Under review as a conference paper at ICLR 2026

FEATBENCH: EVALUATING CODING AGENTS ON FEA-
TURE IMPLEMENTATION FOR VIBE CODING

Anonymous authors
Paper under double-blind review

ABSTRACT

The rapid advancement of Large Language Models (LLMs) has given rise to a
novel software development paradigm known as “vibe coding,” where users in-
teract with coding agents through high-level natural language. However, existing
evaluation benchmarks for code generation inadequately assess an agent’s vibe
coding capabilities. Existing benchmarks are misaligned, as they either require
code-level specifications or focus narrowly on issue-solving, neglecting the criti-
cal scenario of feature implementation within the vibe coding paradiam. To ad-
dress this gap, we propose FeatBench, a novel benchmark for vibe coding that
focuses on feature implementation. Our benchmark is distinguished by several
key features: @ Pure Natural Language Prompts. Task inputs consist solely of
abstract natural language descriptions, devoid of any code or structural hints. @
A Rigorous & Evolving Data Collection Process. FeatBench is built on a multi-
level filtering pipeline to ensure quality and a fully automated pipeline to evolve
the benchmark, mitigating data contamination. & Comprehensive Test Cases.
Each task includes Fail-to-Pass (F2P) and Pass-to-Pass (P2P) tests to verify cor-
rectness and prevent regressions. @ Diverse Application Domains. The bench-
mark includes repositories from diverse domains to ensure it reflects real-world
scenarios. We evaluate two state-of-the-art agent frameworks with four leading
LLMs on FeatBench. Our evaluation reveals that feature implementation within
the vibe coding paradigm is a significant challenge, with the highest success rate
of only 29.94%. Our analysis also reveals a tendency for “aggressive implemen-
tation,” a strategy that paradoxically leads to both critical failures and superior
software design. We release FeatBench, our automated collection pipeline, and all
experimental results to facilitate further community research. Our code is avail-
able at https://anonymous.4open.science/r/FeatBench-D3C5.

“The hottest new programming language is English.”
—Andrej Karpathy (Karpathy| [2025b))

1 INTRODUCTION

The rapid advancement of Large Language Models (LLMs) has given rise to a novel software de-
velopment paradigm(Jiang et al.| [2024; |[Li et al., [2024; |Seed et al., 2025)), recently termed ‘“Vibe
Coding.”(Horvat, |2025}; [Karpathy, |2025a}; |Wikipedial [2025) This approach allows users to program
by interacting with an LLM-powered coding agent through high-level, abstract requests in natural
language. The agent then autonomously generates, tests, and executes the code, obviating the need
for users to write or review it. In this paradigm, authorship transfers to the Al without needing to
understand the implementation details. Vibe coding is transformative for implementing novel ideas,
particularly for users unfamiliar with programming. For instance, a product manager can describe a
new feature to generate a prototype. In another scenario, a data analyst employs rapid, iterative cod-
ing for Exploratory Data Analysis (EDA). These examples illustrate that vibe coding can enhance
productivity and foster discoveries for practitioners across diverse fields. Consequently, vibe coding
is emerging as a prominent topic in artificial intelligence, drawing significant research interest.

High-quality evaluation benchmarks are essential to foster the development of vibe coding. How-
ever, existing evaluation benchmarks for code generation inadequately assess an agent’s vibe coding
capabilities. Traditional code generation benchmarks, such as HumanEval(Chen et al., 2021) and

https://anonymous.4open.science/r/FeatBench-D3C5

Under review as a conference paper at ICLR 2026

Table 1: Comparison with existing Vibe Coding benchmarks.

Benchmark \ Date Task Type Curation Level Task input
SWE-bench(Jimenez et al.|[2024) Oct, 2023 Issue Solving Manual Repository Level Issue Description
SWE-bench-Live(Zhang et al.[[2025) | Jun, 2025 Issue Solving Automatic ~ Repository Level Issue Description
RACodeBench(Zhao et al.[[2025) Sep, 2025 Issue Solving Manual Repository Level Issue Description+Wrong Code
FeatBench (Ours) \ Sep, 2025 Feature Impl ation A ic Repository Level Feature Requirement

ClassEval(Du et al., 2023), are misaligned with the vibe coding paradigm. Beyond natural language
requirements, their inputs demand code-level specifics like function signatures, a methodology fun-
damentally misaligned with the vibe coding paradigm. The benchmarks most relevant to the vibe
coding paradigm are issue-solving benchmarks, represented by SWE-Bench(Jimenez et al., |2024),
which generate code patches based solely on issue descriptions. However, these benchmarks cover
only the issue-solving scenario, neglecting other critical scenarios in vibe coding, such as feature im-
plementation, as demonstrated in our comparison in Table[T} Therefore, it is necessary to construct
more diverse benchmarks to evaluate agents’ vibe coding capabilities comprehensively.

We propose FeatBench, a novel benchmark for vibe coding to fill this research gap. Unlike issue-
solving benchmarks (e.g., SWE-bench), our benchmark focuses on a critical yet under-evaluated
aspect of vibe coding: feature implementation. This task involves implementing new function-
alities based on abstract natural descriptions from a user’s perspective, directly simulating how
non-technical users add capabilities to existing software. It is an everyday real-world development
activity, supported by existing studies(LaToza et al.,2006) indicating that developers spend approx-
imately 37% of their time on new feature development. To the best of our knowledge, FeatBench is
the first benchmark to evaluate an agent’s proficiency in feature implementation within the vibe cod-
ing paradigm. Our benchmark is distinguished by several key features: @ Pure Natural Language
Prompts: Task inputs consist solely of abstract natural language descriptions, devoid of any code
or structural hints, to accurately reflect the vibe coding workflow. @ Rigorous & Evolving Data
Collection Process: Our data collection process follows strict quality assurance standards, with a
multi-level filtering pipeline. To mitigate data contamination, we develop a fully automated pipeline
to evolve our benchmark without human effort. The initial release of our benchmark comprises 157
tasks sourced from 27 actively maintained open-source GitHub repositories. ® Comprehensive
Test Cases: Each task is equipped with the Fail-to-Pass (F2P) and Pass-to-Pass (P2P) test cases,
verifying both the generated code’s correctness and the preservation of existing functionality. @
Diverse Application Domains: To ensure FeatBench accurately reflects real-world development
scenarios, it includes repositories from diverse domains such as AI/ML, DevOps, and Web develop-
ment.

To demonstrate the utility of FeatBench, we evaluate two SOTA agent frameworks, Trae-agent and
Agentless, using four SOTA LLMs, including open-source models like DeepSeek V3.1(Deepseekl,
20235])) and proprietary models such as GPT-5(OpenAll 2025), Doubao-Seed-1.6(ByteDance, |2025)),
and Qwen3-Coder-Flash(Team), 2025)). Following established standards(Deng et al.| [2025; |[Zhang
et al., |2025), we adopt the Resolved Rate (%) as our primary metric. We also report the Patch
Apply Rate (%) and the File-level Localization Success Rate (%), alongside several auxiliary
metrics. Based on our experimental results, we find that: @ FeatBench poses a significant challenge
to SOTA agents, with the top-performing configuration achieving a resolved rate of only 29.94%. We
identify an apparent performance disparity between agent paradigms: autonomous, planning-based
agents substantially outperform rigid, pipeline-based counterparts. @ A critical and widespread
failure mode is the introduction of regressions. All evaluated agents tend to break existing func-
tionalities when adding new features. This undermines the reliability required for the vibe coding
paradigm, where the user does not typically review code. ® Our case studies found that agents often
adopt an “aggressive implementation” strategy when adding new features. This behavior acts as a
double-edged sword. While this strategy is the primary cause of task failures through “scope creep,”
it can also yield solutions with superior software architecture and robustness. This finding highlights
the critical need for mechanisms to control this behavior.

