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Abstract—The gain in the log-likelihood (LLG) of a text under
a language model (LM) when the text’s summary is provided as
a context to the LM, compared to no summary in the context,
has been proposed as a reference-free index for the relevance of
the summary to the text. We provide an information-theoretic
interpretation of the LLG and an empirical analysis of the parts
of speech affecting it most. We first show that the LLG describes
the reduction in the binary codelength when the summary text
is provided as side information to a lossless text compression
system involving the LM and an entropy encoder. Consequently,
under proper normalization, LLG is a form of the Normalized
Compression Distance (NCD) and thus adheres to a universal
information distance that is motivated by algorithmic information
theory. Empirical results show that an NCD based on LLG
is better correlated with human annotators than a gzip-based
NCD. Additionally, we empirically show that LLG is affected
almost exclusively by tokens associated with the text’s content
rather than tokens associated with its structure. Our findings
support LLG as a natural and useful metric for evaluating text
summarization methods.

I. INTRODUCTION

A. Motivation

Text summarization can be viewed as a constrained in-
formation distillation problem in the following sense. The
summary conveys a considerable amount of information about
the original text but is of relatively short size and must be
human-readable. The motivation for our study is the challenge
of assessing the quality of a given summary or comparing
several potential summaries. Better assessment may lead to
the development of better summarization methods.

It is natural to capture the philosophical idea of text sum-
marization via Shannon’s information measure. Namely, for a
random text T and a potential summarization procedure of T
leading to the summary S, the relevance of the summary may
be defined as the mutual information between the two:

I(T ;S) = H(T )−H(T |S). (1)

Assuming that the text is generated by a language model
(LM), the sample equivalent of the entropy is the negative
log-likelihood under this model (also known as the logloss,
negative log-perplexity [1], or cross-entropy with the token-
indicator distribution). Consequently, a natural index for the
relevance of a summary s to a text t = tn = (t1, . . . , tn) is:

LLG(t, s) := ℓ(t)− ℓ(t|s), (2)

where we denoted

ℓ(t|s) := ℓ(t|s; PLM) := −
n∑

i=0

log
(
PLM(ti|ctx(s, ti−1)

)
,

and ℓ(t) = ℓ(t|∅). Here, the LM PLM provides a probability
distribution over the i-th token ti given the context. This
context is procured by the "context policy" function ctx that
receives as inputs the previous tokens ti−1 = (t1, . . . , ti−1)
and potentially the summary text s. We defer the specification
of the function ctx to the parts of this paper involving numeri-
cal evaluations. Ideologically, LLG quantifies the contribution
of a summary s to the ability of the LM to predict the text t.
To the best of our knowledge, a version of (2) for evaluating
text summarization was first proposed in [2] under the name
“information difference” (ID). The term LLG appears to be
better suited in the context of information theory, hence we
use it instead of ID.

In this work, we study properties of (2) in the context of
lossless text compression that supports its usage as a measure
of text summarization.

B. Background on Text Summarization Evaluation

Summarization procedures are roughly divided into extrac-
tive, in which the summary is limited to be a subset of the text,
and abstractive, in which there is no such limitation. Automatic
methods for summary evaluation include approaches based on
lexical matching such as ROUGE [3], sentence embedding
such as BERTscore [4], and question answering [5].

Another category of evaluation method is founded on the
principles of Shannon’s next token guessing game [6]. A
guesser is tasked with predicting a document’s content, one
token at a time, based on other parts of the document and
potentially the summary text [7]. The quality of a summary
is measured by the improved prediction compared to a setup
when the summary is not provided to the guesser. Methods
falling under this category include the bidirectional fill-in-the-
blank method of [8] and the LLG of (2) proposed in [2]. More
specifically, the authors of [2] provided several measures for
text summarization based on different LLG normalizations and
strategies to form the context in (2). They empirically showed
that these measures are generally better correlated with human
evaluation scores than competing approaches. We also note
that Shannon’s guessing game principle was recently used in
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Fig. 1. Lossless text compression (encoder only) using a language model (LM) followed by an arithmetic encoder. Left: The sequence of tokens tn =
(t1, . . . , tn) is encoded using an arithmetic encoder with token distributions given by the LM PLM. Right: the summary text s is provided as side information
that modifies the LM next-token distribution through the context policy ctx. The reduction in codelength is due to a potentially improved prediction of the
tokens by the LM. The logloss gain LLG(t, s) is within one bit of the difference between the binary codelength without and with side information.

a multimodal setup [9], and is also related to ranking words
in the context of keyword extraction [10].

