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ABSTRACT

Post-training of pre-trained LLMs, which typically consists of the supervised fine-
tuning (SFT) stage and the preference learning (RLHF or DPO) stage, is crucial
to effective and safe LLM applications. The widely adopted approach in post-
training popular open-source LLMs is to sequentially perform SFT and RLHF/DPO.
However, sequential training is sub-optimal in terms of SFT and RLHF/DPO trade-
off: the LLM gradually forgets about the first stage’s training when undergoing the
second stage’s training. We theoretically prove the sub-optimality of sequential
post-training. Furthermore, we propose a practical joint post-training framework
that has theoretical convergence guarantees and empirically outperforms sequential
post-training framework, while having similar computational cost.

1 INTRODUCTION

Recent years have witnessed the great capabilities of large language models (LLMs) trained on a
large corpus of datasets (OpenAI, 2022; Dubey et al., 2024; Abdin et al., 2024). These models have
been applied to a wide range of tasks including virtual assistant (OpenAI, 2022), code development
(Roziere et al., 2023), and education/research (Achiam et al., 2023). Typically LLMs undergo the
pre-training phase and the post-training phase. The post-training phase adapts the pre-trained LLM to
specific tasks, thus is crucial to its successful applications.

The post-training phase of LLMs often has two stages (Abdin et al., 2024; Dubey et al., 2024):
the Supervised Fine-Tuning (SFT) stage and the preference learning stage. Typical methods for
preference learning include Reinforcement Learning from Human Feedback (RLHF) (Ouyang et al.,
2022), and Direct Preference Optimization (DPO) (Rafailov et al., 2024). Given this two-stage
process, a natural approach is to performing sequential training, e.g., first perform DPO then SFT or
vice verse. For example, the instruct variant of popular open-source models like PHI-3 (Abdin et al.,
2024) or LLAMA-3 (Dubey et al., 2024) sequentially undergo SFT and DPO training. Or in other
scenarios like continual learning of an aligned model, the process can be interpreted as sequentially
performing DPO/RLHF followed by SFT (Tang et al., 2020; Qi et al., 2023; Fang et al., 2024).

However, sequential training of RLHF and SFT is sub-optimal in terms of the trade-off between
preference learning and SFT. When the model is undergoing the second stage of training, it gradually
and inevitably forgets about the first stage’s training. In this case, we argue that even regularization
like KL divergence used in RLHF/DPO cannot avoid forgetting due to the data distribution shift
from the SFT dataset to the preference dataset. An illustration of the sub-optimality of sequential
post-training is shown in Figure 1 (left), where we observe that sequential training leads to the
increase of the DPO objective during SFT, resulting in a worse trade-off between the two objectives
than the method to be introduced in this work. Similar issue has also been observed in, e.g., (Qi et al.,
2023). To overcome this issue and achieve a better trade-off, a naive thought is to mix the preference
objective and SFT objective by minimizing their linear scalarization. However, the naive mixing
method is computationally inefficient in practice, since the optimization objectives are different with
different formats of data. The increased computational complexity can be observed in Figure 1 (right),
where mixing significantly increases the cost. The cost is prohibitively high in LLM training due to
the size of the model. Therefore, in this work, we aim to answer the following question:

Can we design a post-training framework that achieves better trade-off than the sequential training
method, while having reduced computational cost than naive mixing?

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

1.5 1.6 1.7 1.8 1.9 2.0 2.1
SFT Objective

0.0

0.2

0.4

0.6

0.8

1.0

RL
HF

 O
bj

ec
tv

e

Sequential
Mix
ALRIGHT
MAXRIGHT
Ideal Point

RLHF Optimality Gap SFT Optimality Gap Ideal Distance0.0

0.2

0.4

0.6

0.8

Performance Comparison
Sequential
Mix
ALRIGHT
MAXRIGHT

Increase in Runtime (%) Increase in GPU Utilization (%)
0

10
20
30
40
50
60
70

Resource Usage Comparison

Figure 1: Efficient Trade-off in RLHF and SFT Optimization. Sequential optimization, com-
monly used to align and fine-tune pre-trained models, often biases the model towards the last objective
it was optimized on, as illustrated by the optimization trajectories in the objective space (left) and the
performance comparison (top right, lower the better). In contrast, simultaneous optimization of a Mix
of RLHF and SFT objectives achieves a more balanced performance but requires significantly more
resources (bottom right, lower the better). We propose ALRIGHT and MAXRIGHT methods for
simultaneous RLHF and SFT optimization, offering an improved trade-off with minimal extra cost.

Our contributions. To this end, we propose a joint SFT and DPO training framework with the
ALRIGHT and MAXRIGHT variants. The contributions of this work can be summarized as follows:

C1) Insights into the forgetting issue of two-stage sequential training. We provide theoretical
results on the forgetting issue of sequential method, which is further supported by empirical
evidence. Specifically, we prove that sequentially doing DPO and SFT can have a non-
diminishing optimality gap. To our best knowledge, this is the first theoretical result on the
suboptimality of sequentially learning the SFT and DPO objectives. We further conduct
experiments on LLAMA-3-8B and PYTHIA-1B, empirical results support our claims.

C2) Principled post-training methods with almost no extra cost. We propose post-training al-
gorithms with theoretical guarantees, which outperform the sequential method while enjoying
lower computational cost than the mixing method. Specifically, we propose 1) ALternating
supeRvised fIne-tuninG and Human preference alignmenT (ALRIGHT) method, which prov-
ably converges to any desired trade-off between DPO and SFT objectives; and 2) MAXimum
supeRvised fIne-tuninG and Human preference alignmenT (MAXRIGHT) method, which
adaptively alternates between optimizing RLHF and SFT objectives.

C3) Strong empirical performance on standard benchmarks. Using the LLAMA3-8B model,
our methods outperform the sequential approach by up to 3% on the MMLU (1-shot) bench-
mark (Hendrycks et al., 2020) and achieve up to a 31% increase in win rate on the RLHF
dataset (evaluated by GPT-4-TURBO), with minimal additional computation.

Technical challenges. The main technical challenge lies in theoretically proving the issue of
forgetting when optimizing SFT and DPO losses (two log-likelihood functions). Existing lower
bounds for continual learning in non-LLM settings using SGD rely on quadratic objectives (Ding
et al., 2024), where iterate updates are more tractable due to the linear structure of the gradient.

However, the problem we address involves negative log-likelihood objectives, whose gradients are
non-linear with respect to the parameters. This non-linearity complicates the analysis, requiring
careful construction of an example that is guaranteed to exhibit undesirable performance. Additionally,
we must analyze the behavior of the updated parameters throughout both stages of optimization and
derive conditions that relate this behavior to the lower bound of the performance. We successfully
overcome these challenges, and the details of this analysis are provided in Appendix A.2.

2 PRELIMINARIES

In this section, we formally introduce the notations and problem setup for DPO and SFT.

Model. We denote the LLM parameter to be optimized for either RLHF or SFT by θ, and we use
πθ(y | x) to denote the LLM that generates an output y given an input x for an SFT or RLHF task.

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

DPO. We consider using DPO (Rafailov et al., 2024) to align θ with a preference dataset, given by
DDPO = {x(i)

DPO, y
(i)
w , y

(i)
ℓ }N1

i=1, where N1 is the number of data, x(i) are the inputs for the LLM, y(i)w

and y
(i)
ℓ are the chosen (preferred) and rejected (dispreferred) responses to x(i), respectively, for all

i ∈ {1, . . . , N1}. The DPO objective is given by

fDPO(θ;DDPO, πref, β) :=− 1
N1

∑
xDPO,yw,yℓ∈DDPO

[
log

(
σ

(
β log

(
πθ(yw | xDPO)

πref(yw | xDPO)

)
− β log

(
πθ(yℓ | xDPO)

πref(yℓ | xDPO)

)))]
,

(1)
where σ is the sigmoid function, πref is a given reference model, and β is a regularization constant
that penalize the objective when πθ(y | x) is diverging too much from πref(y | x) on x ∼ DDPO. In
sequential training, when DPO is performed before SFT, we use the model trained on the chosen
responses in DDPO as πref. When SFT is performed before DPO, the model obtained after the SFT
phase is used as the πref. Given a data point (xDPO, yw, yℓ), the gradient estimate of fDPO is given as

gDPO(θ;xDPO, yw, yℓ, πref, β) := − (1− σ(hβ(θ;x, yw, yℓ, πref)))∇θhβ(θ;xDPO, yw, yℓ, πref), (2)

where

hβ(θ;xDPO, yw, yℓ, πref) := β log

(
πθ(yw | xDPO)

πref(yw | xDPO)

)
− β log

(
πθ(yℓ | xDPO)

πref(yℓ | xDPO)

)
. (3)

For brevity, in the rest of the paper we will use fDPO(θ) for fDPO(θ;DDPO, πref, β), gDPO(θ;xDPO, yw, yℓ)
for gDPO(θ;xDPO, yw, yℓ, πref, β), and hβ(θ;xDPO, yw, yℓ) for hβ(θ;x, yw, yℓ, πref). Note that
1
N1

∑
xDPO,yw,yℓ∈DDPO

[gDPO(θ;xDPO, yw, yℓ)] = ∇fDPO(θ).