2 FEATBENCH
2.1 TASK DEFINITION

Figure |1| shows a sample in FeatBench. Each sample consists of four components: @ Feature De-
scription: A detailed natural language description of the new feature to be added. ® Running

Under review as a conference paper at ICLR 2026

FeatBench
Input: Feature implementation based on abstract natural language: 1) 2) (3

Output: The standard Git patch files (evaluated by: 4))

@ @ Requirements

| want to be able to access and modify certain Meson build configuration attributes directly in my Conan recipes
without needing to work around private variable restrictions. Currently, when using the MesonToolchain, | need to
access important build settings like debug flag handling, static library position independence, and compiler
standards through indirect methods, which makes my build scripts more complex and less intuitive...

@) Running Environment

i

& @ Repository
B .github/ [test/ [README.md
I conans/ [pyproject.toml (3 setup.py

g §]
\ Essential Tools | | (o Dependencies |

e Tests
N A G .
i |x=| Pass-to-Pass Tests i | [¢c| Fail-to-Pass Tests
def test_already_pyc_in_manifest():.. def test_new_public_attributes():..
def test_package_reference():.. def test_thread_flags(threads, flags):...i
- /

Figure 1: An overview of FeatBench. Each sample consists of four components.

Environment: A pre-configured Docker image containing the runtime environment. ® Reposi-
tory: The complete codebase at the required commit. @ Evaluation Tests: A comprehensive suite
of Pass-to-Pass (P2P) tests to detect regressions and Fail-to-Pass (F2P) tests to verify the correct
implementation of the new feature.

2.2 FEATURES OF FEATBENCH

Pure Natural Language Prompts. To precisely simulate a user’s intent, we mandate that all
prompts are framed as a first-person feature request, beginning with “I want to...”. These prompts,
averaging 1848 characters, are stripped of implementation details and structured to include func-
tional appeal, background motivation, and specific requirements. This design ensures the agent
receives a comprehensive and unambiguous task description.

Rigorous & Evolving Data Collection Process. Our Database (1)
data collection process is designed to be both rigorous and = i

evolving. We employ a strict, multi-level filtering process == Cloud (1)
at the repository, release, PR, and test case levels to en-
sure rigor. To mitigate data contamination, we develop
and open-source a fully automated pipeline to evolve the
benchmark. This paper releases the benchmark’s initial
version, comprising 157 tasks from 27 repositories, with
all constituent releases from the past year. We plan to
leverage this pipeline to update the benchmark every six
months. This process is highly cost-effective, with a pro-
cessing cost of approximately $0.28 per sample using the
DeepSeek V3.1 model. Detailed task statistics are pro- Figure 2: Repository distribution.
vided in Section [A.4

DevOps (7)

AIIML (9)

Web (7)

Comprehensive Test Cases. The correctness of each generated implementation is rigorously val-
idated. On average, each task is equipped with 1657.53 test cases. This extensive test coverage not
only validates the correctness of new features but also robustly detects potential regressions.

Under review as a conference paper at ICLR 2026

Data Curation & Pre-processing Environment Configuration Test Case Acquisition & Validation

< (
conan-io/conan Fork11k Yy Star 9k i 5 "
~ ! / 939 ! Environment Analysis A conan-io_conan:wssla
conans n P e 1
ull requests |
Test Patch
test ' Automated Env Setup Apoly “aoply
O RreaDMEmd o e S £ A 1
[Gt)10 (0 | ! F
[i I "] eature Patch
@ Files Chang i | Install Essential Tools | | | [iEConfiguring... | Tools |]
g R e S Apply
@ Releases files.py i i e i, oont
2.20.0 (01-Sep-2025) test_zipping.py MEEE ' 1 [#] Check Transition ;
2weeks ago O~ 696012 ¥ = 0 i
+ e B escription oo oo 12200] | | [l
for get and unzip metho | want to be able to
G e o | e [rae0 @ test_unzip_.. | FAILED |FALEDID)
L SAN ; r_..| FALED [PASSEDI®) test_untarge_... | PASSED pASSEDID)
Yo Merged \ Input)

Figure 3: The pipeline of building our benchmark.

Diverse Application Domains. Our benchmark spans a wide range of application domains, with
a detailed distribution shown in Fig. [2] This diversity provides a broad platform for cross-domain
evaluation of LLM performance. We plan to continually expand our dataset with samples from
cutting-edge open-source repositories to maintain the benchmark’s challenge and generality.

2.3 BENCHMARK CONSTRUCTION PIPELINE

Our benchmark construction pipeline is divided into three main phases: data curation, environment
configuration, and test case validation, as illustrated in Fig.[3] Further technical details are provided
in the Section[A2

Data Curation and Pre-processing. The initial filtering occurs at the repository level, where we
selected 27 high-quality candidates from an initial pool of 44 open-source repositories based on
several criteria: test file exists, a history of active maintenance with at least three official releases,
and relevance to common software development domains (e.g., excluding tutorials).

We curated 675 releases from these repositories and then analyzed them individually, employing an
LLM to identify feature-implementation PRs from the natural language of release notes. This step
filters for releases created within the last year, longer than 30 characters, and that are not automated
or trivial updates generated by bots. The prompt template is in Section[A.8]

The final curation is applied at the PR level. From the filtered releases, we extracted an average
of 3 feature-implementation PRs per release, yielding 297 high-quality samples. We then filter
for these samples that contain changes to Python files and an accompanying test patch to ensure
each task is verifiable and represents a functional code change. Furthermore, we impose a critical
constraint: the code patch implementing the feature must only modify existing functions, without
adding or deleting any. This constraint is crucial for testability, enabling static, developer-written
test cases to validate the agent’s implementation reliably. We argue this criterion is unbiased, as we
posit that an LLM agent should adhere to the same constraint if a human developer refrains from
adding or deleting functions due to complexity or maintainability concerns. The final validation
step, ensuring each sample had at least one F2P test case, resulted in 157 tasks. Finally, since real-
world PR descriptions are often terse and developer-centric, we use an LLM to synthesize a more
comprehensive, code-agnostic user request suitable for a vibe coding prompt. The prompt template
is in the Section[A.8]

Environment Configuration. We develop an agent to automatically configure the environment
by reverting the repository to its state before the PR, analyzing it to infer the Python version and
configuration files, and then constructing a Docker image that accurately replicates the historical
runtime environment. The agent’s task is considered complete only after ensuring the PR’s test suite
is executable and installing all dependencies, including optional ones.

Test Case Acquisition and Validation. This final phase establishes a robust ground truth for eval-
uation. Fail-to-Pass (F2P) test cases are extracted from the new or modified tests introduced in the
current PR, which serve as direct evidence of successful feature implementation. We validate that
these tests transition from failing to passing after applying the feature patch. We identify Pass-to-
Pass (P2P) test cases to prevent regressions by running the entire test suite on the pre-patch repository
and confirming they still pass after the patch is applied.

Under review as a conference paper at ICLR 2026

Table 2: Performance comparison across different agents & LLMs on FeatBench.

Model Trae-agent Agentless
Resolved% Applied% RT% FV% File% #Token \ Resolved% Applied% RT% FV% File% #Token

Open-Source Model
DeepSeek V3.1 22.29% 100.00% 42.68% 46.50% 79.11% 2A21M‘ 9.55% 70.70% 32.48% 19.11% 42.28% 0.05M

Closed-Source Model

Doubao-Seed-1.6 15.92% 100.00% 41.40% 26.75% 65.77% 1.07M 10.19% 9L.72% 26.75% 19.11% 49.30% 0.08M
Qwen3-Coder-Flash 20.38% 100.00% 50.32% 37.58% 74.37% 1.72M 7.00% 71.34% 24.84% 14.01% 36.49% 0.05M
GPT-5 29.94% 100.00% 50.32% 56.05% 86.43% 2.90M | 16.56% 98.09% 35.67% 34.39% 67.54% 0.07M
Average 22.13% 100.00% 46.18% 41.72% 76.42% 1.98M | 10.83% 82.96% 29.94% 21.66% 48.90% 0.06M

3 EXPERIMENTS

3.1 SETUP

Agent Selection. To evaluate the feature implementation capabilities of SOTA agents in vibe cod-
ing scenarios, we selected two leading frameworks from software engineering and tested them. We
chose agent-based evaluation because vibe coding in a no-code context is a complex task that re-
quires not only code generation but also the ability to localize relevant files within a large repository.
The selected frameworks are: Agentless(Xia et al., [2024), which employs a two-stage pipeline,
and Trae-agent(Team et al., 2025), which utilizes an autonomous planning solution. Their dif-
fering paradigms allow us to gain deeper insights into the capabilities required for effective vibe
coding. For Trae-agent, we imposed a maximum limit of 150 steps per task and equipped it with
supplementary tools, including ckg and json_edit_tool. For Agentless, we generally followed
the pipeline and settings described in the original paper, which divides the workflow into two pri-
mary stages: feature localization and patch generation. Consistent with SWE-bench-Live’s(Zhang
et al.,|2025) evaluation methodology, we omit the reranking stage based on regression testing. Since
supporting this step requires substantial infrastructure adaptation beyond our scope, our Agentless
evaluation produces a single candidate solution.

