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Abstract

Character-level information is included in001
many NLP models, but evaluating the informa-002
tion encoded in character representations is an003
open issue. We leverage perceptual represen-004
tations in the form of shape, sound, and color005
embeddings to investigate their correlation to006
textual representations in five languages. This007
cross-lingual analysis shows that textual char-008
acter representations correlate strongly with009
sound representations for languages using an010
alphabetic script, while shape correlates with011
featural scripts. We further develop a set012
of probing classifiers to intrinsically evalu-013
ate what phonological information is encoded014
in character embeddings. Our results suggest015
that information on features such as voiceness016
are embedded in both LSTM and transformer-017
based representations.018

1 Introduction019

On the one hand, writing is an essential form of020

human communication. Writing systems and or-021

thographies differ across languages and impact our022

reading behavior. Psycholinguists have extensively023

studied the effect of orthographic depth, i.e., the024

transparency of grapheme-to-phoneme mappings,025

on reading acquisition as well as skilled reading026

(Seymour et al., 2003).027

On the other hand, the wide range of cross-028

linguistic diversity is still a major challenge for nat-029

ural language processing (NLP) and for the study030

of language more generally (Mielke et al., 2019;031

Gutierrez-Vasques and Mijangos, 2020), especially032

on sub-word levels (Gutierrez-Vasques et al., 2021).033

This increases the importance of cross-lingual anal-034

yses of character-level language models (LMs), be-035

cause anglocentrism in linguistic research is not036

only prevalent in NLP, but also in (reading and)037

orthography research (Share, 2008).038

Character-based language models have gained039

significant attention in recent years in languages040

with Latin scripts, since they contain meaningful in- 041

formation on various linguistic levels and enhance 042

the robustness of models. Oh et al. (2021) sug- 043

gest that character LMs provide a more human-like 044

account of sentence processing, which assumes a 045

larger role of morphology, phonotactics, and ortho- 046

graphic complexity than was previously thought. 047

Moreover, including character and sub-character 048

information in LMs for Asian scripts is a standard 049

practice. Despite of this recent attention, work fo- 050

cusing on getting a deeper understanding of char- 051

acter representation is scarce (Kann and Monsalve- 052

Mercado, 2021), in particular regarding the com- 053

parison between languages and different types of 054

scripts. 055

The goal of this work is to improve our under- 056

standing of learned character representations, for 057

better interpretability of the models. Like other 058

neural network based models, character-level LMs 059

can be seen as black-box methods and reveal lim- 060

ited insights about the causes for their predictions 061

(Gilpin et al., 2018). We investigate the informa- 062

tion encoded in character embeddings by compar- 063

ing them to perceptual representations. These rep- 064

resentations emerge as an inherent byproduct of 065

human language processing, from reading, writ- 066

ing and speaking. We create embeddings based on 067

the shape of characters, the sound (phonological 068

features derived from grapheme-to-phoneme map- 069

pings) and color (elicited in the form of grapheme- 070

color mappings from synesthetes). 071

Contributions We train models to learn three 072

types of character embeddings: a positive point- 073

wise mutual information (PPMI) vectorization, a 074

recurrent model, and a transformer model. As an 075

intrinsic evaluation method, we analyze the corre- 076

lations between the distances of textual character 077

representations and the perceptual representations 078

in the form of shape, sound, and color embeddings. 079

Furthermore, to provide more interpretable evalua- 080
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tion methods for character embeddings, we propose081

a set of probing classifiers to predict phonological082

features. Crucially, we address the cross-linguistic083

challenges that arise with character-level modeling084

by taking into account languages of varying scripts085

and orthographic depths. We argue that character-086

level black-box models can only be understood087

through cross-linguistic approaches and not on in-088

dividual languages. We perform analyses of five089

languages: Dutch, English, Japanese, Korean, and090

Spanish. We discuss the compelling patterns of sig-091

nificant correlations and show the effectiveness of092

the probing classifiers even in a zero-shot scenario.093

The implementation and character representations094

are available online1.095

2 Related Work096

Character-level information in LMs. Includ-097

ing character-level information in LMs of lan-098

guages with Latin scripts has become a common099

practice in NLP in recent years. This has been the100

case for different tasks, such as language mod-101

eling (Kim et al., 2016; Al-Rfou et al., 2019),102

part-of-speech tagging (Ling et al., 2015), morpho-103

logical inflection (Faruqui et al., 2016; Kann and104

Schütze, 2016; Kann et al., 2020), named entity105

recognition (Lample et al., 2016), machine transla-106

tion (Sennrich et al., 2016; Ngo et al., 2019), etc.107

Character-level information can enhance the mod-108

els by providing background knowledge in the form109

of the underlying structures of words in a language110

(Adouane et al., 2018). Ma et al. (2020) showed111

how combining character- and word-level infor-112

mation in pre-trained LMs improves not only the113

performance but also the robustness of the model.114

For certain languages, it is standard practice to115

include sub-token information in LMs, which hap-116

pens naturally due to the compositional structure117

of their orthographies. This is the case for East118

Asian languages such as Korean and Japanese (e.g.,119

Misawa et al. 2017; Chen et al. 2015). Korean120

LMs are often trained on Jamos (i.e., letters, as121

opposed to syllables), the smallest unit of the Ko-122

rean script (Ahn et al., 2017; Park et al., 2018).123

This reduces the vocabulary size and injects syn-124

tactic and semantic information to the model that125

is difficult to access with conventional character-126

or token-level units (Stratos, 2017). Recently, Lee127

et al. (2020b) showed that a Korean BERT model128

using sub-character information requires less train-129

1Link omitted to preserve anonymity.