SFT. We denote the dataset used for SFT as DSFT = {x(i)
SFT , y

(i)}N2
i=1, where N2 is the number of

data points. The SFT dataset consists of input x(i) and corresponding target outputs y(i) for all
i ∈ {1, . . . , N2}. The objective used for fine-tuning θ for DSFT can be given as

fSFT(θ;DSFT) := − 1
N2

∑
xSFT,y∈DSFT

log(πθ(y | x)). (4)

Given a data point (xSFT, y), the gradient estimate for the objective fSFT is given as

gSFT(θ;xSFT, y) := −∇θπθ(y | xSFT)/πθ(y | xSFT). (5)

From this point, we will use fSFT(θ) for fSFT(θ;DSFT). Note that 1
N2

∑
xSFT,y∈DSFT

[gSFT(θ;xSFT, y)] =

∇fSFT(θ).

Performance metric and trade-off. In this work we investigate different methods for their performance
on both DPO and SFT tasks, simultaneously. Thus, to evaluate the performance of a model θ on fDPO

and fSFT, we define the optimality gap of a mixture of objectives as

GMix,λ(θ) := fMix,λ(θ)− f∗
Mix,λ, (6)

where λ ∈ [0, 1], fMix,λ(θ) := λfDPO(θ) + (1 − λ)fSFT(θ), and f∗
Mix,λ = minθ∈Θ fMix,λ(θ). Here

λ defines a trade-off between the DPO and SFT objective: a larger λ results in more emphasis on
the DPO performance compared to SFT. We say a model parameter θ achieves optimal trade-off
defined by λ when GMix,λ(θ) = 0. We chose this metric because, as established in multi-objective
optimization literature (Miettinen, 1999), the optimizer of GMix,λ(θ) for any λ ∈ [0, 1] will be ‘Pareto
optimal’. This means that no other solution can optimize both objectives simultaneously, and the
solution can be viewed as one of the optimal trade-off points for the problem of optimizing fDPO

and fSFT. Additionally, GMix,λ(θ) is differentiable when both fDPO and fSFT are differentiable, which
facilitates the theoretical analysis of gradient-based methods.

3 WHY SEQUENTIAL DPO AND SFT IS SUBOPTIMAL?

This section studies the sequential DPO and SFT method commonly used in the continual training of
aligned LLMs (see, e.g., Tang et al. (2020); Qi et al. (2023); Fang et al. (2024)). We give insights on
why such a sequential training framework is suboptimal in terms of DPO and SFT trade-offs.
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Figure 2: Consider a two-dimensional model and one data each for DPO and SFT optimization
setting. Sequential DPO and SFT (Left): The model oscillates between the optima of DPO and SFT
losses in weight space, resulting in a final trade-off that is significantly distant from the ideal point in
loss space, where both DPO and SFT loss values are optimal. ALRIGHT (Middle) / MAXRIGHT
(Right): The model directly navigates towards a point in weight space that is reasonably optimal for
both DPO and SFT objectives (average optimum), achieving a final trade-off of DPO and SFT losses
much closer to the ideal point compared to sequential DPO and SFT.

3.1 SEQUENTIAL TRAINING ALGORITHM AND ITS SUBOPTIMALITY

Following Rafailov et al. (2024), we first obtain a reference model πref by performing SFT on the
target outputs in the preference dataset DDPO. Given πref, we iteratively perform the DPO update as

θ1t+1=ΠΘ

(
θ1t − α1,tgDPO(θ

1
t ;x

t
DPO, y

t
w, y

t
ℓ)
)
, for t = 1, 2, . . . , TDPO − 1 (7)

where α1,t is the step size, xt
DPO, y

t
w, y

t
ℓ ∼ DDPO, gDPO is defined in (2), and TDPO is the number of

DPO iterations. Given the aligned model parameter θ1TDPO
, we next perform SFT updates as follows:

θ2t+1=ΠΘ

(
θ2t − α2,tgSFT(θ

2
t ;x

t
SFT, y

t)
)
, for t = 1, 2, . . . , TSFT − 1 (8)

where θ21 := θ1TDPO
, xt

SFT, y
t ∼ DSFT, gSFT is defined in (5), and TSFT is the number of SFT iterations.

This process is summarized in Algorithm 1. We next study why the sequential training is suboptimal.

Algorithm 1 Sequential DPO and SFT

1: Input DDPO, DSFT, {α1,t}TDPO
t=1 , {α2,t}TSFT

t=1
2: Phase 1: Optimize for fDPO

3: Initialize θ11 := θ1 ∈ Θ
4: for t = 1, . . . , TDPO − 1 do
5: Sample xt

DPO, y
t
w, y

t
ℓ ∼ DDPO

6: Update θ1t+1=ΠΘ

(
θ1t − α1,tgDPO(θ

1
t ;x

t
DPO, y

t
w, y

t
ℓ)
)

7: end for
8: Set θ̂DPO := θ1TDPO
9: Phase 2: Optimize for fSFT

10: Initialize θ21 := θ̂DPO

11: for t = 1, . . . , TSFT − 1 do
12: Sample xt

SFT, y
t ∼ DSFT

13: Update θ2t+1=ΠΘ

(
θ2t − α2,tgSFT(θ

2
t ;x

t
SFT, y

t)
)

14: end for
15: Output θ̂Seq := θ2TSFT

A toy illustration of suboptimality. At a
given phase of Algorithm 1, the algorithm
only focuses on optimizing one objective
(either fDPO or fSFT) and ignores the other.
This results in the model oscillating be-
tween the optimums of two objectives,
without converging to a point that is ‘rea-
sonably optimal’ for both objectives fDPO

and fSFT. We first illustrate this on a toy
example (see example details in Appendix
D.1). The results are depicted in Figure
2. For the weight space trajectory (Figure
2 upper-left), although there is a region
that is optimal for both DPO and SFT, the
sequential DPO and SFT method fails to
reach this region due to its focus on one
objective at a given phase. Furthermore,
from the loss space trajectory (Figure 2
lower-left), the model oscillates between
extreme trade-offs for DPO and SFT, and ends up at a point far away from the ideal point.
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3.2 THEORETICAL ANALYSIS OF SUBOPTIMALITY IN SEQUENTIAL METHOD

In this section, we provide a theoretical result on the suboptimal trade-offs between DPO and SFT in
sequential training. We view the LLM as a policy πθ that is characterized by a softmax:

πθ(y | x) := exp(θ⊤ϕy,x)∑
y′∈Y exp(θ⊤ϕy′,x)

,

where ϕy,x is a feature vector corresponding to the input x and the target output y. Furthermore,
reference policy πref is similarly parameterized by a fixed parameter θref.
Remark 3.1. The softmax characterization is also used in previous theoretical works on RLHF; see,
e.g., Zhu et al. (2023a). When the trainable parameter is the output projection weights, the LLM
is fully characterized by the softmax. In other scenarios like performing LoRA Hu et al. (2021) on
attention matrices or full-parameter training, we believe this characterization still provides valuable
insights and our result will be verified empirically later in the experimental section.

We make the following mild assumption on the features.

Assumption 3.1 (Bounded feature). For all x∈X and y∈Y , there exists Φ>0 such that ∥ϕy,x∥ ≤ Φ.

We can then have the following result for the sub-optimality of the output of Algorithm 1 to the
optimum of some combination of functions fDPO and fSFT in terms of GMix,λ.

Theorem 3.1 (Lower bound for sequential method performance ). Consider Algorithm 1 with
TDPO = TSFT = T under Assumption 3.1. Then there exists data DDPO and DSFT such that given any
λ ∈ (0, 1), Algorithm 1 with any sufficiently large T has non-diminishing performance gap:

E
[
λfDPO(θ̂Seq)+(1−λ)fSFT(θ̂Seq)−min

θ∈Θ

(
λfDPO(θ)+(1−λ)fSFT(θ)

)]
= Ω(1), (9)

where the expectation E[ · ] is taken over the randomness of Algorithm 1.

The above result suggests that there exists DPO and SFT optimization problems such that given any
trade-off between DPO and SFT defined by λ ∈ (0, 1), the sequential method suffers from constant
suboptimality gap, even when optimized for a large number of iterations. The reason for the constant
suboptimality gap is the sequential method described in Algorithm 1 suffers from forgetting, and
cannot appropriately optimize both the DPO and SFT objectives. In the next section, we explore
alternatives to the sequential method that can resolve this issue.

4 PROPOSED ALTERNATING TRAINING METHODS

In this section we introduce new algorithms with theoretically convergence guarantees, which also
outperforms sequential DPO and SFT empirically.

