
hand the model-based approach is a promising one
for multiple reasons: first one can leave aside the
exploration problem, which might not be crucial for
simple environments such as RTFM, by using of-
fline experience collected from simple behavioural
policies. Second, one can decouple the planning
task from the task of model building and even that
can be split in multiple components. This lets us
for example learn independently the stochastic dy-
namics and the reward model, which we show is a
crucial component for a strong agent in RTFM.

For RTFM, we observe that a model’s accuracy
in the reward prediction task correlates well with
the final performance in the RL task. Thus, in order
to understand the limitations of the existing archi-
tectures applicable to grounded language learning
it makes sense to focus on the reward prediction
task. Our experiments show that existing archi-
tectures (built on CNN+FiLM and transformers)
need a large number of samples to learn the RTFM
reward. For example, the transformer model has
the tendency to overfit to positional information:
the performance drops significantly with the per-
mutation of sentences. Therefore, more research is
needed to improve the sample efficiency of models
for grounded language learning; leveraging the out-
of-the-box representation learning capabilities of
pre-trained large language models seems a promis-
ing direction to explore.
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A Offline trajectories datasets

To collect the datasets we use a random policy for
50% of the episodes and a vanilla MCTS policy
with access to a simulator of the real environment
for the remaining 50% of the trajectories.
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The MCTS policy used to collect data specif-
ically uses 30 internal simulations per time-step,
maximum rollout length of 10, a discount factor
of 0.9 and the Upper Confidence Bound constant
c=1.

We report in Table 3 the dataset statistics for the
s1 environment. Since all other dynamical variants
of RTFM have the same underlying mechanics (e.g.
2 monsters and 2 items placed randomly in a grid
world, the monsters move stochastically according
to an unknown policy which is always the same in
all the variants), all the dataset statistics are identi-
cal, up to stochastic fluctuations, for n1 and n1 +
no shuffle.

Dataset sl

Tot. frames 971k
Non-terminal 771k
Successes 77k (8%)
Failures 123k (13%)
Win rate (random) 4.6%
Win rate (MCTS) 71.0%

Table 3: Datasets collected for offline training of the
model and relative statistics.

B Training details

We report in the following section the summary de-
tails about the architectures and training procedures
used in this work.

Encoder and Decoder of the representation
model: two transformer encoder layers each, model
dimension of 128, feed-forward dimension of 256,
gelu activation function, dropout of 0.1.

Transition model: two transformer encoder lay-
ers and two transformer decoder layers, model di-
mension of 128, feed-forward dimension of 256,
gelu activation function, dropout of 0.1.

Reward model (transformer): six transformer
encoder layers, model dimension of 256, feed-
forward dimension of 1024, gelu activation func-
tion, dropout of 0.1.

Reward model (CNN+FiLM): embedding di-
mension of 30, dimension of small RNN of 10,
dimension of Bi-LSTM of 100 and dimension of
final representations of 400. For more details about
the architecture, please refer to (Zhong et al., 2019).

Vector Quantization layer: 2 codebooks of 32
codes with feature dimension 64 (half of the model
dimension of the encoder and decoder model di-
mension). We use a commitment loss coefficient
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B = 0.25 and a codebook learning rate multiplier
A = 5. Following (Lancucki et al., 2020), we use
KMeans ++ to reinitialize the codes during the first
50 epochs, once every 50 forward passes.

Transformer baseline: we use a encoder-decoder
architecture, plus the reward model from Reader.
Encoder and decoder use two layers, the reward
model six. All layers use model dimension of 256,
feed-forward dimension of 1024, gelu activation
function, dropout of 0.1.

We report the other hyper-parameters used dur-
ing training in Tab 4.

Hyper-parameters Values
Batch size 500
Optimizer Adam
Learning rate 1074
Lr warm-up steps 400
Epochs 250

Table 4: Hyper-parameters used.

C Computational resources used

GPU resources used for Tab. 1 and Fig 4 are re-
ported in Tab 5, whereas the CPU resources for
the MCTS evaluation of the agents are reported in
Tab 6.

Model single (h) total (h)
Reader 23 345
Transformer baseline 20 300
CNN+FiLM 43 65
Total 710

Table 5: GPU resources used for Tab. 1 and Fig 4. We
use 5 random seeds and train on 3 tasks.

Model single (h) total (h)
Reader (20) 2.5 750
Transformer baseline (40) 5 3000
CNN+FiLM (20) 1.5 450
Total 4200

Table 6: CPU resources used for Tab. 1 and Fig 4. We
use 5 random seeds and evaluate on 3 tasks. Number
of CPU cores used for every run is reported between
parenthesis after the name of the model.

The resources used for Tab. 2 are reported in
Tab. 7.

All experiments use the Tesla V100 GPU model
and the total amount of resources used to obtain the
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Model single (h) total (h)
Transformer 10 200
CNN+FiLM 4.3 86.6
Total 286.6

Table 7: GPU resources used for Tab. 2 . We use 5
random seeds and train on 4 tasks.

reported results is approximately 1000 GPU hours
and 4200 CPU hours.