Model Selection. We evaluated the performance of these agents using four recent SOTA
LLMs, encompassing both proprietary and open-source models: the open-source DeepSeek
V3.1 (deepseek-chat), and three proprietary models, GPT-5 (gpt-5-2025-08-07), Doubao-Seed-1.6
(doubao-seed-1-6-250615), and Qwen3-Coder-Flash (qwen3-coder-flash-2025-07-28). For a com-
prehensive description of the experimental settings and hyperparameters, refer to the Section[A.3]

3.2 EVALUATION METRICS

Following the standards set by previous works(Jimenez et al., 2024} Deng et al., 2025), we adopt
the Resolved Rate (%) as our primary metric. This measures the percentage of vibe coding tasks
successfully completed by an agent. We also report the Patch Apply Rate (%), which indicates the
proportion of generated patches that are syntactically correct and can be applied to the repository
without errors. Furthermore, we measure the File-level Localization Success Rate (%), which
assesses whether the set of files modified by the generated patch matches the ground-truth patches.
In addition, we introduce three auxiliary metrics to facilitate a more in-depth analysis of test case
outcomes:

* Feature Validation Pass Rate (%): This metric evaluates the functional completeness of the
implemented feature by measuring the pass rate of the F2P test cases.

* Regression Tests Pass Rate (%): This metric measures the proportion of tasks where all original
functionalities remain intact after applying the generated patch, evaluated by the pass rate of the
P2P test cases.

* Tokens Cost: The average number of tokens consumed per task.

3.3 PERFORMANCE EVALUATION ON FEATBENCH

We report the performance of all agent-model combinations on FeatBench in Table 2] The results
highlight the challenging nature of FeatBench: even SOTA agent and LLM combinations achieve

Under review as a conference paper at ICLR 2026

a low Resolved %, peaking at just 29.94%. For comparison, the Trae-agent framework paired
with a top model like Claude 3.7 Sonnet(Anthropic, |2025) reached a 65.67% resolution rate on
SWE-bench. This stark performance drop on FeatBench demonstrates that benchmarks designed
from a professional developer’s perspective cannot adequately evaluate an agent’s vibe coding capa-
bilities. A comparison of the two agent paradigms shows that Trae-agent generally outperforms
Agentless. This advantage likely stems from its ability to autonomously plan execution paths, in-
voke external tools like code graph analysis, and design its own test cases to verify functionality
and facilitate feedback-driven optimization. In contrast, Agentless, designed for bug fixing, follows
arigid two-stage “locate-and-patch” pipeline. We argue that this fixed, template-dependent process
limits its problem-solving flexibility and lacks reflective or debugging capabilities. Nevertheless,
the significantly lower token consumption of Agentless suggests it may be more cost-effective for
simpler tasks.

A deeper analysis of the metrics reveals a clear divergence in the core capabilities of the two
frameworks. Firstly, regarding File%, Trae-agent’s average of 76.42% far surpasses Agentless’s
48.90% . With its dynamic planning and tool interaction capabilities, Trae-agent can more accurately
identify the target files for modification within large repositories. Since precise file localization is a
critical prerequisite for task success, the deficiency of Agentless in this initial stage is a key bottle-
neck limiting its overall performance.

Secondly, a significant gap is also evident in the quality of the generated code patches. While all
patches generated by Trae-agent are syntactically valid (100% Applied %), their functional correct-
ness is limited. The average FV% and RT% are only 41.72% and 46.18 %, respectively, indicating
shortcomings in both implementing new features correctly and maintaining existing functionality.
In comparison, Agentless performs even more poorly, with its average FV% (21.66%) and RT %
(29.94%) being substantially lower than those of Trae-agent. This contrast demonstrates that
agents with autonomous planning capabilities exhibit greater flexibility and effectiveness in solving
complex problems than their pipeline-based counterparts.

Finally, the universally low RT % across all model combinations is a noteworthy and widespread
observation. This reveals a significant risk of models introducing regressions by breaking existing
functionalities while attempting to add new ones. This finding imposes stricter reliability require-
ments, a critical factor for the vibe coding paradigm, where users delegate implementation details to
the agent. Future research must therefore prioritize strategies that ensure repository stability, as this
trust is a foundational prerequisite for adopting vibe coding in real-world software engineering.

3.4 IMPACT OF TASK COMPLEXITY ON RESOLVED RATE

The agent’s success, measured by the resolved rate, is significantly influenced by complexity at both
the repository and patch levels.

Overall Resolved Rate by Number of Files Overall Resolved Rate by Lines of Code
0.8 0.8
0.7 —e— DeepSeek 0.7 —e— DeepSeek
o GPT-5 ' GPT-5
50.6 —m— Qwen 0.6 —m— Qwen
B 05 : —o— Doubao 0.5 —&=— Doubao
R :
20.4 0.4{ . N
—_
=0.3 \\ 0.3 -
o L 3
9.2 / \ < 0.2 -\ » *
* L = m]
0.1 0<‘ 0.1 v 5 :
0.0 0 \ 0 0 0 0-0 N3 N3 NS
20 a0 0 20 20 50 I\ \ W\
N 0¥ O o 7 o ™ \’0«1 10\@ e

Number of Files Lines of Code

Figure 4: Resolved Rate in Relation to Repository Complexity

At the repository level, complexity is quantified by the total number of files and aggregate lines
of code (LOC). As illustrated in Fig. 4] a strong inverse correlation exists between a repository’s
scale and the agent’s performance. Model effectiveness is inversely correlated with repository com-

Under review as a conference paper at ICLR 2026

plexity, as measured by both file count and LOC. While agents perform well on smaller projects
(fewer than 200 files or 50,000 LOC), with resolved rates reaching up to 60- 70% for GPT-5, their
success degrades sharply with scale. In large repositories (more than 800 files or 300,000 LOC),
performance for all models converges to a low of 10-30%. This consistent trend, which affects
even top-performing models, highlights that the ability of the LL.LM agent systematically declines
as project complexity increases, making complexity a fundamental barrier to the success of
current agent-based approaches.

Beyond the overall project, the intrinsic complexity of the ground truth solution, or “golden patch,” is
another critical factor. As depicted in Fig.[5] which evaluates patch complexity based on its LOC and
the number of files it spans, success rates peak for single-file patches and those between 1-30 Lines
of Code (LOC), where the top model achieves a 36% resolved rate. However, performance collapses
for substantial modifications, with success rates falling to nearly zero for patches exceeding 50 LOC
or those distributed across five or more files. This highlights a clear limitation in handling larger or
more widespread code changes, demonstrating that the agent’s performance is highest on small,
localized code changes and degrades significantly as the patch size and distribution increase.

Overall Resolved Rate by Lines of Code Overall Resolved Rate by Number of Files
—e— DeepSeek —e— DeepSeek

0.5 GPT-5 0.5 GPT-5
% —=— Qwen —8— Qwen
_né 0.4 —e— Doubao 0.4 —e— Doubao
E
$03{ _ 0.3
g i
To2 ‘_ . 0.2
C>) \’ o/

0.1 . 0.1

0.0 0.0

X‘30 3’&‘50 5&‘10 ,‘yXQQ XQV(

. Number of Files
Lines of Code

Figure 5: Correlation Between Resolved Rate and Patch Complexity

3.5 ASSOCIATION BETWEEN RESOLVED RATE AND CREATION TIME

An analysis of task creation time confirms the temporal stability of our benchmark and the
absence of data contamination.

