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Abstract

Neural networks have shown great potential in ac-
celerating the solution of partial differential equa-
tions (PDEs). Recently, there has been a growing
interest in introducing physics constraints into
training neural PDE solvers to reduce the use of
costly data and improve the generalization ability.
However, these physics constraints, based on cer-
tain finite dimensional approximations over the
function space, must resolve the smallest scaled
physics to ensure the accuracy and stability of
the simulation, resulting in high computational
costs from large input, output, and neural net-
works. This paper proposes a general acceleration
methodology called NeuralStagger by spatially
and temporally decomposing the original learn-
ing tasks into several coarser-resolution subtasks.
We define a coarse-resolution neural solver for
each subtask, which requires fewer computational
resources, and jointly train them with the vanilla
physics-constrained loss by simply arranging their
outputs to reconstruct the original solution. Due to
the perfect parallelism between them, the solution
is achieved as fast as a coarse-resolution neural
solver. In addition, the trained solvers bring the
flexibility of simulating with multiple levels of
resolution. We demonstrate the successful appli-
cation of NeuralStagger on 2D and 3D fluid dy-
namics simulations, which leads to an additional
10 ∼ 100× speed-up. Moreover, the experiment
also shows that the learned model could be well
used for optimal control.
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1. Introduction
Partial differential equations (PDEs) are the critical parts of
scientific research, describing vast categories of physical and
chemical phenomena, e.g. sound, heat, diffusion, electro-
statics, electrodynamics, thermodynamics, fluid dynamics,
elasticity, and so on. In the era of artificial intelligence,
neural PDE solvers, in some works called neural operators,
are widely studied as a promising technology to solve PDEs
(Guo et al., 2016; Zhu & Zabaras, 2018; Hsieh et al., 2019;
Bhatnagar et al., 2019; Bar-Sinai et al., 2019; Berner et al.,
2020; Li et al., 2020b;a; Um et al., 2020; Pfaff et al., 2020;
Lu et al., 2021b; Wang et al., 2021; Kochkov et al., 2021).
Once the neural solver is trained, it can solve unseen PDEs
with only an inference step, multiple magnitudes faster than
that with traditional numerical solvers. Recently, several
works have introduced physics constraints in training the
neural PDE solvers in order to reduce the use of costly
data and improve the generalization ability. They define
the physics-constrained loss with certain finite dimensional
approximations to transform the PDEs into algebraic equa-
tions, which are further used to define the loss function (Zhu
et al., 2019; Geneva & Zabaras, 2020; Wandel et al., 2020;
Shi et al., 2022). However, to ensure stability and accuracy,
they must define the loss in a relatively high resolution to
resolve the smallest-scale physics in the PDE, resulting in
huge input and output as well as increased neural network
size. The solution by the neural network inference might
still be slow, but it seems impossible to get further acceler-
ations as the bottleneck comes from the input and output
complexity.

In this paper, we propose a simple methodology called Neu-
ralStagger to jump out of the dilemma. The basic idea
is to decompose the original physical fields into several
coarser-resolution fields evenly. Then we jointly train a
lightweight neural network to predict the solution in each
coarse-resolution field respectively, which can be naturally
a coarse-resolution neural solver to the original PDE. We
design the decomposition rules so that the outputs of these
lightweight networks can reconstruct the solutions in the
original field with simple arrangements. For ease of read-
ing, here and also in most parts of the paper, we illustrate
the decomposition methodology in the 2-dimensional exam-
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Figure 1. The training pipeline of NeuralStagger. Top: the spatial decomposition that splits the field into several pieces of coarse-resolution
fields; Bottom: the temporal decomposition combined with spatial decomposition to construct the physics-constrained loss.

ple with regular mesh and finite difference approximation.
Figure 1 (top) shows the physical field in a 4 × 4 mesh is
decomposed into 4 coarser-resolution fields, each of which
is handled by a small neural network. We could also do
similar things along the temporal dimension, as is shown in
Figure 1 (bottom). The group of coarse-resolution solvers,
as well as the decomposition and reconstruction operations,
can be seen as an end-to-end neural PDE solver, which can
be trained with the physics-constrained loss that resolves
small-scale physics in a sufficiently high resolution. Be-
cause the neural networks can run in parallel, the original
simulation is achieved as fast as a coarse-resolution neural
solver. In addition, the trained neural networks can predict
the PDE’s solution in various levels of resolution, rang-
ing from the resolution of the individual coarse-resolution
solver to the resolution of the physics-constrained loss by
the combination of all these solvers. We believe that such
flexibility is vital in balancing the computational resources
and the resolution.

We demonstrate the effectiveness of the NeuralStagger in
the Navier-Stokes equation with three parametric settings,
e.g., periodic boundary conditions with varied initial con-
ditions, lid-driven cavity boundary conditions with varied
initial conditions, and the flow around the obstacle with
varied obstacles and initial conditions. We find that with
NeuralStagger, the learned networks can conduct accurate
and stable simulations with 20 ∼ 400 fold decrease on the
computational load per GPU card or practically 10 ∼ 100×
speed-up over SOTA neural PDE solvers. In addition, we
demonstrate that they can accurately tackle the optimal con-
trol task with auto-differentiation.

Our contributions can be summarized in three parts:

• We propose a general methodology called NeuralStag-
ger to accelerate neural PDE solving by spatially and
temporally decomposing the learning task and running

a group of coarse-resolution solvers in parallelism.

• The learned network group can provide solutions in
multiple resolutions from the coarsest one by a single
network to the original resolution, which provides the
flexibility to balance the computational resources and
the resolution.

• We demonstrate that the methodology leads to 10 ∼
100× speed-up over SOTA neural PDE solvers as well
as the efficient solution on optimal control.

In the following sections, we first briefly summarize the re-
lated works in Section 2 and then introduce the preliminaries
and the proposed NeuralStagger in Section 3. To showcase
the efficiency and accuracy of the proposed method, we
present the settings of the experiments and results in Sec-
tion 4. Finally, we conclude and discuss the future work in
Section 5.

2. Related Work
Numerical methods. The concept of stagger has been
used in several classical methods, e.g., the Leapfrog inte-
gration scheme (Birdsall & Langdon, 1985) and the stag-
gered grid method (Harlow & Welch, 1965). However,
NeuralStagger is fundamentally different from these meth-
ods in both targets and technical details. NeuralStagger is
proposed to accelerate neural PDE solving under certain
physics-constrained loss, while the classical methods tell
how the continuous PDE can be discretized and solved with
algebra, which can be naturally used to define the physics-
constrained loss. As you would see in Section 4.2, we lever-
age staggered grid method to define the physics-constrained
loss in the flow around obstacles case. In addition, the ways
of decomposition are also different. The Leapfrog integra-
tion scheme updates positions and velocities at staggered
time points, giving nice properties like time-reversibility and
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second-order accuracy; the staggered grid method stores the
scalar variables in the cell centers and vector variables at
the cell faces. In contrast, each coarse-resolution solver in
NeuralStagger updates all the variables spatially in the same
grid and temporally at the same time points.

