
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

FEATBENCH: EVALUATING CODING AGENTS ON FEA-
TURE IMPLEMENTATION FOR VIBE CODING

Anonymous authors
Paper under double-blind review

ABSTRACT

The rapid advancement of Large Language Models (LLMs) has given rise to a
novel software development paradigm known as “vibe coding,” where users in-
teract with coding agents through high-level natural language. However, existing
evaluation benchmarks for code generation inadequately assess an agent’s vibe
coding capabilities. Existing benchmarks are misaligned, as they either require
code-level specifications or focus narrowly on issue-solving, neglecting the criti-
cal scenario of feature implementation within the vibe coding paradiam. To ad-
dress this gap, we propose FeatBench, a novel benchmark for vibe coding that
focuses on feature implementation. Our benchmark is distinguished by several
key features: ❶ Pure Natural Language Prompts. Task inputs consist solely of
abstract natural language descriptions, devoid of any code or structural hints. ❷
A Rigorous & Evolving Data Collection Process. FeatBench is built on a multi-
level filtering pipeline to ensure quality and a fully automated pipeline to evolve
the benchmark, mitigating data contamination. ❸ Comprehensive Test Cases.
Each task includes Fail-to-Pass (F2P) and Pass-to-Pass (P2P) tests to verify cor-
rectness and prevent regressions. ❹ Diverse Application Domains. The bench-
mark includes repositories from diverse domains to ensure it reflects real-world
scenarios. We evaluate two state-of-the-art agent frameworks with four leading
LLMs on FeatBench. Our evaluation reveals that feature implementation within
the vibe coding paradigm is a significant challenge, with the highest success rate
of only 29.94%. Our analysis also reveals a tendency for “aggressive implemen-
tation,” a strategy that paradoxically leads to both critical failures and superior
software design. We release FeatBench, our automated collection pipeline, and all
experimental results to facilitate further community research. Our code is avail-
able at https://anonymous.4open.science/r/FeatBench-D3C5.

“The hottest new programming language is English.”
—Andrej Karpathy (Karpathy, 2025b)

1 INTRODUCTION

The rapid advancement of Large Language Models (LLMs) has given rise to a novel software de-
velopment paradigm(Jiang et al., 2024; Li et al., 2024; Seed et al., 2025), recently termed “Vibe
Coding.”(Horvat, 2025; Karpathy, 2025a; Wikipedia, 2025) This approach allows users to program
by interacting with an LLM-powered coding agent through high-level, abstract requests in natural
language. The agent then autonomously generates, tests, and executes the code, obviating the need
for users to write or review it. In this paradigm, authorship transfers to the AI without needing to
understand the implementation details. Vibe coding is transformative for implementing novel ideas,
particularly for users unfamiliar with programming. For instance, a product manager can describe a
new feature to generate a prototype. In another scenario, a data analyst employs rapid, iterative cod-
ing for Exploratory Data Analysis (EDA). These examples illustrate that vibe coding can enhance
productivity and foster discoveries for practitioners across diverse fields. Consequently, vibe coding
is emerging as a prominent topic in artificial intelligence, drawing significant research interest.

High-quality evaluation benchmarks are essential to foster the development of vibe coding. How-
ever, existing evaluation benchmarks for code generation inadequately assess an agent’s vibe coding
capabilities. Traditional code generation benchmarks, such as HumanEval(Chen et al., 2021) and

1

https://anonymous.4open.science/r/FeatBench-D3C5

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

Table 1: Comparison with existing Vibe Coding benchmarks.

Benchmark Date Task Type Curation Level Task input
SWE-bench(Jimenez et al., 2024) Oct, 2023 Issue Solving Manual Repository Level Issue Description

SWE-bench-Live(Zhang et al., 2025) Jun, 2025 Issue Solving Automatic Repository Level Issue Description
RACodeBench(Zhao et al., 2025) Sep, 2025 Issue Solving Manual Repository Level Issue Description+Wrong Code

FeatBench (Ours) Sep, 2025 Feature Implementation Automatic Repository Level Feature Requirement

ClassEval(Du et al., 2023), are misaligned with the vibe coding paradigm. Beyond natural language
requirements, their inputs demand code-level specifics like function signatures, a methodology fun-
damentally misaligned with the vibe coding paradigm. The benchmarks most relevant to the vibe
coding paradigm are issue-solving benchmarks, represented by SWE-Bench(Jimenez et al., 2024),
which generate code patches based solely on issue descriptions. However, these benchmarks cover
only the issue-solving scenario, neglecting other critical scenarios in vibe coding, such as feature im-
plementation, as demonstrated in our comparison in Table 1. Therefore, it is necessary to construct
more diverse benchmarks to evaluate agents’ vibe coding capabilities comprehensively.

We propose FeatBench, a novel benchmark for vibe coding to fill this research gap. Unlike issue-
solving benchmarks (e.g., SWE-bench), our benchmark focuses on a critical yet under-evaluated
aspect of vibe coding: feature implementation. This task involves implementing new function-
alities based on abstract natural descriptions from a user’s perspective, directly simulating how
non-technical users add capabilities to existing software. It is an everyday real-world development
activity, supported by existing studies(LaToza et al., 2006) indicating that developers spend approx-
imately 37% of their time on new feature development. To the best of our knowledge, FeatBench is
the first benchmark to evaluate an agent’s proficiency in feature implementation within the vibe cod-
ing paradigm. Our benchmark is distinguished by several key features: ❶ Pure Natural Language
Prompts: Task inputs consist solely of abstract natural language descriptions, devoid of any code
or structural hints, to accurately reflect the vibe coding workflow. ❷ Rigorous & Evolving Data
Collection Process: Our data collection process follows strict quality assurance standards, with a
multi-level filtering pipeline. To mitigate data contamination, we develop a fully automated pipeline
to evolve our benchmark without human effort. The initial release of our benchmark comprises 157
tasks sourced from 27 actively maintained open-source GitHub repositories. ❸ Comprehensive
Test Cases: Each task is equipped with the Fail-to-Pass (F2P) and Pass-to-Pass (P2P) test cases,
verifying both the generated code’s correctness and the preservation of existing functionality. ❹
Diverse Application Domains: To ensure FeatBench accurately reflects real-world development
scenarios, it includes repositories from diverse domains such as AI/ML, DevOps, and Web develop-
ment.

To demonstrate the utility of FeatBench, we evaluate two SOTA agent frameworks, Trae-agent and
Agentless, using four SOTA LLMs, including open-source models like DeepSeek V3.1(Deepseek,
2025) and proprietary models such as GPT-5(OpenAI, 2025), Doubao-Seed-1.6(ByteDance, 2025),
and Qwen3-Coder-Flash(Team, 2025). Following established standards(Deng et al., 2025; Zhang
et al., 2025), we adopt the Resolved Rate (%) as our primary metric. We also report the Patch
Apply Rate (%) and the File-level Localization Success Rate (%), alongside several auxiliary
metrics. Based on our experimental results, we find that: ❶ FeatBench poses a significant challenge
to SOTA agents, with the top-performing configuration achieving a resolved rate of only 29.94%. We
identify an apparent performance disparity between agent paradigms: autonomous, planning-based
agents substantially outperform rigid, pipeline-based counterparts. ❷ A critical and widespread
failure mode is the introduction of regressions. All evaluated agents tend to break existing func-
tionalities when adding new features. This undermines the reliability required for the vibe coding
paradigm, where the user does not typically review code. ❸ Our case studies found that agents often
adopt an “aggressive implementation” strategy when adding new features. This behavior acts as a
double-edged sword. While this strategy is the primary cause of task failures through “scope creep,”
it can also yield solutions with superior software architecture and robustness. This finding highlights
the critical need for mechanisms to control this behavior.