ing data than previous models. Similarly, Japanese 130

LMs also benefit from sub-character information 131

(Nguyen et al., 2017). 132

Evaluating character embeddings. Character- 133

based language models are most often evaluated 134

on downstream NLP tasks or on next character or 135

word prediction (e.g., Takase et al. 2019; Tay et al. 136

2021; Clark et al. 2021). Additionally, they can be 137

evaluated on word-level intrinsic evaluation tasks 138

such as word analogy or similarity (e.g., Li et al. 139

2015). While work on intrisic evaluation of char- 140

acter embeddings is scarce (Kann and Monsalve- 141

Mercado, 2021), the evaluation of neural represen- 142

tation trained on phonemes have received more 143

attention, focusing on what phonological knowl- 144

edge is embedded within (Silfverberg et al., 2018; 145

Kolachina and Magyar, 2019; Mayer and Nelson, 146

2020; Mayer, 2020; Silfverberg et al., 2021). In 147

Mayer (2020); Mayer and Nelson (2020) they use 148

characters as a an approximation of phonemes in 149

the case of Samoa and Finnish, respectively, as 150

graphemes are closely connected to phonemes in 151

these orthographies. However, this is far from the 152

general trend. 153

Impact of different orthographies on linguistics 154

and human language learning. Orthographic 155

depth, i.e., the transparency of grapheme-phoneme 156

correspondences in written alphabetic language 157

(Frost et al., 1987; Katz and Frost, 1992), is a 158

well-studied factor influencing reading acquisition 159

and skilled reading behavior (Seymour et al., 2003; 160

Landerl et al., 2013; Richlan, 2020). For instance, 161

English is considered to be a deep orthography, as 162

there are often multiple different pronunciations 163

for the same spelling patterns (e.g., <gh> in tough 164

and though). This contrasts shallow orthographies 165

with more reliable grapheme-phoneme correspon- 166

dences, such as Spanish. The consistency and com- 167

plexity with which print reflects speech is one of 168

the prime factors of cross-linguistic differences in 169

reading fluency (Ziegler et al., 2010; Schmalz et al., 170

2015). It is the starting point for any discussion that 171

centers on reading development across languages 172

(Papadopoulos et al., 2021). Since the orthography 173

has such a high impact on human reading behavior, 174

its effect should also be considered more carefully 175

in the development of NLP models. 176

Impact of different orthographies on NLP mod- 177

els. While orthographic depth has been discussed 178

at length in reading research and psychology, it has 179
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rarely been addressed in natural language process-180

