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Abstract—Geometric regularity, which leverages data sym-
metry, has been successfully incorporated into deep learning
architectures such as CNNs, RNNs, GNNs, and Transformers.
While this concept has been widely applied in robotics to address
the curse of dimensionality when learning from high-dimensional
data, the inherent reflectional and rotational symmetry of robot
structures has not been adequately explored. Drawing inspira-
tion from cooperative multi-agent reinforcement learning, we
introduce novel network structures for deep learning algorithms
that explicitly capture this geometric regularity. Moreover, we
investigate the relationship between the geometric prior and
the concept of Parameter Sharing in multi-agent reinforcement
learning. Through experiments conducted on various challenging
continuous control tasks, we demonstrate the significant potential
of the proposed geometric regularity in enhancing robot learning
capabilities.

I. INTRODUCTION

Robots have the ability to undertake tasks that are dangerous
or difficult for humans. With more degrees of freedom, they
can perform increasingly complex tasks. For example, hu-
manoid robots and quadrupedal robots can walk over challeng-
ing terrain, while robot arms and hands can achieve dexterous
manipulation. However, controlling robots with a large number
of degrees of freedom becomes increasingly difficult as the
observation and action space grows exponentially. Although
deep reinforcement learning has been employed to solve
various robot control problems [8, 11, 20, 3], learning effective
control strategies for these robots remains a challenging task.

Training neural networks on high-dimensional data is
known to be challenging due to the curse of dimensionality [4].
To overcome this challenge, researchers have developed net-
work architectures and incorporated various inductive biases
that respect the structure and symmetries of the corresponding
domains. For example, convolutional neural networks (CNNs)
leverage the strong geometric prior of images by incorporating
translation equivariance into the design of convolutional layers.
This ensures that the extracted features move along with the
original image, regardless of the direction it is shifted in.
Similarly, graph neural networks (GNNs) take advantage of the
geometric prior of permutation invariance in other domains to
capture the relationships among objects. Overall, incorporating
domain-specific inductive biases and symmetries can greatly
improve the ability of neural networks to learn from high-
dimensional data.

However, in the realm of deep reinforcement learning re-
search, the potential benefits of utilizing symmetry structures

Fig. 1: We design tasks (except TriFinger [3]) challenging for
current deep reinforcement learning baseline algorithms.

present in environments, such as reflectional and rotational
symmetry, have not attracted much attention and thus, how
to combine these prior knowledge to effectively improve
the existing approaches still is worth to be investigated.
To bridge the research gap, we propose to reformulate the
control problems under Multi-Agent Reinforcement Learning
(MARL) framework to better leverage the symmetry struc-
tures. We demonstrate the surprising effectiveness of our
approach by combining the new architectures with model-
free deep reinforcement learning methods. Additionally, we
establish a connection between our proposed geometric prior
and the important concept of ”Parameter Sharing” in multi-
agent reinforcement learning, which excessively reduces the
optimization space and speeds up the learning process. We
also design a set of challenging robot control tasks (see Fig. 1)
and evaluate our method on them. Our experimental results
show that our proposed method significantly improves the
performance of robot control learning tasks.

II. BACKGROUND AND RELATED WORK

A. Multi-Agent Reinforcement Learning (MARL)

MARL is an extended reinforcement learning method for
decision-making problems, where multiple agents can interact
and learn in one environment. The most popular mathematical
framework for MARL problems is Markov games. A Markov
game is a tuple ⟨N ,S,O,A, P,Ri, γ⟩. N is the set of all
agents and S is the set of states. Oi and Ai are observation
space and action space for agent i, while O = ×i∈NOi

and A = ×i∈NAi represent joint observation space and
joint action space. Define ∆|S| and ∆|A| be the probability
measure on S and A respectively. Then P is the transition



probability P (s′|s, a) : S ×A → ∆S . Each agent i maintains
a specific reward function Ri(s, a) : S × A → R, and the
future rewards are discounted by the discount factor γ ∈ [0, 1].
Let Πi = {πi(ai|oi) : Oi → ∆Ai} be the policy space for
agent i, then the objective for agent i is represented as
maxπi Eπ,P

[∑+∞
t=0 γ

tRi(st, at)
]
. In practice, the state space

and the observation space can be identical if the observation
has already fully described the system. Our paper also follows
this assumption and hence uses observation alone.