Neural PDE solvers. The neural PDE solver learns to solve
a parametric PDE with merely an inference step, which is
much faster than the numerical methods. Many impressive
works have been done to improve the neural solver for para-
metric PDEs in terms of neural network design, e.g., convo-
lutional neural network (Guo et al., 2016; Tompson et al.,
2017; Bhatnagar et al., 2019), graph neural networks (Pfaff
et al., 2020), the multipole graph kernel (Li et al., 2020b),
Fourier neural operators (Li et al., 2020a; Guibas et al.,
2021), deepOnet (Lu et al., 2021a), the message passing
neural network (Brandstetter et al., 2022b), Clifford neu-
ral networks (Brandstetter et al., 2022a) and so on. After
being trained with pre-generated simulated data and labels,
they can solve the PDE several magnitudes faster than con-
ventional numerical solvers with competitive accuracy. Re-
cently there are raising concerns about the cost of collecting
training data and the generalization ability, so several works
have introduced the physics-constrained loss for training.
For example, Wang et al. (2021) combined the DeepOnet
with a physics-informed way to improve the sample effi-
ciency. Zhu et al. (2019) proposed physics-constrained loss
for high-dimensional surrogate modeling and Geneva &
Zabaras (2020) introduced the use of a physics-constrained
framework to achieve the data-free training in the case of
Burgers equations. Wandel et al. (2020; 2021b) proposed
the physics-constrained loss based on the certain approx-
imation of the Navier-Stokes equation to solve fluid-like
flow problems. Shi et al. (2022) proposed a general physics-
constrained loss called mean square residual (MSR) loss as
well as a neural network called LordNet for better perfor-
mance. However, the physics-constrained loss by certain
approximation requires the approximation to be sufficiently
close to the continuous version, resulting in a relatively high-
resolution discretization. Thus in complex and large-scale
problems, the neural solver must be large enough for ex-
pressiveness and its inference would still be slow. Although
some works (Wang et al., 2021) directly calculate the deriva-
tives via back-propagation through the neural network, they
are known to have similar training problems as PINN, e.g.,
converging to trivial solutions. One parallel work (Ren et al.,
2022) shares some similarities to the spatial decomposition
of NeuralStagger, which leverages pixel shuffle and physics-
constrained loss in the super-resolution tasks. However, we
are different in target and solution. For example, we train
multiple solvers to work in full parallelism and obtain the
solution in multiple levels of resolution without training
them again.

3. Methodology
3.1. Preliminaries

Consider a connected domain Ω ⊆ Rn with boundary ∂Ω,
and let (A,U ,V) be separable Banach spaces. Then the
parametric PDEs can be defined as the form

S(u,a)(x) = 0, x ∈ Ω (1)

where S : U × A → V is a linear or nonlinear differential
operator, a ∈ A denotes the parameters under certain distri-
bution µ, such as coefficient functions or boundary/initial
conditions, and u ∈ U is the corresponding unknown solu-
tion function. Further, we can define the solution operator of
the parametric PDE G : A → U , which maps two infinite-
dimensional function spaces.

A main branch of works in neural PDE solvers approximate
the solution operator by discretizing the functions into finite-
dimensional spaces denoted by Â and Û and learning the
mapping fθ : Â → Û . Correspondingly, we have the
discretized version of the PDE’s operator S by certain finite-
dimensional approximations such as the finite difference
method (FDM) and finite element method (FEM), which is
denoted by Ŝ. We denote the vector of the function values
in a mesh with the hat symbol, e.g., â is the vector of the
PDE’s parameter a ∼ µ. Then the physics-constrained loss
is defined by forcing the predicted solution û ∈ Û to satisfy
Ŝ given â ∈ Â. For example, LordNet (Shi et al., 2022)
proposed the general form with the mean squared error as
follows,

L(θ) = Ea∼µ||Ŝ(fθ(â), â)||2, (2)

In this paper, we mainly focus on time-dependent problems
as follows,

S(u,a)(t,x) = 0, (t,x) ∈ [0, T ]× Ω (3)

The temporal dimension is discretized with the timestep ∆t
and the neural solver solves the PDE in an auto-regressive
way,

ût+∆t = fθ(ût, â) (4)

where ût is the corresponding discretized vector of the func-
tion u at time t. Notice that similar to traditional numerical
methods, the resolution of the finite-dimensional approxima-
tion in physics-constrained loss, either in the spatial dimen-
sion or in the temporal dimension, must be sufficiently high,
otherwise, the approximation error will be too large to guide
the neural PDE solver. This leads to huge input and output
as well as large neural networks to ensure expressiveness,
whose inference would also be slow.

3.2. NeuralStagger

We propose a general methodology called NeuralStagger to
gain further accelerations by exploiting the potential paral-
lelism in the neural PDE solver. NeuralStagger decomposes

3



NeuralStagger: Accelerating Physics-constrained Neural PDE Solver with Spatial-temporal Decomposition

the original learning task that maps ût to ût+∆t into sev-
eral parallelizable subtasks in both spatial and temporal
dimensions. The meshes of the subtasks spread evenly in
the original field and stagger with each other. Then we
can handle each subtask with a computationally cheap neu-
ral network. The decomposition strategy is introduced as
follows.

Spatial decomposition. The upper part of Figure 1 shows
the 2-dimensional example with regular mesh. We first split
the grid into patches of the size sH × sW and construct a
subgrid by selecting only one point in each patch, resulting
in sH × sW subgrids evenly spread in the domain. We
denote the functions in each sub-grid as ûi,jt and âi,jt where
i and j represents the relative position of the sub-grid in
horizontal and vertical directions. Then we use sH × sW
neural networks to learn to predict the solution at t+∆t as
follows,

ûi,jt+∆t = fθi,j (û
i,j
t , âi,j), (5)

where fθi,j is the neural network for the sub-grid at the
position (i, j). The outputs ûi,jt+∆t compose the solution at
the original grid. Then the neural networks can be jointly
trained with the physics-constrained loss defined on the orig-
inal grid. Notice that the neural networks are independent
of each other and can be fully paralleled. As the input and
output decrease by sH × sW times, the neural network can
be much smaller and faster than the original one to be used
for the neural solver. The decomposition rules can be ex-
tended to higher-dimensional cases. In addition, the learning
tasks at the subgrids are quite close to each other, except
for the difference in the boundary of the domain, so we
share the parameters of the neural networks fθi,j to reduce
redundancy and accelerate training. Meanwhile, because
there are often tiny differences between the inputs of the
subtasks, we encourage the neural network to distinguish
them by adding positional information of each grid point as
additional input channels.