C. Contributions

We provide an information-theoretical interpretation and
empirical justification for the LLG in the context of text
summarization. We first show that LLG can be viewed as the
reduction in the binary codelength when compressing a text t
using a lossless compression procedure when the summary text
s is provided as side information. This compression procedure
involves a LM (that may be pre-trained or trained on the
fly [11]) followed by an arithmetic encoder as illustrated in
Figure 1. This architecture is known to attain state-of-the-art
compression on large texts [12]. As a result of this characteri-
zation of LLG, we conclude that a normalized version of it can
be seen as a normalized compression distance (NCD) which is
a well-studied concept in information complexity and retrieval
[13], [14]. Consequently, a comparison to the popular Gzip-
based NCD is called upon. We conduct such a comparison
and show that our implementation of LLG attains a better
correlation with human evaluation scores. Finally, we perform
Part of Speech (POS) analysis that shows that LLG is more
influenced by tokens representing content rather than structure.
This finding provides a linguistic justification for LLG as a
similarity measure for summary evaluation.

In conclusion, LLG adheres to a universal distance measure
that naturally considers the text’s content but is relatively
unaffected by its structure.

D. Organization

In Section II we discuss lossless compression. In Section III
we show that LLG is a form of NCD. In Section IV we study
LLG via content and structure token analysis. Concluding
remarks are in Section V. The code for all empirical results
is available at https://github.com/LevinDana/LLG.

II. LOSSLESS COMPRESSION WITH SIDE INFORMATION

In this section, we describe a lossless text compression
procedure with side information. We show that LLG is the
reduction in binary codelength the summary provides when
used as side information for compressing the text via this
procedure.

The encoding process, described in Figure 1, is as follows.
Let t = tn = (t1, . . . , tn) be the text and s the summary text.
Assume that the LM provides a probability distribution over
a finite dictionary of tokens given the context produced by
ctx. We start by obtaining the distribution PLM(·|ctx(s)) and
finding the interval in that distribution which corresponds to
the true word probability PLM(t1|ctx(s)). We will denote the
interval [a1, b1). Next we partition [a1, b1) by the distribution
PLM(·|ctx(s, t1)) and find the interval [a2, b2) corresponding
to t2. We continue in this fashion until we reach tn, partition
and find its corresponding interval by PLM(·|ctx(s, tn−1)) and
PLM(tn|ctx(s, tn−1)).

To get the encoded representation of t, we use, for sim-
plicity, the Shannon-Fano-Elias method of taking the first
⌈ℓ(t|ctx(s))⌉ + 1 bits in the binary representation of the
midpoint of the final interval [an, bn) ⊂ [0, 1], excluding the
leading 0 [15]. This representation attains within two bits of



the shortest prefix-free binary code which falls within the final
interval [an, bn) (In principle, prefix-freeness is not needed
here because our process encodes the entire text in one pass. In
practice, however, it is useful since we may concatenate several
blocks as [11], [16].). We denote the final binary representation
by C(t|s). Note that C(t|s) depends both on the LM and the
way ctx processes s and previous tokens to form a context.
The original t can be recovered without error given its encoded
representation C(t|s), the LM PLM with the context policy
function ctx, and s; see the decoder of the similar encoding
procedures described in [11], [17]–[19]. We denote by C(t)
the binary representation obtained under a similar procedure
but without s in the context as illustrated in the left-hand side
of Figure 1.

Our first result states that the reduction in binary codelength
due to the summary in the context is up to one bit from the
LLG, regardless of the length of the text.

Theorem 1: Denote by C(t), C(t|s) the encoded binary
representation of t and t given s, respectively, obtained through
arithmetic coding and Shannon-Fano-Elias binary codeword
representation. Then

|len (C(t))− len (C(t|s))− LLG(t, s)| ≤ 1 (3)

Proof: By construction, we have

len (C(t)) = ⌈ℓ(t)⌉+ 1

len (C(t|s)) = ⌈ℓ(t|s)⌉+ 1.

By the definition of LLG(t, s) in (2),

LLG(t, s)− 1 ≤ ⌈ℓ(t)⌉ − ⌈ℓ(t|s)⌉
≤ LLG(t, s) + 1.

This implies (3). ■

III. LOGLOSS GAIN AS A COMPRESSION DISTANCE

The Normalized Compression Distance (NCD) is a uni-
versal similarity measure between two data objects x and y,
regardless of their domain, obtained by analyzing the objects’
compressed forms using a compressor Z [14]. Denoting by
Z(xy) the length (in bits) of jointly compressing x and y
under z, the NCD is defined as

NCDZ(x, y) =
Z(xy)−min{Z(x), Z(y)}

max{Z(x), Z(y)}
(4)

As a typical example, Z is a universal compression algorithm
like gzip [20] and Z(xy) is the length of the compression
of x concatenated with y [21]. NCD has been used in various
applications such as clustering [22] and across multiple do-
mains such as text [23], music [22], and genomics [21]. We
refer to [24] for discussions on the detailed implementation of
NCD using gzip and other off-the-shelf compressors.