Multi-Agent Mujoco [13] is a popular benchmark for
MARL algorithms which divides a single robot into several
distinct parts with separate action space. However, the state-of-
the-art MARL algorithms still couldn’t match the performance
of the single-agent algorithms on this benchmark. Different
from their work, in which they arbitrarily divide robots into
parts and ignore the geometric structures of the robots, we
leverage ideas from geometric regularity during the MARL
training and our results show that MARL can outperform
single-agent algorithms by a substantial margin.

B. Symmetry in Robot Learning

In robot learning domain, two groups of symmetric struc-
tures have been used to improve performance and learning
efficiency. 1) Extrinsic Symmetry: By extrinsic symmetry we
refer to the symmetries existing in the Exteroceptive sensors of
the robot such as camera input. Some work [18, 24, 17, 19]
have been proposed to integrate these symmetries into sys-
tem identification via the neural network, especially CNN-
structured network. These methods can largely improve the
performance for manipulation tasks, but they are mostly
around manipulation tasks with image input and gripper with-
out roll-pitch movement. Van der Pol et al. [16] introduce
MDP homomorphic networks to numerically construct equiv-
ariant network layers.However, the proposed network only
considers a pole balancing task with discrete action. Moreover,
additional calculation is required to design the network even
if the domain specific transformation is given. Mondal et al.
[12] propose to learn symmetry directly from data in the
latent space but is still limited to representation learning
from images. 2) Intrinsic Symmetry: Different from extrinsic
symmetries, intrinsic symmetries mostly naturally come from
the physical constraints in the control system. For example, a
humanoid robot control task exhibits reflectional symmetry. A
symmetric control policy on such robot is usually more natural
and effective. Mavalankar [10] proposes a data-augmentation
method to improve reinforcement learning method for rotation
invariant locomotion. Abdolhosseini et al. [2] investigate four
different methods to encourage symmetric motion of bipedal
simulated robots. They are implemented via specific policy
network, data augmentation or auxiliary loss function. Even
though the robots’ motions become more natural-looking, they
do not show a major improvement on different tasks. The
policy network method in [2] is similar to ours in this work.
But instead of a specific network merely for locomotion tasks
with reflectional symmetry, we propose a generic equivariant
policy network for both reflectional and rotational symmetries,

(a) Reflectional symmetry (b) Rotational symmetry

Fig. 2: Agent partitioning considering symmetry struc-
tures: Humanoid and Cheetah robots split into left and right
parts by reflectional symmetry; TriFinger and Ant robots split
into 3 and 4 parts by rotational symmetry, where each part is
controlled individually by a dedicated agent. The central part
(grey) is controlled by all agents.

which are predominant symmetry features in robotic systems
and animal biology. Moreover, we approach the control task
in the field of multi-agent systems. Finally, we get substantial
performance improvement in experiments by reducing the
policy search space.

III. SINGLE ROBOT CONTROL AS MARL

Instead of learning a single-agent policy to control the
whole robot, which will lead to a large observation-action
space that is difficult to optimize, we introduce multiple agents
that are responsible for each individual component of the
robot inspired by MARL. We further propose a framework
driven by the presence of symmetry structures in many robots
and exploit such inductive biases to facilitate the training by
applying parameter sharing techniques.

The overview structure of our method is to (1) identify
the geometric structures of different robots and divide single
robots into multiple parts accordingly; (2) reformulate the
control problem as a MARL framework; (3) optimize policies
with parameter sharing technique.

A. Dividing Single Robots into Multiple Parts

Previous research [13] also divides a single robot into
multiple parts to evaluate the performance of MARL meth-
ods. However, its irregular partitioning makes the multi-agent
methods hard to compete with the single-agent methods. In
this paper, we reconsider partitioning in a more reasonable
way, which is achieved by taking into account the symmetry
structures of robots when dividing them into multiple agents.