Temporal decomposition. We can treat the temporal di-
mension as a 1-dimensional grid with a fixed step ∆t. Thus
we can also decompose the grid into sT sub-grids by select-
ing a point for every sT points, where instead of predicting
ût+∆t, the neural network predicts ût+sT∆t,

ût+sT∆t = fθ (ût, â) , (6)

Given the solution sequence from t to t+ (sT − 1)∆t de-
noted by ût,sT for simplicity, we can get the next sequence
of the solution ût+sT∆t,sT . Then the physics-constrained
loss is defined on the sequence with timestep ∆t, as is
shown in the lower part of Figure 1. Once the neural net-
work is trained, we can generate the sequence ût+sT∆t,sT

by running the neural network inference of Formula 6 with
sT threads in parallel with inputs ût,sT . The non-auto-
regressive process can generate the solution in sT time steps

within one inference step, which can be much faster than the
original version with sT inference steps. Note that though
we only need the initial condition for the coarsest-resolution
test, we must prepare the first sT states with numerical
solvers for training and the high-resolution test. However,
this drawback is neglectful for long-time simulations.

The spatial and temporal decompositions are orthogonal
and can be used at the same time. We denote the joint de-
composition operator as Ds, the transformation operator of
the neural networks as FΘ and the reconstruction operator
Es, where s represents all decomposition factors including
sH , sW and sT , Θ represents all parameters of the neu-
ral network group. The physics-constrained loss with the
spatial-temporal decomposition can be written as,

L(Θ) = Eût,sT
||Ŝ (Es (FΘ (Ds (ût,sT , â))) , ût,sT , â) ||2.

(7)

In addition, as the sub-grids spread evenly in the domain
of the PDE, each of them can be seen as the down-sampled
version of the original problem, where a local patch is re-
duced to the point at a fixed relative position in the patch.
Therefore, the learned neural networks are naturally coarse-
resolution solvers to the PDE. Suppose (H,W, T ) is the
tuple of the original height, width, and time span that
the physics-constrained loss is conducted on. Then the
coarse-resolution solvers are conducted on the resolution
( H
sH
, W
sW
, T
sT

). Meanwhile, we can infer multiple levels of
resolutions ranging from that of coarse-resolution solvers to
the original one, all of which can reach the same speed by
parallelism.

3.3. Choice of the decomposition factors

Obviously, the acceleration effect by NeuralStagger grows
as we use larger sH , sW and sT . However, these decom-
position factors cannot be arbitrarily large. We conclude
two potential constraints, i.e., the increased complexity of
the learning task and the information loss in the input. We
would like to leverage the following 2-dimensional diffu-
sion equation with the periodic boundary condition as an
example to explain the two constraints,

∂u(x, y, t)

∂t
= ∆u(x, y, t), x, y, t ∈ [0, 1], (8)

u(x, y, 0) = f(x, y), x, y ∈ [0, 1], (9)

where u is the density function of diffusing material, ∆ is
the Laplacian operator and f is the function of the initial
condition. We use the regular mesh with d points in total
and leverage the central difference scheme with the spatial
step ∆x and temporal step ∆t. Then the PDE is transformed
into a matrix equation on the discretized solution at a certain
time t, denoted by ût ∈ Rd.

Increased complexity of learning task. For the temporal
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dimension, we find that the larger decomposition factor
might make the mapping from the input to the prediction
more complex. For the linear diffusion equation, we can
explicitly calculate the transfer matrix from ûi to ûi+∆t

based on the matrix equation. Suppose the transfer matrix
is Ti ∈ Rd×d. By iterative applying the transfer matrix, we
can get the transformation from the initial condition û0 to
the solution at any time step k as follows,

ûk∆t = û0

k−1∏
0

Ti. (10)

For notational simplicity, we denote the resulting transfer
matrix from û0 to ûk∆t as Tk. By certain arrangements, Tk
is a band matrix where the non-zero values are centralized
around the diagonal. The bandwidth indicates the sparsity
of the matrix as well as how local the points in the mesh
entangle with each other. We observe that the bandwidth
grows linearly with regard to k. For example, Figure 2
shows the case of d = 642. When the k ≥ 60, the matrix is
dense and every element in ûk∆t is a weighted summation of
almost all the elements in ût. This indicates that increasing
k may make the entanglements between the grid points more
complex, leading to a harder learning task for the neural
network.

Information loss. By spatial decomposition, each subgrid
only reserves a small part of the original grid. Obviously,
it may introduce the problem of information loss if the
dropped points are important for the prediction in the sub-
tasks. Here we theoretically characterize the information
loss caused by spatial decomposition under the linear model
setting, i.e., f(ût) = ûtW

∗. Consider the diffusion equa-
tion and the corresponding matrix equation. With some
abuse of notation, the superscript i denotes the index of
training samples, such as ûit and the bold symbol without
the superscript i denotes the matrix composed of all the
samples, such as ût. With N training samples, the physics-
constrained loss aims to learn the parameters W ∗ of the
linear model that satisfies:

W ∗ = argmin
W

1

N

N∑
i=1

∥ûitW − yi∥2, (11)

where yi denotes the rest parts of the matrix equation.

By applying spatial decomposition, the input and out-
put are equally partitioned into K = sHsW subgrids
{û1t , · · · , ûKt } and {û1t+1, · · · , ûKt+1}. Then according to
the physics-constrained loss, the optimization goal becomes:

W ∗
1 , · · · ,W ∗

K = argmin
W1,··· ,WK

1

N

N∑
i=1

K∑
k=1

∥(ûi,kt Wk − yi,k)∥2,

(12)

where Wk ∈ Rm×m,m = d/K for k = 1, · · · ,K. The
next proposition shows a sufficient condition for equal pre-
diction for Eq.(11) and Eq.(12).

Proposition 3.1. If rank(ût) = rank(ûk
t ), the model

ûtW
∗ and ûk

tW
∗
k will make the same prediction on yk.

We put the proof in Appendix A.1. In practice, the propo-
sition is held approximation in many physical scenarios.
This is because local patches of size sHsW do not distribute
arbitrarily in the ambient space RsHsW , but rather live in
some low-dimensional manifold. Hence, there is much in-
formation redundancy in ût and with careful settings of sH
and sW , the rank after the decomposition does not change
much.

In addition, the information loss can be made up by adding
information that describes the local patches to the input.
Such supplementary information can be extracted by either
neural network layers or feature engineering, which can
be designed for specific problems. In Section 4.4, we test
several choices of design for fluid dynamics systems.