Consider

LLG(t, s) :=
ℓ(t)− ℓ(t|s)

ℓ(t)
, (5)

which we denote as the Normalized LLG. The following
theorem says that 1 − LLG(t, s) is a form of NCD under
the compressor described in Section II.

Theorem 2: Consider the text compressor C described in
Section II. For a pair of texts t and s with len (C(s)) ≤
len (C(t)), let C(s, t) be the codeword obtained by first
compressing s using len (C(s)) bits and then compressing t
with s as side information. We have

LLG(t, s) = 1−NCDC(s, t).

Proof: When jointly compressing t and s using the process
described earlier and in Figure 1, we get len (C(s, t)) =
len (C(s)) + len (C(t|s)). It follows that

NCDC(s, t) =
len (C(s, t))−min{len (C(s)) , len (C(t))}

max{len (C(s)) , len (C(t))}

=
len (C(s, t))− len (C(s))

len (C(t))

=
len (C(s)) + len (C(t|s))− len (C(s))

len (C(t))

=
len (C(t|s))
len (C(t))

= 1− LLG(t|s).

■
Remark 1: The work of [2] studied LLG(t, s) divided by

ℓ(t) − ℓ(t|t). This normalization coincides with (5) when
ℓ(t|t) = 0. Namely, when the LM utilizes the context to attain
perfect next token prediction. In practice, ℓ(t|t) may be much
smaller than ℓ(t) but typically far from zero.

A. Empirical Study

The empirical results in this paper are obtained using GPT2
[25] as the LM and with a context policy ctx that processes
one sentence at a time. Namely, the context of the i-th token
in the j-th sentence is the text summary s concatenated with
the i− 1 tokens in that sentence. This implementation of the
LLG follows that of [2].

We use the following datasets:
• SummEval [26]. This dataset contains 1,700 summaries

of CNN/Daily Mail articles. The dataset is composed of
100 text articles. Each article is paired with 17 summaries
generated from 17 different models, 4 extractive and
13 abstractive. The summaries are scored by 3 human
evaluators over 4 categories: Relevance, Coherence, Con-
sistency, and Fluency. We focus here only on Relevance
as it is ideologically closest to information among these
categories. Relevance also enjoys a relatively high agree-
ment among the 3 evaluators with κ agreement coefficient
of 0.71 [27, Ch. 11]; when evaluated in a one-against-
many fashion, the average correlation coefficient between
the evaluators is r = 0.6 for Pearson and τ = 0.46 for
Kendall’s-τ .

• SFF (Summarize from feedback) [28]. This dataset con-
tains 6312 summaries of CNN/Daily Mail articles. Each
article is scored by a human evaluator over 3 categories:



DatasetCorrelation method
SummEval SFF

KENDALL τ 0.55 (0.011) 0.56 (0.007)
PEARSON 0.77 (0.012) 0.82 (0.007)

Table I. Pairwise correlations between 1−NCDgzip(s, t) and the normalized
logloss gain LLG(t, s) of (5) over two datasets containing many (text,
summary) pairs; bootstrapped standard errors are in brackets.

Measure Correlation method Dataset
summEval SFF

LLG
KENDALL τ 0.25 (0.016) 0.29 (0.009)
PEARSON 0.37 (0.020) 0.41 (0.010)

NCDgzip
KENDALL τ 0.18 (0.017) 0.26 (0.009)
PEARSON 0.27 (0.020) 0.34 (0.010)

Table II. Comparing measures of text summary relevance by their agreement
with human evaluations. Pairwise correlation (Kendall τ , Pearson) of the
normalized LLG LLG, and one minus the normalized compression distance
based on gzip (1−NCDgzip), with human evaluation scores in two datasets
(summEval [26], SFF [28]). Highest values are in bold; bootstrapped
standard errors are in brackets.

Coverage, Coherence, and Accuracy. We focus on Cov-
erage as it ideologically appears to be the closest to
information among these categories.

In Table I we report on both Kendall’s τ and Pearson’s cor-
relation coefficients between LLG(t, s) and 1−NCDgzip(s, t)
over the two datasets above. The relatively high correlations
between these measures indicate that the redundancies in the
text introduced by the summary as measured by both methods
are proportional to each other.

In Table II, we compare summarization scores obtained
via LLG(t, s) and NCDgzip(s, t) to human evaluation scores.
Our results show that LLG generally outperforms NCDgzip.
This appears to indicate that the benefit of semantic language
understanding, unique to an LM-based compressor, gives
LLG(t, s) an advantage over general-purpose Lempel-Ziv-
based compression.