2 FEATBENCH

2.1 TASK DEFINITION

Figure 1 shows a sample in FeatBench. Each sample consists of four components: ❶ Feature De-
scription: A detailed natural language description of the new feature to be added. ❷ Running

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

FeatBench
Input: Feature implementation based on abstract natural language:①② ③

Output: The standard Git patch files (evaluated by: ④)

conans/

② Repository

test/ README.md

setup.pypyproject.toml

.github/

R

① Requirements

I want to be able to access and modify certain Meson build configuration attributes directly in my Conan recipes
without needing to work around private variable restrictions. Currently, when using the MesonToolchain, I need to
access important build settings like debug flag handling, static library position independence, and compiler
standards through indirect methods, which makes my build scripts more complex and less intuitive…

Fail-to-Pass Tests

def test_new_public_attributes():…

 def test_thread_flags(threads, flags):…

Pass-to-Pass Tests

def test_already_pyc_in_manifest():…

def test_package_reference():…

③ Running Environment

④ Evaluate Tests

Essential Tools Dependencies

Figure 1: An overview of FeatBench. Each sample consists of four components.

Environment: A pre-configured Docker image containing the runtime environment. ❸ Reposi-
tory: The complete codebase at the required commit. ❹ Evaluation Tests: A comprehensive suite
of Pass-to-Pass (P2P) tests to detect regressions and Fail-to-Pass (F2P) tests to verify the correct
implementation of the new feature.

2.2 FEATURES OF FEATBENCH

Pure Natural Language Prompts. To precisely simulate a user’s intent, we mandate that all
prompts are framed as a first-person feature request, beginning with “I want to...”. These prompts,
averaging 1848 characters, are stripped of implementation details and structured to include func-
tional appeal, background motivation, and specific requirements. This design ensures the agent
receives a comprehensive and unambiguous task description.

AI/ML (9)

Web (7)

DevOps (7)

Database (1)
Scientific (1)
Misc (1)
Cloud (1)

Figure 2: Repository distribution.

Rigorous & Evolving Data Collection Process. Our
data collection process is designed to be both rigorous and
evolving. We employ a strict, multi-level filtering process
at the repository, release, PR, and test case levels to en-
sure rigor. To mitigate data contamination, we develop
and open-source a fully automated pipeline to evolve the
benchmark. This paper releases the benchmark’s initial
version, comprising 157 tasks from 27 repositories, with
all constituent releases from the past year. We plan to
leverage this pipeline to update the benchmark every six
months. This process is highly cost-effective, with a pro-
cessing cost of approximately $0.28 per sample using the
DeepSeek V3.1 model. Detailed task statistics are pro-
vided in Section A.4.

Comprehensive Test Cases. The correctness of each generated implementation is rigorously val-
idated. On average, each task is equipped with 1657.53 test cases. This extensive test coverage not
only validates the correctness of new features but also robustly detects potential regressions.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

conan-io/conan

test

README.md

conans

• Feature: Add …
for get and unzip metho
ds. (#18831)

2.20.0 (01-Sep-2025)
6960af2

Releases

2 weeks ago

Fork 1.1k Star 9k

Merged

Pull requests
Add … for get and unzip methods

Base commit: 9608758 #18831

Files Changed
files.py
test_zipping.py

I want to be able to
exclude specific files…

Description

Environment Analysis
Version: Python3.9

Dependency: pyproject.toml

Base Image Build

cached_py3.9
Base Image

Install Essential Tools

Automated Env Setup

Configuring…

conan-io_conan:18831

Tools

Configured Image

Input

P2P Tests BEFORE AFTER

test_unzip_… FAILED FAILED

test_untargz_… PASSED PASSED

… … …

F2P Tests BEFORE AFTER

test_unzip_… FAILED FAILED

test_untargz_… FAILED PASSED

… … …

Test Patch

Feature Patch

Check Transition

conan-io_conan:18831
Configured Image

Check Transition

Apply Apply

Data Curation & Pre-processing Environment Configuration Test Case Acquisition & Validation

Apply

Figure 3: The pipeline of building our benchmark.

Diverse Application Domains. Our benchmark spans a wide range of application domains, with
a detailed distribution shown in Fig. 2. This diversity provides a broad platform for cross-domain
evaluation of LLM performance. We plan to continually expand our dataset with samples from
cutting-edge open-source repositories to maintain the benchmark’s challenge and generality.

2.3 BENCHMARK CONSTRUCTION PIPELINE

Our benchmark construction pipeline is divided into three main phases: data curation, environment
configuration, and test case validation, as illustrated in Fig. 3. Further technical details are provided
in the Section A.2.

Data Curation and Pre-processing. The initial filtering occurs at the repository level, where we
selected 27 high-quality candidates from an initial pool of 44 open-source repositories based on
several criteria: test file exists, a history of active maintenance with at least three official releases,
and relevance to common software development domains (e.g., excluding tutorials).

We curated 675 releases from these repositories and then analyzed them individually, employing an
LLM to identify feature-implementation PRs from the natural language of release notes. This step
filters for releases created within the last year, longer than 30 characters, and that are not automated
or trivial updates generated by bots. The prompt template is in Section A.8.

The final curation is applied at the PR level. From the filtered releases, we extracted an average
of 3 feature-implementation PRs per release, yielding 297 high-quality samples. We then filter
for these samples that contain changes to Python files and an accompanying test patch to ensure
each task is verifiable and represents a functional code change. Furthermore, we impose a critical
constraint: the code patch implementing the feature must only modify existing functions, without
adding or deleting any. This constraint is crucial for testability, enabling static, developer-written
test cases to validate the agent’s implementation reliably. We argue this criterion is unbiased, as we
posit that an LLM agent should adhere to the same constraint if a human developer refrains from
adding or deleting functions due to complexity or maintainability concerns. The final validation
step, ensuring each sample had at least one F2P test case, resulted in 157 tasks. Finally, since real-
world PR descriptions are often terse and developer-centric, we use an LLM to synthesize a more
comprehensive, code-agnostic user request suitable for a vibe coding prompt. The prompt template
is in the Section A.8.

Environment Configuration. We develop an agent to automatically configure the environment
by reverting the repository to its state before the PR, analyzing it to infer the Python version and
configuration files, and then constructing a Docker image that accurately replicates the historical
runtime environment. The agent’s task is considered complete only after ensuring the PR’s test suite
is executable and installing all dependencies, including optional ones.

Test Case Acquisition and Validation. This final phase establishes a robust ground truth for eval-
uation. Fail-to-Pass (F2P) test cases are extracted from the new or modified tests introduced in the
current PR, which serve as direct evidence of successful feature implementation. We validate that
these tests transition from failing to passing after applying the feature patch. We identify Pass-to-
Pass (P2P) test cases to prevent regressions by running the entire test suite on the pre-patch repository
and confirming they still pass after the patch is applied.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Table 2: Performance comparison across different agents & LLMs on FeatBench.

Model Trae-agent Agentless
Resolved% Applied% RT% FV% File% #Token Resolved% Applied% RT% FV% File% #Token

Open-Source Model
DeepSeek V3.1 22.29% 100.00% 42.68% 46.50% 79.11% 2.21M 9.55% 70.70% 32.48% 19.11% 42.28% 0.05M

Closed-Source Model
Doubao-Seed-1.6 15.92% 100.00% 41.40% 26.75% 65.77% 1.07M 10.19% 91.72% 26.75% 19.11% 49.30% 0.08M

Qwen3-Coder-Flash 20.38% 100.00% 50.32% 37.58% 74.37% 1.72M 7.00% 71.34% 24.84% 14.01% 36.49% 0.05M
GPT-5 29.94% 100.00% 50.32% 56.05% 86.43% 2.90M 16.56% 98.09% 35.67% 34.39% 67.54% 0.07M

Average 22.13% 100.00% 46.18% 41.72% 76.42% 1.98M 10.83% 82.96% 29.94% 21.66% 48.90% 0.06M

3 EXPERIMENTS

3.1 SETUP

Agent Selection. To evaluate the feature implementation capabilities of SOTA agents in vibe cod-
ing scenarios, we selected two leading frameworks from software engineering and tested them. We
chose agent-based evaluation because vibe coding in a no-code context is a complex task that re-
quires not only code generation but also the ability to localize relevant files within a large repository.
The selected frameworks are: Agentless(Xia et al., 2024), which employs a two-stage pipeline,
and Trae-agent(Team et al., 2025), which utilizes an autonomous planning solution. Their dif-
fering paradigms allow us to gain deeper insights into the capabilities required for effective vibe
coding. For Trae-agent, we imposed a maximum limit of 150 steps per task and equipped it with
supplementary tools, including ckg and json edit tool. For Agentless, we generally followed
the pipeline and settings described in the original paper, which divides the workflow into two pri-
mary stages: feature localization and patch generation. Consistent with SWE-bench-Live’s(Zhang
et al., 2025) evaluation methodology, we omit the reranking stage based on regression testing. Since
supporting this step requires substantial infrastructure adaptation beyond our scope, our Agentless
evaluation produces a single candidate solution.