4. Experiments
To evaluate the acceleration effect and accuracy of the pro-
posed method, we test three cases of fluid dynamics simu-
lation governed by the Navier-Stokes equation. We first
target two benchmark settings, i.e., the periodic bound-
ary condition and the lid-driven cavity boundary condi-
tion (Zienkiewicz et al., 2006). In both settings, the initial
condition changes, and the neural PDE solver learns to gen-
eralize to various initial conditions. Next, we test the more
challenging case called flow around obstacles in both the
2-dimensional (30 thousand grid points) and 3-dimensional
(∼0.5 million grid points) cases. The neural PDE solver
is trained to generalize to different obstacles as well as ini-
tial conditions. Thirdly, we evaluate the capability of the
learned solvers to handle the inverse problem. At last, we
also demonstrate that adding supplementary information to
the input helps alleviate the problem of information loss.

In general, we consider the incompressible Navier-Stokes
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Figure 3. Tests on Navier-Stokes equation with (left) periodic boundary condition and (right) Lid-driven cavity boundary condition.

equation as follows:

ρ

(
∂v⃗

∂t
+ (v⃗ · ∇)v⃗

)
= −∇p+ µ∆v⃗ + f⃗ (13)

∇ · v⃗ = 0 (14)

where v⃗ is the fluid velocity field, p is the pressure field,
µ is the viscosity, and f⃗ is the external force. In all exper-
iments, we trained neural networks with Adam optimizer
and decayed learning rates. The speed-up effect is mainly
evaluated with the computational load called GMACs (Giga
multiply-accumulate operations) per GPU card rather than
the inference time of the neural network because it depends
largely on the computational hardware. See Appendix A.2
for more details on the implementation.

4.1. Periodic and Lid-driven cavity boundary condition

We first test the Navier-Stokes equation with the periodic
boundary condition and the lid-driven cavity boundary con-
dition. In both cases, the physics-constrained loss is ob-
tained by discretizing the vorticity-stream equation with the
central-difference scheme and the Crank-Nicolson method
in the 64 × 64 regular mesh. The time step ∆t is 1e − 2
and the viscosity ν is 1e− 3. We use the popular FNO (Li
et al., 2020a) to test the accuracy and speed in different set-
tings of decomposition factors. The ground truth is obtained
by FDM. We evaluate the accuracy by auto-regressively
running the inference of the neural solver across the target
length along time LT and compare the terminal state with
that from the ground truth. Note that we compare all the re-
sults on the original mesh and thus the spatially decomposed
results reconstruct to the 64× 64 resolution for evaluation.
We measure with the relative error which is calculated by
dividing the L2 norm of the error by the L2 norm of the
ground truth. The measurement is denoted by Error-k where
k is the number of time steps. Following the notations in
Section 3.2, the decomposition factors along x dimension, z
dimension, and the temporal dimension are denoted by sW ,
sH , and sT . In general, NeuralStagger achieves acceleration
in both cases without losing much accuracy. As you can

see in Figure 4, the coarse-resolution solver is also accurate
when applied alone without reconstruction.

In the case of the periodic boundary condition, the target
length along time LT equals 2, which is 200 time steps. The
flow is driven by the external force f⃗ , which is introduced
in Appendix A.2. As you can see in Figure 3 (left), the
relative errors of the learned neural solvers are lower than
0.2% in all settings of spatial and temporal decomposition
factors. In terms of speed, with the most aggressive setting
sT = 40, sH = sW = 2, and full parallelism, the GMACs
of the 200-time-steps inference decrease from 31.92 to 0.24,
which is 133 fold reduction, corresponding to 47× speed-up
in time if the inference is conducted on A100 cards. We
can also observe some trends in accuracy with regard to the
choice of spatial and temporal factors. Error-1 grows like a
linear function with the temporal factor sT in both spatial
factor settings. The reason is that the learning task becomes
more complex as we discuss in Section 3.3, and with the
neural network unchanged, the accuracy drops. Meanwhile,
the accumulated errors, i.e., Error-200, almost keep at the
same level. This is because the steps in the auto-regressive
procedure reduce as sT grows, e.g., when sT = 40, the
neural networks for subtasks only predict 200/40 = 5 steps
ahead. The benefit perfectly neutralizes the detriment of the
increased task complexity.

In the case of the lid-driven cavity boundary condition, the
fluid acts in a cavity consisting of three rigid walls with
no-slip conditions and a lid moving with a steady tangential
velocity 1. We set the length of time LT = 27, much
larger than that with the periodic boundary, to see if the
simulation converges to the right steady state. With larger
LT , we try larger temporal skip factors such as sT = 108.
As is shown in Figure 3 (right), the relative errors are all
controlled below 0.5% even after 2700 time steps. Again,
with the most aggressive setting sT = 108, sH = sW = 2
and full parallelism, the GMACs per card of 2700-steps
inference decreases from 404.92 to 1.12, which is 362 fold
reduction, corresponding to 119× speed-up in time with
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{100x100, =8}Δt

{32x32, =1.08}Δt {64x64, =0.01}Δt

{100x300, =4}Δt

{32x32, =0.4}Δt {64x64, =0.01}ΔtReference Reference

Reference

Figure 4. The predictions in two resolutions. Top: lid-driven cavity boundary condition (left) and periodic boundary condition (right) and
Bottom: flow around obstacles.

A100 cards. Different from the periodic boundary condition,
the accuracy drops when we increase sT , because in this
case, the increase of sT brings more detriments of task
complexity than the benefits from the shorter auto-regressive
sequence.

4.2. Flow around obstacles

In this section, we evaluate NeuralStagger in a larger and
more complex setting called flow around obstacles. The set-
ting is the same as that used in (Wandel et al., 2020), which
is also our baseline. The fluid runs through a pipe, where we
put different shapes of obstacles to affect the flow, including
rotating cylinders and walls constructing a folded pipe. The
external forces in Eq. 13 are neglected and set to 0. The
neural solver is trained to generalize to different settings of
the obstacles, including the shape and the velocity on the
surface as well as the inflow/outflow velocities. Then we
evaluate the neural solver in 5 randomly sampled configura-
tions in both the cylinder case and the folded pipe case. You
may refer to Appendix A.2 for more details. We leverage
the same configurations as that in Wandel et al. (2020) in-
cluding the discretization method, the physics-constrained
loss, training strategies, the input features, the predicted
variables as well as the evaluation metric. Specifically, the
rectangular domain is discretized into a 100× 300 regular
mesh and ∆t = 4. The physics-constrained loss is used as
the evaluation metric, measuring to what extent the predic-
tion at the next time step satisfies the PDE given the current
fluid state and the boundary conditions. As the fields of the
fluid change much over time, we maintain a training pool
initialized with a set of initial conditions and incrementally
enrich it as the training goes on. This is achieved because
the predictions from the neural network can be seen as new
data if the neural network has been well-fitted in the current
pool. One can refer to Wandel et al. (2020) for more details.