4.1 ALRIGHT FOR JOINT DPO AND SFT

The main disadvantage of using Algorithm 1 for DPO and SFT optimization is that at a given
phase of the algorithm, the model is updated with respective to only one objective. In contrast, it
is computationally intensive, if not prohibitive, to optimize a linear combination of both DPO and
SFT objectives. This is because, although the objectives share a single parameter, constructing two
computational graphs (one per objective) in standard machine learning libraries requires significant
additional memory, particularly for LLMs. To alleviate these problems, we propose to alternate
between optimizing for DPO and SFT objectives, based on a given preference for each objective. For
this purpose, we can define a modified objective

fAlt,λ(θ; i) = Ii=1fDPO(θ) + Ii=0fSFT(θ), (10)

where i ∼ Bern(λ), Bern(λ) is the Bernoulli distribution parameterized by λ ∈ [0, 1], and IA is the
indicator function of event A. Hence, the objective in (10) behaves as fMix,λ in expectation, i.e.

Ei∼Bern(λ) [fAlt,λ(θ; i)] = λfDPO(θ) + (1− λ)fSFT(θ) = fMix,λ(θ). (11)

5
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Algorithm 2 ALRIGHT
1: Input DDPO, DSFT, {αt}Tt=1,λ ∈ [0, 1]
2: Initialize θ1 ∈ Θ
3: for t = 1, . . . , T − 1 do
4: Sample it ∼ Bern(λ)
5: if it = 1 then
6: Sample xt

DPO, y
t
w, y

t
ℓ ∼ DDPO

7: θt+1=ΠΘ

(
θt−αtgDPO(θt;x

t
DPO, y

t
w,y

t
ℓ)
)

8: else
9: Sample xt

SFT, y
t ∼ DSFT

10: θt+1=ΠΘ

(
θt − αtgSFT(θt;x

t
SFT, y

t)
)

11: end if
12: end for
13: Output θ̂AL := θT

Algorithm 3 MAXRIGHT
1: Input DDPO,DSFT,{αt},λ∈ [0,1]. Initialize θ1∈Θ
2: for t = 1, . . . , T − 1 do
3: Sample xt

DPO, y
t
w, y

t
ℓ∼DDPO and xt

SFT, y
t∼DSFT

4: Evaluate
f̄1,λ(θt) :=λ (fDPO(θt;x

t
DPO, y

t
w, y

t
ℓ)−f∗

DPO)
f̄2,λ(θt) :=(1−λ) (fSFT(θt;x

t
SFT, y

t)−f∗
SFT)

5: if f̄1,λ(θt) ≥ f̄2,λ(θt) then
6: θt+1=ΠΘ (θt − αtgDPO(θt;x

t
DPO, y

t
w, y

t
ℓ))

7: else
8: θt+1=ΠΘ (θt − αtgSFT(θt;x

t
SFT, y

t))
9: end if

10: end for
11: Output θ̂MAX := θT

For optimizing Ei∼Bern(λ) [fAlt,λ(θ; i)], we first sample it ∼ Bern(λ) per iteration, which determines
the objective to be updated. Specifically, if it = 1, we update θ with respect to DPO objective as

θt+1=ΠΘ

(
θt − αtgDPO(θt;x

t
DPO, y

t
w, y

t
ℓ)
)
, (12)

where xt
DPO, y

t
w, y

t
ℓ ∼ DDPO, and αt is the learning rate. If it = 0, θ is updated using SFT objective as

θt+1=ΠΘ

(
θt − αtgSFT(θt;x

t
SFT, y

t)
)
, (13)

where xt
SFT, y

t ∼ DSFT. This process is summarized in Algorithm 2. Unlike the sequential method
that focuses on optimizing one objective at a time, the ALRIGHT approach integrates both objectives
simultaneously, allowing the model to balance alignment and fine-tuning performance. In Figure 2
(Middle), we can see how this alternating navigates the model to a point where the trade-off between
DPO and SFT is significantly better than the sequential approach.

Next, we provide the convergence guarantee of Algorithm 2 to a given DPO-SFT trade-off.
Theorem 4.1 (Upper bound for alternating method performance). Consider Algorithm 2 with αt =
α0/

√
T for all t ∈ {1, . . . , T} and α0 > 0. Then, under Assumption 3.1, for any λ ∈ [0, 1], we have

E
[
λfDPO(θ̂AL)+(1−λ)fSFT(θ̂AL)−min

θ∈Θ

(
λfDPO(θ)+(1−λ)fSFT(θ)

)]
= O

(
log T√

T

)
. (14)

Remark 4.1. The above result implies that the performance metric diminishes with increasing T , thus
we can achieve an arbitrary trade-off between DPO and SFT defined by λ up to arbitrary optimality,
by increasing the number of iterations T . This is in contrast to the lower bound result in Theorem
3.1 established for sequential training: there exist data sets such that the sequential method never
approaches optimal trade-off, even when trained for larger number of iterations.

While ALRIGHT offers theoretical convergence guarantees for any arbitrary trade-off in expec-
tation, the alternation between optimizing DPO and SFT objectives occurs randomly based on a
predetermined probability, which may introduce additional noise in the updates. This raises the
natural question: Can we design a performance-aware, adaptive alternating optimization method
with minimal additional computational resource usage compared to ALRIGHT? In the next section,
we will propose an alternative post-training method that adaptively selects the objective to optimize.

4.2 MAXRIGHT FOR JOINT DPO AND SFT

In this section, we introduce a method that can adaptively choose objective to be optimized based on
the current performance of θ, which can lead to faster convergence to a point that can perform well
for both DPO and SFT objectives. To this end, we first compare the current model’s performance on
fDPO and fSFT. Define the maximum (weighted) sub-optimality gap as

fMax,λ(θ) = max (λ(fDPO(θ)− f∗
DPO), (1− λ)(fSFT(θ)− f∗

SFT)) , (15)

where f∗
DPO = minθ∈Θ fDPO(θ) (similarly for fSFT(θ)), and λ ∈ [0, 1]. The idea is to optimize this

maximum sub-optimality to reach a balance between the two λ-scaled objectives. Define the index of
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the objective with maximum (weighted) sub-optimality gap as it = argmaxi f̄i(θt), where

f̄1,λ(θt) := λ
(
fDPO(θt;x

t
DPO, y

t
w, y

t
ℓ)− f∗

DPO

)
, and (16)

f̄2,λ(θt) := (1− λ)
(
fSFT(θt;x

t
SFT, y

t)− f∗
SFT

)
, (17)

where xt
DPO, y

t
w, y

t
ℓ ∼ DDPO and xt

SFT, y
t ∼ DSFT. Accordingly, we can update θ with respect to DPO

objective using update (12) when it = 1 (or equivalently, when f̄1,λ(θt) ≥ f̄2,λ(θt)), and update θ
with respect to DPO objective using update (13) otherwise. This process is summarized in Algorithm
3. We can see in the toy illustration (Figure 2 Right), that MAXRIGHT can converge closer to the
ideal point more directly compared to ALRIGHT, due to its performance based update of objectives.
Remark 4.2. It is a well-known fact in multi-objective optimization literature (Miettinen, 1999)
that under some assumptions on the problem setup, the solution of problem (15) for any λ ∈
[0, 1] is guaranteed to be Pareto optimal (i.e. no other solution can further optimize both the
objectives simultaneously). Furthermore, unlike the ALRIGHT algorithm, MAXRIGHT requires
prior knowledge or computation of f∗

DPO and f∗
SFT, adding to its overall computational budget. However,

this computation is performed once and can be reused across different implementations with varying
λ. Details on approximating f∗

DPO and f∗
SFT are provided in Appendix D.

Even though MAXRIGHT allows one to compute the index needed for selecting the objective with
a maximum (weighted) sub-optimality gap, in practice evaluating both objectives can be memory
intensive, and only one objective is updated at a given iteration. To alleviate this issue, we propose
to do simultaneous evaluations only every k steps. We call a time step that simultaneous evaluation
is done as a ‘max evaluation step’. At such time step t = t0, we compute it0 , and update the
corresponding objective as in Algorithm 3. After the update, we store the computed (weighted)
sub-optimality gap as f̄ stale,t0

1,λ = f̄1,λ(θt0) and f̄ stale,t0
2,λ = f̄2,λ(θt0). Then, for every iteration before

the next max evaluation step t0 + k, we choose the index of the objective to be optimized as

it0+k′ = argmax
i

f̄ stale,t0
i,λ , (18)

where k′ < k. Once the index is computed, we update the corresponding objective following (12) or
(13), and update the stale (weighted) sub-optimality gap as

f̄ stale,t0
i,λ = f̄i,λ(θt0+k′), if it0+k′ = i, (19)

where i ∈ {1, 2}. This process is summarized in Appendix B. With this modification, we can match
the evaluation and gradient computation complexity of Algorithm 2 in most iterations, at the expense
of degraded accuracy in choosing it.