Model Selection. We evaluated the performance of these agents using four recent SOTA
LLMs, encompassing both proprietary and open-source models: the open-source DeepSeek
V3.1 (deepseek-chat), and three proprietary models, GPT-5 (gpt-5-2025-08-07), Doubao-Seed-1.6
(doubao-seed-1-6-250615), and Qwen3-Coder-Flash (qwen3-coder-flash-2025-07-28). For a com-
prehensive description of the experimental settings and hyperparameters, refer to the Section A.3.

3.2 EVALUATION METRICS

Following the standards set by previous works(Jimenez et al., 2024; Deng et al., 2025), we adopt
the Resolved Rate (%) as our primary metric. This measures the percentage of vibe coding tasks
successfully completed by an agent. We also report the Patch Apply Rate (%), which indicates the
proportion of generated patches that are syntactically correct and can be applied to the repository
without errors. Furthermore, we measure the File-level Localization Success Rate (%), which
assesses whether the set of files modified by the generated patch matches the ground-truth patches.
In addition, we introduce three auxiliary metrics to facilitate a more in-depth analysis of test case
outcomes:

• Feature Validation Pass Rate (%): This metric evaluates the functional completeness of the
implemented feature by measuring the pass rate of the F2P test cases.

• Regression Tests Pass Rate (%): This metric measures the proportion of tasks where all original
functionalities remain intact after applying the generated patch, evaluated by the pass rate of the
P2P test cases.

• Tokens Cost: The average number of tokens consumed per task.

3.3 PERFORMANCE EVALUATION ON FEATBENCH

We report the performance of all agent-model combinations on FeatBench in Table 2. The results
highlight the challenging nature of FeatBench: even SOTA agent and LLM combinations achieve

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

a low Resolved%, peaking at just 29.94%. For comparison, the Trae-agent framework paired
with a top model like Claude 3.7 Sonnet(Anthropic, 2025) reached a 65.67% resolution rate on
SWE-bench. This stark performance drop on FeatBench demonstrates that benchmarks designed
from a professional developer’s perspective cannot adequately evaluate an agent’s vibe coding capa-
bilities. A comparison of the two agent paradigms shows that Trae-agent generally outperforms
Agentless. This advantage likely stems from its ability to autonomously plan execution paths, in-
voke external tools like code graph analysis, and design its own test cases to verify functionality
and facilitate feedback-driven optimization. In contrast, Agentless, designed for bug fixing, follows
a rigid two-stage “locate-and-patch” pipeline. We argue that this fixed, template-dependent process
limits its problem-solving flexibility and lacks reflective or debugging capabilities. Nevertheless,
the significantly lower token consumption of Agentless suggests it may be more cost-effective for
simpler tasks.

A deeper analysis of the metrics reveals a clear divergence in the core capabilities of the two
frameworks. Firstly, regarding File%, Trae-agent’s average of 76.42% far surpasses Agentless’s
48.90%. With its dynamic planning and tool interaction capabilities, Trae-agent can more accurately
identify the target files for modification within large repositories. Since precise file localization is a
critical prerequisite for task success, the deficiency of Agentless in this initial stage is a key bottle-
neck limiting its overall performance.

Secondly, a significant gap is also evident in the quality of the generated code patches. While all
patches generated by Trae-agent are syntactically valid (100% Applied%), their functional correct-
ness is limited. The average FV% and RT% are only 41.72% and 46.18%, respectively, indicating
shortcomings in both implementing new features correctly and maintaining existing functionality.
In comparison, Agentless performs even more poorly, with its average FV% (21.66%) and RT%
(29.94%) being substantially lower than those of Trae-agent. This contrast demonstrates that
agents with autonomous planning capabilities exhibit greater flexibility and effectiveness in solving
complex problems than their pipeline-based counterparts.

Finally, the universally low RT% across all model combinations is a noteworthy and widespread
observation. This reveals a significant risk of models introducing regressions by breaking existing
functionalities while attempting to add new ones. This finding imposes stricter reliability require-
ments, a critical factor for the vibe coding paradigm, where users delegate implementation details to
the agent. Future research must therefore prioritize strategies that ensure repository stability, as this
trust is a foundational prerequisite for adopting vibe coding in real-world software engineering.

3.4 IMPACT OF TASK COMPLEXITY ON RESOLVED RATE

The agent’s success, measured by the resolved rate, is significantly influenced by complexity at both
the repository and patch levels.

0-200
201-400

401-600
601-800

>800

Number of Files

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Ov
er

al
l R

es
ol

ve
d

Ra
te

Overall Resolved Rate by Number of Files

DeepSeek
GPT-5
Qwen
Doubao

0-50k
51k-100k

101k-200k
201k-300k

>300k

Lines of Code

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8
Overall Resolved Rate by Lines of Code

DeepSeek
GPT-5
Qwen
Doubao

Figure 4: Resolved Rate in Relation to Repository Complexity

At the repository level, complexity is quantified by the total number of files and aggregate lines
of code (LOC). As illustrated in Fig. 4, a strong inverse correlation exists between a repository’s
scale and the agent’s performance. Model effectiveness is inversely correlated with repository com-

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

plexity, as measured by both file count and LOC. While agents perform well on smaller projects
(fewer than 200 files or 50,000 LOC), with resolved rates reaching up to 60- 70% for GPT-5, their
success degrades sharply with scale. In large repositories (more than 800 files or 300,000 LOC),
performance for all models converges to a low of 10–30%. This consistent trend, which affects
even top-performing models, highlights that the ability of the LLM agent systematically declines
as project complexity increases, making complexity a fundamental barrier to the success of
current agent-based approaches.

Beyond the overall project, the intrinsic complexity of the ground truth solution, or “golden patch,” is
another critical factor. As depicted in Fig. 5, which evaluates patch complexity based on its LOC and
the number of files it spans, success rates peak for single-file patches and those between 1–30 Lines
of Code (LOC), where the top model achieves a 36% resolved rate. However, performance collapses
for substantial modifications, with success rates falling to nearly zero for patches exceeding 50 LOC
or those distributed across five or more files. This highlights a clear limitation in handling larger or
more widespread code changes, demonstrating that the agent’s performance is highest on small,
localized code changes and degrades significantly as the patch size and distribution increase.

1-30
31-50

51-70
71-100

101+

Lines of Code

0.0

0.1

0.2

0.3

0.4

0.5

Ov
er

al
l R

es
ol

ve
d

Ra
te

Overall Resolved Rate by Lines of Code

DeepSeek
GPT-5
Qwen
Doubao

1 2 3 4 5+
Number of Files

0.0

0.1

0.2

0.3

0.4

0.5

Overall Resolved Rate by Number of Files

DeepSeek
GPT-5
Qwen
Doubao

Figure 5: Correlation Between Resolved Rate and Patch Complexity

3.5 ASSOCIATION BETWEEN RESOLVED RATE AND CREATION TIME

An analysis of task creation time confirms the temporal stability of our benchmark and the
absence of data contamination.