As shown in Fig. 2a, robots with reflectional symmetry
can be partitioned into left (blue), right (green) and central
(grey) parts. The robots with rotational symmetry in Fig. 2b
are partitioned into parts with the same number of symmetric
limbs (colour) and a central part (grey). For a robot with any of
these symmetric structures, we split the whole robot’s original
observation-action space O × A by O = Oc ×

∏
i∈N Os,i

and A = Ac ×
∏

i∈N As,i. Oc × Ac represents the central
observation-action pair, which consists of measurements and
actuators that do not have symmetric counterparts, such as
the position, orientation, velocity and joints of the torso,
target direction, or states of the manipulated objects. Raw



(a) Symmetric states of TriFinger. (b) Policy network (c) Value network

Fig. 3: a) TriFinger robot moves a sphere towards a target position. From left to right are the original state, rotated by 120◦,
and rotated by 240◦. Note that the actions of different body parts should be equivariant with regard to the transformation. The
red arrow represents the desired moving direction of the manipulated object. b) Equivariant policy network with parameter Φ.
c and s stand for central and symmetric actions. c) Invariant value network with parameter Ψ,Θ.

sensor data such as images and point clouds also belongs
to central observation. Os,i × As,i corresponds to symmetric
observation-action spaces, whose measurements may include
joint positions and velocities from the limbs, contact sensor
measurements of the feet or fingers, and so on. The symmetric
observation-action spaces are exactly the same for any i ∈ N
due to the robots’ symmetric property.

B. Multi-agent Reinforcement Learning Formulation

Assume the original observation and action of the whole
robot be o ∈ O and a ∈ A respectively and the number
of agents |N |, equal to the number of symmetry parts of the
robots. For each agent i ∈ N , there is a unique transformation
function Ti to obtain its own observation oi = Ti(o). Detailed
explanation of Ti can be found in Appendix A1. Each agent
generates the local action ai, consisting of ac,i ∈ Ac and
as,i ∈ As,i for central and symmetric actions, by its own policy
network. Finally, the whole robot’s action a is recovered by
gathering all symmetric actions as,i and merging all central
actions ac,i into ac.

Regarding the reward function, our formulation follows the
cooperative MARL setup, where Ri for all i ∈ N are identical
at every time step. This shared reward is calculated by a
task-related reward function R(o, a) which depends on the
whole robot’s observation and action. To optimize the policies
πi, we adopt the multi-agent version of Proximal Policy
Optimization (PPO) [14] methods. PPO is a popular model-
free actor-critic reinforcement learning algorithm in different
domains [22, 3, 11] for its stability, good performance and ease
of implementation. Its multi-agent version also achieves com-
petitive performance on different MARL benchmarks [23, 6].

C. Geometric Regularization

Parameter Sharing has been recognized as a crucial element
in MARL for efficient training [7]. By enabling agents to
share parameters in their policy networks, parameter sharing
not only facilitates scalability to a large number of agents
but also enables agents to leverage shared learned repre-
sentations, leading to reduced training time and improved
overall performance. However, it is shown by Christianos et al.

[5] that indiscriminately applying parameter sharing could
hurt the learning process. Successful utilization of parameter
sharing relies on the presence of homogeneous agents as a
vital requirement. In other words, agents should execute the
same action once they are given the same observation. This
assumption ensures the transformation equivariance of the
overall policy regarding the symmetry structures.

Take the simplified TriFinger Move task as an example,
where the TriFinger robot has to move the sphere towards a
target position. As shown in Fig. 3a, if the whole system is
rotated by 120◦ or 240◦ around the z axis of the robot base,
the actions should also shift circularly among the three fingers
for the optimal policy. Given the whole robot’s observation o,
this relationship can be denoted by:

As,j(Ti(o)) = As,i(Tj(o)), Ac(Ti(o)) = Ti(Ac(o)) (1)

where As,j is the symmetric action of the jth agent, Ac is
the central action, Ti is the symmetry transformation between
agents i and 0 (see definition in Appendix A1). The transfor-
mation for observation and action are so similar that we won’t
distinguish between them in this work for simplicity. Note that
the the corresponding robot parts of agents can be defined
arbitrarily. It does not influence the equivariance/invariance.