5 RELATED WORK

RLHF. The most fundamental form of RLHF was introduced by Christiano et al. (2017) and has been
successfully used for aligning LLMs in many works such as OpenAI (2022); Ouyang et al. (2022);
Bai et al. (2022a;b); Sun et al. (2024). There have been many works on RLHF for LLM alignment,
including the more efficient direct preference optimization (Rafailov et al., 2024; Xu et al., 2024;
Lee et al., 2024; Zhong et al., 2024), reference model free preference alignment (Meng et al., 2024;
Hong et al., 2024b), generalized RLHF (Azar et al., 2024; Munos et al., 2023), safe RLHF (Dai
et al., 2023), group preference learning (Zhao et al., 2023; Chakraborty et al., 2024), and theory or
understanding of RLHF (Zhu et al., 2023a; Shen et al., 2024; Xiong et al., 2024; Wang et al., 2023;
Kirk et al., 2023). In this work, we consider DPO (Rafailov et al., 2024) which has been used in
training many popular open-source LLMs (Abdin et al., 2024; Dubey et al., 2024).

SFT. Another important step before using a pre-trained LLM in downstream applications is SFT
(Howard & Ruder, 2018; Devlin, 2018; Wei et al., 2021; Zhu et al., 2023b; Zhang et al., 2023b).
In recent years, there have been a large body of work on efficient LLM SFT; see, e.g., zeroth-
order fine-tuning (Malladi et al., 2023a), quantized fine-tuning (Kim et al., 2024; Li et al., 2023b),
parameter-efficient fine-tuning (Chen et al., 2023a; Zhang et al., 2023a; Shi & Lipani, 2023; Chen
et al., 2023b; Nikdan et al., 2024), truthful fine-tuning (Tian et al., 2023), robust fine-tuning (Tian
et al., 2024), SFT with data selection (Lu et al., 2023; Kang et al., 2024; Zhao et al., 2024), self-play
fine-tuning (Chen et al., 2024) and understanding of LLM fine-tuning (Malladi et al., 2023b).
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Figure 3: Comparison of proposed methods with first DPO then SFT using PYTHIA-1B model. Left:
Training trajectories in the objective space (e.g., DPO and SFT objectives). Right: Performance
comparison across multiple evaluation metrics, including optimality gap for DPO and SFT objectives,
ideal distance, runtime, and GPU utilization. The bar charts highlight the trade-offs and resource
efficiency of each method for different choices of (TDPO, TSFT) or λ.

Sequential RLHF and SFT Issues. Given the importance of both RLHF and SFT in LLM post-
training, they are implemented as a sequential recipe (one after the other) on a pre-trained LLM.
However, recent studies show that this either hinders the alignment performance (Qi et al., 2023), or
fine-tuning performance (Ouyang et al., 2022), depending on the order of applying RLHF and SFT.

Reconciling RLHF and SFT. Several methods have been proposed to reconcile RLHF and SFT in
post training. One line of work attempt to remove a separate RLHF phase by adding regularization
to SFT objective (Hong et al., 2024a), reformulation of SFT objective (Hua et al., 2024), and joint
training using demonstrations and RLHF (Li et al., 2024). However, these methods restrict the use of
different datasets for RLHF and SFT. Adaptive model averaging (AMA) (Lin et al., 2023) optimizes
RLHF and SFT separately to balance objectives, but the original AMA is computationally expensive,
requiring three sets of model parameters. While a memory-efficient AMA variant exists, its reliance
on imitation learning weakens ties to the original objectives, and the relationship between AMA
weights and optimal trade-offs remains unclear.

6 EXPERIMENTS

In this section we compare the proposed methods with some existing baselines, in terms of their
Pareto-front performance, and resource consumption such as computation time and memory usage.

6.1 EXPERIMENTAL SETUP

In this section, we introduce models, datasets, baselines, and evaluation metrics used to evaluate the
performance of our proposed methods. Additional experiment details are provided in Appendix D.

Models. We employ two architectures. The first is ELEUTHERAI/PYTHIA-1B1, a widely used model
balancing computational efficiency and performance. Despite not being designed for downstream
tasks, it matches or exceeds models like OPT and GPT-Neo of similar size. We use it to assess
optimization dynamics, performance trade-offs, and resource usage of proposed methods. The second

1https://huggingface.co/EleutherAI/pythia-1b
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Figure 4: Comparison of different choices of evaluation steps for MAXRIGHT with Pythia-1b model.

is META-LLAMA/META-LLAMA-3-8B2, a larger model suited for fine-tuning and downstream
real-world tasks. Both models are fine-tuned using Low-Rank Adaptation (LoRA) (Hu et al., 2021).

Datasets. For the DPO dataset, we use the DAHOAS/RM-HH-RLHF dataset, which contains human
feedback data designed to align models to human preference. For the SFT phase, we use the
VICGALLE/ALPACA-GPT4 dataset, which consists of English instruction-following data generated by
GPT-4 using Alpaca prompts, designed for fine-tuning LLMs.

Baseline Methods. Comparing the performance of ALRIGHT and MAXRIGHT, we use the following
baselines: Mix of DPO and SFT (‘Mix’), which simultaneously optimizes both DPO and SFT
objectives by optimizing a convex combination of the objectives, and Sequential DPO and SFT
(‘Sequential’), where DPO and SFT objectives are optimized one after the other.

Evaluation Metrics. To assess the performance of each method with respect to the DPO and SFT
objectives, we utilize several evaluation metrics. For evaluating the DPO objective, we measure
the optimality gap as fDPO(θ) − f∗

DPO, where f∗
DPO is approximated by independently optimizing

the DPO objective for the same number of iterations as used for the baselines and proposed meth-
ods. The optimality gap for the SFT objective is similarly defined using the optimal value f∗

SFT,
obtained by separately optimizing the SFT objective. To evaluate overall performance, we use the
ideal distance metric, which represents the Euclidean distance between the final iterate produced
by the method and the point corresponding to optimal values for both DPO and SFT objectives:√
(fDPO(θ)− f∗

DPO)
2 + (fSFT(θ)− f∗

SFT)
2. For resource efficiency, we compare the percentage

increase in runtime relative to the corresponding sequential implementation, e.g., the percentage
runtime increase of Alternating DPO and SFT with λ = 0.01 compared to Sequential DPO and SFT
with (TDPO, TSFT) = (1, 5). Additionally, we compute the percentage increase in GPU utilization
for each method relative to the baselines. Further details on these metrics are provided in Appendix
D due to space constraints. Furthermore, for evaluating the real-world performance of proposed
methods compared to baselines, we use the following benchmarks: MMLU(Hendrycks et al., 2020),
a benchmark with multiple-choice questions across 57 diverse tasks; Win rate, which is calculated as
the proportion of times a model’s response is preferred by an evaluator over a baseline in head-to-head
comparisons. For this purpose, we use ALPACAEVAL(Li et al., 2023a) framework with GPT-4-TURBO
as the evaluator and DAHOAS/RM-HH-RLHF test data as the baseline.

6.2 EXPERIMENT RESULTS

In this section we illustrate and discuss the empirical results obtained under the experiment setup
introduced in the previous section.

ALRIGHT provides better control over the trade-off compared to Sequential. As shown in the
top left plot of Figure 3, the optimization trajectories for DPO followed by SFT illustrate that the set
of final models produced by ALRIGHT, for various values of λ, is more evenly distributed in the
objective space. This distribution forms a Pareto front, indicating that no model is strictly worse than

2https://huggingface.co/meta-llama/Meta-Llama-3-8B
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MMLU (1-shot) (%) Win rate (%)

λ/(TSFT, TDPO) 0.25/(3, 1) 0.5/(2, 2) 0.75/(1, 3) 0.25/(3, 1) 0.5/(2, 2) 0.75/(1, 3)

Sequential 73.18 72.80 72.68 57.19 65.62 59.38

Mix 73.45 73.40 72.29 81.88 84.22 88.42

ALRIGHT 74.66 72.65 75.50 88.28 85.78 87.34

MAXRIGHT 72.35 73.42 74.24 86.56 86.09 83.75

Table 1: Comparison of Win rate and MMLU (1-shot) for different methods using LLAMA3-8B.

another with respect to both objectives. Moreover, the spread of these models is comparable to that
of the Mix method. In contrast, Sequential tends to produce models that are biased towards the SFT
objective, even when TDPO is significantly larger than TSFT (e.g., (TDPO, TSFT) = (5, 1)).

MAXRIGHT achieves near-ideal performance compared to other methods. As illustrated in
the top left plot of Figure 3, the optimization trajectories for DPO followed by SFT show that
the set of final models produced by MAXRIGHT, for different values of λ, converge closer to the
ideal point compared to other methods. This behavior is further supported by the Ideal Distance
comparison in the right plot of Figure 3, where MAXRIGHT consistently achieves the best ideal
distance performance across all λ values. We attribute this advantage to the adaptive nature of
MAXRIGHT, which dynamically selects the objective to update based on performance, rather than
adhering to a fixed schedule like ALRIGHT. This adaptability is particularly beneficial in heavily
over-parameterized settings, where models have the capacity to approach ideal performance.