ing. This partly due to the prevalent anglocentrism181

and missing resources (Bender, 2018). Some re-182

search has gone into studying the differences be-183

tween languages when it comes to train computa-184

tional LMs (Mielke et al., 2019), showing the im-185

pact of the vocabulary size and sentence length, but186

there is lack of NLP research analyzing or taking187

into account the varying orthographies across lan-188

guages. Two notable exceptions are the recent meth-189

ods proposed by Marjou (2021) and Sproat and190

Gutkin (2021), who use neural networks to estimate191

the transparency of orthographies and degree of lo-192

gography, respectively. Moreover, Gorman et al.193

(2020) conducted a shared task on grapheme-to-194

phoneme prediction. Their results show an urgency195

for improving these systems and the pronunciation196

dictionaries used to train them across languages197

and scripts.198

3 Character Representations199

3.1 Character language models200

We use the Wiki40B multilingual dataset (Guo201

et al., 2020) to train the character models. For202

each of the five languages, English (en), Dutch203

(nl), Spanish (es), Korean (ko), and Japanese (ja),204

we extract training sets of 3 million characters. The205

first three languages all use variants of the Latin206

script, while Hangul (Korean) and Hiragana (one207

of several scripts used in Japanese) are syllabary208

scripts, in which most graphemes denote entire syl-209

lables. We preprocess Korean Hangul characters,210

decomposing them into constituent Jamos, each211

corresponding roughly to a single phoneme. For212

Japanese, we train the language model on Hira-213

gana and Katakana characters, but remove Kanji214

symbols to reduce the vocabulary size. The correla-215

tion analyses are then only performed on Hiragana.216

Figure 1 shows 2-dimensional plots of the learned217

textual character representations.218

Count-based PPMI embeddings. We generate219

vectorized character representations in a purely220

count-based manner with a positive pointwise mu-221

tual information (PPMI) weighting. While the im-222

portance of positional information is less obvious223

for modelling word semantics, it is crucial for mod-224

elling the distribution of sounds. Following the ap-225

proach by Mayer (2020), we let our PPMI weight-226

ing diverge from traditional bag-of-words models227

by distinguishing contexts by their relative position228

to a target. Thus, embeddings will have indepen- 229

dent values for the contexts AB_, _AB, and A_B, 230

counting the number of times a target proceeds, 231

precedes and mediates a string AB. Using bigram 232

contexts, the resulting embeddings have a dimen- 233

sion of 3 · c2, where c is the number of characters 234

in a given language, and 3 indicating the number 235

of possible relative positions. 236

LSTM. We train a recurrent language model con- 237

sisting of a unidirectional long-short term memory 238

(LSTM) layer. It receives character sequences as in- 239

put at each time step and is trained for next charac- 240

ter prediction. The model is trained with an Adam 241

optimizer (Kingma and Ba, 2015), an initial learn- 242

ing rate of 0.01, and a batch size of 128. We extract 243

the hidden representations of 128 dimensions as 244

character embeddings. See Appendix C for training 245

specifications. 246

Transformer. Similarly, we also train a trans- 247

former character model on the same data (Vaswani 248

et al., 2017). The input layer consists of character 249

and positional embeddings, followed by a trans- 250

former block with 2 heads and a hidden layer size 251

of 128. We follow the same training procedure as 252

for the LSTM. 253

3.2 Perceptual representations 254

Sound. The first perceptual representation that 255

we consider is sound. To retrieve this representa- 256

tion, we map characters to a phonological distinc- 257

tive feature space. This method has previously been 258

applied to phonemes as a means of generalisation 259

compared to sparse representations (Rumelhart and 260

McClelland, 1986; Mirea and Bicknell, 2019), and 261

to evaluate the knowledge embedded representa- 262

tions learned from neural networks (Silfverberg 263

et al., 2018; Kolachina and Magyar, 2019). 264

As sound and speech are only indirectly re- 265

flected in writing, we approximate sound represen- 266

tations of characters using grapheme-to-phoneme 267

alignment: For all languages, we extract data 268

from the WikiPron pronounciation dictionary (Lee 269

et al., 2020a) and use the m2m-aligner (Ji- 270

ampojamarn et al., 2007) to align graphemes with 271

phonemes in an unsupervised manner. Having 272

alignments from the WikiPron data, we chose the 273

most frequent word-initial phoneme mapping to 274

represent the sound of each character (resulting 275

mappings are listed in the Appendix D). Having a 276

phoneme mapped with to character, we are able to 277

associate it with a set of phonological distinctive 278
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Figure 1: tSNE cluster plots of the character distances from the three types of character language models for
English and Korean (see Appendix Figure 6 for the plots for Dutch, Spanish and Japanese).

A B C D E F G HSpanish

A B C D E F G HEnglish

Dutch A B C D E F G H
あいうえおかきく
ㄱㄴㄷㄹㅁㅂㅅㅇ

Japanese

Korean

Figure 2: Example of letter-color associations from sin-
gle subjects.

features, which we use to form our final sound rep-279

resentation: Using the ipapy2 toolkit, we retrieve280

International Phonetic Alphabet (IPA) descriptions281

of the phoneme mappings from which we create282

a sparse vector that describes what phonological283

features (e.g., consonant manner of articulation,284

±plosive, or vowel height, ±front) are active. For285

every language, this provides us with a sound em-286

bedding table, S|V |×|F |, where V is the set of char-287

acters and F is the set of distinctive features, and288

Si,j =

{
1 if Fj ∈ phonmap(Vi).
0 otherwise.