Based on the equivariance represented by Eq. 1, we design
the multi-agent actor-critic network structure in Fig. 3b, 3c.
Agent i gets a transformed observation Ti(o) as the input of
the policy network, the output action value consists of ac,i and
as,i. The central joints are controlled by the mean action over
all agents’ output ac,i, while as,i will be used as the action to
take for the robot part i. The policy network parameters are
shared among agents. The value network gets the observations
from all agents as input. The observations first go through
the shared feature learning layers in the value network. Then
the latent features are merged by a set operator (mean in this
work). The value is finally calculated with the merged feature.

The proposed policy network is equivariant with respect to
symmetric transformations we consider in this work, while
the value network is an invariant function (see proof in
Appendix A2). By sharing the same policy network among all
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Fig. 4: Learning curves on robot control tasks. The x-axis is environment time steps and the y-axis is episodic returns during
training. All graphs are plotted with median and 25%-75% percentile shading across 5 random seeds.

agents, we are able to incorporate the geometric regularization
and reduce the dimension of the observation-action space.

IV. EXPERIMENTS AND DISCUSSION

A. Experimental Setup
1) Challenging Tasks: Previous robotic control bench-

marks [15] evaluate algorithms on fundamental tasks, e.g.
controlling agents to walk. The movements in these tasks are
limited and it’s relatively easy to learn an optimal policy. In
this work, we design several more challenging robotic control
tasks, where current state-of-the-art methods fail to achieve
good performance. The tasks are shown in Fig. 1: Humanoid
Tightrope, Humanoid Dribbling, A1 Beam, Trifinger Move
and Ant Acrobatic. The detailed introduction of the tasks can
be found in Appendix B2. All experiments are carried out
based on the NVIDIA Isaac Gym [9] robotics simulator.

2) Baselines: For each task, we compare our method,
named as Multi-agent with Symmetry Augmentation (MASA),
with a set of baselines including:
• Single-agent (SA): We first compare the single-agent re-

inforcement learning algorithm, which optimize all of the
robot parts jointly. This baseline can provide an intuitive
comparison of our proposed framework to previous classic
reinforcement learning works. The state space is kept the
same as the multi-agent one for a fair comparison.

• Single-agent with Symmetry Augmentation (SASA): This
baseline follows the SA’s setup and is augmented with a
symmetry loss [2]. Specifically, for any received obser-
vation o, we calculate its symmetric representation Ti(o).
We regulate the policy function π and the value function
V in PPO with extra symmetry losses by minimizing
∥Ti(A(o)) − A(Ti(o))∥2 and |V (o) − V (Ti(o))|, where A
and V are the gathered action and critic value of the robot.

• Multi-agent without Symmetry Augmentation (MA): This
baseline uses the same architecture as MASA. However, it
does not involve the transformations in Fig. 3b 3c. Thus the
geometric regularity of symmetry is ignored, which follows
the previous research [13]. We concatenate a one-hot id
encoding to each agent’s observation as a common operation
for non-homogeneous agents.
We conclude the hyperparameters in Appendix B1.

B. Main Results
Figure 4 presents the average return of all methods on

different tasks during training. The proposed method MASA

significantly outperforms other baselines across all 5 tasks.
Further, the advantages over other baselines rise with the
increasing difficulties of the task, which can be indicated by
the increased number of joints, the extended state dimension
and the enlarged state space in the task. Humanoid Tightrope
and Humanoid Football control the same robot. However, in
the tightrope task, the robot only needs to walk forward,
while the football task involves random turns and manipulating
an external object, so that other baselines can hardly learn
meaningful behaviours in this task.