Wandel et al. (2020) leverages U-net as the neural solver, but
to demonstrate the full potential of NeuralStagger, we also

try the other two neural network architectures, i.e., FNO
and LordNet (Shi et al., 2022) which also leverages the
physics-constrained loss to train the neural PDE solver. The
experiments in Table 1 show that LordNet outperforms the
other two neural networks in the baseline setting without
NeuralStagger. Therefore, we use LordNet for further ex-
periments on the choice of spatial and temporal factors (see
the performance on other networks in Appendix A.5). We
find that in this case, the information from the 100 × 100
grid (sH = 1, sW = 3) is sufficient to achieve compara-
ble results to the U-net baseline, while larger spatial steps
will introduce too much information loss. In addition, we
observe that increasing the temporal factors hurts the accu-
racy more obviously than those in the periodic boundary
condition and the lid-driven boundary condition, though the
accuracy is still comparable to U-net even with sT = 16.
We believe this is because the dataset is incrementally ex-
plored by maintaining a training pool and enriching it with
the neural network’s predictions during training while those
predictions may not be accurate. As the physics constrained
loss is defined on ût+(sT−1)∆t and ût+sT∆t, inaccurate
ût+(sT−1)∆t may mislead the neural network to the wrong
direction. When we increase sT , more errors will be accu-
mulated along the sequence from ût the ût+(sT−1)∆t and
the training will be harder. Designing training algorithms
to support NeuralStagger better remains unexplored and we
leave it for future work.

In terms of speed, the choices of spatial and temporal factors
lead to different levels of acceleration, as is shown in Table 1,
where GMACs per card is the average computational load
of simulation for 16 timesteps. As you can see, for Lord-
Net, there is an approximately linear relationship between
GMACs per card and the inverse of each decomposition
factor. The largest factor configuration to keep the accuracy
comparable to the baseline is sT = 16, sH = 1, sW = 3,
leading to the largest decrease in GMACs per card, i.e., 1/58
of LordNet without NeuralStagger, which can be attributed
to 1/16 from the decrease of temporal steps and approxi-
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mately 1/4 from the decrease of the neural network size
and input size. The actual speed-up effect depends on the
hardware devices we use. For example, when tested with
NVIDIA RTX 2080ti, it leads to 23× speed-up and when
tested with A100, it leads to 17× speed-up as the baseline
of LordNet is already very fast.

Table 1. The Performance of NeuralStagger with different decom-
position factors and neural networks in the flow-around-obstacles
settings.

Config Temporal Spatial Folded Cylinder GMACs
factor factors pipe per card

U-net - - 6.32 e-5 1.24 e-4 29.60
FNO - - 4.01 e-4 4.54 e-4 18.51

LordNet

- - 1.05 e-5 4.11 e-5 71.04
1 (1, 3) 2.21 e-5 8.97 e-5 19.84
1 (2, 6) 5.00 e-4 2.98 e-3 4.46
2 (1, 1) 3.59 e-5 7.68 e-5 35.52
2 (1, 3) 5.51 e-5 1.19 e-4 9.92
8 (1, 3) 3.93 e-4 6.60 e-4 2.48
16 (1, 3) 3.47 e-4 8.55 e-4 1.24

Accelerations in the 3D case. We would like to further
stress that the acceleration effect by the spatial decomposi-
tion is even larger in 3-dimensional scenarios. Following
the work (Wandel et al., 2021a), we test the 3-dimensional
flow around obstacles case with U-net3d, FNO3d, and Lord-
Net3d. In this case, the rectangular domain is discretized
into 128×64×64 regular mesh and ∆t=4. We still train the
neural network for the fluid dynamics from scratch like what
we have done in 2-dimensional cases. More details and re-
sults can be found in Appendix A.2. We evaluate the choice
of decomposition factors per dimension. As you can see in
Table 4.2, without losing much in accuracy, i.e., keeping the
PDE residuals in the same magnitude, the spatial decompo-
sition alone can introduce up to about 19 fold decrease on
GMACs. What’s more, the experiments demonstrate that
for more realistic and challenging tasks, e.g. learning 3D
fluid dynamics, the NeuralStagger can still work well.

Table 2. The performance of NeuralStagger with different neural
networks in the 3-dimensional flow-around-obstacles setting.

Network Spatial PDE GMACs
factors residual per card

U-net3d - 1.05 e-4 62.73
FNO3d - 1.15 e-4 21.89

LordNet3d
- 1.01 e-4 73.86

(2,2,2) 4.54 e-4 8.23
(4,2,2) 4.67 e-4 3.99

4.3. Application in optimal control

To further showcase the capability of the neural solver with
NeuralStagger on the inverse problem, we conduct the opti-
mal control experiment introduced in Wandel et al. (2020).
The task is to change the flow speed to control the shedding
frequency of a Kármán vortex street behind an obstacle.
Here, we take an example of LordNet using NeuralStagger
with setting sH = 1, sW = 3, sT = 2, which outperforms
the baseline U-net in Table 1. We observe that it tackles
this inverse problem much faster and also stabler than the
baseline does. One may refer to Appendix A.3 and Figure 5
for more details about the settings and results.

4.4. Supplementary to the information loss

As is discussed in Section 3.3, introducing supplement infor-
mation can alleviate the bad influence of spatial decompo-
sition on accuracy. We design and try two methods for the
fluid cases. The first is the vorticity field that describes the
local spinning motion of the fluid. While it introduces an
additional input channel, the computational overhead does
not increase much as we only change the first layer to fit the
input size. The second is to add positional encoding (PE)
that embeds the coordinates in the original grid to each of
the input channels so as to help distinguish different sub-
tasks. One may refer to Appendix A.4 for more details. As
is shown in Table 3, with either choice, we observe obvious
performance gains in the flow around obstacles case.

Table 3. The performance of U-net w/wo the supplement informa-
tion in flow-around-obstacles setting.