ALRIGHT and MAXRIGHT require minimal additional resources compared to Sequential
and significantly lower than Mix. As shown in Figure 3 (right, Increase in Runtime (%) and
Increase in GPU Utilization (%)), the additional computational resources required by different
implementations of ALRIGHT and MAXRIGHT are minimal (or even negative) relative to their
Sequential counterparts. In contrast, Mix incurs substantial additional resource usage, with increases
of over 50% in runtime and more than 35% in GPU utilization, despite achieving similar performance
metrics to ALRIGHT and MAXRIGHT.

Effect of maximum evaluation step for memory-efficient MAXRIGHT. Figure 4 illustrates the
influence of maximum evaluation step choices in memory efficient MAXRIGHT on optimization
trajectories and resource usage. For low values (e.g., 1), the algorithm closely follows the trade-
off determined by λ, keeping the solutions concentrated near the ideal point (e.g., compared to
ALRIGHT), but incurs high runtime due to frequent evaluations. In contrast, high values (e.g., 1000)
cause significant oscillations in the objective space, failing to maintain the desired trade-off and
resulting in increased GPU utilization from excessive SFT updates. The aforementioned oscillation
leads to poor ideal distance performance as the model drifts away from the ideal point.

ALRIGHT and MAXRIGHT significantly outperform Sequential on real-world tasks with
minimal additional resources. Table 1 presents a performance comparison of Sequential, Mix, AL-
RIGHT, and MAXRIGHT using the MMLU benchmark and win rate. ALRIGHT and MAXRIGHT
consistently surpass the baselines on the MMLU benchmark and achieve a significantly higher win
rate than Sequential across all λ values considered. On both evaluation metrics, either ALRIGHT or
MAXRIGHT performs on par with or better than Mix. Furthermore, Figure 7 in Appendix D shows
that ALRIGHT and MAXRIGHT require minimal additional resources, while Mix incurs significantly
higher resource usage (up to 58% increase in runtime and 7% increase in GPU utilization).

7 CONCLUSIONS AND DISCUSSION

In this paper, we have shown both theoretically and empirically that the widely adopted sequential
approach to post-training LLMs with RLHF and SFT is sub-optimal, as the model gradually forgets
the effects of the initial stage during the second stage of training. Our proposed ALRIGHT and
MAXRIGHT methods address this issue, with ALRIGHT providing theoretical convergence guaran-
tees and MAXRIGHT demonstrating strong empirical performance. Notably, this improvement is
achieved with minimal additional computational cost, making these methods practical and efficient
alternatives for enhancing both the performance and preference alignment of LLMs.
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8 REPRODUCIBILITY STATEMENT

For the theoretical results given in the main text, we provide proofs in Appendix A. For all the
experiment results provided in the main text and in the Appendix, we provide the implementation
details in Appendix D. We will provide the code for implementing the main experiments in the
discussion forums once they are open when the paper is under review, and the code will be released
in GitHub upon acceptance of the paper.
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A PROOFS FOR THEORETICAL RESULTS

In this section, we provide the proofs for the main theoretical results of the paper, Theorems 3.1 and
4.1. The proof is organized as follows: In Appendix A.1, we establish some fundamental claims
regarding the problem setup, such as the convexity of the objectives and the boundedness of the
second moment of the stochastic gradients. Then, in Appendix A.2, we prove the lower bound stated
in Theorem 3.1 along with several supporting lemmas. Finally, in Appendix A.3, we prove the upper
bound stated in Theorem 4.1, accompanied by additional supporting lemmas.

For conciseness, in this section we omit the subscripts DPO and SFT of the input x, but whether x
belongs to DDPO or DSFT can be inferred from the context. Furthermore, for brevity, we denote the
averaging over the datasets 1

N1

∑
x,yw,yℓ∈DDPO

and 1
N2

∑
x,y∈DSFT

by Ex,yw,yℓ∼DDPO and Ex,y∼DSFT ,
respectively.

A.1 BASIC CLAIMS ON THE PROBLEM SETUP

Before going to the proofs of the main results, we can have the following basic claims on the problem
setup.

Proposition A.1 (Bounded second moment of stochastic gradient). For all θ ∈ Θ, there exist
M1,M2 > 0 such that

Ex,yw,yℓ∼DDPO [∥gDPO(θ;x, yw, yℓ)∥2] ≤ M2
1 , (20)

Ex,y∼DSFT [∥gSFT(θ;x, y)∥2] ≤ M2
2 . (21)

Proof. Considering gDPO, we can first simplify hβ defined in (3) under softmax parameterization of
πθ and πref as

hβ(θ;x, yw, yℓ) = β log

(
πθ(yw | x)
πref(yw | x)

)
− β log

(
πθ(yℓ | x)
πref(yℓ | x)

)
= β(θ − θref)

⊤(ϕyw,x − ϕyℓ,x). (22)
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Then we can simplify gDPO as

gDPO(θ;x, yw, yℓ) = − (1− σ(hβ(θ;x, yw, yℓ, πref))∇θhβ(θ;x, yw, yℓ, πref)

= −β(1− σ
(
β(θ − θref)

⊤(ϕyw,x − ϕyℓ,x)
)
(ϕyw,x − ϕyℓ,x). (23)

We can then bound the norm of gDPO as

∥gDPO(θ;x, yw, yℓ)∥2 = β2(1− σ
(
β(θ − θref)

⊤(ϕyw,x − ϕyℓ,x)
)2 ∥ϕyw,x − ϕyℓ,x∥2

≤ β2∥ϕyw,x − ϕyℓ,x∥2

≤ 4β2Φ2 =: M1, (24)

where the first inequality is due to the fact that 0 ≤ σ(z) ≤ 1 for all z ∈ R, second inequality is due
to Cauchy-Schwarz inequality and Assumption 3.1. Taking expectation (average) over the dataset
DDPO in (24) proves the first part of Proposition A.1. For proving the second part of the proposition,
we start by simplifying the gradient of πθ under softmax-parameteriation, given by

∇θπθ(y | x) = ∇θ
exp(θ⊤ϕy,x)∑

y′∈Y exp(θ⊤ϕy′,x)

=
exp(θ⊤ϕy,x)

∑
y′∈Y exp(θ⊤ϕy′,x)ϕy,x − exp(θ⊤ϕy,x)

∑
y′∈Y exp(θ⊤ϕy′,x)ϕy′,x(∑

y′∈Y exp(θ⊤ϕy′,x)
)2

=
(
ϕy,x − ϕ̄x(θ)

)
πθ(y | x), (25)

where

ϕ̄x(θ) :=

∑
y′∈Y ϕy′,x exp(θ

⊤ϕy′,x)∑
y′∈Y exp(θ⊤ϕy′,x)

. (26)

Then we can simplify gSFT as

gSFT(θ;x, y) = −∇θπθ(y | x)
πθ(y | x)

= −(ϕy,x − ϕ̄x(θ)). (27)

We can then bound the norm of gSFT as

∥gSFT(θ;x, y)∥2 = ∥ϕy,x − ϕ̄x(θ)∥2

≤ 4Φ2 =: M2, (28)

where the inequality is due to the Cauchy-Schwarz inequality and Jensen’s inequality. Taking
expectation (average) over the dataset DSFT in (28) proves the second part of Proposition A.1.

Proposition A.2 (Convexity of objectives). Under Assumption 3.1, the objectives fDPO and fSFT

(defined in (1) and (4), respectively) are convex.