By comparing the results of MASA, MA and SASA, we
could observe that both of the two factors in MASA, multi-
agent framework and symmetry structure, play an important
role. Utilizing symmetry data structure alone (SASA) can
gradually learn to solve a few tasks but with aparently lower
data efficiency. Because the optimization space is not reduced
and thus larger than that of MASA method. The multi-agent
structure itself (MA) cannot guarantee meaningful results at
all, which follows the criticism of naively sharing parameters
among non-homogeneous agents [5].

In the Humanoid Dribbling task, MASA initially under-
performs compared to other baselines. This is because the
baseline methods prioritize self-preservation and struggle to
find a policy that balances dribbling and staying alive. By
focusing on avoiding falling down and kicking the ball too far
away, they learn to stand still near the ball while disregarding
the rewards associated with ball movement. Consequently, the
baseline agents are able to survive longer at the beginning,
resulting in higher returns compared to MASA.

C. Discussion

Our proposed multi-agent method exhibits impressive per-
formance in challenging control tasks. The network structures
we introduce are not limited to on-policy reinforcement learn-
ing algorithms and can be adapted for off-policy learning,
imitation learning, and model-based learning methods. While
our approach is straightforward to implement with observation
transformations, it still requires domain knowledge. We believe
our method can enhance robot learning in more demanding
tasks, serving as a guide for designing robots with increased
degrees of freedom while managing the observation-action
space growth linearly. Future research directions include ex-
ploring additional symmetric structures and automating the
process of identifying robots’ intrinsic symmetries.
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Manuel Wüthrich, Stefan Bauer, Ankur Handa, and Ani-
mesh Garg. Transferring dexterous manipulation from
gpu simulation to a remote real-world trifinger. In 2022
IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS), pages 11802–11809. IEEE, 2022.

[4] Michael M Bronstein, Joan Bruna, Taco Cohen, and
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APPENDIX

A. Extra Method Details

1) Transformation Functions: As mentioned in Sec. III-C,
T0 of the base agent is identity transformation. In this section
we describe in detail the transformation function of other
agents. For convenience, we only explain observation transfor-
mation in detail, the transformations are actually the same for
actions, for which we only need to change the observation to
the corresponding action components. By default, we assume
the original observation o = [oc, os,0, os,1, . . . , os,|N |−1] is in
the local coordinate system of the robot base for convenience.

a) Reflectional Symmetry: For robots with reflectional
symmetry, two robot parts in Fig. 2a are controlled by agents
{0, 1}. We define T1(o) = [Tc,1(oc), os,1, os,0], where Tc,1(oc)
is a reflectional function, which reflects the central observation
through the plane of symmetry. As a result of T1(o) different
observation components are transformed as follows:

• symmetric observations directly switch their values;
• some of the central observation values are negated;

– humanoid robot: ytorso, vtorso,y , ωtorso,x, ωtorso,z ,
αtorso, γtorso, θlower waist,x, θpelvis,x, ωlower waist,x, ωpelvis,x,
alower waist,x, apelvis,x

– A1 robot: ytorso, vtorso,y , ωtorso,x, ωtorso,z , αtorso, γtorso
– external objects: yball, vball,y

• other central observation values stay the same.

b) Rotational Symmetry: For robots with rotational
symmetry, the robot parts in Fig. 2b are controlled
by agents {0, 1, . . . , |N | − 1}. We define Ti(o) =
[Tc,i(oc), os,i, os,i+1, . . . , os,|N |−1, os,0, os,1, . . . , os,i−1], where
Tc,i(oc) is a rotational transformation for central observations
around the axis of symmetry. The degree of rotation is the
angular distance from the robot part of agent i to that of agent
0 along the axis of symmetry. Taking the TriFinger robot in
Fig. 3 as an example, the rotation angles are 0, 120 and 240
degrees for the three agents. As a result of Ti(o) different
observation components are transformed as follows,

• symmetric observations circularly shift their values;
• the central observation components are rotated.