Spatial Folded pipe Cylinder
factors None Vorticity PE None Vorticity PE

(1,3) 1.94e-4 1.79e-4 8.06e-5 2.84e-4 2.56e-4 1.46e-4
(2,6) 4.35e-4 2.28e-4 2.93e-4 1.09e-3 6.21e-4 7.46e-4

5. Conclusion and Limitation
We present NeuralStagger, a general framework for acceler-
ating the neural PDE solver trained by physics-constrained
loss. By spatially and temporally decomposing the learning
task and training multiple lightweight neural networks, the
neural solver is better paralleled and much faster with suffi-
cient computational resources. In addition, each lightweight
neural network is naturally a coarse-resolution solver and
they bring the flexibility of producing the solutions on mul-
tiple levels of resolution, which is important for balancing
the resolution and computational resources. We discuss
the choice of decomposition factors and empirically test
their influence on accuracy and speed. The experiments in
fluid dynamics simulation show that NeuralStagger brings
an additional 10 to 100× speed-up over SOTA neural PDE
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solvers with mild sacrifice on accuracy.

One limitation of our work is that we only define the spatial
decomposition over regular meshes, while it turns to the
non-trivial vertex coloring problem for irregular meshes.
Heuristic coloring algorithms would be useful for this prob-
lem, and we would like to explore it in future works.
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A. Appendix
A.1. Information loss caused by spatial decomposition

In this section, we provide the proof to proposition 3.1 in
the linear model setting. In this section, we will theoret-
ically characterize the information loss caused by spatial
decomposition under the linear model setting. Note that
the proof is done on the 1-dimensional diffusion equation
with the explicit method for ease of understanding, but as
we will see, the conclusion is the same in the case with 2
dimensions or the implicit method.

We consider a simple 1d partial differential equation with
Dirichlet boundary condition:

∂tu = ∆u, x ∈ Ω (15)
ut(x) = ft(x), x ∈ ∂Ω (16)

Discretizing the function u on grid (x1, · · · , xd), we denote
ûj = u(xj). We consider the finite difference discretization:

ûjt+1 − ûjt
δt

=
(ûj+1

t − ûjt )− (ûjt − ûj−1
t )

δx2
, xj ̸= {x1, xd}

(17)

ûjt+1 = ft+1(xj), xj = {x1, xd} (18)

Given the input ût ∈ Rd and output ût+∆t ∈ Rd, the output
ût+∆t is parameterized by linear model as ût+∆t = ûtW
where W ∈ Rd×d denotes the learned parameters. The
physics constrained loss aims to learn the parameters W ∗

of the linear model that satisfies:

W ∗ = argmin
W

1

N

N∑
i=1

∥ûitW − yi∥2, (19)

where i denotes the index of training samples and
yj = ft+1(xj), xj = {x1, xd}; yj = ûjt −
δt
δx2

(
(ûj+1

t − ûjt )− (ûjt − ûj−1
t )

)
, xj ̸= {x1, xd}.

By applying spatial decomposition, the input and output
are equally partitioned into K blocks {û1t , · · · , ûKt } and
{û1t+∆t, · · · , ûKt+∆t}. Each block contains d/K coordi-
nates Then according to the MSR loss, the optimization
goal becomes:

W ∗
1 , · · · ,W ∗

K = argmin
W1,··· ,WK

1

N

N∑
i=1

K∑
k=1

∥(ûi,kt Wk − yi,k)∥2,

(20)

where Wk ∈ Rm×m,m = d/K for k = 1, · · · ,K.

Proof: We first consider the case that
∑N

i=1(û
i,k
t )τ ûi,kt

is full rank. The minimizer of Eq.(20) is W ∗
k =

(
∑N

i=1(û
i,k
t )τ ûi,kt )−1(

∑N
i=1(û

i,k
t )τyi,k). We denote the

matrix A = (
∑N

i=1(û
i,k
t )τ ûi,kt )−1, We construct a d × d

matrix B by letting B(k+ id/K, k+ jd/K) = A(i, j), for
i = 0, · · · , d/K; j = 0, · · · , d/K; otherwise, B(i, j) = 0.
Then it is easy to check that the matrix B is the pseudo-
inverse of

∑N
i=1(û

i
t)

τ ûit. The minimizer of Eq.(19) is
(Bartlett et al., 2020) B(

∑N
i=1(û

t
i)

τyi). As the matrix
B only has non-zero values on the coordinates that cor-
respond to the k-th block, we have the k-the block of
W ∗ equals W ∗

k and other blocks equal zero matrices. De-
noting the matrix composed of all the samples with the
bold symbol without the superscript i such as ût for

{
ûit
}

and ûk
t for

{
ûi,kt

}
, we have

∑N
i=1(û

i,k
t )τ ûi,kt = (ûk

t )
τ ûk

t

and
∑N

i=1(û
i
t)

τ ûit = (ût)
τ ût. By Rank–nullity theorem,

it is easy to see that rank((ût)
τ ût) = rank(ût) and

rank((ûk
t )

τ ûk
t ) = rank(ûk

t ). Then we get the results
in the proposition.

For the case that
∑N

i=1(û
t,k
i )τ ût,ki ≤ d/K, we can select

its maximal linearly independent group to obtain its pseudo-
inverse and apply similar analyses to get the results. In the
case of the implicit method, the term ûitW in the physics
constrained loss becomes ûitWV where V is an invertible
matrix. This also does not change the conclusion.

A.2. Implementation details

We implemented FNO with the original 2-dimensional ver-
sion in the official repository, where we set the truncation
mode to 12 and the width to 64. For the LordNet, we only
stack 2 Lord modules and fix the channel count to 64 in
all layers. In the position-wise embedding of the 2 Lord
modules, we stack two 1×1 Convolutional layers, where the
hidden embedding contains 256 and 128 channels separately,
and GELU activation is used between the Convolutional lay-
ers. The implementation of Unet is based on the U-Net
architecture (Ronneberger et al., 2015) with 20 hidden chan-
nels, which is consistent with that in (Wandel et al., 2020)
The learning rates and training samples are described as
follows. To keep out the potential influence of computa-
tional resources like cores and memory, we test the speed of
NeuralStagger under the setting that each coarse-resolution
solvers have sufficient resources to use. Therefore, we run
each solver on Nvidia A100 GPUs with the batch size equals
to 1. The time per step shown in Table 1 is calculated by
dividing the inference time of the coarse-resolution solver
by the temporal factor sT . The time of decomposition and
reconstruction is ignored because the operation supported
by ‘pixel shuffle’ is super efficient. We also calculated
GMACs (Giga multiply-accumulate Operations) per card,
which is the average computational load of simulation for 16
timesteps. Note that for the GMACs of FFT operation, we
calculate it by 2Nlog2N , where N is the number of spatial
grids.
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Periodic Boundary Condition We generate the data with
random fields to generate a periodic function on a 64×64
grid with a time-step of 1e-2 where we record the solution
every time step, where the external force is fixed f(x) =
0.1sin(2π(x + y)) + cos(2π(x + y)). For the perioidc
boundary and lid-driven boundary conditions, we use the
vorticity-stream function form of Eq. 13 as the physics-
constrained loss. With the Helmholtz decomposition to
Eq. 13, we rewrite the Navier-Stokes equation:

∂ω

∂t
= −∂ψ

∂y

∂ω

∂x
+
∂ψ

∂x

∂ω

∂y
+

1

Re

(
∂2ω

∂x2
+
∂2ω

∂y2

)
(21)

∂2ψ

∂x2
+
∂2ψ

∂y2
= −ω, (22)

where ω is the vorticity function, ψ is the stream func-
tion, and Re is the Reynolds number. The initial condition
ω0 is generated by random field satisfying the distribution
N

(
0, 83(−∆+ 64I)−4.0

)
. We use 6000 states for training.