289

Color. Inspired by Kann and Monsalve-Mercado290

(2021), we compute color character representations291

from synesthesia data. Grapheme-color synesthe-292

2https://github.com/pettarin/ipapy

sia is a neurological phenomenon in which view- 293

ing a grapheme elicits an automatic, involuntary, 294

and consistent sensation of color (Eagleman et al., 295

2007). Color-to-letter associations in synesthesia 296

allow to examine the relationships between visual, 297

acoustic, and semantic aspects of language. Recent 298

research in this area has found cross-linguistic sim- 299

ilarities in synesthesia, suggesting that some influ- 300

ences on grapheme-color associations in synesthe- 301

sia might be universal and highlighting the impor- 302

tance of multilingual analyses (Root et al., 2018). 303

Figure 2 shows example grapheme-color associa- 304

tions from individual subjects for each of our stud- 305

ied languages. It emphasizes the preference for red 306

color tones for the first letter of the alphabet irre- 307

spective of the language (Root et al., 2018). 308

We use the cross-linguistic synesthesia data col- 309

lected by Root et al. 2018 (see Appendix B for 310

the dataset statistics). In order to extract color rep- 311

resentations we compute the Euclidean distances 312

between the 3-dimensional CIELuv color coding 313

scheme for all character combinations. We average 314

the distances across all participants of the same 315

language. The resulting vector representations re- 316

flect the finding of Root et al. (2018) that the first 317

grapheme in any language is unusually distinct (see 318

Figure 5 in Appendix) . 319

Shape. Lastly, we also create simple character 320

representations based on their shape. Previous 321

works (Brang et al., 2011; Watson et al., 2012) 322

have relied on relied on Gibson (1969) or Courrieu 323

et al. (2004) to build shape-related embeddings 324
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Figure 3: Pearson correlation between all representations types for all five languages and for the random baseline
(bottom right). A * marks a significant correlation (p < 0.01).

from human similarity judgements. However, we325

create shape embeddings directly from their visual326

expressions. We create an image for each printed327

character as shown in Figure 7 in the appendix.328

For each script, all images have the same width and329

height (the largest width among all characters incre-330

mented with 10 pixels, and the same for the height,331

which results approximately in 35x45 pixels) and332

all characters are drawn at position {5,5}. We333

use the font Arial Unicode MS with size 28. From334

these images, we create shape representations by335

reading the images as gray scale images from top336

to bottom and flattening the matrix into vectors.337

4 Correlation Analysis338

In order to analyze the relation between the learned339

character representations and the three perceptual340

representations – sound, shape, and color – we341

first compute the pairwise distances between char-342

acters3. Figure 3 shows the Pearson correlations343

between the character distances of all embedding344

types. The figure also includes a baseline, where the345

correlation between random distances and the dis-346

tances of the respective character representations347

is computed.348

As expected, the textual character representa-349

tions show high correlation amongst each other for350

3We use cosine distance for all textual, sound and shape
representations; and Euclidean distance for color.

all five languages. The correlations between the tex- 351

tual embeddings and the perceptual representations 352

show that even though the first are purely trained on 353

written language, they still learn to encode certain 354

inherent characteristics of human language process- 355

ing and production: 356

As a general pattern, the textual character repre- 357

sentations correlate strongly with sound represen- 358

tations, moderately with color representations, and 359

not at all with the shape representations (with the 360

exception of Korean, discussed below). Japanese 361

character embeddings behave differently. For in- 362

stance, the correlation with the sound representa- 363

tions is weaker than for the other languages, which 364

might be due to the syllabic nature of the Japanese 365

script. In the following, we discuss the results for 366

each of the perceptual embedding types in detail. 367

Sound. The PPMI character embeddings show 368

the highest correlation with sound representations, 369

followed closely by transformer embeddings. This 370

is notable in the three languages with Latin scripts 371

(en, es, nl). To explain this finding, we speculate 372

that the context and learning direction available 373

to the LMs provide phonetic information. Both 374

the PPMI and transformer embeddings learn from 375

context and from positional information in both di- 376

rections. However, the unidirectional LSTM learns 377

from left-to-right only. Therefore, as an addition, 378

we trained a bidirectional LSTM to show that the 379
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en es nl
LSTM 0.24 0.37 0.23
biLSTM 0.37 0.37 0.30
Transformer 0.48 0.60 0.39
PPMI 0.49 0.57 0.41

Table 1: Correlations between sound representations
and character embeddings.

syllables Jamos
IPA 0.10* 0.56*
Color – 0.06
Shape 0.30* 0.40*

Table 2: Pearson correlation coefficients for Korean
character embeddings based on Hangul syllables vs.
Jamos. As the synesthesia data only includes Jamos, we
exclude the syllable correlation for color.