2) Proof of Transformation Equivariance/Invariance: At
the beginning we summarize the properties of the symmetry
transformations in this work. They are:

• commutative: Tj(Ti(o)) = Ti+j(o) = Ti(Tj(o))
• distributive: Tj(Ti(o) + Tk(o)) = Tj(Ti(o)) + Tj(Tk(o))
• cyclic: Ti(o) = Ti+|N |(o)

The equivariance of the policy for symmetric actions in Eq. 1
is proved as follows:

As,j(Ti(o)) =Φs(Tj(Ti(o))) = Φs(Tj(Ti(o)))

=As,i(Tj(o))

The equivariance for the central action is proved as follows:

Ac(Ti(o)) =
1

|N |

|N |−1∑
j=0

T|N |−1−j(Φc(Tj(Ti(o))))

=
1

|N |

2|N |−i−1∑
j=|N |−i

T|N |−1−j(Φc(Ti+j(o)))

=
1

|N |

2|N |−1∑
k=|N |

T|N |+i−1−k(Φc(Tk(o)))

=
1

|N |

|N |−1∑
k=0

Ti(T|N |−1−k(Φc(Tk(o))))

=Ti(
1

|N |

|N |−1∑
k=0

T|N |−1−k(Φc(Tk(o))))

=Ti(Ac(o))

The invariance of the value network is proved as follows:

V (Ti(o)) =Θ(
1

|N |

|N |−1∑
j=0

Ψ(Tj(Ti(o))))

=Θ(
1

|N |

2|N |−i−1∑
j=|N |−i

Ψ(Ti+j(o)))

=Θ(
1

|N |

|N |−1∑
k=0

Ψ(Tk(o)))

=V (o) = V (Tj(o))

B. Extra Experimental Setups

1) Hyperparameters: Each baseline is run with 5 random
seeds. All experiments are carried out on GPU card NVIDIA
A100 and rtx3080 GPU. The hyperparameters of all baselines
are consistent for a fair comparison. The detailed values can
be accessed in Table I.

2) Tasks Details:
a) Humanoid Tightrope: In this task, the agent learns

to control a humanoid robot to walk on a tightrope. The
humanoid robot has 21 controllable motors. The tightrope
is extremely narrow with a diameter of only 10 cm, which
challenges the efficiency of learning algorithms. The agent
is rewarded with a forward speed on the tightrope and a
proper posture. At each non-terminating step, the reward
r = wv × rv +walive × ralive +wup × rup +wheading × rheading +
waction × raction + wenergy × renergy + wlateral × rlateral, where

• rv is the robot’s forward velocity, wv = 1.0;
• ralive = 1, walive = 2.0;
• rup = 1 if eup,z > 0.93, where eup is the basis vector of

torso’s z axis in the global coordinate system, otherwise
the value is 0, wup = 0.1;

• rheading = eforward,x, where eforward is the basis vector of
torso’s x axis in global coordinate system, wforward = 0.1;

• raction = ∥a∥22, where a is joints action, waction = −0.01
• renergy is the joints power consumption, wenergy = −0.05



TABLE I: Hyperparameters of all experiments.

HYPERPARAMETERS HUMANOID TIGHTROPE HUMANOID FOOTBALL TRIFINGER MOVE A1 BEAM ANT ACROBATIC

BATCH SIZE 4096×32 4096×32 16384×16 4096×24 4096×16
MIXED PRECISION TRUE TRUE FALSE TRUE TRUE
NORMALIZE INPUT TRUE TRUE TRUE TRUE TRUE
NORMALIZE VALUE TRUE TRUE TRUE TRUE TRUE
VALUE BOOTSTRAP TRUE TRUE TRUE TRUE TRUE
NUM ACTORS 4096 4096 16384 4096 4096
NORMALIZE ADVANTAGE TRUE TRUE TRUE TRUE TRUE
GAMMA 0.99 0.99 0.99 0.99 0.99
GAMMA 0.95 0.95 0.95 0.95 0.95
E-CLIP 0.2 0.2 0.2 0.2 0.2
ENTROPY COEFFICIENT 0.0 0.0 0.0 0.0 0.0
LEARNING RATE 5.E-4 5.E-4 3.E-4 3.E-4 3.E-4
KL THRESHOLD 0.0008 0.0008 0.0008 0.0008 0.0008
TRUNCATED GRAD NORM 1.0 1.0 1.0 1.0 1.0
HORIZON LENGTH 32 32 16 24 16
MINIBATCH SIZE 32768 32768 16384 32768 32768
MINI EPOCHS 5 5 4 5 4
CRITIC COEFFICIENT 4.0 4.0 4.0 2.0 2.0
MAX EPOCH 10K 10K 10K 10K 5K
POLICY NETWORK [400,200,100] [400,200,100] [256,256,128,128] [256, 128, 64] [256, 128, 64]
CRITIC NETWORK [400,200,100] [400,200,100] [256,256,128,128] [256, 128, 64] [256, 128, 64]
ACTIVATION FUNCTION ELU ELU ELU ELU ELU