As illustrated in Fig. 6, while the total volume of patches fluctuates across five distinct periods
(from 2308 to 2509), the resolved rate for the Trae-agent with Doubao-Seed-1.6 remains remarkably
consistent. This stability is critical, as an upward performance trend would suggest data leakage
from earlier tasks being repeated in later periods.

2308-2409
2410-2412

2501-2503
2504-2505

2506-2509

Period (YYMM format)

0

10

20

30

40

Av
er

ag
e

Nu
m

be
r o

f P
at

ch
es Total Patches

Resolved Patches
Resolved Rate

0.0%

5.0%

10.0%

15.0%

20.0%

25.0%

30.0%

35.0%

Re
so

lv
ed

 R
at

e

Patch Resolution Performance by Period

Figure 6: Association Between Resolved Rate
and Creation Time

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
Token Consumption (Millions)

5

10

15

20

25

30

Re
so

lv
ed

 R
at

e
(%

)

DeepSeek v3.1

Doubao-Seed-1.6

Qwen3-Coder-Flash

GPT-5

DeepSeek v3.1
Doubao-Seed-1.6

Qwen3-Coder-Flash

GPT-5

Performance vs. Token Consumption

Agent Type
Trae-agent
Agentless

Figure 7: Association between Token
Consumption and Resolved Rate

3.6 TOKEN CONSUMPTION VS. RESOLVED RATE

Analysis of Fig. 7 reveals a stark trade-off between computational cost and task success.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

conan/internal/default_settings.py
gcc:

- cppstd: [..., 17, gnu17, 20, gnu20, 23, gnu23]
+ cppstd: [..., 17, gnu17, 20, gnu20, 23, gnu23, 26, gnu26]

...

Gold Patch

conan/tools/build/flags.py
def _cppstd_gcc(gcc_version, cppstd):

+ if gcc_version >= "14":
+ v26 = "c++26"
+ vgnu26 = "gnu++26"

...

Generated Patch
conan/internal/default_settings.py

gcc:
- cppstd: [..., 17, gnu17, 20, gnu20, 23, gnu23]
+ cppstd: [..., 17, gnu17, 20, gnu20, 23, gnu23, 26, gnu26]

intel-cc:
- cppstd: [..., 17, gnu17, 20, gnu20, 23, gnu23]
+ cppstd: [..., 17, gnu17, 20, gnu20, 23, gnu23, 26, gnu26]

conan/tools/build/flags.py
def _cppstd_gcc(gcc_version, cppstd):

+ if gcc_version >= "14":
+ v26 = "c++26"
+ vgnu26 = "gnu++26"

...

Feature Description
 : I want to be able to use C++26 standard support across all my C++
projects when working with gcc compiler through my build system. I need
this to work just like the existing C++ standards, so I can

(a) Wrong Generated Patch from
conan-io/conan(Conan.io, 2025)

src/datasets/packaged_modules/arrow/arrow.py
+ def open_ipc_reader(source: Any):
+ try:
+ return open_stream(source)
+ except Exception as e:
+ return open_file(source)

class Arrow(...):
def _split_generators(self, dl_manager):

...
- reader = open_stream(f).schema
+ reader = open_ipc_reader(f).schema

...

Generated Patch

src/datasets/packaged_modules/arrow/arrow.py
class Arrow(...):

 def _split_generators(self, dl_manager):
 ...
- reader = open_stream(f).schema
+ try:
+ reader = open_stream(f)
+ except Exception as e:
+ reader = open_file(f)

...

Gold Patch

src/datasets/table.py
def _in_memory_arrow_table_from_buffer(...):

 ...
- opened_source = open_stream(source)
+ opened_source = opened_open_ipc_reader(source)

Feature Description
 : I want to be able to load Arrow files in both streamable and non-
streamable binary formats without encountering errors or needing to
manually convert file formats.

(b) Robust Gnerated Patch from
huggingface/datasets(Lhoest et al., 2021)

Figure 8: Case Studies of Gold Patch and Generated Patch

The Trae-agent framework exhibits a near-linear trend where achieving higher resolved rates
(15.92% to 29.94%) demands a proportionally significant token investment (1.07M to 2.90M). In
contrast, the Agentless framework is highly token-efficient, consistently operating under 0.1M to-
kens, but this limits its success to a lower range of 7.00% to 16.56%.

This dichotomy highlights the critical need to find methods that enhance the efficiency of token
utilization, ultimately increasing the resolved rate for complex agentic frameworks while avoiding
a linear growth in token costs.

4 CASE STUDIES

In this section, we present case studies of patches generated by Trae-agent.

4.1 CASE STUDY ON FAILURE REASONS

Misunderstood
user intent 8.5%

Incomplete
Implementation

17.8%

Regressive
Implementation73.6%

Figure 9: Failure Reasons of instances

We manually analyzed 122 failed PRs from
Trae-agent to identify the root causes of fail-
ure. These causes were categorized into three
distinct types: (1) Misunderstood User Intent,
where the agent fails to comprehend the core re-
quest; (2) Incomplete Implementation, where
the agent understands the request but fails to
meet all specific requirements; and (3) Regres-
sive Implementation, where the agent suc-
cessfully fulfills the request but inadvertently
breaks existing functionality.

As shown in Fig. 9, most failures fall into the third category. This indicates that while the agent
is often capable of understanding and implementing the user’s intent, its primary challenge lies in
doing so without causing regressions that lead to test failures.

A clear example of Regressive Implementation can be seen in Fig. 8a. The objective was to add
C++26 standard support for the GCC compiler. The gold patch correctly achieved this by updat-

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

ing both default settings.py (to define the setting) and flags.py (to implement it). In
contrast, the agent-generated patch adopted an aggressive implementation, attempting to also add
C++26 parameters for the Intel C++ Compiler in default settings.py. However, it neglected
to add the corresponding implementation logic in flags.py. This created a configuration that was
declared but not implemented, introducing a regression that caused previously passing tests reliant
on intel-cc to fail.

This case illustrates the agent’s tendency to proactively extend functionality beyond the user’s ex-
plicit request, which can ultimately break the entire solution. This highlights a critical research
direction: developing methods to ensure agents precisely address the specified problem without in-
troducing extraneous, and potentially harmful, modifications. Preventing such “scope creep” is a
key challenge for advancing agent-based coding.

4.2 CASE STUDY ON RESOLVED PATCHES: AGENT VS. GOLD

Our analysis also reveals that agent-generated resolved patches can outperform human-authored
ones in robustness and generality, surpassing mere correctness. This is illustrated in Fig. 8b,
which details a feature-request PR from the huggingface/datasets repository to support both
streamable and non-streamable Apache Arrow file loading.

The human-written gold patch, while functional, employs a localized try-except block in
split generators. This non-scalable, ad-hoc fix would require code duplication to sup-

port future streaming needs. In contrast, the agent-generated patch implements a more so-
phisticated architectural design. It abstracts the core logic into a reusable helper function,
open ipc reader(source: Any), encapsulating the stream-opening logic and its fall-
backs. It then replaces direct calls with invocations of this centralized function in both
split generators and in memory arrow table from buffer.

This design not only satisfies the immediate requirement but also establishes a scalable and main-
tainable pattern. It improves code modularity, prevents duplication, and simplifies future extensions
of streaming support. This case demonstrates the agent’s capacity to move beyond basic problem-
solving and produce qualitatively superior code from a software design perspective.

4.3 THE DUALITY OF AGGRESSIVE IMPLEMENTATION

The two cases above indicate that the agent’s tendency to adopt aggressive implementation strate-
gies constitutes a double-edged sword. On one hand, as demonstrated by the C++26 support case
(Fig. 8a), an overly aggressive approach can be detrimental, extending far beyond the original scope
and introducing errors. On the other hand, this same impulse can produce superior software engi-
neering outcomes. The Arrow file streaming case (Fig. 8b) illustrates how the agent’s bold imple-
mentation led to thoughtful abstraction and refactoring.