Proof. The goal of the proof is to show the Hessians of the objectives fDPO and fSFT are semi-positive
definite, under Assumption 3.1 and LLMs (both trainable and reference) modeled using softmax
parameterization. First, considering fDPO, we can have

∇θgDPO(θ;x, yw, yℓ) = −∇θβ(1− σ
(
β(θ − θref)

⊤(ϕyw,x − ϕyℓ,x)
)
(ϕyw,x − ϕyℓ,x)

= β2σ (hβ(θ;x, yw, yℓ)) (ϕyw,x − ϕyℓ,x) (ϕyw,x − ϕyℓ,x)
⊤ ⪰ 0, (29)

where first equality is due to (23), and the semi-positive definiteness is due to the fact that β > 0,
0 ≤ σ(z) ≤ 1 for all z ∈ R, and (ϕyw,x − ϕyℓ,x) (ϕyw,x − ϕyℓ,x)

⊤ ⪰ 0 for all ϕyw,x, ϕyℓ,x. The
convexity of fDPO follows from the fact that

∇2fDPO(θ) = Ex,yw,yℓ∼DDPO [∇θgDPO(θ;x, yw, yℓ)] . (30)
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Figure 5: An Illustration of the example used for lower bound derivation in Theorem 3.1

Similarly, we can compute ∇θgSFT as

∇θgSFT(θ;x, y) = −∇θ(ϕy,x − ϕ̄x(θ))

= ∇θ

∑
y′∈Y ϕy′,x exp(θ

⊤ϕy′,x)∑
y′∈Y exp(θ⊤ϕy′,x)

=
∑
y′∈Y

ϕy′,xϕ
⊤
y′,x exp(θ

⊤ϕy′,x)∑
y′∈Y exp(θ⊤ϕy′,x)

−

(∑
y′∈Y ϕy′,x exp(θ

⊤ϕy′,x)∑
y′∈Y exp(θ⊤ϕy′,x)

)(∑
y′∈Y ϕy′,x exp(θ

⊤ϕy′,x)∑
y′∈Y exp(θ⊤ϕy′,x)

)⊤

, (31)

where the first equality is due to (27). To establish the semi-positivedefiniteness of ∇θgSFT, cosider
any v with same dimension as θ, and let py,x =

exp(θ⊤ϕy,x)∑
y′∈Y exp(θ⊤ϕy′,x)

. Note that py,x ≥ 0 for all x, y,

and
∑

y∈Y py,x = 1 for all x. Then we can have

v⊤

( ∑
y′∈Y

ϕy′,xϕ
⊤
y′,x exp(θ

⊤ϕy′,x)∑
y′∈Y exp(θ⊤ϕy′,x)

−

(∑
y′∈Y ϕy′,x exp(θ

⊤ϕy′,x)∑
y′∈Y exp(θ⊤ϕy′,x)

)(∑
y′∈Y ϕy′,x exp(θ

⊤ϕy′,x)∑
y′∈Y exp(θ⊤ϕy′,x)

)⊤)
v

=
∑
y′∈Y

(v⊤ϕy′,x)
2py′,x −

∑
y′∈Y

v⊤ϕy′,xpy′,x

2

≥ 0, (32)

where the last inequality is due to Jensen’s inequality. This suggests that ∇θgSFT(θ;x, y) ⪰ 0, and
the convexity of of fSFT follows from the fact that

∇2fSFT(θ) = Ex,y∼DSFT [∇θgSFT(θ;x, y)] . (33)

Note that when fDPO and fSFT are convex, fMix,λ is also convex for all λ ∈ [0, 1].

A.2 PROOF OF THEOREM 3.1

Proof. For deriving the lower bound given in 3.1, we consider the following problem setup that
satisfies Assumption 3.1. Let Θ be R, and let DDPO = {(x1, yw, yℓ)} and DSFT = {(x2, y)} and
consider only two possible outputs exist (i.e. binary classification) such that we have the specification
in Table 2. Note that the data point y′ is not used in training explicitly, and it is specified to enable the
calculation of the output of πθ with softmax parameterization in the SFT optimization phase. Based
on this dataset, we can also define the dataset for reference policy objective as Dref = {(x1, yw)},
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Input Output Feature ϕy,x

x1 yw = 1 −1.0
x1 yℓ = 0 −0.5
x2 y = 0 1.0
x2 y′ = 1 0.5

Table 2: Data set specification for lower bound analysis example

which has a similar optimization procedure as SFT. Before moving forward, we have to choose the
reference policy πref , or equivalently θref . The objective to determine θref is given by

θref ∈ argmin
θ

fref(θ) := − log πθ(yw | x1), (34)

which is graphically illustrated in Figure 5. We choose θref = −5 since this choice reasonably
optimizes the objective.

With this problem setup and choice of θref , we can then derive the objectives and corresponding
gradients using (1), (4), (23), and (27) as

fDPO(θ) = log

(
1 + c

1 + exp(θ/2)

1 + exp(−θ/2)

)
(35)

fSFT(θ) = log(1 + exp(−θ/2)) (36)

gDPO(θ) =
1

2
· 1

1 + exp(−(θ/2 + 5))
(37)

gSFT(θ) = −1

2
· 1

1 + exp(θ/2)
, (38)

where c = 1+exp(5)
1+exp(−5) . Choosing λ = 0.5, we can numerically find an upper bound to f∗

Mix,λ such that
f∗

Mix,λ ≤ 1
2 log c

∗ where c∗ = 173.78. With this, we can derive a lower bound to GMix,λ(θ) as

GMix,λ(θ) = fMix,λ(θ)− f∗
Mix,λ

≥ 1

2
· log

(
1 + c

1 + exp(θ/2)

1 + exp(−θ/2)

)
+

1

2
· log(1 + exp(−θ/2))− 1

2
log c∗

=
1

2
log

(
1

c∗
(1 + exp(−θ/2)) +

c

c∗
(1 + exp(θ/2))

)
. (39)

When θ = 0, the right hand side of (39) approximately equals 0.256843. Since it is monotonically
increasing for θ ∈ [0,∞), we have GMix,λ(θ) ≳ 0.256843 = Ω(1) when θ ≥ 0. Thus to prove the
result, it is sufficient to show Algorithm 1 will generate a θ̂Seq that is greater than 0.

We have the first stage iterates:

θ1t+1 = θ1t − αt
1

1 + exp(− θ1
t

2 − 5)
, for t = 1, ..., T − 1. (40)

Using the first stage’s last iterate as initial point, we have the second stage iterates:

θ2,Tt+1 = θ2,Tt + αt
1

1 + exp(
θ2,T
t

2 )
, for t = 1, ..., T − 1. (41)

where θ2,T1 = θ1T and the superscript T in θ2,Tt indicates the max iteration index in the first stage.

Without loss of generality, we initialize θ11 = 0. Then by (40) and (41), we have

θ̂Seq = θ2,TT = −αt

T−1∑
t=1

1

1 + exp(− θ1
t+10
2 )

+ αt

T−1∑
t=1

1

1 + exp(
θ2,T
t

2 )
(42)

We first prove the following lemma.
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Lemma A.1. Given a positive constant c and a sequence {αt}, consider the iterates generated by

θt+1 = θt + αt
1

1 + exp(cθt)
, θ′t+1 = θ′t + αt

1

1 + exp(cθ′t)
(43)

If θ1 − θ′1 ≥ 0 and cαt

4 ≤ 1 for any t, then we have

θt − θ′t ≥ (θ1 − θ′1)Π
t−1
i=1

(
1− cαi

4

)
, ∀t.

Proof. We prove the result by induction. Assume θt − θ′t ≥ 0 for some t. We first have

θt+1 − θ′t+1 = θt − θ′t + αt

( 1

1 + exp(cθt)
− 1

1 + exp(cθ′t)

)
(44)

With ∇θ
1

1+exp(cθ) = −cσ(−cθ̄)
(
1−σ(−cθ)

)
where σ is the sigmoid function, using the mean value

theorem in (44), we have for some θ̄t in between θt and θ′t that

θt+1 − θ′t+1 = θt − θ′t − cαtσ(−cθ̄t)
(
1− σ(−cθ̄t)

)
(θt − θ′t)

≥ θt − θ′t −
1

4
cαt(θt − θ′t)

=
(
1− 1

4
cαt

)
(θt − θ′t)

where the inequality follows from σ(−cθ̄t)
(
1 − σ(−cθ̄t)

)
≤ maxx∈[0,1] x(1 − x) = 1

4 and the
assumption that θt − θ′t ≥ 0. Since θ1 − θ′1 ≥ 0, it follows from induction that θt − θ′t ≥ 0 for any t.
Then recursively applying the last inequality completes the proof.

Now we consider (42). Rewriting (40) gives that θ1t is generated by

−(θ1t+1 + 10) = −(θ1t + 10) + αt
1

1 + exp(− θ1
t+10
2 )

, for t = 1, ..., T − 1,

and θ2,Tt is generated by (41). Thus θ2,Tt and −(θ1t + 10) are generated by (43) with c = 1/2.
Assuming the step size αt is proper that

∑∞
t=1 αt = ∞, then there always exists T ∗ that for T ≥ T ∗,

we have θ1T is small enough such that −(θ11 + 10)− θ2,T1 = −10− θ1T ≥ 0. If αt/8 ≤ 1, we have
Lemma A.1 holds for sequences θ2,Tt and −(θ1t+1 + 10), and we have

−(θ1t + 10) ≥ θ2,Tt ⇒ 1

1 + exp(θ2,Tt /2)
− 1

1 + exp(−(θ1t + 10)/2)
≥ 0. (45)

Using (45) in (42), we have θ̂Seq ≥ 0. This completes the proof.

A.3 PROOF OF THEOREM 4.1

In this section, we provide the proof for Theorem 4.1. First, we provide some useful results that will
later be used in the main proof. For conciseness, we denote gDPO(θt;x

t, ytw, y
t
ℓ) and gSFT(θt;x

t, yt)
by gDPO,t and gSFT,t, respectively.