• rlateral = vtorso,y is the penalty for lateral velocity,
wlateral = −1.0

The reward is −1 for termination step. The action is the force
applied to all joints.

b) Humanoid Dribbling: In this task, the robot learns
to dribble along routes with random turns. The observation
space is augmented with features of the ball compared with
the tightrope task. For observation calculation, the global
coordinate system changes with the new target route at the
turning position. At each non-terminating step, the reward
r = wv × rv +walive × ralive +wdist × rdist +wheading × rheading +
waction × raction + wenergy × renergy + wlateral × rlateral, where

• rv is the ball’s forward velocity, wv = 2.0;
• ralive = 1, walive = 0.2;
• rdist = e−d where d is the 2d distance from torso to the

ball, wdist = 0.2;
• rheading = eforward,x, where eforward is the basis vector of

torso’s x axis in the global system, wforward = 1.0;
• raction, renergy are the same with Humanoid Tightrope
• rlateral = vball,y is the penalty for the ball’s lateral velocity,
wlateral = −0.5

The reward is −1 for termination step. The action is the force
applied to all joints.

c) A1 Beam: In this task, the agent controls the
quadruped robot Unitree A1 [1] to walk on a balance beam
with width of 10 cm following a predefined speed. Considering
the width of A1 and the balance beam, it is much harder than
walking on the ground. There are overall 12 motors for Unitree
A1, 3 for each leg. At each non-terminating step, the reward
r = wv × rv + walive × ralive + wheading × rheading + waction ×
raction + wlateral × rlateral, where

• rv = e−|vtorso,x−vtarget| is speed tracking reward, wv = 1.0;
• ralive = 1, walive = 1.0;

• rheading = eforward,x, where eforward is the basis vector of
torso’s x axis in global coordinate system, wforward = 1.0;

• raction = ∥a∥22, where a is the joints action, waction = −0.5
• rlateral = vtorso,y is penalty for lateral velocity, wlateral =
−1.0

The reward is −1 for termination step. The robot has a low-
level joint controller. The action is the target angular position
of all joints.

d) Trifinger Move: Trifinger [21] is a 3-finger manipu-
lator for learning dexterity. The goal of the task is to move a
cube from a random initial pose to an arbitrary 6-DoF target
position and orientation. The environment is the same as that
of [3], except that we remove the auxiliary penalty for finger
movement, which increases the difficulty of the task. The robot
has a low-level joint controller. The action is the target angular
position of all joints.

e) Ant Acrobatic: In this task, an ant learns to do com-
plex acrobatics (e.g. heading a pole) on a ball, which extremely
challenges the ability of agents to maintain balance. The action
space is 8 dimensions. At each non-terminating step, the
reward r = walive × ralive + waction × raction + wenergy × renergy,
where

• ralive = 1, walive = 0.5;
• raction = ∥a∥22, where a is joints action, waction = −0.005
• renergy is joints power consumption, wenergy = −0.05

The reward is −1 for termination step. The action is the force
applied to all joints.

We conclude the observation space for each task in Table II
for easier reading.