IV. CONTENT AND STRUCTURE INFORMATION ANALYSIS

In some linguistics and information retrieval studies, it
is useful to distinguish between words associated with the
text’s structure or style, typically denoted as "function" words,
to words associated with its content [29]–[31]. Figure 2
demonstrates such separation. Although summarization is con-
ceptually associated with the text’s content, the LLG of (2)
considers all tokens of the text regardless of their association
to structure or content. In what follows, we analyze the
contribution of each token type to the LLG and empirically
show that structure tokens affect very little on LLG. Namely,
LLG tends to ignore information conveyed by the text’s
structure which is a desirable property of a summarization
evaluation metric.

We label each token as “Content” or “Structure” based on
their part-of-speech (POS). We include in the Content cate-
gory nouns, proper nouns, verbs (excluding auxiliary verbs),
adjectives, adverbs, and numbers; see the example in Figure 2.
The resulting separation is a useful approximation to the

In this sentence content words are in red and
structure words are in blue.

Fig. 2. Distinguishing between content and structure words based on parts-
of-speech.

Measure Correlation method Dataset
summEval SFF

LLG
KENDALL τ 0.24 (0.017) 0.20 (0.010)
PEARSON 0.34 (0.021) 0.27 (0.012)

LLGcont
KENDALL τ 0.22 (0.017) 0.21 (0.010)
PEARSON 0.32 (0.020) 0.29 (0.012)

LLGstru
KENDALL τ 0.18 (0.017) 0.12 (0.009)
PEARSON 0.28 (0.022) 0.17 (0.013)

Table III. Comparing measures of text summary relevance by their agreement
with human evaluations. Pairwise correlation (Kenadal τ , Pearson) of negative
log-likelihood gain (LLG), Content-only LLG, and Structure-only LLG with
human evaluation scores in two datasets (summEval [26], SFF [28]). The
correlation between human evaluations and LLG is almost identical to the
correlation with Content-only LLG, indicating that LLG is typically not
affected by words associated with the text’s structure.

distinction between content and function words that does not
require training and is computationally efficient [30], [32]. The
average proportion of content (respectively, structure) tokens
across all texts in our study is about 0.55 (respectively, 0.45)
with a standard deviation across documents smaller than 0.1.
Namely, these proportion varies only slightly from text to text.

For a given text t, let Icont = Icont(t) be the set of indices
of content tokens, and let Istru = Istru(t) be the set of indices
of structure tokens (i.e., not content tokens). Define

Lcont(t) := :=
∑
i∈Icont

− log(PLM(ti|ctx(ti−1)))

Lcont(t|s) := :=
∑
i∈Icont

− log(PLM(ti|ctx(s, ti−1)))

and similarly define Lstru(t) and Lstru(t|s). Note that in either
case, the context of a token is based on all tokens in t occurring
before that token. We define the LLG variants:

LLGcont := Lcont(t)− Lcont(t|s),
LLGstru := Lstru(t)− Lstru(t|s),

For all text t and s we have

LLG(t, s) = LLGcont(t, s) + LLGstru(t, s).

Figure 3 depicts the histograms of LLG, LLGcont, and
LLGstru over all text-summary pairs per dataset. It follows
from this figure that LLG values are similar to LLGcont and
are significantly less affected by LLGstru. We further compare
all LLG variants as summarization metrics by checking their
correlation with human evaluation scores. Table III shows
that LLG correlates with human evaluations very similarly to
LLGcont and both outperform LLGstru. This behavior suggests
that LLG naturally removes the impact of information related
to the text’s style since, in contrast to content information,
tokens associated with the style are about equally predictable
whether or not side information is present.
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Fig. 3. Histograms of LLG, LLGcont and LLGstru over individual texts and their summaries in the sumEval dataset [26] (left) and SFF dataset [28]
(right). LLG is the sum of LLGcont and LLGstru. The proportion of content/structure tokens across all texts is about (0.55, 0.45) with a standard deviation
across documents smaller than 0.1. These histograms imply that LLG is almost entirely affected by content tokens rather than tokens associated with the
text’s style.

We note that although small, the correlation of LLGstru with
human evaluations is significantly larger than zero, implying
that our set of structure tokens provides some non-zero logloss
gain on average. This can also be seen by the non-zero mean
of LLGstru values in Figure 3. Decompositions of LLG to
components that do not correlate with human annotators may
improve correlations of the complementary component and
hence are desirable. We leave the search for such decomposi-
tions to future work.

V. CONCLUSIONS

We provided an information-theoretic interpretation of the
gain in the LLG in the context of text summarization. Addi-
tionally, we showed that LLG naturally focuses on the content
of the text rather than its structure, providing a form of
linguistic justification for using it for scoring the relevance
of summarization. These results suggest that LLG is a natural
and useful index of similarity for evaluating and designing text
summarization methods.
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