addition of right-to-left information improves the380

correlation to the sound representations. The re-381

sults are shown in Table 1. Moreover, comparing382

the results across Latin script, we note that Span-383

ish character embeddings from all models achieve384

higher correlations than Dutch and English. The385

shallow orthography of the Spanish language ex-386

plains this finding. This is also the case for Korean.387

Color. Our findings on the correlation between388

English character embeddings and synesthesia data389

are in line with (Kann and Monsalve-Mercado,390

2021), who find that LSTMs agree with human391

letter-color perceptions more than transformers on392

a dataset with more participants (0.08 for LSTM-393

LM and 0.0 for transformer-LM). Moreover, we394

reach the same conclusion for the other alphabetic395

languages, Dutch and Spanish, while for Korean396

and Japanese there is no clear pattern evident from397

the correlation coefficients. This might be due to398

the smaller number of synesthete participants in399

the dataset.400

Shape. The character embeddings of non-401

featural Latin scripts show low (or even negative)402

correlation to the shape embedding. However, due403

to their featural writing systems (Sampson, 1985;404

Marjou, 2021), Japanese and especially Korean em-405

beddings correlate significantly with shape. The406

fact that the Korean consonant graphemes were de-407

signed to resemble the place of articulation (Lee,408

2021; Gale, 1912), can explain the high correla-409

tions between character and shape embeddings for410

this language.411

This is also shown in the positive correlation412

between sound and shape representations, which413

is absent for the other languages. To analyze this414

further, we compare our initial results with charac- 415

ter representations computed based on Jamos (e.g., 416

individual phonemes such asㄱ), to character repre- 417

sentations of full Hangul characters (e.g., syllables 418

such as공). Table 2 shows higher correlations for 419

characters decomposed into Jamos. 420

In this light, the result is unsurprising and can 421

be interpreted as an effective proof-of-concept of 422

using a correlation analysis between textual and 423

perceptual representations. More genuine shape 424

representations, for example learned by a convolu- 425

tional neural network, could be applied to reveal 426

more accurate correlation patterns for Latin scripts. 427

5 Probing Classifiers 428

Except for Japanese, the results show that the neu- 429

ral embeddings correlate the most with the percep- 430

tual sound representations. To get a closer look 431

at what information that may be encoded in the 432

dense embeddings, we design a probing task in 433

which classifiers are trained to predict whether cer- 434

tain distinctive features are present given character 435

embeddings as input. 436

5.1 Classifier Setup 437

For each distinctive feature, we train a binary Lo- 438

gistic Regression to predict whether the the feature 439

is present (1), or not (0). The labels are given by the 440

sound representations as explained in Section 3.2. 441

As the number of samples is small (limited to the 442

number of characters in a language), we do this 443

in a leave-one-out manner, training a classifier for 444

each character, while using the rest for training. For 445

features that only concern consonants (e.g., manner 446

of articulation and voiceness), we exclude vowels, 447

and similarly, for features that only concern vow- 448

els (e.g., vowel height and vowel rounding), we 449

exclude consonants in both test and training. 450

5.2 Zero-shot classifiers 451

For some features, choosing the most frequent la- 452

bel is a good strategy and will provide good results. 453

To further challenge the knowledge learned by the 454

embeddings and distinguish the classifiers from the 455

strategy of choosing the most frequent baseline, 456

we create a zero-shot setup in which the classifiers 457

will have to be able to transfer knowledge between 458

features in order to excel in the task. In particular, 459

we test 1) if a classifier trained to predict whether a 460

consonant is voiced is able to identify vowels and 461

2) if labial consonants are retrieved by a classifier 462
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global type consonant voiceness vowel roundness
Model consonant vowel voiced voiceless rounded unrounded

en
LSTM 0.84 0.22 0.67 0.17 - -
Transformer 0.90 0.60 0.86 0.71 - -
Random 0.61 0.28 0.54 0.43 - -
Most-frequent 0.89 0.00 0.76 0.00 - -

es

LSTM 0.91 0.50 0.57 0.61 0.00 0.57
Transformer 0.98 0.89 0.72 0.63 0.00 0.33
Random 0.61 0.27 0.49 0.49 0.43 0.49
Most-frequent 0.90 0.00 0.00 0.00 0.00 0.00

ko

LSTM 1.00 1.00 0.00 0.88 0.00 0.83
Transformer 1.00 1.00 0.33 0.87 0.00 0.83
Random 0.59 0.35 0.29 0.60 0.35 0.56
Most-frequent 0.84 0.00 0.00 0.88 0.00 0.83

nl

LSTM 0.91 0.50 0.62 0.15 0.00 0.33
Transformer 0.93 0.67 0.79 0.57 0.00 0.57
Random 0.61 0.28 0.54 0.42 0.43 0.51
Most-frequent 0.89 0.00 0.76 0.00 0.00 0.00

Table 3: F1 score for classifiers predicting distinctive features with character embeddings (LSTM, Transformer)
as input. Two baselines are included: Random (predicting labels uniformly at random) and Most-frequent (always
predicting the most frequent label). Since English only has one rounded vowel (the character ’o’ mapped to IPA ’6’),
the result for this classifier is not included. Results for predicting all distinctive features are found in Appendix E.