TABLE II: Tasks Information

HUMANOID TIGHTROPE HUMANOID FOOTBALL TRIFINGER MOVE A1 BEAM ANT ACROBATIC

OBSERVATION DIMENSION 74 80 41 47 57

oC

TORSO

yTORSO yTORSO yTORSO xTORSO

zTORSO zTORSO zTORSO yTORSO

vTORSO,x vTORSO,x vTORSO,x zTORSO

vTORSO,y vTORSO,y vTORSO,y vTORSO,x

vTORSO,z vTORSO,z vTORSO,z vTORSO,y

ωTORSO,x ωTORSO,x ωTORSO,x vTORSO,z

ωTORSO,y ωTORSO,y ωTORSO,y ωTORSO,x

ωTORSO,z ωTORSO,z ωTORSO,z ωTORSO,y

αTORSO αTORSO αTORSO ωTORSO,z

βTORSO βTORSO βTORSO αTORSO

γTORSO γTORSO γTORSO βTORSO

γTORSO

TORSO JOINTS

θLOWER WAIST,x θLOWER WAIST,x

θLOWER WAIST,y θLOWER WAIST,y

θPELVIS,x θPELVIS,x

ωLOWER WAIST,x ωLOWER WAIST,x

ωLOWER WAIST,y ωLOWER WAIST,y

ωPELVIS,x ωPELVIS,x

aLOWER WAIST,x aLOWER WAIST,x

aLOWER WAIST,y aLOWER WAIST,y

aPELVIS,x aPELVIS,x

EXTERNAL OBJECTS

xBALL xCUBE xPOLE

yBALL yCUBE yPOLE

zBALL zCUBE zPOLE

vBALL,x HCUBE,x vPOLE,x

vBALL,y HCUBE,y vPOLE,y

vBALL,z HCUBE,z vPOLE,z

HCUBE,w ωPOLE,x

xCUBE TARGET ωPOLE,y

yCUBE TARGET ωPOLE,z

zCUBE TARGET UPPOLE,x

HCUBE TARGET,x UPPOLE,y

HCUBE TARGET,y UPPOLE,z

HCUBE TARGET,z xBALL

HCUBE TARGET,w yBALL

zBALL

vBALL,x

vBALL,y

vBALL,z

ωBALL,x

ωBALL,y

ωBALL,z

oS,i LIMB JOINTS

θUPPER ARM,x θUPPER ARM,x θFINGER UPPER θFRONT HIP

θUPPER ARM,z θUPPER ARM,z θFINGER MIDDLE θFRONT THIGH

θLOWER ARM,x θLOWER ARM,x θFINGER LOWER θFRONT CALF

θTHIGH,x θTHIGH,x ωFINGER UPPER θREAR HIP

θTHIGH,y θTHIGH,y ωFINGER MIDDLE θREAR THIGH

θTHIGH,z θTHIGH,z ωFINGER LOWER θREAR CALF

θKNEE,x θKNEE,x aFINGER UPPER ωFRONT HIP

θFOOT,x θFOOT,x aFINGER MIDDLE ωFRONT THIGH

θFOOT,y θFOOT,y aFINGER LOWER ωFRONT CALF

ωUPPER ARM,x ωUPPER ARM,x ωREAR HIP

ωUPPER ARM,z ωUPPER ARM,z ωREAR THIGH

ωLOWER ARM,x ωLOWER ARM,x ωREAR CALF

ωTHIGH,x ωTHIGH,x aFRONT HIP

ωTHIGH,y ωTHIGH,y aFRONT THIGH

ωTHIGH,z ωTHIGH,z aFRONT CALF

ωKNEE,x ωKNEE,x aREAR HIP

ωFOOT,x ωFOOT,x aREAR THIGH

ωFOOT,y ωFOOT,y aREAR CALF

aUPPER ARM,x aUPPER ARM,x

aUPPER ARM,z aUPPER ARM,z

aLOWER ARM,x aLOWER ARM,x

aTHIGH,x aTHIGH,x

aTHIGH,y aTHIGH,y

aTHIGH,z aTHIGH,z

aKNEE,x aKNEE,x

aFOOT,x aFOOT,x

aFOOT,y aFOOT,y

|N | 2 2 3 2 4

ACTION DIMENSION 21 21 9 12 8
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