As illustrated in Fig. [f] while the total volume of patches fluctuates across five distinct periods
(from 2308 to 2509), the resolved rate for the Trae-agent with Doubao-Seed-1.6 remains remarkably
consistent. This stability is critical, as an upward performance trend would suggest data leakage
from earlier tasks being repeated in later periods.

Patch Resolution Performance by Period Performance vs. Token Consumption
35.0%
2% mm Total Patches RS GPT-5
S Resolved Patches 30.0% _ 30| e Trae-agent °
£30- = Resolved Rate 25.0% v X % Agentless
s] 225
g 20.0%% s o DeepSeek v3.1
€20 i [50 o Qwen3-Coder-Flash
2 B S 15.0%g 3 S
8 > « GPT- Doubao-Seed-1.6
%10 10.0%& 215 o Doubao-See:
§ 5.0% 4 Doubao-Seed-1.6
< 0 o ° 0.0% 10 ¥ peepseek v3.1
20 FIag 25° 259 250 * Qwen3-Coder-Flash
2 20 2% 2 25%° 500 0.5 1.0 1.5 2.0 2.5 3.0 35
Period (YYMM format) Token Consumption (Millions)
Figure 6: Association Between Resolved Rate Figure 7: Association between Token
and Creation Time Consumption and Resolved Rate

3.6 TOKEN CONSUMPTION VS. RESOLVED RATE

Analysis of Fig.[7|reveals a stark trade-off between computational cost and task success.

Under review as a conference paper at ICLR 2026

Feature Description

g : | want to be able to use C++26 standard support across all my C++
projects when working with gcc compiler through my build system. | need

this to work just like the existing C++ standards, so | can

Patch

Feature Description

: : I want to be able to load Arrow files in both streamable and non-
streamable binary formats without encountering errors or needing to
manually convert file formats.

Patch

conan/internal/default_settings.py

- cppstd: [..., 17, gnul7, 20, gnu20, 23, gnu23]
..., 17, gnul7, 20, gnu20, 23, gnu23, 26, gnu26]

conan/tools/build/flags.py
def _cppstd_gcc(gee_version, cppstd):

+ if gcc_version >="14":
+ V26 = "c++26"
+ vgnu26 = "gnu++26"

src/datasets/packaged_modules/arrow/arrow.py

class Arrow(...):
def _split_generators(self, dl_manager):

reader = open_stream(f).schema
try:
reader = open_stream(f)
except Exception as e:

o
o
+
+ reader = open_file(f)

Generated Patch

Generated Patch

src/datasets/packaged_modules/arrow/arrow.py
+ defopen_ipc_reader(source: Any):

+ H

conan/internal/default_settings.py + tI’\:'eturn open_stream(source)

gee: + except Exception as e:
- cppstd: [..., 17, gnul7, 20, gnu20, 23, gnu23] + return open_file(source)
+ cppstd: [..., 17, gnul7, 20, gnu20, 23, gnu23, 26, gnu26] dadS:fArsrg\‘\A{(“gg-:neralor>(5e|f dl_manager):

intel-cc: T T !
- cppstd: [..., 17, gnul7, 20, gnu20, 23, gnu23] 7 reader = open_stream(f).schema
+ cppstd: [..., 17, gnul7, 20, gnu20, 23, gnu23, 26, gnu26] + reader = open_ipc_reader(f).schema
conan/tools/build/flags.py

def _cppstd_gcc(gec_version, cppstd): src/datasets/table.py
+ if gec_version >= "14": def _in_memory_arrow_table_from_buffer(...):
+ v26 ="c++26"
+ vgnu26 = "gnu++26" B opened_source = open_stream(source)

+ opened_source = opened_open_ipc_reader(source)

(a) Wrong Generated Patch from (b) Robust Gnerated Patch from

conan-io/conan(Conan.io} 2025) huggingface/datasets(Lhoest et al| 2021
Figure 8: Case Studies of Gold Patch and Generated Patch

The Trae-agent framework exhibits a near-linear trend where achieving higher resolved rates
(15.92% to 29.94%) demands a proportionally significant token investment (1.07M to 2.90M). In
contrast, the Agentless framework is highly token-efficient, consistently operating under 0.1M to-
kens, but this limits its success to a lower range of 7.00% to 16.56%.

This dichotomy highlights the critical need to find methods that enhance the efficiency of token
utilization, ultimately increasing the resolved rate for complex agentic frameworks while avoiding
a linear growth in token costs.

4 CASE STUDIES
In this section, we present case studies of patches generated by Trae-agent.

4.1 CASE STUDY ON FAILURE REASONS

We manually analyzed 122 failed PRs from

Trae-agent to identify the root causes of fail- Misunderstood
ure. These causes were categorized into three user intent
distinct types: (1) Misunderstood User Intent,

where the agent fails to comprehend the core re- Incomplete
quest; (2) Incomplete Implementation, where Implementation
the agent understands the request but fails to
meet all specific requirements; and (3) Regres-
sive Implementation, where the agent suc-
cessfully fulfills the request but inadvertently
breaks existing functionality.

Regressive
Implementation

Figure 9: Failure Reasons of instances

As shown in Fig.] most failures fall into the third category. This indicates that while the agent
is often capable of understanding and implementing the user’s intent, its primary challenge lies in
doing so without causing regressions that lead to test failures.

A clear example of Regressive Implementation can be seen in Fig.[8a] The objective was to add
C++26 standard support for the GCC compiler. The gold patch correctly achieved this by updat-

Under review as a conference paper at ICLR 2026

ing both default_settings.py (to define the setting) and flags.py (to implement it). In
contrast, the agent-generated patch adopted an aggressive implementation, attempting to also add
C++26 parameters for the Inte] C++ Compilerin default_settings.py. However, it neglected
to add the corresponding implementation logic in f1ags . py. This created a configuration that was
declared but not implemented, introducing a regression that caused previously passing tests reliant
on intel-cc to fail.

This case illustrates the agent’s tendency to proactively extend functionality beyond the user’s ex-
plicit request, which can ultimately break the entire solution. This highlights a critical research
direction: developing methods to ensure agents precisely address the specified problem without in-
troducing extraneous, and potentially harmful, modifications. Preventing such “scope creep” is a
key challenge for advancing agent-based coding.

4.2 CASE STUDY ON RESOLVED PATCHES: AGENT VS. GOLD

Our analysis also reveals that agent-generated resolved patches can outperform human-authored
ones in robustness and generality, surpassing mere correctness. This is illustrated in Fig. [8bl
which details a feature-request PR from the huggingface/datasets repository to support both
streamable and non-streamable Apache Arrow file loading.

The human-written gold patch, while functional, employs a localized try-except block in
_split_generators. This non-scalable, ad-hoc fix would require code duplication to sup-
port future streaming needs. In contrast, the agent-generated patch implements a more so-
phisticated architectural design. It abstracts the core logic into a reusable helper function,
open_ipc.reader (source: Any), encapsulating the stream-opening logic and its fall-
backs. It then replaces direct calls with invocations of this centralized function in both
_split_generators and _in_memory_arrow_table_from buffer.

This design not only satisfies the immediate requirement but also establishes a scalable and main-
tainable pattern. It improves code modularity, prevents duplication, and simplifies future extensions
of streaming support. This case demonstrates the agent’s capacity to move beyond basic problem-
solving and produce qualitatively superior code from a software design perspective.

4.3 THE DUALITY OF AGGRESSIVE IMPLEMENTATION

The two cases above indicate that the agent’s tendency to adopt aggressive implementation strate-
gies constitutes a double-edged sword. On one hand, as demonstrated by the C++26 support case
(Fig.[8a), an overly aggressive approach can be detrimental, extending far beyond the original scope
and introducing errors. On the other hand, this same impulse can produce superior software engi-
neering outcomes. The Arrow file streaming case (Fig. [8b) illustrates how the agent’s bold imple-
mentation led to thoughtful abstraction and refactoring.