trained to predict vowel rounding. While the intu-463

ition behind 1) relates to the sonority sequencing464

principle, which states that the nucleus of a sylla-465

ble (vowels in the majority of the cases) represents466

a sonority peak, the intuition behind 2) is more467

experimental, relying on a global feature such as468

’rounding’.469

5.3 Results and discussion470

The results for the probing classifiers are found471

in Table 3. Generally, both LSTM and transformer472

embeddings outperform both the most-frequent and473

random baselines, with the transformer beating the474

LSTM by a small margin. This should, however, be475

taken with a grain of salt considering the limited476

number of examples.477

Considering the global features, vowel and con-478

sonant, classifiers are able to learn this distinction479

using both LSTM and transformer character em-480

beddings. In particular, consonants are identified481

with high certainty. This is, however, the major-482

ity group (ref. the most frequent strategy). The F1483

scores for vowel prediction are considerably lower.484

However, in this case they cannot be explained485

by neither a most-frequent strategy nor a random486

baseline, which indicates that knowledge about this487

distinction is present in the embeddings.488

The findings for the voiced/voiceless consonant489

consonant voiceness:voiced
Model → global type:vowel

en

LSTM 1.00
Transformer 1.00
Random 0.63
Most-frequent 1.00

es

LSTM 0.89
Transformer 0.89
Random 0.64
Most-frequent 0.00

ko

LSTM 0.44
Transformer 0.00
Random 0.65
Most-frequent 0.00

nl

LSTM 1.00
Transformer 1.00
Random 0.63
Most-frequent 1.00

Table 4: F1 score for predicting vowels using a clas-
sifier trained to predict whether a consonant is voiced.
Two baselines are included: Random (predicting labels
uniformly at random) and Most-frequent (predicting
the most-frequent label, w.r.t. the label distribution in
the original task).

distinction are similar. But here the groups are more 490

balanced, which provides the most-frequent strat- 491

egy with less of an advantage and in turn the F1 492

scores are generally lower. For Korean, the scores 493

are lower compared to the other languages. As the 494

feature of consonant voiceness correlates with man- 495

ner in Korean (with all plosives, affricates and frica- 496

7



Language F1 True positive False positive False negative
es 0.3 m v t r z b p f w
nl 0.5 b f v w k g d q z x p m
ko 0.4 ㅍ ㅂㅃㅁ

Table 5: Results from the zero-shot task to predict ’rounded’ consonants using LSTM embeddings. Using a clas-
sifier to predict the vowel roundness of consonants, the following consonants are retrieved. F1 score indicates the
ability to identify consonants with a labial place of articulation.

tives being voiceless, and plosives being the major-497

ity class), the task captured by the classifier may498

be distorted. The fact that the classifier may not499

be able to pick up features of voiceness from the500

Korean embeddings are reflected in the zero-shot501

experiment.502

The results for the first zero-shot experiment for503

predicting vowels using the classifier for identify-504

ing voiced consonants are found in Table 4. Here,505

the results for Korean are worse than the random506

baseline. While the results for English and Dutch507

can be explained by the most-frequent strategy, the508

result for Spanish indicates that features of voice-509

ness or sonority are encoded in the embeddings,510

amplifying the initial results from the probing clas-511

sifier experiment.512

Turning from consonant to vowel features, the513

inventory of vowels is considerably smaller, leav-514

ing a small number of training examples with few515

positive examples. Thus, the F1 scores for the prob-516

ing classifiers are associated with great uncertainty.517

Table 5 shows the results for the zero-shot task of518

retrieving consonants with labial features from a519

classifier trained to predict vowel roundness. While520

the classifier trained on transformer embeddings521

does not yield any positive examples and is there-522

fore not included in the table, the classifier using523

LSTM embeddings is able to retrieve labial conso-524

nants. While the classifiers from Dutch and Spanish525

retrieve many false negatives as well, the classifier526

for Korean only retrieves true positives, but only527

one of four.528

Overall, we believe that the results are promising529

and a good indication on how character represen-530

tations can capture features related to phonology.531

This especially in light of the zero-shot task, that532

indicates that classifiers are able to transfer knowl-533

edge of sonority from embeddings of consonants534

to unseen vowels.535

6 Conclusion 536

In this work, we attempted to understand the in- 537

formation encoded in character-level representa- 538

tions. We obtained two main types of embed- 539

dings: text-based embeddings and perceptual em- 540

beddings. While the first type of representations 541

(PPMI, LSTM and transformer) were trained from 542

raw data, perceptual representations were obtained 543

from different sources, such as pronunciation dic- 544

tionaries, synesthesia data and shape visualizations. 545

We have performed correlation studies between 546

these types for five different languages. Besides, 547

we defined and trained models to predict certain 548

phonological distinctive features in order to inter- 549

pret the embeddings. 550

We found interesting patterns in the correlation 551

analysis as a simple first approach for intrinsic 552

character embedding evaluation. While clearly out- 553

performing a random baseline in most cases, the 554

strength of the correlations vary between scripts. 555

For instance, the strong correlation between Korean 556

character embeddings and shape representations 557

provides positive evidence of the suitability of this 558

approach. Further research is required to dissect 559

the differences between character LMs: While the 560

LSTM embeddings showed better correlation with 561

color, the transformer embeddings were superior 562

when compared to sound representations. The in- 563

clusion of additional languages and scripts will be 564

helpful to identify more generalizable insights. 565

The phonological probing tasks show promising 566

results, especially with respect to interpretability. 567

In future work, we will focus on the development 568

of more sophisticated probing tasks, for instance, 569

using contextualized character embeddings or mul- 570

titask networks with shared layers across tasks. 571

Finally, we stress the need for further intrinsic 572

evaluation methods for character representations. 573

The high impact of orthography on human lan- 574

guage learning is an adamant argument to consider 575

the cross-linguistic diversity of writing systems 576

more carefully in the development of NLP models. 577
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A Preprocessing908