Therefore, there is a critical need for mechanisms that can control the agent’s level of implementa-
tion aggressiveness, allowing this trait to be harnessed for robust architectural improvements while
preventing the harmful scope creep that introduces defects.

5 CONCLUSION

We introduce FeatBench, a novel benchmark designed to evaluate LLM-based coding agents on
feature implementation within the vibe coding paradigm. Complementing existing benchmarks that
primarily focus on bug fixing, FeatBench specifically targets feature implementation within the vibe
coding paradigm. It utilizes code-free, natural language prompts to simulate authentic user-agent in-
teractions. To combat data contamination, FeatBench developed a fully automated, evolving pipeline
that will be dynamically updated. This paper releases its initial version, comprising 157 tasks from
27 diverse, real-world open-source repositories. Our experimental results reveal that feature im-
plementation within the vibe coding paradigm presents a substantial challenge, with the highest
resolved rates remaining below 29.94%. We uncover a tendency towards “aggressive implementa-
tion”, which can lead to superior software design and critical failures. These insights help clarify
the current coding agent limitations and can guide the development of more reliable agents for the
emerging vibe coding paradigm.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REPRODUCIBILITY STATEMENT

All code, data, and experimental configurations associated with this research are publicly available at
https://anonymous.4open.science/r/FeatBench-D3C5 to ensure full reproducibil-
ity. The repository includes detailed instructions and code to replicate our benchmark construction
pipeline, execute the evaluation of the agents, and reproduce the results presented in this paper.

The complete methodology for our automated benchmark construction is detailed in Section 2.3 and
further elaborated in the Section A.2, covering data curation, environment configuration, and test
case validation. The experimental setup, including the specific agent frameworks, large language
models, hyperparameters, and computational resources used for our experiments, is described in
Section A.3. The prompts utilized for LLM interactions within our pipeline are provided in Sec-
tion A.8. Researchers can fully reproduce our dataset and experimental findings by following the
provided code and documentation.

ETHICS STATEMENT

Our work’s primary goal is to advance the understanding and capabilities of LLM-based coding
agents for beneficial vibe coding tasks, ultimately aiming to improve developer productivity.

Data Curation and Privacy. All data used to construct FeatBench was sourced exclusively from
publicly available, open-source repositories on GitHub. No private or sensitive user data was col-
lected.

Potential for Misuse. While our benchmark is designed to foster positive advancements in vibe
coding scenarios, we recognize that the insights gained could potentially be applied for malicious
purposes. However, the tasks in FeatBench are focused on vibe coding feature implementation, and
our research does not inherently facilitate the development of harmful applications.

REFERENCES

Anthropic. Claude 3.7 sonnet. https://www.anthropic.com/news/
claude-3-7-sonnet, 2025.

Astral. Uv, 2025. URL https://docs.astral.sh/uv/.

ByteDance. Doubao-seed-1.6. https://console.volcengine.com/ark/region:
ark+cn-beijing/model/detail?Id=doubao-seed-1-6, 2025.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde de Oliveira Pinto, Jared
Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, Alex Ray, Raul Puri,
Gretchen Krueger, Michael Petrov, Heidy Khlaaf, Girish Sastry, Pamela Mishkin, Brooke Chan,
Scott Gray, Nick Ryder, Mikhail Pavlov, Alethea Power, Lukasz Kaiser, Mohammad Bavarian,
Clemens Winter, Philippe Tillet, Felipe Petroski Such, Dave Cummings, Matthias Plappert, Fo-
tios Chantzis, Elizabeth Barnes, Ariel Herbert-Voss, William Hebgen Guss, Alex Nichol, Alex
Paino, Nikolas Tezak, Jie Tang, Igor Babuschkin, Suchir Balaji, Shantanu Jain, William Saunders,
Christopher Hesse, Andrew N. Carr, Jan Leike, Josh Achiam, Vedant Misra, Evan Morikawa,
Alec Radford, Matthew Knight, Miles Brundage, Mira Murati, Katie Mayer, Peter Welinder,
Bob McGrew, Dario Amodei, Sam McCandlish, Ilya Sutskever, and Wojciech Zaremba. Eval-
uating large language models trained on code. arXiv preprint arXiv:2107.03374, 2021. URL
https://arxiv.org/abs/2107.03374.

Conan.io. Conan, September 2025. URL https://github.com/conan-io/conan.
original-date: 2015-12-01T13:17:02Z.

Deepseek. Deepseek v3.1. https://www.deepseek.com/, 2025.

Le Deng, Zhonghao Jiang, Jialun Cao, Michael Pradel, and Zhongxin Liu. Nocode-bench: A bench-
mark for evaluating natural language-driven feature addition. arXiv preprint arXiv:2507.18130,
2025.

10

https://anonymous.4open.science/r/FeatBench-D3C5
https://www.anthropic.com/news/claude-3-7-sonnet
https://www.anthropic.com/news/claude-3-7-sonnet
https://docs.astral.sh/uv/
https://console.volcengine.com/ark/region:ark+cn-beijing/model/detail?Id=doubao-seed-1-6
https://console.volcengine.com/ark/region:ark+cn-beijing/model/detail?Id=doubao-seed-1-6
https://arxiv.org/abs/2107.03374
https://github.com/conan-io/conan
https://www.deepseek.com/

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Xueying Du, Mingwei Liu, Kaixin Wang, Hanlin Wang, Junwei Liu, Yixuan Chen, Jiayi Feng,
Chaofeng Sha, Xin Peng, and Yiling Lou. Classeval: A manually-crafted benchmark for evaluat-
ing llms on class-level code generation. arXiv preprint arXiv:2308.01861, 2023.

Marko Horvat. What is vibe coding and when should you use it (or not)? Authorea Preprints, 2025.

Siyuan Jiang, Jia Li, He Zong, Huanyu Liu, Hao Zhu, Shukai Hu, Erlu Li, Jiazheng Ding, Yu Han,
Wei Ning, et al. aixcoder-7b: A lightweight and effective large language model for code comple-
tion. arXiv preprint arXiv:2410.13187, 2024.

Carlos E Jimenez, John Yang, Alexander Wettig, Shunyu Yao, Kexin Pei, Ofir Press, and Karthik R
Narasimhan. SWE-bench: Can language models resolve real-world github issues? In The Twelfth
International Conference on Learning Representations, 2024. URL https://openreview.
net/forum?id=VTF8yNQM66.

Andrej Karpathy. Andrej karpathy on x: “there’s a new kind of coding i call “vibe coding”,
where you fully give in to the vibes, embrace exponentials, and forget that the code even ex-
ists. it’s possible because the llms (e.g. cursor composer w sonnet) are getting too good. also i just
talk to composer with superwhisper”, 2025a. URL https://x.com/karpathy/status/
1886192184808149383. Accessed: 25 September 2025.

Andrej Karpathy. Andrej karpathy on x: “the hottest new programming language is english”, 2025b.
URL https://x.com/karpathy/status/1617979122625712128. Accessed: 25
September 2025.

Thomas D LaToza, Gina Venolia, and Robert DeLine. Maintaining mental models: a study of devel-
oper work habits. In Proceedings of the 28th international conference on Software engineering,
pp. 492–501, 2006.