Therefore, there is a critical need for mechanisms that can control the agent’s level of implementa-
tion aggressiveness, allowing this trait to be harnessed for robust architectural improvements while
preventing the harmful scope creep that introduces defects.

5 CONCLUSION

We introduce FeatBench, a novel benchmark designed to evaluate LLM-based coding agents on
feature implementation within the vibe coding paradigm. Complementing existing benchmarks that
primarily focus on bug fixing, FeatBench specifically targets feature implementation within the vibe
coding paradigm. It utilizes code-free, natural language prompts to simulate authentic user-agent in-
teractions. To combat data contamination, FeatBench developed a fully automated, evolving pipeline
that will be dynamically updated. This paper releases its initial version, comprising 157 tasks from
27 diverse, real-world open-source repositories. Our experimental results reveal that feature im-
plementation within the vibe coding paradigm presents a substantial challenge, with the highest
resolved rates remaining below 29.94%. We uncover a tendency towards “aggressive implementa-
tion”, which can lead to superior software design and critical failures. These insights help clarify
the current coding agent limitations and can guide the development of more reliable agents for the
emerging vibe coding paradigm.

Under review as a conference paper at ICLR 2026

REPRODUCIBILITY STATEMENT

All code, data, and experimental configurations associated with this research are publicly available at
https://anonymous.4open.science/r/FeatBench-D3C5 to ensure full reproducibil-
ity. The repository includes detailed instructions and code to replicate our benchmark construction
pipeline, execute the evaluation of the agents, and reproduce the results presented in this paper.

The complete methodology for our automated benchmark construction is detailed in Section[2.3]and
further elaborated in the Section covering data curation, environment configuration, and test
case validation. The experimental setup, including the specific agent frameworks, large language
models, hyperparameters, and computational resources used for our experiments, is described in
Section [A3] The prompts utilized for LLM interactions within our pipeline are provided in Sec-
tion[A.8] Researchers can fully reproduce our dataset and experimental findings by following the
provided code and documentation.

ETHICS STATEMENT

Our work’s primary goal is to advance the understanding and capabilities of LLM-based coding
agents for beneficial vibe coding tasks, ultimately aiming to improve developer productivity.

Data Curation and Privacy. All data used to construct FeatBench was sourced exclusively from
publicly available, open-source repositories on GitHub. No private or sensitive user data was col-
lected.

Potential for Misuse. While our benchmark is designed to foster positive advancements in vibe
coding scenarios, we recognize that the insights gained could potentially be applied for malicious
purposes. However, the tasks in FeatBench are focused on vibe coding feature implementation, and
our research does not inherently facilitate the development of harmful applications.

REFERENCES

Anthropic. Claude 3.7 sonnet. https://www.anthropic.com/news/
claude—3-7-sonnet) 2025.

Astral. Uv, 2025. URL https://docs.astral.sh/uv/.

ByteDance. Doubao-seed-1.6. https://console.volcengine.com/ark/region:
ark+cn-beijing/model/detail?Id=doubao—-seed-1-6, 2025.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde de Oliveira Pinto, Jared
Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, Alex Ray, Raul Puri,
Gretchen Krueger, Michael Petrov, Heidy Khlaaf, Girish Sastry, Pamela Mishkin, Brooke Chan,
Scott Gray, Nick Ryder, Mikhail Pavlov, Alethea Power, Lukasz Kaiser, Mohammad Bavarian,
Clemens Winter, Philippe Tillet, Felipe Petroski Such, Dave Cummings, Matthias Plappert, Fo-
tios Chantzis, Elizabeth Barnes, Ariel Herbert-Voss, William Hebgen Guss, Alex Nichol, Alex
Paino, Nikolas Tezak, Jie Tang, Igor Babuschkin, Suchir Balaji, Shantanu Jain, William Saunders,
Christopher Hesse, Andrew N. Carr, Jan Leike, Josh Achiam, Vedant Misra, Evan Morikawa,
Alec Radford, Matthew Knight, Miles Brundage, Mira Murati, Katie Mayer, Peter Welinder,
Bob McGrew, Dario Amodei, Sam McCandlish, Ilya Sutskever, and Wojciech Zaremba. Eval-
uating large language models trained on code. arXiv preprint arXiv:2107.03374, 2021. URL
https://arxiv.org/abs/2107.03374l

Conan.io. Conan, September 2025. URL https://github.com/conan-io/conan.
original-date: 2015-12-01T13:17:02Z.

Deepseek. Deepseek v3.1. https://www.deepseek.com/, 2025.

Le Deng, Zhonghao Jiang, Jialun Cao, Michael Pradel, and Zhongxin Liu. Nocode-bench: A bench-
mark for evaluating natural language-driven feature addition. arXiv preprint arXiv:2507.18130,
2025.

10

https://anonymous.4open.science/r/FeatBench-D3C5
https://www.anthropic.com/news/claude-3-7-sonnet
https://www.anthropic.com/news/claude-3-7-sonnet
https://docs.astral.sh/uv/
https://console.volcengine.com/ark/region:ark+cn-beijing/model/detail?Id=doubao-seed-1-6
https://console.volcengine.com/ark/region:ark+cn-beijing/model/detail?Id=doubao-seed-1-6
https://arxiv.org/abs/2107.03374
https://github.com/conan-io/conan
https://www.deepseek.com/

Under review as a conference paper at ICLR 2026

Xueying Du, Mingwei Liu, Kaixin Wang, Hanlin Wang, Junwei Liu, Yixuan Chen, Jiayi Feng,
Chaofeng Sha, Xin Peng, and Yiling Lou. Classeval: A manually-crafted benchmark for evaluat-
ing llms on class-level code generation. arXiv preprint arXiv:2308.01861, 2023.

Marko Horvat. What is vibe coding and when should you use it (or not)? Authorea Preprints, 2025.

Siyuan Jiang, Jia Li, He Zong, Huanyu Liu, Hao Zhu, Shukai Hu, Erlu Li, Jiazheng Ding, Yu Han,
Wei Ning, et al. aixcoder-7b: A lightweight and effective large language model for code comple-
tion. arXiv preprint arXiv:2410.13187, 2024.

Carlos E Jimenez, John Yang, Alexander Wettig, Shunyu Yao, Kexin Pei, Ofir Press, and Karthik R
Narasimhan. SWE-bench: Can language models resolve real-world github issues? In The Twelfth
International Conference on Learning Representations, 2024. URL https://openreview.
net/forum?id=VTF8yNQM66.

Andrej Karpathy. Andrej karpathy on x: “there’s a new kind of coding i call “vibe coding”,
where you fully give in to the vibes, embrace exponentials, and forget that the code even ex-
ists. it’s possible because the llms (e.g. cursor composer w sonnet) are getting too good. also i just
talk to composer with superwhisper”, 2025a. URL https://x.com/karpathy/status/
1886192184808149383. Accessed: 25 September 2025.

Andrej Karpathy. Andrej karpathy on x: “the hottest new programming language is english”, 2025b.
URL https://x.com/karpathy/status/1617979122625712128. Accessed: 25
September 2025.

Thomas D LaToza, Gina Venolia, and Robert DeLine. Maintaining mental models: a study of devel-
oper work habits. In Proceedings of the 28th international conference on Software engineering,
pp. 492-501, 2006.

Quentin Lhoest, Albert Villanova del Moral, Yacine Jernite, Abhishek Thakur, Patrick von Platen,
Suraj Patil, Julien Chaumond, Mariama Drame, Julien Plu, Lewis Tunstall, Joe Davison, Mario
gaéko, Gunjan Chhablani, Bhavitvya Malik, Simon Brandeis, Teven Le Scao, Victor Sanh, Can-
wen Xu, Nicolas Patry, Angelina McMillan-Major, Philipp Schmid, Sylvain Gugger, Clément
Delangue, Théo Matussiere, Lysandre Debut, Stas Bekman, Pierric Cistac, Thibault Goehringer,
Victor Mustar, Francois Lagunas, Alexander Rush, and Thomas Wolf. Datasets: A community
library for natural language processing. In Proceedings of the 2021 Conference on Empirical
Methods in Natural Language Processing: System Demonstrations, pp. 175-184, Online and
Punta Cana, Dominican Republic, November 2021. Association for Computational Linguistics.
URLhttps://aclanthology.org/2021.emnlp-demo.21.