We download the Wiki40B dataset for each of the909

five languages (English, Dutch, Japanese, Korean,910

and Spanish) from TensorFlow Hub4. For English911

and Dutch, we consider the 26 standard letters of912

the alphabet, digits and punctuation marks. For913

Spanish, we additionally add ñ and and remove914

diacritics from vowels. For Korean, we consider all915

Hangul characters, digits and punctuation marks.916

Since Hangul is a featural writing system (Samp-917

son, 1990), we split the Jamos (i.e., compound sym-918

bols) into syllables5. For Japanese, we consider all919

Hiragana, Katakana, and Kanji characters for train-920

ing the language model. However, for subsequent921

analyses we focus only on Hiragana. For all lan-922

guages, we replace any other special characters923

with the symbol C.924

B Datasets925

B.1 Sound embeddings926

ja IPA

singular vowels
consonant-vowel unions
singular consonant

Figure 4: Japanese sound embeddings.

B.2 Synesthesia Dataset927

As described in the main paper, we use the synes-928

thesia data collected by Root et al. 2018. The data929

is available upon request by the first author. Table930

6 shows the number of characters and participants931

included for each language in the dataset.932

In Figure 5 the characters are plotted by the dis-933

tances between their corresponding colors. Based934

on this dataset, Root et al. 2018 showed how some935

influences on grapheme-color associations in synes-936

thesia might be universal across languages. Their937

4https://www.tensorflow.org/datasets/
catalog/wiki40b

5https://pypi.org/project/jamotools/

Language # Chars # Participants

English 26 47
Dutch 26 110
Japanese 46 27
Korean 24 13
Spanish 26 32

Table 6: Synesthesia dataset details showing the num-
ber of characters included for each language and the
number of synesthetes participating in the study.

results suggest that grapheme-color associations 938

follow an ordinal explanation, meaning that the 939

unusually-distrinct first grapheme of a synesthete’s 940

alphabet tends to be associated with the unsuluayy- 941

distinct color red. In line with their findings, the 942

clusters show the greatest distance between the 943

associated colors of the first grapheme of the alpha- 944

bets (i.e., "a" in English and Spanish and "ㄱ" in 945

Korean). 946

B.3 Shape Dataset 947

Please find in figure 7 some examples of character 948

figures that were used to build shape representa- 949

tions. We besides include in figure 8 three dendro- 950

grams calculated from the shape representations. 951

For Spanish, English, and Dutch we only calcu- 952

lated one dendrogram, as the only difference is that 953

the Spanish alphabet contains the “ñ” letter. For 954

Japanese, we show a random subset (50%) of the 955

Hiragana alphabet, as it did not fit properly in our 956

plots. 957

C Models 958

C.1 Training Procedure 959

For the LSTM, biLSTM and transformer models, 960

the number of epochs is set to 100, but the mod- 961

els are trained with early stopping and training is 962

ended after 3 epochs without improvement on the 963

validation loss. The best model is saved and used to 964

extract the character embeddings. For reproducibil- 965

ity purposes, we set a single random seed. 966
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D Grapheme-to-phoneme alignments967

D.1 Dutch968

a:A, b:b, c:k, d:d, e:E, f:f , g:G, h:H, i:, j:j , k:k , l:l ,969

m:m , n:n , o:O, p:p , r:r , s:s , t:t , u:œy, v:v , w:V,970

x:ks, z:z , q:k , y:j971

D.2 English972

a:æ , b:b , c:k , d:d , e:E, f:f , g: , h:h , i:, j:Ã, k:k ,973

l:l , m:m , n:n , o:6, p:p , q:k , r:ô, s:s , t:t , u:2, v:v ,974

w:w , x:z , y:j , z:z975

D.3 Korean976

ㅅ: s ,ㅇ: j ,ㅈ: tC,ㅏ: a
¯

,ㅓ: 2» ,ㅔ: efl ,ㅗ: ofl ,ㅜ:977

u ,ㅡ: W,ㅣ: i ,ㄱ: k ,ㄲ: k� ,ㄴ: n ,ㄷ: t ,ㄸ: t� ,978

ㄹ: R,ㅁ: m ,ㅂ: p ,ㅃ: p� ,ㅆ: s� ,ㅉ: tC� ,ㅊ: tC,ㅋ:979

kh ,ㅌ: th ,ㅍ: ph ,ㅎ: h , : n , : m , : ,980

D.4 Spanish981

a:a , b:b , c:k , d:d , e:e , f:f , g: , h:x , i:i , j:x , k:k982

, l:l , m:m , n:n , o:o , p:p , q:k , r:r , s:s , t:t , u:u ,983

v:b , w:w , x:s , y:
>
ÍJ, z:T984

E Probing Task985
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Spanish

Figure 5: Dendrograms of the distances between col-
ors assigned to each character for English, Korean and
Spanish. The leaves are sorted so that the minimum dis-
tance between its direct descendants is plotted first.
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Figure 6: tSNE cluster plots of the three types of character models for Spanish, Dutch and Japanese.