Quentin Lhoest, Albert Villanova del Moral, Yacine Jernite, Abhishek Thakur, Patrick von Platen,
Suraj Patil, Julien Chaumond, Mariama Drame, Julien Plu, Lewis Tunstall, Joe Davison, Mario
Šaško, Gunjan Chhablani, Bhavitvya Malik, Simon Brandeis, Teven Le Scao, Victor Sanh, Can-
wen Xu, Nicolas Patry, Angelina McMillan-Major, Philipp Schmid, Sylvain Gugger, Clément
Delangue, Théo Matussière, Lysandre Debut, Stas Bekman, Pierric Cistac, Thibault Goehringer,
Victor Mustar, François Lagunas, Alexander Rush, and Thomas Wolf. Datasets: A community
library for natural language processing. In Proceedings of the 2021 Conference on Empirical
Methods in Natural Language Processing: System Demonstrations, pp. 175–184, Online and
Punta Cana, Dominican Republic, November 2021. Association for Computational Linguistics.
URL https://aclanthology.org/2021.emnlp-demo.21.

Jia Li, Ge Li, Yongmin Li, and Zhi Jin. Structured chain-of-thought prompting for code generation.
ACM Trans. Softw. Eng. Methodol., August 2024. ISSN 1049-331X. doi: 10.1145/3690635. URL
https://doi.org/10.1145/3690635. Just Accepted.

OpenAI. Gpt-5. https://platform.openai.com/docs/models/gpt-5, 2025.

Pytest. Pytest. https://docs.pytest.org/en/8.0.x/, 2024.

Pytest-dev. Pytest-timeout, September 2025. URL https://github.com/pytest-dev/
pytest-timeout.

ByteDance Seed, Yuyu Zhang, Jing Su, Yifan Sun, Chenguang Xi, Xia Xiao, Shen Zheng, Anxiang
Zhang, Kaibo Liu, Daoguang Zan, Tao Sun, Jinhua Zhu, Shulin Xin, Dong Huang, Yetao Bai,
Lixin Dong, Chao Li, Jianchong Chen, Hanzhi Zhou, Yifan Huang, Guanghan Ning, Xierui Song,
Jiaze Chen, Siyao Liu, Kai Shen, Liang Xiang, and Yonghui Wu. Seed-coder: Let the code model
curate data for itself, 2025. URL https://arxiv.org/abs/2506.03524.

Qwen Team. Qwen3 technical report, 2025. URL https://arxiv.org/abs/2505.09388.

Trae Research Team, Pengfei Gao, Zhao Tian, Xiangxin Meng, Xinchen Wang, Ruida Hu, Yuanan
Xiao, Yizhou Liu, Zhao Zhang, Junjie Chen, Cuiyun Gao, Yun Lin, Yingfei Xiong, Chao Peng,
and Xia Liu. Trae agent: An llm-based agent for software engineering with test-time scaling.
arXiv preprint arXiv:2507.23370, 2025. URL https://arxiv.org/abs/2507.23370.

11

https://openreview.net/forum?id=VTF8yNQM66
https://openreview.net/forum?id=VTF8yNQM66
https://x.com/karpathy/status/1886192184808149383
https://x.com/karpathy/status/1886192184808149383
https://x.com/karpathy/status/1617979122625712128
https://aclanthology.org/2021.emnlp-demo.21
https://doi.org/10.1145/3690635
https://platform.openai.com/docs/models/gpt-5
https://docs.pytest.org/en/8.0.x/
https://github.com/pytest-dev/pytest-timeout
https://github.com/pytest-dev/pytest-timeout
https://arxiv.org/abs/2506.03524
https://arxiv.org/abs/2505.09388
https://arxiv.org/abs/2507.23370

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Wikipedia. Vibe coding, September 2025. URL https://en.wikipedia.org/w/index.
php?title=Vibe_coding&oldid=1312215031. Page Version ID: 1312215031.

Chunqiu Steven Xia, Yinlin Deng, Soren Dunn, and Lingming Zhang. Agentless: Demystifying
llm-based software engineering agents. arXiv preprint, 2024.

Linghao Zhang, Shilin He, Chaoyun Zhang, Yu Kang, Bowen Li, Chengxing Xie, Junhao Wang,
Maoquan Wang, Yufan Huang, Shengyu Fu, Elsie Nallipogu, Qingwei Lin, Yingnong Dang, Sar-
avan Rajmohan, and Dongmei Zhang. Swe-bench goes live! arXiv preprint arXiv:2505.23419,
2025.

Yicong Zhao, Shisong Chen, Jiacheng Zhang, and Zhixu Li. Recode: Improving llm-based code
repair with fine-grained retrieval-augmented generation. arXiv preprint arXiv:2509.02330, 2025.

A APPENDIX

A.1 THE USE OF LARGE LANGUAGE MODELS

In this study, Large Language Models were solely employed for language refinement purposes to
enhance the clarity, fluency, and academic rigor of the textual content presented. It is important to
emphasize that all experimental design, data collection, result generation, and validation processes
were conducted manually by human researchers to ensure the authenticity, reliability, and controlla-
bility of the experimental outcomes.

A.2 CONSTRUCTION DETAILS

This section supplements Section 2.3 by providing technical details of our three-phase automated
collection pipeline.

Data Curation and Pre-processing The data curation process begins with a four-stage filtering
criteria applied at both the repository and release levels:

• Repositories must have at least three formal releases to ensure a development history.
• Repositories must have an identifiable test suite (e.g., tests/ directory) to enable automated

validation.
• Content relevance is ensured by excluding repositories focused on tutorials, examples, or similar

non-production code.
• Timeliness is enforced by considering only releases published before June 1, 2024.

We construct a comprehensive prompt for each selected release that integrates the release title, de-
scription, and the repository’s README.md file. We then instruct an LLM to categorize the contents
of the release notes into new features, improvements, bug fixes, and others. While
categorizing the content, we also ask the LLM to extract all relevant PR numbers from the text and
associate them with the corresponding new feature entries.

After extraction, we apply a series of rule-based filters. We retain only those PRs that meet the
following criteria:

• The PR must modify at least one Python file.
• The PR must include new or modified test cases to ensure the feature is verifiable.
• The feature patch must only modify existing functions, without adding or deleting any function

definitions.

Developers often write brief and ambiguous descriptions for their PRs in a real-world setting. To
address this, we use an LLM to enrich the functional description of each PR. The model is prompted
to analyze the original PR title, description, and associated code changes (feature patch) to generate
a comprehensive and clear natural language input. This augmented description serves as the final
user request in our benchmark, simulating a vibe coding scenario.

12

https://en.wikipedia.org/w/index.php?title=Vibe_coding&oldid=1312215031
https://en.wikipedia.org/w/index.php?title=Vibe_coding&oldid=1312215031

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Table 3: The required fields for our task instance. Fields marked with * are newly added in
FeatBench compared to SWE-bench.

Field Type Description

base commit str The commit on which the pull request is based, representing the repos-
itory state before the issue is resolved.

patch str Gold patch proposed by the pull request, in .diff format.
test patch str Modifications to the test suite proposed by the pull request that are typ-

ically used to check whether the issue has been resolved.
problem statement str Issue description text, typically describing the bug or requested feature,

used as the task problem statement.
FAIL TO PASS List[str] Test cases that are expected to successfully transition from failing to

passing are used to evaluate the correctness of the patch.
PASS TO PASS List[str] Test cases that are already passing prior to applying the gold patch. A

correct patch shouldn’t introduce regression failures in these tests.
*image key str Instance-level docker image that provides an execution environment.

Environment Configuration Inspired by SWE-bench-Live, we construct a two-stage pipeline to
configure the environment, mimicking the process of a human developer setting up an unfamil-
iar project. In the first stage, the analysis agent is tasked with information gathering. For each
PR, it reverts the codebase to its corresponding base commit state and, guided by a pre-configured
prompt, locates crucial files such as CI/CD configuration files (e.g., .github/workflows,
.travis.yml), dependency definitions (e.g., requirements.txt, pyproject.toml), and
README.md files. It ultimately outputs a structured file containing the paths to the top 20 most rel-
evant environment configuration files for the subsequent configuration agent to use.