In this case, we use FNO to test NeuralStagger and decay
the initial learning rate 3e-3 with a factor of 0.9 every 5000
iterations.

Lid-driven Cavity boundary condition We generate data
on a 64×64 domain but we train the neural network to
predict the values of ψ inside the boundary, which is a 2-
dimensional matrix of the shape (H − 2)× (W − 2). The
random initial conditions are generated in the same way as
the periodic boundary conditions. To make the initial state
consistent with the boundary condition, we solve with the
numerical solver for the first T0 = 1.98 and use ωT0

as the
initial state. We use 8200 states for training with FNO, and
decay the initial learning rate 3e-3 with a factor of 0.9 every
10000 iterations.

Flow around Obstacles The data generation is the same as
the setting used in (Wandel et al., 2020), where the resolu-
tion of the domain is 100×300, ∆t = 4, ρ = 4, µ = 0.1. In
training, different types of environments are used including
magnus, box, and pipe. The locations and the velocity are
variable during the training, e.g., the velocity is ranged from
0.0 to 3 m/s, the diameter of the obstacle is ranged from 10
to 40, and the coordinate x of the location is randomly from
65 to 75 and the coordinate y of that is from 40 to 60. And
then for the test, we randomly select the location and flow
velocity to test and in our experiment, the Reynolds number
of tests is 517. In this case, we train the model from scratch
without any data for sT = 1. For sT > 1, we use the bench-
mark to pre-generate the initial sequence û0,sT for training.
During the training, the predicted samples ûsT ,sT are not
accurate, and feeding them into the training pool might col-
lapse the training. Thus, we use the benchmark to correct
the parts of predicted samples ûsT+1,sT−1. The learning
rate is 1e-3 for Lordnet and 3e-3 for FNO, both with a factor
of 0.9 every 5000 iterations. The quantitative comparison in
this paper is conducted on a 100×300 grid. For the optimal

control of the vortex shedding experiment, the domain size
is 100×300, and used the trained neural PDE solver based
on the above training settings. The Reynolds number here
is 880. The optimizer for both Unet and LordNet is Adam
optimizer with a learning rate of 1e-3.

3-dimensional Flow around obstacles Similar to the 2-
dimensional case, the training and testing were conducted in
a 128×64×64 domain with ∆t=4 and the neural networks
are trained from scratch. In training, various types of en-
vironments are used in which including obstacles such as
boxes, spinning balls, or cylinders. The locations of the
obstacles and inflow/outflow velocities are variable, e.g.,
the velocity is ranged from 0.0 to 3.0 m/s, the diameter of
the obstacle is ranged from 10 to 45, and the coordinates,
y and z, of the location is randomly from 22 to 42 and the
coordinate x of that is from 22 to 42 and 86 to 106. And then
for the test, we choose the same benchmark test in (Wandel
et al., 2021a) to compare the performance of different neural
networks and different spatial-temporal factors. We use a
learning rate of 1e-3 and Adam optimizer to train the model.
The networks used are extensions of the original networks to
the 3D version. The U-net3d (baseline) is the version from
the repository of (Wandel et al., 2021a). For the FNO3d,
we set the truncation mode to 12 and the width to 64. For
the LordNet3d, we only stack 2 Lord modules and fix the
channel count to 64 in all layers. The quantitative com-
parison is based on the PDE residuals on the 128×64×64
domain. Here, the GMACs are the cost for one timestep of
simulation.

Difference scheme We use the 2nd-order central finite dif-
ference, while staggered Marker-And-Cell (MAC) for the
Flow around obstacles, which is the same as the benchmark
(Wandel et al., 2020). It is worth noting that the application
of a higher-order finite difference method would incur ad-
ditional computational costs during the calculation of the
physics-constrained loss in the training process. However,
it would not impact the inference stage of the model.

A.3. Application in optimal control

The example of the inverse problem used in this paper is
the same as the one in Wandel et al. (2020). The goal is to
change the flow speed to control the shedding frequency of a
Kármán vortex street. The shedding frequency is estimated
by the frequency spectrum V (f) of the y-component of
the velocity field behind the obstacle over 200 time steps,
denoted by E

[
|V (f)|2

]
. We define the loss function L =(

E
[
|V (f)|2

]
− f̂

)2

, where f̂ is the target frequency. Then
we compute the gradient of the velocity with regard to the
loss by auto-differentiation through the neural solver and
leverage Adam optimizer (Paszke et al., 2017; Kingma &
Ba, 2014) to update the velocity. We compare the result of
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the learned model with the setting sH = 1, sW = 3, sT = 2
to that shown in Wandel et al. (2020). As is shown in
Figure 5, the velocity controlled by LordNet converges to
the target velocity with fewer iterations.
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Figure 5. The optimization curve of the frequency control for vor-
tex streets. The U-net converged after almost 72 iterations, while
the LordNet using NeuralStagger converged after 55 iterations.

A.4. The alleviation of the accuracy decrease from the
spatial decomposition

Adding supplement information that could communicate the
information between decomposed patches can alleviate the
accuracy decrease due to the information loss. For example,
vorticity, which describes the local spinning motion of the
fluid, is defined by

ω =
∂vy
∂x

− ∂vx
∂y

. (23)

It contains the communications between the velocity compo-
nent in different directions, which is suitable to make up the
lost information to improve the accuracy. Another way is to
embed the coordinates using positional encoding (Vaswani
et al., 2017) (PE) as the additional input feature and then
add them to the input of the neural networks to improve the
accuracy.

Here we take the 2-dimensional flow around obstacles cases
to test. For the LordNet, its capacity will decrease when
applied to the coarse-resolution grids. For the FNO, the
main feature is embedded into the Fourier domain, whose
information is well-reserved if the physical fields are smooth
and the samples are not aliasing. Both of them will introduce
ambiguous factors to the demonstration. To focus on the
demonstration of the help of supplement information for
accuracy improvement, we select the Unet to test. As shown
in Table 3, when there is no network capacity decrease, the
accuracy decrease of the NeuralStagger can be improved

by introducing supplement information. Notice that, for the
way of PE, there is no increase in the parameter size. For
the way using vorticity, the input channel will increase by
1, yielding the increase of the parameter and computational
overhead, but they can be ignored because it just influences
the first layer to fit the input size.