Jia Li, Ge Li, Yongmin Li, and Zhi Jin. Structured chain-of-thought prompting for code generation.
ACM Trans. Softw. Eng. Methodol., August 2024. ISSN 1049-331X. doi: 10.1145/3690635. URL
https://doi.org/10.1145/3690635. Just Accepted.

OpenAl Gpt-5. https://platform.openai.com/docs/models/gpt—>5,2025.
Pytest. Pytest. https://docs.pytest.org/en/8.0.x/,2024.

Pytest-dev. Pytest-timeout, September 2025. URL https://github.com/pytest-dev/
pytest-timeout.

ByteDance Seed, Yuyu Zhang, Jing Su, Yifan Sun, Chenguang Xi, Xia Xiao, Shen Zheng, Anxiang
Zhang, Kaibo Liu, Daoguang Zan, Tao Sun, Jinhua Zhu, Shulin Xin, Dong Huang, Yetao Bai,
Lixin Dong, Chao Li, Jianchong Chen, Hanzhi Zhou, Yifan Huang, Guanghan Ning, Xierui Song,
Jiaze Chen, Siyao Liu, Kai Shen, Liang Xiang, and Yonghui Wu. Seed-coder: Let the code model
curate data for itself, 2025. URL |https://arxiv.org/abs/2506.03524.

Qwen Team. Qwen3 technical report, 2025. URL https://arxiv.org/abs/2505.09388,

Trae Research Team, Pengfei Gao, Zhao Tian, Xiangxin Meng, Xinchen Wang, Ruida Hu, Yuanan
Xiao, Yizhou Liu, Zhao Zhang, Junjie Chen, Cuiyun Gao, Yun Lin, Yingfei Xiong, Chao Peng,
and Xia Liu. Trae agent: An llm-based agent for software engineering with test-time scaling.
arXiv preprint arXiv:2507.23370, 2025. URL https://arxiv.org/abs/2507.23370.

11

https://openreview.net/forum?id=VTF8yNQM66
https://openreview.net/forum?id=VTF8yNQM66
https://x.com/karpathy/status/1886192184808149383
https://x.com/karpathy/status/1886192184808149383
https://x.com/karpathy/status/1617979122625712128
https://aclanthology.org/2021.emnlp-demo.21
https://doi.org/10.1145/3690635
https://platform.openai.com/docs/models/gpt-5
https://docs.pytest.org/en/8.0.x/
https://github.com/pytest-dev/pytest-timeout
https://github.com/pytest-dev/pytest-timeout
https://arxiv.org/abs/2506.03524
https://arxiv.org/abs/2505.09388
https://arxiv.org/abs/2507.23370

Under review as a conference paper at ICLR 2026

Wikipedia. Vibe coding, September 2025. URL https://en.wikipedia.org/w/index.
php?title=Vibe_coding&oldid=1312215031, Page Version ID: 1312215031.

Chungiu Steven Xia, Yinlin Deng, Soren Dunn, and Lingming Zhang. Agentless: Demystifying
llm-based software engineering agents. arXiv preprint, 2024.

Linghao Zhang, Shilin He, Chaoyun Zhang, Yu Kang, Bowen Li, Chengxing Xie, Junhao Wang,
Maoquan Wang, Yufan Huang, Shengyu Fu, Elsie Nallipogu, Qingwei Lin, Yingnong Dang, Sar-
avan Rajmohan, and Dongmei Zhang. Swe-bench goes live! arXiv preprint arXiv:2505.23419,
2025.

Yicong Zhao, Shisong Chen, Jiacheng Zhang, and Zhixu Li. Recode: Improving llm-based code
repair with fine-grained retrieval-augmented generation. arXiv preprint arXiv:2509.02330, 2025.

A APPENDIX

A.1 THE USE OF LARGE LANGUAGE MODELS

In this study, Large Language Models were solely employed for language refinement purposes to
enhance the clarity, fluency, and academic rigor of the textual content presented. It is important to
emphasize that all experimental design, data collection, result generation, and validation processes
were conducted manually by human researchers to ensure the authenticity, reliability, and controlla-
bility of the experimental outcomes.

A.2 CONSTRUCTION DETAILS

This section supplements Section [2.3] by providing technical details of our three-phase automated
collection pipeline.

Data Curation and Pre-processing The data curation process begins with a four-stage filtering
criteria applied at both the repository and release levels:

» Repositories must have at least three formal releases to ensure a development history.

* Repositories must have an identifiable test suite (e.g., tests/ directory) to enable automated
validation.

» Content relevance is ensured by excluding repositories focused on tutorials, examples, or similar
non-production code.

* Timeliness is enforced by considering only releases published before June 1, 2024.

We construct a comprehensive prompt for each selected release that integrates the release title, de-
scription, and the repository’s README . md file. We then instruct an LLM to categorize the contents
of the release notes into new_features, improvements, bug_fixes, and others. While
categorizing the content, we also ask the LLM to extract all relevant PR numbers from the text and
associate them with the corresponding new feature entries.

After extraction, we apply a series of rule-based filters. We retain only those PRs that meet the
following criteria:

* The PR must modify at least one Python file.
¢ The PR must include new or modified test cases to ensure the feature is verifiable.

* The feature_patch must only modify existing functions, without adding or deleting any function
definitions.

Developers often write brief and ambiguous descriptions for their PRs in a real-world setting. To
address this, we use an LLM to enrich the functional description of each PR. The model is prompted
to analyze the original PR title, description, and associated code changes (feature_patch) to generate
a comprehensive and clear natural language input. This augmented description serves as the final
user request in our benchmark, simulating a vibe coding scenario.

12

https://en.wikipedia.org/w/index.php?title=Vibe_coding&oldid=1312215031
https://en.wikipedia.org/w/index.php?title=Vibe_coding&oldid=1312215031

Under review as a conference paper at ICLR 2026

Table 3: The required fields for our task instance. Fields marked with * are newly added in
FeatBench compared to SWE-bench.

Field \ Type | Description
base_commit str The commit on which the pull request is based, representing the repos-
itory state before the issue is resolved.
patch str Gold patch proposed by the pull request, in . diff format.
test_patch str Modifications to the test suite proposed by the pull request that are typ-
ically used to check whether the issue has been resolved.
problem_statement str Issue description text, typically describing the bug or requested feature,
used as the task problem statement.
FAIL_TO_PASS List[str] | Test cases that are expected to successfully transition from failing to
passing are used to evaluate the correctness of the patch.
PASS_TO_PASS List[str] | Test cases that are already passing prior to applying the gold patch. A
correct patch shouldn’t introduce regression failures in these tests.
*image_key str Instance-level docker image that provides an execution environment.

Environment Configuration Inspired by SWE-bench-Live, we construct a two-stage pipeline to
configure the environment, mimicking the process of a human developer setting up an unfamil-
iar project. In the first stage, the analysis agent is tasked with information gathering. For each
PR, it reverts the codebase to its corresponding base_commit state and, guided by a pre-configured
prompt, locates crucial files such as CI/CD configuration files (e.g., .github/workflows,
.travis.yml), dependency definitions (e.g., requirements.txt, pyproject.toml), and
README . md files. It ultimately outputs a structured file containing the paths to the top 20 most rel-
evant environment configuration files for the subsequent configuration agent to use.