Lemma A.2 ((Rockafellar, 1970) Theorem 25.1 and Corollary 25.11). Consider any convex differen-
tiable function f and let θ ∈ Θ. Then, for any θ′ ∈ Θ, we have

f(θ′) ≥ f(θ) +∇f(θ)⊤(θ′ − θ). (46)

Lemma A.3 ((Orabona, 2020) Lemma 1.). Let {ηt}Tt=1 be a non-increasing sequence of positive
numbers and qt ≥ 0 for all t = 1, . . . , T . Then

nT qT ≤ 1

T

T∑
t=1

ηtqt +

T−1∑
k=1

1

k(k + 1)

T∑
t=T−k+1

ηt(qt − qT−k) (47)
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Lemma A.4. Consider iterates θt and θt+1 generated by Algorithm 2 for t ∈ {1, . . . , T − 1}. Then
for any θ′ ∈ Θ and λ ∈ [0, 1], we have

E [fMix,λ(θt)− fMix,λ(θ
′)] ≤ 1

2αt
E
[
∥θt − θ′∥2

]
− 1

2αt
E
[
∥θt+1 − θ′∥2

]
+

αt

2
M2

λ , (48)

where Mλ = λM1 + (1− λ)M2, and M1,M2 are as defined in Proposition A.1.

Proof. Considering Algorothm 2, for any θ′ ∈ Θ, we can have

∥θt+1 − θ′∥2 − ∥θt − θ′∥2 ≤ ∥θt − αt(Iit=1gDPO,t + Iit=0gSFT,t)− θ′∥2 − ∥θt − θ′∥2

= −2αt(Iit=1gDPO,t + Iit=0gSFT,t)
⊤(θt − θ′)

+ α2
t ∥Iit=1gDPO,t + Iit=0gSFT,t∥2

= −2αt(Iit=1gDPO,t + Iit=0gSFT,t)
⊤(θt − θ′)

+ α2
t

(
Iit=1∥gDPO,t∥2 + Iit=0∥gSFT,t∥2

)
(49)

Taking conditional expectation E[· | θt] (over randomness of datapoints and it) in both sides of above
inequality, we obtain

E
[
∥θt+1 − θ′∥2 | θt

]
− ∥θt − θ′∥2 ≤ −2αt(λ∇fDPO(θt) + (1− λ)∇fSFT(θ))

⊤(θt − θ′) + α2
tM

2
λ

= −2αt∇fMix,λ(θt)
⊤(θt − θ′) + α2

tM
2
λ

≤ −2αt (fMix,λ(θt)− fMix,λ(θ
′)) + α2

tM
2
λ , (50)

where the first inequality is using the definitions of gDPO,t,gSFT,t, and Mλ, equality is by the defintion
of fMix,λ, and the last inequality is due to Lemma A.2. The result follows from taking total expectation
in both sides and rearranging the inequality (50).

With the above results, we are ready to prove Theorem 4.1.
Theorem A.1 (Theorem 4.1 Restated with Additional Details). Consider Algorithm 2 with αt =
α0/

√
T for all t ∈ {1, . . . , T} and α0 > 0. Then, under Assumption 3.1, for any λ ∈ [0, 1], we have

E[GMix,λ(θT )] ≤
α0

2
√
T
∥θ1 − θ∗Mix,λ∥2 +

(2 + log(T − 1))M2
λα0

2
√
T

(51)

where θ∗Mix,λ ∈ argminθ∈Θ fMix,λ(θ), and Mλ = λM1 + (1 − λ)M2 with M1,M2 as defined in
Assumption A.1.

Proof. Substituting ηt = α and qt = GMix,λ(θt) in (47) (Lemma A.3), we have

GMix,λ(θT ) ≤
1

T

T∑
t=1

GMix,λ(θt) +

T−1∑
k=1

1

k(k + 1)

T∑
t=T−k+1

(GMix,λ(θt)−GMix,λ(θT−k))

=
1

T

T∑
t=1

GMix,λ(θt) +

T−1∑
k=1

1

k(k + 1)

T∑
t=T−k+1

(fMix,λ(θt)− fMix,λ(θT−k)) , (52)

where we have used the definition of GMix,λ in the equality. Taking total expectation on both sides of
(52), we get

E[GMix,λ(θT )]≤
1

T

T∑
t=1

E[GMix,λ(θt)]+

T−1∑
k=1

1

k(k + 1)

T∑
t=T−k+1

E [fMix,λ(θt)−fMix,λ(θT−k)] (53)

The first term in the right hand side of (53) can be bounded by choosing θ′ = θ∗Mix,λ and αt = α in
(48) from Lemma A.4 and then taking a telescoping sum:

T∑
t=1

E[GMix,λ(θt)] ≤
1

2α
∥θ1 − θ∗Mix,λ∥2 −

1

2α
∥θT+1 − θ∗Mix,λ∥2 + T

M2
λα

2

≤ 1

2α
∥θ1 − θ∗Mix,λ∥2 + T

M2
λα

2
(54)
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Algorithm 4 Memory Efficient MAXRIGHT
1: Input DDPO, DSFT, {αt}Tt=1,λ ∈ [0, 1], max evaluation steps k
2: Initialize θ1 ∈ Θ
3: for t = 1, . . . , T − 1 do
4: Sample xt

1, y
t
w, y

t
ℓ ∼ DDPO

5: Sample xt
2, y

t ∼ DSFT

6: if t mod k = 0 ∥ t = 1 then
7: Evaluate (without generating computational graph)

f̄1,λ(θt) := λ (fDPO(θt;x
t
1, y

t
w, y

t
ℓ)− f∗

DPO) and
f̄2,λ(θt) := (1− λ) (fSFT(θt;x

t
2, y

t)− f∗
SFT)

8: Set
t0 = t
f̄ stale,t0
1,λ = f̄1,λ(θt)

f̄ stale,t0
2,λ = f̄2,λ(θt)

9: end if
10: Set it = argmaxi f̄

stale,t0
1,λ

11: if it = 1 then
12: Set f̄ stale,t0

1,λ = λ (fDPO(θt;x
t
1, y

t
w, y

t
ℓ)− f∗

DPO)

13: Update θt+1=ΠΘ (θt − αtgDPO(θt;x
t
1, y

t
w, y

t
ℓ))

14: else
15: Set f̄ stale,t0

2,λ = (1− λ) (fSFT(θt;x
t
2, y

t)− f∗
SFT))

16: Update θt+1=ΠΘ (θt − αtgSFT(θt;x
t
2, y

t))
17: end if
18: end for
19: Output θ̂MAX := θT

Now we consider the second term in the right hand side of (53). We first have
T∑

t=T−k+1

E [fMix,λ(θt)− fMix,λ(θT−k)] =

T∑
t=T−k

E [fMix,λ(θt)− fMix,λ(θT−k)]

≤ (k + 1)
M2

λα

2
(55)

where the inequality follows from setting θ′ = θT−k, αt = α in (48) from Lemma A.4 and then
taking a telescoping sum from t = T − k to T . Substituting the last inequality to the second term in
the right hand side of (53) yields

T−1∑
k=1

1

k(k + 1)

T∑
t=T−k+1

E [fMix,λ(θt)−fMix,λ(θT−k)] ≤
T−1∑
k=1

1

k

M2
λα

2

≤ (1 + log(T − 1))
M2

λα

2
. (56)

Choosing α = α0√
T

, and substituting (54) and (56) in (53) yields

E[GMix,λ(θT )] ≤
α0

2
√
T
∥θ1 − θ∗Mix,λ∥2 +

(2 + log(T − 1))M2
λα0

2
√
T

which completes the proof.

B MEMORY EFFICIENT MAXRIGHT IMPLEMENTATION.

In this section we summarize the memory-efficient implementation of MAXRIGHT in Section 4.2.

C ADDITIONAL EXPERIMENT RESULTS

In this section, we provide additional experiment results using PYTHIA-1B and LLAMA3-8B models.
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Figure 6: Comparison of proposed methods with baselines (SFT first then DPO for Sequential). Left:
Training trajectories for various methods in the objective space, visualizing their convergence with
respect to the DPO and SFT objectives. Right: Performance comparison across multiple evaluation
metrics, including optimality gap for DPO and SFT objectives, ideal distance, runtime, and GPU
utilization. The bar charts highlight the trade-offs and resource efficiency of each method for different
choices of (TSFT, TDPO) or λ.

C.1 ADDITIONAL EXPERIMENTS WITH PYTHIA-1B

ALRIGHT and MAXRIGHT significantly outperform Sequential. In Figure 6 (left), it can
be seen that the final models obtained by ALRIGHT and MAXRIGHT achieve better trade-off in
DPO and SFT objective values in general compared to Sequential. Furthermore, ALRIGHT and
MAXRIGHT perform comparably or significantly better in terms of SFT optimality gap and ideal
distance metrics (Figure 6 (right)), while Sequential demonstrates a better performance in RLHF
optimality gap. This is because, in this experiment setup, Sequential is implemented by optimizing
for SFT first then DPO.