Figure 7: Example images from which we extract char-
acter shape representations from the Latin alphabets,
the Korean Hangul alphabet and the Japanese Hira-
gana alphabet.
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global type consonant voiceness
Model consonant vowel voiced voiceless

en

LSTM 0.84 0.22 0.67 0.17
Transformer 0.90 0.60 0.86 0.71
Random 0.61 0.28 0.54 0.43
Most-frequent 0.89 0.00 0.76 0.00

es

LSTM 0.91 0.50 0.57 0.61
Transformer 0.98 0.89 0.72 0.63
Random 0.61 0.27 0.49 0.49
Most-frequent 0.90 0.00 0.00 0.00

ko

LSTM 1.00 1.00 0.00 0.88
Transformer 1.00 1.00 0.33 0.87
Random 0.59 0.35 0.29 0.60
Most-frequent 0.84 0.00 0.00 0.88

nl

LSTM 0.91 0.50 0.62 0.15
Transformer 0.93 0.67 0.79 0.57
Random 0.61 0.28 0.54 0.42
Most-frequent 0.89 0.00 0.76 0.00

consonant place
Model alveolar alveolo-palatal bilabial labio-dental palatal velar

en

LSTM 0.63 - 0.00 0.00 - 0.40
Transformer 0.38 - 0.00 0.00 - 0.00
Random 0.46 - 0.22 0.16 - 0.27
Most-frequent 0.00 - 0.00 0.00 - 0.00

es

LSTM 0.36 - 0.00 - 0.00 0.17
Transformer 0.62 - 0.00 - 0.00 0.00
Random 0.38 - 0.26 - 0.15 0.35
Most-frequent 0.00 - 0.00 - 0.00 0.00

ko

LSTM 0.33 0.00 0.00 - - 0.00
Transformer 0.40 0.00 0.00 - - 0.00
Random 0.49 0.23 0.29 - - 0.23
Most-frequent 0.00 0.00 0.00 - - 0.00

nl

LSTM 0.14 - 0.00 0.00 0.00 0.29
Transformer 0.77 - 0.00 0.00 0.00 0.33
Random 0.43 - 0.22 0.23 0.16 0.32
Most-frequent 0.00 - 0.00 0.00 0.00 0.00

consonant manner
Model approximant nasal non-sibilant-fricative plosive sibilant-fricative

en

LSTM 0.00 0.00 0.00 0.35 0.40
Transformer 0.00 0.00 0.00 0.59 0.00
Random 0.23 0.16 0.22 0.45 0.27
Most-frequent 0.00 0.00 0.00 0.00 0.00

es

LSTM - 0.50 0.00 0.30 0.00
Transformer - 0.00 0.00 0.53 0.00
Random - 0.21 0.26 0.45 0.15
Most-frequent - 0.00 0.00 0.00 0.00

ko

LSTM - 0.00 - 0.52 0.00
Transformer - 0.00 - 0.73 0.00
Random - 0.17 - 0.53 0.30
Most-frequent - 0.00 - 0.73 0.00

nl

LSTM 0.00 0.00 0.57 0.33 0.00
Transformer 0.00 0.00 0.00 0.25 0.00
Random 0.22 0.16 0.28 0.42 0.22
Most-frequent 0.00 0.00 0.00 0.00 0.00

vowel height vowel backness vowel roundness
Model close close-mid mid open-mid front back rounded unrounded

en

LSTM - - - 0.00 0.00 0.00 - -
Transformer - - - 0.00 0.00 0.00 - -
Random - - - 0.42 0.41 0.42 - -
Most-frequent - - - 0.00 0.00 0.00 - -

es

LSTM 0.00 0.00 - - 0.57 0.00 0.00 0.57
Transformer 0.00 0.00 - - 0.33 0.00 0.00 0.33
Random 0.41 0.42 - - 0.50 0.42 0.43 0.49
Most-frequent 0.00 0.00 - - 0.00 0.00 0.00 0.00

ko

LSTM 0.00 - 0.00 - 0.00 0.25 0.00 0.83
Transformer 0.00 - 0.00 - 0.00 0.00 0.00 0.83
Random 0.45 - 0.35 - 0.35 0.52 0.35 0.56
Most-frequent 0.00 - 0.00 - 0.00 0.00 0.00 0.83

nl

LSTM - - - 0.00 0.00 0.00 0.00 0.33
Transformer - - - 0.57 0.00 0.00 0.00 0.57
Random - - - 0.51 0.41 0.42 0.43 0.51
Most-frequent - - - 0.00 0.00 0.00 0.00 0.00
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Figure 8: Dendrograms of the distances between shape
representations for the Latin alphabet (including the
Spanish ñ letter), Korean Hangul alphabet and a sub-
set of the Japanese Hiragana alphabet.
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