The configuration agent operates within a container launched from a base image corresponding to the
identified Python version. This base image is pre-equipped with common development tools (e.g.,
git, cmake). To accelerate dependency installation and reduce build times, the agent utilizes both a
caching mechanism and the high-performance package manager uv(Astrall |2025)). It is instructed to
use the ——exclude-newer <commit_timestamp> parameter to enforce the use of package
versions available at the time of the PR’s creation. The prompt provided to the agent also includes
troubleshooting heuristics, such as installing pytest -t imeout(Pytest-dev,[2025) to prevent tests
from hanging and ignoring specific internal test framework errors. Following this process, the agent
systematically completes the environment configuration, generating a “test-ready image”.

Test Case Acquisition and Validation. In a container initiated from the “test-ready image,” we
first apply only the test_patch. We use Abstract Syntax Tree (AST) analysis on the test_patch to
identify the specific tests added or modified for the new feature. We then selectively run these
identified test cases by pytest(Pytest, 2024) and log the results, expecting them to fail. Next, we
apply the feature_patch and rerun the same test cases, expecting them to pass. A PR is deemed valid
if any test case transitions from FAILED/ERROR to PASSED.

In the container, we first apply the fest_patch and run all tests within the main test directory, logging
all passing cases. Subsequently, we apply the feature_patch and rerun all tests. These cases are used
to check for regressions.

A.3 EXPERIMENTAL SETUP DETAILS

This section presents additional details of the experimental setup to facilitate reproducibility.

Hyperparameters used in the experiments. For Trea-agent, we set a maximum of 150 iterations
per instance, with the LLM configured to use a temperature of 0.0 and a top-p value of 1.0 as the
default. For Agentless, both the number of localization samples and repair samples are set to 1,
corresponding to a single rollout. In our experiments, we omit Agentless’s regression test-based
reranking stage, retaining only the localization and repair stages. The LLM calls within FeatBench
are configured with a temperature of 0.0.

13

Under review as a conference paper at ICLR 2026

Computational resources. All LLM calls in this work are made through official APIs. The exper-
iments involve Docker containers for test execution. We conduct all the experiments on a desktop
with an Intel Core i5-12600KF @ 3.70GHz (10 cores) and 16GB of RAM.

A.4 TASK INSTANCE STATISTICS

This section provides additional statistics about the instances in our benchmark.

Level | #Item | Average Median
° Repositories 27
15y LoC 209k 106k
~ Files 864 381
Instances 157
2 Files” 2.4 2.0
= Hunks” 5.1 4.0
z Lines” 161.6 18.0
- F2P test cases 2.2 1.0
P2P test cases 1692.4 1089.0
“Stats of gold patch.

A.5 BENCHMARK FIELDS

Table [3| provides a detailed description of the fields included in the FeatBench and how they are
obtained during the curation process.

A.6 LIMITATIONS

A limitation of our initial release is its exclusive focus on repositories predominantly written in
Python. We prioritized Python because its widespread adoption ensures that our benchmark is rep-
resentative of real-world vibe coding scenarios. Additionally, it is essential to note that our fully
automated pipeline for data curation and environment configuration is language-agnostic. We plan
to leverage this capability in future updates to incrementally incorporate repositories in other pop-
ular languages (e.g., Java, Go), thereby broadening the benchmark’s scope and applicability across
diverse programming domains.

14

Under review as a conference paper at ICLR 2026

A.7 FULL REPOSITORIES LIST

Type Repository License #Instances #Files LoC
instructlab/instructlab Apache-2.0 2 142 28.2k
jupyterlab/jupyter-ai BSD-3-Clause 1 81 9.0k
stanfordnlp/dspy MIT 7 222 30.6k
projectmesa/mesa Apache-2.0 5 109 20.3k

AI/ML huggingface/smolagents Apache-2.0 8 65 214k
cyclotruc/gitingest MIT 1 39 4.7k
modelcontextprotocol/python-sdk MIT 2 114 13.4k
openai/openai-agents-python MIT 8 212 29.8k
huggingface/datasets Apache-2.0 6 207 69.6k
conan-io/conan MIT 56 1056 162.5k
python-attrs/attrs MIT 2 52 18.6k
koxudaxi/datamodel-code-generator MIT 8 599 60.3k

DevOps tox-dev/tox MIT 3 225 238k
dynaconf/dynaconf MIT 2 463 55.1k
FreeOpcUa/opcua-asyncio LGPL-3.0 1 168 344.4k
iterative/dvc Apache-2.0 4 554 85.3k
reflex-dev/reflex Apache-2.0 4 376 89.8k
Kozea/WeasyPrint BSD-3-Clause 1 144 70.0k
alogram/aiogram MIT 6 861 69.8k

Web ag?ai/faststream Apache-2.0 3 1267 85.1k
encode/starlette BSD-3-Clause 6 66 17.2k
jpadilla/pyjwt MIT 3 26 6.9k
slackapi/bolt-python MIT 3 562 60.8k

Database |pydata/xarray Apache-2.0 9 226 179.2k

Science pybamm-team/PyBaMM BSD-3-Clause 4 581 113.4k

Misc fonttools/fonttools MIT 2 512 192.6k

Cloud aws-cloudformation/cfn-lint MIT 2 2422 160.2k

15

https://github.com/instructlab/instructlab
https://github.com/jupyterlab/jupyter-ai
https://github.com/stanfordnlp/dspy
https://github.com/projectmesa/mesa
https://github.com/huggingface/smolagents
https://github.com/cyclotruc/gitingest
https://github.com/modelcontextprotocol/python-sdk
https://github.com/openai/openai-agents-python
https://github.com/huggingface/datasets
https://github.com/conan-io/conan
https://github.com/python-attrs/attrs
https://github.com/koxudaxi/datamodel-code-generator
https://github.com/tox-dev/tox
https://github.com/dynaconf/dynaconf
https://github.com/FreeOpcUa/opcua-asyncio
https://github.com/iterative/dvc
https://github.com/reflex-dev/reflex
https://github.com/Kozea/WeasyPrint
https://github.com/aiogram/aiogram
https://github.com/ag2ai/faststream
https://github.com/encode/starlette
https://github.com/jpadilla/pyjwt
https://github.com/slackapi/bolt-python
https://github.com/pydata/xarray
https://github.com/pybamm-team/PyBaMM
https://github.com/fonttools/fonttools
https://github.com/aws-cloudformation/cfn-lint

Under review as a conference paper at ICLR 2026

A.8 PROMPTS IN FEATBENCH

Prompt for Feature-implementation PRs Identification

Repository Context (README) :
{readme}

Analyze the following software release notes and categorize the
changes into: new_features, improvements, bug_fixes, and
other_changes.

For each change, extract any PR references (like #123, PR456, pull
#789, etc.) mentioned in the text.

Release version: {tag_name}
Release notes:{release_body}

Guidelines:

1. new_features: Brand new functionality, commands, rules, or
capabilities

2. improvements: Enhancements to existing features, optimizations,
performance improvements

3. bug_fixes: Bug fixes, error handling, crash fixes

4. other_changes: Documentation updates, dependency updates,
refactoring (only if significant)

5. Extract PR numbers from various formats: #123, PR #456, pull
789, (#101), etc.

6. Only include PR numbers that are explicitly mentioned with the
change

7. Ignore trivial changes like version bumps unless they’re part
of larger features

8. Use the repository context to better understand the project’s
domain and categorize changes more accurately

Return the result in JSON format:
{
"new_features": [
{
"description": "Brief description of the new feature",
llpr_ids": ["123", ll456ll]
}
1,
"improvements": [
{
"description": "Brief description of the improvement",
"pr_ids": ["789"]
}
1,
"bug_fixes": [
{
"description": "Brief description of the bug fix",
"pr_ids": ["101"]
}
1,
"other_changes": [
{
"description": "Brief description of other changes",
"pr_ids": []

16

Under review as a conference paper at ICLR 2026

Prompt for Uesr Request Synthesization

You are creating a user requirement description that will be used
to instruct another LLM to implement the exact same functionality.
Your task is to analyze the PR information and code changes, then
write a comprehensive user request that describes what the user
wants to accomplish.

This description will be given to a coding LLM to generate the
implementation, so you must ensure all functionality across all
modified files is thoroughly described from the user’s perspective.