A.5. The full results of three cases with different
spatial-temporal factors

The full results of three cases with different spatial-temporal
factors are presented in Tables 4, 5, 6, 7.

Table 4. Tests on Navier-Stokes equation with periodic boundary
condition.
Temporal LT = 2, (1,1) LT = 2, (2,2)
Skipping Error-1 Error-200 Error-1 Error-200.

1 0.0000058 0.0011939 0.0000074 0.0016352
5 0.0000297 0.0012140 0.0000308 0.0016848

10 0.0000626 0.0013126 0.0000654 0.0016719
20 0.0001074 0.0011042 0.0001321 0.0017580
25 0.0001623 0.0013976 0.0001833 0.0017831
40 0.0002501 0.0012091 0.0002545 0.0012931

Table 5. Tests on Navier-Stokes equation with Lid-driven cavity
boundary condition.

Temporal LT = 27, (1,1) LT = 27, (2,2)
Skipping Error-1 Error-2700 Error-1 Error-2700.

1 1.82 e-5 0.00228 1.78 e-5 0.00283
27 3.76 e-4 0.00255 5.38 e-4 0.00390
54 8.78 e-4 0.00404 1.18 e-3 0.00420
108 1.86 e-3 0.00461 2.30 e-3 0.00478

A.6. Application to a larger-scale problem with large
Reynolds number

To showcase the effectiveness of the proposed method in
handling larger-scale problems with high Reynolds numbers,
we conducted experiments on the Navier-Stokes equation
with periodic boundary conditions. The resolution for this
case was set to 256×256, and the viscosity was set to 1e-4.
The results of these experiments are presented in Table 8.
In this particular case, which falls within the turbulence
regime (Li et al., 2020a), the results highlight the robust
performance of NeuralStagger in turbulent flows. Regard-
less of the spatial and temporal decomposition used during
training, the network’s predictions achieved a similar level
of accuracy.

To further demonstrate the effectiveness of the NeuralStag-
ger rather than a trivial interpolation, we compared the pre-
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Table 6. The Performance of NeuralStagger with different decom-
position factors and neural networks in the flow-around-obstacles
setting.

Config Temporal Spatial Folded Cylinder GMACs
factor factors pipe per card

U-net

- - 6.32 e-5 1.24 e-4 29.60
1 (1, 3) 1.94 e-4 2.84 e-4 9.76
1 (2, 6) 4.35 e-4 1.09 e-3 2.40
2 (1, 3) 6.76 e-4 9.12 e-4 4.88
8 (1, 3) 6.43 e-4 2.02 e-3 1.22
16 (1, 3) 1.11 e-3 3.70 e-3 0.61

FNO

- - 4.01 e-4 4.54 e-4 18.51
1 (1, 3) 6.01 e-4 1.01 e-3 6.22
1 (2, 6) 1.81 e-3 3.27 e-3 1.69
2 (1, 3) 3.88 e-4 6.74 e-4 3.11
8 (1, 3) 5.23 e-4 2.19 e-3 0.78
16 (1, 3) 5.77 e-4 3.49 e-3 0.39

LordNet

- - 1.05 e-5 4.11 e-5 71.04
1 (1, 3) 2.21 e-5 8.97 e-5 19.84
1 (2, 6) 5.00 e-4 2.98 e-3 4.46
2 (1, 3) 5.51 e-5 1.19 e-4 9.92
8 (1, 3) 3.93 e-4 6.60 e-4 2.48
16 (1, 3) 3.47 e-4 8.55 e-4 1.24

Table 7. The performance of NeuralStagger with different neural
networks in the 3-dimensional flow-around-obstacles setting.

Network Spatial PDE GMACs
factors residual per card

U-net3d
- 1.05 e-4 62.73

(2,2,2) 2.85 e-4 7.84
(4,2,2) 4.34 e-4 3.92

FNO3d
- 1.15 e-4 21.89

(2,2,2) 2.17 e-4 2.80
(4,2,2) 4.07 e-4 1.42

LordNet3d
- 1.01 e-4 73.86

(2,2,2) 4.54 e-4 8.23
(4,2,2) 4.67 e-4 3.99

Table 8. Further tests on Navier-Stokes equation with periodic
boundary condition.

Temporal LT = 2, (1,1) LT = 2, (2,2) LT = 2, (4,4)
Skipping Error-1 Error-200 Error-1 Error-200 Error-1 Error-200.

1 2.46 e-4 5.01 e-2 1.93 e-4 4.77 e-2 2.38 e-4 4.93 e-2
5 9.91 e-4 4.67 e-2 9.89 e-4 4.66 e-2 1.36 e-3 5.00 e-2
10 2.87 e-3 5.04 e-2 2.67 e-3 4.84 e-2 3.03 e-3 5.09 e-2

dictions from NeuralStagger to the interpolation-based re-
sults. As for spatial decomposition, given the initial states

and trained model with sT = 1, sH = sW = 2, the predic-
tion error is 1.93 e-4, while the error of the result via bilinear
interpolation based on the coarse-resolution field is 1.29 e-2.
As for temporal decomposition, given a sequence of states
û0,5 and the trained model with sT = 5, sH = sW = 1,
the average prediction error of predictions û6,4 is 9.88 e-4,
while the average error of results via the bilinear interpo-
lation based on the predicted states at 5 and 10 is 3.78e-3.
These tests mean the extra information, which satisfies the
equation, is contained in intermediate states.

A.7. The limitations of scalability to the irregular
meshes

As we mentioned earlier, one limitation of our work is that
the decomposition is specifically defined on the regular
meshes. To address this limitation, there are several well-
established numerical methods available to handle irregular
domains, such as the finite volume method with a triangular
mesh. To construct the physics-constrained loss in such
cases, we could adopt a similar approach to constructing
algebraic equations in those numerical methods. Specifi-
cally, the neural network takes the physical properties in
each volume as input and predicts the properties at the next
time step as output. Regarding the decomposition algorithm,
the key is to split the mesh into a fixed number of groups as
evenly as possible, enabling the neural network to learn each
subtask effectively. As it is unnecessary to strictly obey the
graph coloring rules, i.e., no adjacent nodes have the same
color, there is much flexibility in choosing or designing the
coloring algorithm. Taking the classical greedy algorithm
as an example, we can define a coloring order by depth-first
search in the mesh and assign a legal color to a node each
time. We can further reweigh the priority of color to the
inverse of the assignment times of that color so that each
group tends to have similar amounts of nodes.
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