The configuration agent operates within a container launched from a base image corresponding to the
identified Python version. This base image is pre-equipped with common development tools (e.g.,
git, cmake). To accelerate dependency installation and reduce build times, the agent utilizes both a
caching mechanism and the high-performance package manager uv(Astral, 2025). It is instructed to
use the --exclude-newer <commit timestamp> parameter to enforce the use of package
versions available at the time of the PR’s creation. The prompt provided to the agent also includes
troubleshooting heuristics, such as installing pytest-timeout(Pytest-dev, 2025) to prevent tests
from hanging and ignoring specific internal test framework errors. Following this process, the agent
systematically completes the environment configuration, generating a “test-ready image”.

Test Case Acquisition and Validation. In a container initiated from the “test-ready image,” we
first apply only the test patch. We use Abstract Syntax Tree (AST) analysis on the test patch to
identify the specific tests added or modified for the new feature. We then selectively run these
identified test cases by pytest(Pytest, 2024) and log the results, expecting them to fail. Next, we
apply the feature patch and rerun the same test cases, expecting them to pass. A PR is deemed valid
if any test case transitions from FAILED/ERROR to PASSED.

In the container, we first apply the test patch and run all tests within the main test directory, logging
all passing cases. Subsequently, we apply the feature patch and rerun all tests. These cases are used
to check for regressions.

A.3 EXPERIMENTAL SETUP DETAILS

This section presents additional details of the experimental setup to facilitate reproducibility.

Hyperparameters used in the experiments. For Trea-agent, we set a maximum of 150 iterations
per instance, with the LLM configured to use a temperature of 0.0 and a top-p value of 1.0 as the
default. For Agentless, both the number of localization samples and repair samples are set to 1,
corresponding to a single rollout. In our experiments, we omit Agentless’s regression test-based
reranking stage, retaining only the localization and repair stages. The LLM calls within FeatBench
are configured with a temperature of 0.0.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Computational resources. All LLM calls in this work are made through official APIs. The exper-
iments involve Docker containers for test execution. We conduct all the experiments on a desktop
with an Intel Core i5-12600KF @ 3.70GHz (10 cores) and 16GB of RAM.

A.4 TASK INSTANCE STATISTICS

This section provides additional statistics about the instances in our benchmark.

Level #Item Average Median

R
ep

o Repositories 27
LoC 209k 106k
Files 864 381

In
st

an
ce

Instances 157
Files* 2.4 2.0

Hunks* 5.1 4.0
Lines* 161.6 18.0

F2P test cases 2.2 1.0
P2P test cases 1692.4 1089.0

*Stats of gold patch.

A.5 BENCHMARK FIELDS

Table 3 provides a detailed description of the fields included in the FeatBench and how they are
obtained during the curation process.

A.6 LIMITATIONS

A limitation of our initial release is its exclusive focus on repositories predominantly written in
Python. We prioritized Python because its widespread adoption ensures that our benchmark is rep-
resentative of real-world vibe coding scenarios. Additionally, it is essential to note that our fully
automated pipeline for data curation and environment configuration is language-agnostic. We plan
to leverage this capability in future updates to incrementally incorporate repositories in other pop-
ular languages (e.g., Java, Go), thereby broadening the benchmark’s scope and applicability across
diverse programming domains.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

A.7 FULL REPOSITORIES LIST

Type Repository License #Instances #Files LoC

AI/ML

instructlab/instructlab Apache-2.0 2 142 28.2k
jupyterlab/jupyter-ai BSD-3-Clause 1 81 9.0k
stanfordnlp/dspy MIT 7 222 30.6k
projectmesa/mesa Apache-2.0 5 109 20.3k
huggingface/smolagents Apache-2.0 8 65 21.4k
cyclotruc/gitingest MIT 1 39 4.7k
modelcontextprotocol/python-sdk MIT 2 114 13.4k
openai/openai-agents-python MIT 8 212 29.8k
huggingface/datasets Apache-2.0 6 207 69.6k

DevOps

conan-io/conan MIT 56 1056 162.5k
python-attrs/attrs MIT 2 52 18.6k
koxudaxi/datamodel-code-generator MIT 8 599 60.3k
tox-dev/tox MIT 3 225 23.8k
dynaconf/dynaconf MIT 2 463 55.1k
FreeOpcUa/opcua-asyncio LGPL-3.0 1 168 344.4k
iterative/dvc Apache-2.0 4 554 85.3k

Web

reflex-dev/reflex Apache-2.0 4 376 89.8k
Kozea/WeasyPrint BSD-3-Clause 1 144 70.0k
aiogram/aiogram MIT 6 861 69.8k
ag2ai/faststream Apache-2.0 3 1267 85.1k
encode/starlette BSD-3-Clause 6 66 17.2k
jpadilla/pyjwt MIT 3 26 6.9k
slackapi/bolt-python MIT 3 562 60.8k

Database pydata/xarray Apache-2.0 9 226 179.2k

Science pybamm-team/PyBaMM BSD-3-Clause 4 581 113.4k

Misc fonttools/fonttools MIT 2 512 192.6k

Cloud aws-cloudformation/cfn-lint MIT 2 2422 160.2k

15

https://github.com/instructlab/instructlab
https://github.com/jupyterlab/jupyter-ai
https://github.com/stanfordnlp/dspy
https://github.com/projectmesa/mesa
https://github.com/huggingface/smolagents
https://github.com/cyclotruc/gitingest
https://github.com/modelcontextprotocol/python-sdk
https://github.com/openai/openai-agents-python
https://github.com/huggingface/datasets
https://github.com/conan-io/conan
https://github.com/python-attrs/attrs
https://github.com/koxudaxi/datamodel-code-generator
https://github.com/tox-dev/tox
https://github.com/dynaconf/dynaconf
https://github.com/FreeOpcUa/opcua-asyncio
https://github.com/iterative/dvc
https://github.com/reflex-dev/reflex
https://github.com/Kozea/WeasyPrint
https://github.com/aiogram/aiogram
https://github.com/ag2ai/faststream
https://github.com/encode/starlette
https://github.com/jpadilla/pyjwt
https://github.com/slackapi/bolt-python
https://github.com/pydata/xarray
https://github.com/pybamm-team/PyBaMM
https://github.com/fonttools/fonttools
https://github.com/aws-cloudformation/cfn-lint

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

A.8 PROMPTS IN FEATBENCH

Prompt for Feature-implementation PRs Identification

Repository Context (README):
{readme}

Analyze the following software release notes and categorize the
changes into: new_features, improvements, bug_fixes, and
other_changes.
For each change, extract any PR references (like #123, PR456, pull
#789, etc.) mentioned in the text.

Release version: {tag_name}
Release notes:{release_body}

Guidelines:
1. new_features: Brand new functionality, commands, rules, or
capabilities
2. improvements: Enhancements to existing features, optimizations,
performance improvements
3. bug_fixes: Bug fixes, error handling, crash fixes
4. other_changes: Documentation updates, dependency updates,
refactoring (only if significant)
5. Extract PR numbers from various formats: #123, PR #456, pull
789, (#101), etc.
6. Only include PR numbers that are explicitly mentioned with the
change
7. Ignore trivial changes like version bumps unless they’re part
of larger features
8. Use the repository context to better understand the project’s
domain and categorize changes more accurately

Return the result in JSON format:
{

"new_features": [
{

"description": "Brief description of the new feature",
"pr_ids": ["123", "456"]

}
],
"improvements": [

{
"description": "Brief description of the improvement",
"pr_ids": ["789"]

}
],
"bug_fixes": [

{
"description": "Brief description of the bug fix",
"pr_ids": ["101"]

}
],
"other_changes": [

{
"description": "Brief description of other changes",
"pr_ids": []

}
]

}

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Prompt for Uesr Request Synthesization

You are creating a user requirement description that will be used
to instruct another LLM to implement the exact same functionality.
Your task is to analyze the PR information and code changes, then
write a comprehensive user request that describes what the user
wants to accomplish.