Original Feature Description: {feature_description}

PR Title: {title}
PR Description: {body}

File Changes:
{files_text}

Your user requirement description must:

- Start with "I want to" and write as if a user is requesting this
functionality from a developer

— Include ALL information from the original PR Description - do
not omit any details, requirements, or context provided there

— Describe what the user wants to accomplish with complete detail
for every file that was modified

— Include all functional requirements that would be needed to
recreate this exact implementation

- When functions/methods have parameter changes (additions,
deletions, modifications), describe what the user needs in terms
of input data and configuration options, mentioning specific
parameter names naturally within the context of the requirement

— Focus on the complete user workflow and all capabilities they
need

— Describe the expected behavior and outcomes the user wants to
achieve

- Ensure a coding LLM reading this could implement all the
functionality without seeing the original code

- Write as a natural user request, not technical documentation

— Avoid phrases like "implement function X" or "modify file Y" -
instead describe what the user wants to accomplish

— Do NOT include any actual code implementations, code snippets,
or technical syntax - only describe the desired functionality and
behavior from a user perspective

- Focus on WHAT the user wants to achieve, not HOW it should be
implemented technically

Remember: This description will be the only guide for another LLM
to recreate this functionality, so include every important detail
about what the user wants to achieve, but express it as natural
user requirements. You must incorporate all information from the
original PR description. Never include code - only describe the
desired outcomes and behaviors.

17

Under review as a conference paper at ICLR 2026

Prompt for Relevant Files Identification & Python Version Detection

Please analyze the project {repo_name} and perform two tasks:

TASK 1: List the most relevant files(no more than 20) for setting
up a development environment, including:

0. CI/CD configuration files (such as .github/workflows/*.yml,
.gitlab-ci.yml, .travis.yml, Jenkinsfile, etc.)

README files

Documentation files

Installation guides

Development setup guides

. Requirements and dependency files (requirements.txt, setup.py,
pyproject.toml, Pipfile, etc.)

6. Configuration files (.python-version, .nvmrc, Dockerfile,
docker—-compose.yml, etc.)

O W N

Save the file list to a JSON file named "{setup_files}" in the
project root directory.

Format the file list as a JSON array where each element is a
string containing the relative path (relative to project root).
Example format: ["README.md", "requirements.txt", "setup.py",
".github/workflows/ci.yml"]

IMPORTANT: You MUST strictly save the file list using the exact
filename "{setup_files}" as required. Do NOT use any other
filename.

TASK 2: Analyze the configuration files you found and determine
the most appropriate Python version for this project.
Based on your analysis, save the recommended Python version to a

text file named "{version_file}" in the project root directory.
The file should contain ONLY the version number in the format
"3.xx" (e.g., "3.8", "3.9", "3.10", "3.11").

IMPORTANT: You MUST strictly save the Python version using the
exact filename "{version_file}" as required. Do NOT use any other
filename.

If no specific version requirements are found, use
"{default_version}" as the default.

IMPORTANT: The {version_file} file must contain ONLY the version
number, no comments, no explanations, no additional text.

Focus only on identifying files and determining the Python
version. Do not attempt to configure the environment yet.

18

Under review as a conference paper at ICLR 2026

Prompt for Configuration Agent

Please help me configure the runtime environment for this project.
The project is {repo_name}.

MANDATORY FIRST STEP

First, read the *x*{setup_files}xx file in the project root to
understand which configuration files are available.

DO NOT PROCEED WITHOUT READING THIS FILE FIRST!

Then analyze these files to understand the project structure,
dependencies, and requirements.

TEST REQUIREMENTS

You need to verify if it can successfully run the tests of the
project.

You can tolerate a few test cases failures—-as long as most tests
pass, 1it’s good enough.

Your test command must output detailed pass/fail status for each
test item. This is mandatory. For example, with pytest, use the
-rA option to get output like:

PASSED tests/test_resources.py::test_fetch_centromeres

PASSED tests/test_vis.py::test_to_ucsc_colorstring

**IMPORTANT: xx Always use ’'--tb=short’ to avoid excessive
traceback output. Before running any tests, you MUST attempt to
install ’'pytest-timeout’ and ’'pytest-xdist’, and ALWAYS add
"——timeout=5’ and ’'-n auto’ to your pytest command to prevent any
single test case from running too long and to speed up testing by
running tests in parallel.

**IMPORTANT: ** You must additionally test {test_files}. If these
specific tests fail due to ImportError or ModuleNotFound, you
should make every effort to install all optional dependencies. For
other test files, you may tolerate ImportError or ModuleNotFound
errors.

PYTHON VERSION INFORMATION

**IMPORTANT: About Python versions in this container:xx

— The container has been pre-configured with the optimal Python
version for this specific project

— x*xIMPORTANT** The Python version specified in the {version_file}
is already installed in the system. You can use ’'python3.x’ to run
the project directly (e.g., python3.11)

- DO NOT attempt to install or change Python versions - the
correct version is already installed in the system

PREFERRED INSTALLATION METHOD
- Always check which Python environment you’re targeting before
installation

**PRIORITY 1: Try using UV or poetry first (recommended) *x*

- Use "uv’ for dependency management and installation when possible
- For projects with pyproject.toml: try ’"uv sync’ or ’"uv install’
- For projects with requirements.txt: try ’'uv pip install -r
requirements.txt’

- For editable installation: try ’'uv pip install -e .’

- For running tests: try ’‘uv run pytest’ or similar commands

- x*IMPORTANTx*: If you use uv to install dependencies, you MUST
add the —--exclude-newer {created_time} argument, for example: ’'uv
pip install -r requirements.txt -—-exclude-newer {created_time}’

— **IMPORTANT#**: Ensure uv is using the system Python, not the
agent’s Python environment

19

Under review as a conference paper at ICLR 2026

**PRIORITY 2: Fallback to traditional tools if UV failsxx

- If UV doesn’t work or encounters issues, fall back to pip3

— Use system pip3: check with ’which pip3’ to verify location

— Install necessary dependencies using system pip3

- If the project needs to be installed as a package, use ’'pip3
install -e .’

- If you use pip to install dependencies, since pip cannot specify
a cutoff date, you may encounter dependency version conflicts. In
such cases, you need to manually resolve the conflicts according
to the project’s timeline. The cut-off time is {created_time}.

— **%*IMPORTANT#*x*: Verify you’re using system pip3, not agent’s pip

Set up the correct Python environment and ensure all required
packages are installed so that the test files can run properly.
Focus on resolving any import errors, missing dependencies, or
configuration issues.

IMPORTANT:

1. This Docker container may have been used to configure
environments for the same project before.

2. UV is already installed in the container and configured with
Tsinghua mirror for faster downloads.

3. If you encounter any testing-related errors (such as ’‘collected
0 items’, ’'no tests found’, ’'skip’, ’INTERNALERROR’,

"TypeError: could not get code object’, or other pytest framework
internal issues), please ignore these errors and focus

on environment configuration instead. These errors may indicate
that test files don’t exist, don’t contain valid tests,

or are pytest framework internal issues. In such cases, abandon
trying to fix specific test files and continue with

dependency installation and environment configuration.

4. Install all dependencies to the system Python, not in any
virtual environment.

5. This Docker container may have been used to configure
environments for the same project before.

Please first check what packages are already installed in the
system Python environment to avoid conflicts.

20

	Introduction
	FeatBench
	Task Definition
	Features of FeatBench
	Benchmark Construction Pipeline

	Experiments
	Setup
	Evaluation Metrics
	Performance Evaluation on FeatBench
	Impact of Task Complexity on Resolved Rate
	Association Between Resolved Rate and Creation Time
	Token Consumption vs. Resolved Rate

	Case Studies
	Case Study on Failure Reasons
	Case Study on Resolved Patches: Agent vs. Gold
	The Duality of Aggressive Implementation

	Conclusion
	Appendix
	The Use of Large Language Models
	Construction Details
	Experimental Setup Details
	Task Instance Statistics
	Benchmark Fields
	Limitations
	Full Repositories List
	Prompts in FeatBench