ALRIGHT and MAXRIGHT require minimal additional resources compared to Sequential and
significantly lower than Mix. In Figure 6 (right), the additional computational resources required by
different implementations of ALRIGHT and MAXRIGHT are minimal (or even negative) relative
to their Sequential counterparts. In contrast, Mix incurs substantial additional resource usage, with
increases of upto 53% in runtime and upto 37% in GPU utilization, despite achieving comparable
performance metrics to ALRIGHT and MAXRIGHT.

C.2 ADDITIONAL EXPERIMENTS WITH LLAMA3-8B

ALRIGHT and MAXRIGHT perform comparably or better than Sequential. In Figure 7 (left),
it can be seen that the final models obtained by ALRIGHT and MAXRIGHT achieve better or com-
parable trade-off in DPO and SFT objective values in general compared to Sequential. Furthermore,
MAXRIGHT performs consistently better in terms of ideal distance metric (Figure 7 (right)), which
is consistent with PYTHIA-1B experiments.

ALRIGHT and MAXRIGHT require minimal additional resources compared to Sequential and
significantly lower than Mix. In Figure 7 (right), the additional computational resources required by
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Figure 7: Comparison of proposed methods with baselines (SFT first then DPO for Sequential) using
LLAMA3-8B. Left: Training trajectories for various methods in the objective space, visualizing their
convergence with respect to the DPO and SFT objectives. Right: Performance comparison across
multiple evaluation metrics, including optimality gap for DPO and SFT objectives, ideal distance,
runtime, and GPU utilization. The bar charts highlight the trade-offs and resource efficiency of each
method for different choices of (TSFT, TDPO) or λ.

different implementations of ALRIGHT and MAXRIGHT are minimal (or even negative) relative
to their Sequential counterparts. In contrast, Mix incurs substantial additional resource usage, with
increases of upto 58% in runtime and upto 7% in GPU utilization, despite achieving comparable
performance metrics to ALRIGHT and MAXRIGHT. Note that, unlike in PYTHIA-1B experiments,
the increase in GPU utilization for Mix is lower. We believe this is because we implement gradient
checkpointing when training LLAMA3-8B, and gradient checkpointing improves GPU utilization at
the cost of increased runtime due to duplicate activation computations in the backward pass.

D EXPERIMENT DETAILS

In this section, we provide experiment details for the experiments in Sections 6 and C. We build upon
OPENRLHF (Hu et al., 2024) framework to implement the experiments in Section 6, C.1, and C.2.

D.1 EXPERIMENTS DETAILS FOR TOY ILLUSTRATION IN FIGURE 2

In this section we provide details for the experiment results given in Figure 2. We consider Θ be
R2,DDPO = {(x1, yw, yℓ)} and DSFT = {(x2, y)} and setting where only two possible outputs exist
(i.e. binary classification) such that we have the specification in Table 2. Note that the data point y′ is
not used in training explicitly, and it is specified to enable the calculation of the output of πθ with
softmax parameterization in the SFT optimization phase. Based on this dataset, we can also define
the dataset for reference policy objective as Dref = {(x1, yw)}, which has a similar optimization
procedure as SFT.

To obtain θref , we train a parameter initialized at [5.0;−9.9]⊤ for 1000 epochs with a learning rate
of 0.01. This parameter initialization and learning rate are also used to train the model θ using the
Sequential, ALRIGHT, and MAXRIGHT methods. Furthermore, for illustration purposes, we use a
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weight decay of 0.001 in optimization. The resulting πref is then used as the reference policy for the
DPO objective in all three methods.

For the sequential method, we train θ for 10,000 epochs per objective (DPO first, then SFT). A
threshold of 0.05 for the objective value is applied to stop training for a given objective, preventing
excessive overfitting to that objective.

For the ALRIGHT and MAXRIGHT methods, we train θ for 20,000 epochs, while keeping other
training configurations identical to the Sequential method.

Input Output Feature ϕy,x

x1 yw = 1 [1.0; 1.0]⊤

x1 yℓ = 0 [0.5; 0.5]⊤

x2 y = 0 [1.0; 0.5]⊤

x2 y′ = 1 [0.5; 0.5]⊤

Table 3: Data set specification for toy illustration in Figure 2

D.2 ADDITIONAL DETAILS FOR EXPERIMENTS WITH PYTHIA-1B

We conducted three sets of experiments using the PYTHIA-1B model:

(1) Comparison of baselines and proposed methods for sequential training with DPO first,
followed by SFT (Figure 3),

(2) Comparison of baselines and proposed methods for sequential training with SFT first,
followed by DPO (Figure 6), and

(3) Ablation study on the choice of maximum evaluation steps for memory-efficient
MAXRIGHT (Figure 4). The primary difference between the first two experiments is
the πref used (and thus the DPO objective), as described in Section 2.

For training the models (both θ and θref ) in experiments (1), (2), and (3), we use LoRA with rank 32
and α = 32. The QUERY_KEY_VALUE layers are the target modules to which LoRA is applied. No
gradient checkpointing is used for PYTHIA-1B training. The learning rate is set to 5× 10−5 for all
model training with PYTHIA-1B.

To obtain θref for experiments (1) and (3), we train the model for 6 epochs using 24, 000 input-
response pairs from the RM-HH-RLHF dataset, with a batch size of 12 and a learning rate of 5× 10−5.
For experiment (2), we train the model for 6 epochs using 24, 000 samples from the ALPACA-GPT4
dataset, with a batch size of 24.

To compute f∗
DPO and f∗

SFT, which are required for calculating the optimality gap, ideal distance
metrics, and implementing the MAXRIGHT method, we perform independent optimization of the
DPO and SFT objectives for 6 epochs. For the SFT objective, we use 24, 000 samples from the
ALPACA-GPT4 dataset with a batch size of 24, and for the DPO objective, we use 8, 000 samples
from the RM-HH-RLHF dataset with a batch size of 8. Additionally, we run ALRIGHT for 6 epochs
to establish a reference Pareto front, which, along with the optimal objective values, is used as a
stopping criterion for joint optimization. No stopping criterion is applied for the sequential method.

Finally, all methods are trained for 6 epochs, using the corresponding λ for joint optimization methods
or a combination of TDPO and TSFT for the sequential method, until the stopping criterion is reached.
For the memory-efficient MAXRIGHT implementation in experiments (1) and (2), the maximum
evaluation step is set to 10.

D.3 ADDITIONAL DETAILS FOR EXPERIMENTS WITH LLAMA3-8B

We present the experiment results for LLAMA3-8B training in Table 1 and Figure 7. Both result sets
share the same training configuration, which is described below.

For training the models (both θ and θref ), we use LoRA with rank 16 and α = 16. The Q_PROJ
and V_PROJ layers are the target modules for LoRA application. Gradient checkpointing is enabled
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during training with LLAMA3-8B. The learning rate is set to 5× 10−5 for all model training with
LLAMA3-8B. To obtain θref , we train the model for 4 epochs using 24, 000 samples from the
ALPACA-GPT4 dataset, with a batch size of 16.

To compute f∗
DPO and f∗

SFT, required for calculating the optimality gap, ideal distance metrics, and
implementing MAXRIGHT, we independently optimize the DPO and SFT objectives for 4 epochs.
We use 24, 000 samples from the ALPACA-GPT4 dataset for the SFT objective with a batch size of
16, and 6, 000 samples from the RM-HH-RLHF dataset for the DPO objective with a batch size of
4. Additionally, we run ALRIGHT for 4 epochs to establish a reference Pareto front, which, along
with the optimal objective values, serves as a stopping criterion for joint optimization. No stopping
criterion is applied for the sequential method.

Finally, all methods are trained for 4 epochs, using the corresponding λ for joint optimization methods
or a combination of TDPO and TSFT for the sequential method, until the stopping criterion is reached.
For memory-efficient MAXRIGHT implementation, the maximum evaluation step is set to 10.

D.4 EVALUATION METRICS USED FOR MEASURING RESOURCE USAGE

In this section we give the formula for computing the resource usage metrics used in Section 6;
percentage increase in runtime and percentage increase in GPU utilization.

Consider the method under evaluation A, and the baseline method B. Then, percentage increase in
runtime is given by

percentage increase in runtime for A =
runtime of A− runtime of B

runtime of B
× 100%. (57)

In our experiments, we use different variants of Sequential method as B, for corresponding joint
training method A. For example, in PYTHIA-1B experiments we use Sequential with (TDPO, TSFT) =
(5, 1) configuration as the baseline for Mix, ALRIGHT, and MAXRIGHT with λ = 0.99. We can
similarly define the percentage increase of GPU utilization as

percentage increase in GPU utilization for A =
GPU utilization of A− GPU utilization of B

GPU utilization of B
× 100%.

(58)

Here, the GPU utilization is computes as the median GPU utilzation throughout the runtime of a
given method.
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