This description will be given to a coding LLM to generate the
implementation, so you must ensure all functionality across all
modified files is thoroughly described from the user’s perspective.

Original Feature Description: {feature_description}

PR Title: {title}
PR Description: {body}

File Changes:
{files_text}

Your user requirement description must:
- Start with "I want to" and write as if a user is requesting this
functionality from a developer
- Include ALL information from the original PR Description - do
not omit any details, requirements, or context provided there
- Describe what the user wants to accomplish with complete detail
for every file that was modified
- Include all functional requirements that would be needed to
recreate this exact implementation
- When functions/methods have parameter changes (additions,
deletions, modifications), describe what the user needs in terms
of input data and configuration options, mentioning specific
parameter names naturally within the context of the requirement
- Focus on the complete user workflow and all capabilities they
need
- Describe the expected behavior and outcomes the user wants to
achieve
- Ensure a coding LLM reading this could implement all the
functionality without seeing the original code
- Write as a natural user request, not technical documentation
- Avoid phrases like "implement function X" or "modify file Y" -
instead describe what the user wants to accomplish
- Do NOT include any actual code implementations, code snippets,
or technical syntax - only describe the desired functionality and
behavior from a user perspective
- Focus on WHAT the user wants to achieve, not HOW it should be
implemented technically

Remember: This description will be the only guide for another LLM
to recreate this functionality, so include every important detail
about what the user wants to achieve, but express it as natural
user requirements. You must incorporate all information from the
original PR description. Never include code - only describe the
desired outcomes and behaviors.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

Prompt for Relevant Files Identification & Python Version Detection

Please analyze the project {repo_name} and perform two tasks:

TASK 1: List the most relevant files(no more than 20) for setting
up a development environment, including:
0. CI/CD configuration files (such as .github/workflows/*.yml,
.gitlab-ci.yml, .travis.yml, Jenkinsfile, etc.)
1. README files
2. Documentation files
3. Installation guides
4. Development setup guides
5. Requirements and dependency files (requirements.txt, setup.py,
pyproject.toml, Pipfile, etc.)
6. Configuration files (.python-version, .nvmrc, Dockerfile,
docker-compose.yml, etc.)

Save the file list to a JSON file named "{setup_files}" in the
project root directory.
Format the file list as a JSON array where each element is a
string containing the relative path (relative to project root).
Example format: ["README.md", "requirements.txt", "setup.py",
".github/workflows/ci.yml"]

IMPORTANT: You MUST strictly save the file list using the exact
filename "{setup_files}" as required. Do NOT use any other
filename.

TASK 2: Analyze the configuration files you found and determine
the most appropriate Python version for this project.
Based on your analysis, save the recommended Python version to a
text file named "{version_file}" in the project root directory.
The file should contain ONLY the version number in the format
"3.xx" (e.g., "3.8", "3.9", "3.10", "3.11").

IMPORTANT: You MUST strictly save the Python version using the
exact filename "{version_file}" as required. Do NOT use any other
filename.

If no specific version requirements are found, use
"{default_version}" as the default.

IMPORTANT: The {version_file} file must contain ONLY the version
number, no comments, no explanations, no additional text.

Focus only on identifying files and determining the Python
version. Do not attempt to configure the environment yet.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

Prompt for Configuration Agent

Please help me configure the runtime environment for this project.
The project is {repo_name}.

MANDATORY FIRST STEP
First, read the **{setup_files}** file in the project root to
understand which configuration files are available.
DO NOT PROCEED WITHOUT READING THIS FILE FIRST!
Then analyze these files to understand the project structure,
dependencies, and requirements.

TEST REQUIREMENTS
You need to verify if it can successfully run the tests of the
project.
You can tolerate a few test cases failures-as long as most tests
pass, it’s good enough.
Your test command must output detailed pass/fail status for each
test item. This is mandatory. For example, with pytest, use the
-rA option to get output like:
PASSED tests/test_resources.py::test_fetch_centromeres
PASSED tests/test_vis.py::test_to_ucsc_colorstring

IMPORTANT: Always use ’--tb=short’ to avoid excessive
traceback output. Before running any tests, you MUST attempt to
install ’pytest-timeout’ and ’pytest-xdist’, and ALWAYS add
’--timeout=5’ and ’-n auto’ to your pytest command to prevent any
single test case from running too long and to speed up testing by
running tests in parallel.

IMPORTANT: You must additionally test {test_files}. If these
specific tests fail due to ImportError or ModuleNotFound, you
should make every effort to install all optional dependencies. For
other test files, you may tolerate ImportError or ModuleNotFound
errors.

PYTHON VERSION INFORMATION
IMPORTANT: About Python versions in this container:
- The container has been pre-configured with the optimal Python
version for this specific project
- **IMPORTANT** The Python version specified in the {version_file}
is already installed in the system. You can use ’python3.x’ to run
the project directly (e.g., python3.11)
- DO NOT attempt to install or change Python versions - the
correct version is already installed in the system

PREFERRED INSTALLATION METHOD
- Always check which Python environment you’re targeting before
installation

PRIORITY 1: Try using UV or poetry first (recommended)
- Use ’uv’ for dependency management and installation when possible
- For projects with pyproject.toml: try ’uv sync’ or ’uv install’
- For projects with requirements.txt: try ’uv pip install -r
requirements.txt’
- For editable installation: try ’uv pip install -e .’
- For running tests: try ’uv run pytest’ or similar commands
- **IMPORTANT**: If you use uv to install dependencies, you MUST
add the --exclude-newer {created_time} argument, for example: ’uv
pip install -r requirements.txt --exclude-newer {created_time}’
- **IMPORTANT**: Ensure uv is using the system Python, not the
agent’s Python environment

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

PRIORITY 2: Fallback to traditional tools if UV fails
- If UV doesn’t work or encounters issues, fall back to pip3
- Use system pip3: check with ’which pip3’ to verify location
- Install necessary dependencies using system pip3
- If the project needs to be installed as a package, use ’pip3
install -e .’
- If you use pip to install dependencies, since pip cannot specify
a cutoff date, you may encounter dependency version conflicts. In
such cases, you need to manually resolve the conflicts according
to the project’s timeline. The cut-off time is {created_time}.
- **IMPORTANT**: Verify you’re using system pip3, not agent’s pip

Set up the correct Python environment and ensure all required
packages are installed so that the test files can run properly.
Focus on resolving any import errors, missing dependencies, or
configuration issues.

IMPORTANT:
1. This Docker container may have been used to configure
environments for the same project before.
2. UV is already installed in the container and configured with
Tsinghua mirror for faster downloads.
3. If you encounter any testing-related errors (such as ’collected
0 items’, ’no tests found’, ’skip’, ’INTERNALERROR’,
’TypeError: could not get code object’, or other pytest framework
internal issues), please ignore these errors and focus
on environment configuration instead. These errors may indicate
that test files don’t exist, don’t contain valid tests,
or are pytest framework internal issues. In such cases, abandon
trying to fix specific test files and continue with
dependency installation and environment configuration.
4. Install all dependencies to the system Python, not in any
virtual environment.
5. This Docker container may have been used to configure
environments for the same project before.
Please first check what packages are already installed in the
system Python environment to avoid conflicts.

20

	Introduction
	FeatBench
	Task Definition
	Features of FeatBench
	Benchmark Construction Pipeline

	Experiments
	Setup
	Evaluation Metrics
	Performance Evaluation on FeatBench
	Impact of Task Complexity on Resolved Rate
	Association Between Resolved Rate and Creation Time
	Token Consumption vs. Resolved Rate

	Case Studies
	Case Study on Failure Reasons
	Case Study on Resolved Patches: Agent vs. Gold
	The Duality of Aggressive Implementation

	Conclusion
	Appendix
	The Use of Large Language Models
	Construction Details
	Experimental Setup Details
	Task Instance Statistics
	Benchmark Fields
	Limitations
	Full Repositories List
	Prompts in FeatBench

