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ABSTRACT

Existing crowd-counting methods rely on the manual localization of each per-
son in the image. While recent efforts have attempted to circumvent the anno-
tation burden through vision-language models or crowd image generation, these
approaches rely on pseudo-labels to perform crowd-counting. Simulated datasets
provide an alternative to the annotation cost associated with real datasets. How-
ever, the use of large-scale simulated data often results in a distribution gap be-
tween real and simulated domains. To address the latter, we introduce knowledge
retrieval inspired by knowledge-enhanced models in natural language processing.
With knowledge retrieval, we extract simulated crowd images and their text de-
scriptions to augment the image embeddings of real crowd images to improve
generalized crowd-counting. Knowledge retrieval allows one to use a vast amount
of non-parameterized knowledge during testing, enhancing a model’s inference
capability. Our work is the first to actively incorporate text information to regress
the crowd count in any supervised manner. Moreover, to address the domain gap,
we propose a pre-training and retrieval mechanism that uses unlabeled real crowd
images along with simulated data. We report state-of-the-art results for zero-shot
counting on five public datasets, surpassing existing multi-model crowd-counting
methods. The code will be made publicly available after the review process.

1 INTRODUCTION

Crowd-counting has garnered significant interest owing to its extensive applications in safety and
population management (Sindagi & Patel, 2018; Kang et al., 2018). Accurately estimating counts
becomes particularly challenging, especially in densely populated areas.
Most prominent crowd-counting methods either estimate a density map (Sindagi & Patel, 2017;
Ranasinghe et al., 2024; Han et al., 2023) or localize head positions (Song et al., 2021; Liang et al.,
2022b) to estimate the count. However, these methods require point-level annotations for human
heads, which is an expensive and laborious process. Recently, to relieve the cost of annotation, the
field has been moving towards using vision-language models and synthetic images. An illustrative
example of this trend is observed in the introduction of the CrowdCLIP (Liang et al., 2023) model,
which integrates the CLIP (Radford et al., 2021) architecture for crowd-counting showcasing a con-
temporary approach in merging vision and language models for this specific task. While CrowdCLIP
is positioned as an unsupervised model requiring no explicit count labels, evaluating the test set in-
volves determining the optimal count label structure for performance assessment. In contrast, the
AFreeCA (D’Alessandro et al., 2024) model proposes a fully supervised crowd-counting strategy by
synthesizing crowd images using stable diffusion and multi-modal supervision. However, a notable
challenge arises in AFreeCA, where the actual crowd count in the synthesized images diverges from
the count provided as the text condition to the model, introducing inherent noise into the pipeline.
However, CrowdCLIP and AFreeCA demonstrate the transferability and generalizability of incor-
porating text knowledge and a vast amount of data to annotator-free crowd-counting. Consequently,
we can address the annotation cost involved in crowd-counting by training a model with simulated
data to perform zero-shot crowd-counting on real images. The benefits of using simulated data are
two-fold: 1. we can create point annotations without any human labor. 2. We can create a huge
amount of data for the model to train. Naturally, models need more capacity to parameterize a large
corpus of data, as evidenced by large language models. However, recently developed retrieval aug-
mented generation (Lewis et al., 2020) for natural language processing demonstrated the advantage
of using non-parametric knowledge (external information) for more updated, reliable response gen-
eration. Following this, RA-CLIP (Xie et al., 2023) illustrated the advantage of using a reference
database for zero-shot performance with vision-language models for classification. However, the
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benefits of retrieval-based models have not been studied for regression-based downstream tasks, let
alone for crowd-counting.

Figure 1: (a) The fully parameterized supervised
methods require point annotations for real crowd im-
ages, which need heavy manual labor to label a large-
scale dataset. (b) Vision-language contrastive train-
ing to learn counting labels. (c) The proposed vision-
language enhanced training for generalized counting
without labeled real crowd data.

In this paper, we propose ReGe-Count,
which combines vision-language retrieval
of simulated crowd data to estimate the
crowd count of real crowd images under
the zero-shot scenario. With ReGe-Count,
we demonstrate the benefit of using multi-
modal context for real crowd images to per-
form regression-based crowd-counting with
weak supervision. Specifically, first, we
train an image encoder to parameterize vi-
sual understanding of the unlabeled real
and simulated crowd images under the self-
supervised objective of ranking. Second,
we train a knowledge augmentation module
to extract information from image-text pairs
from the simulated dataset for a given query
image as displayed in the right-most figure
of figure 1. This retrieved image-text infor-
mation is combined with the query embed-
dings to learn the mapping between crowd
semantics and crowd count under weak
supervision. Furthermore, unlike Crowd-
CLIP, we don’t need a progressive refine-
ment strategy to remove ambiguous crowd
patches, which jettison the necessity to pass
the image crops through the image encoder
multiple times. Besides that, CrowdCLIP

does not utilize language understanding to produce the crowd count; instead, the CrowdCLIP
pipeline classifies the image patches into different classes at different stages without the need to
understand the class label information.
Comprehensive experiments carried out across five datasets in diverse scenarios underscore the effi-
cacy of our ReGe-Count. Notably, our approach outperforms the current state-of-the-art annotator-
free methods on public crowd-counting datasets, as measured by the MAE metric. Our major con-
tributions in this paper can be summarized as follows: 1) We propose knowledge retrieval for crowd
estimation with regression. To the best of our knowledge, this is the first work to utilize external
sources at testing to enhance crowd-counting. 2) We introduce combining vision-language infor-
mation for weakly-supervised crowd-counting. This is one of the first works to utilize and infuse
language understanding into crowd-counting. 3) We successfully demonstrate using simulated la-
beled crowd images for generalized crowd-counting of real crowd images, surpassing the zero-shot
performance of other vision-language crowd-counting methods.

2 RELATED WORKS

Annotator-free crowd-counting. Existing crowd-counting methods use real-world images with
manually annotated ground truth, a labor-intensive and costly process. To mitigate the depen-
dence on these human annotations, recent research has explored annotator-free approaches to crowd-
counting. For example, CSS-CCNN utilizes self-supervised learning by pretraining the image en-
coder with a rotation prediction task before fine-tuning the encoder and a density decoder using
Sinkhorn matching, completely bypassing ground truth annotations. Similarly, CrowdCLIP lever-
ages the CLIP architecture to train an image encoder for crowd interval prediction by contrasting
image features with count interval labels. In contrast to these methods, AFreeCA performs fully
supervised crowd-counting by training its network on synthetic images generated using stable dif-
fusion, enabling the model to learn crowd counts directly from artificially generated data.

Real and simulated crowd images. Text descriptions about images establish the multi-modal re-
lationship among image-text pairs. However, these text descriptions generally include information
about objects present in the image and the context of the image. But specific information like the
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Figure 2: Overall pipeline of ReGe-Count. First, the image encoder (Ψ) is pre-trained using both real
and simulated images using the ranking loss. Next, the Knowledge Augmentation Module (KAM)
and the count decoder are trained during the fine-tuning stage. During the fine-tuning stage Ψ and
the pre-trained text encoder (Φ) are frozen.

actual crowd count is required for crowd-counting. Hence, one must manually annotate the images
to get the crowd count, which is a tedious and time-consuming task (D’Alessandro et al., 2024). In
contrast, using simulated data (Wang et al., 2019) eliminates the necessity of labor for annotation
and caption generation. This is because the context, conditions, and crowd locations are readily
available when preparing the simulated images, unlike real crowd images.
Non-parametric knowledge retrieval. Recently, knowledge-enhanced models have been gaining
traction in the vision domain after its success with large-language models (Lewis et al., 2020). First,
Hu et al. (2023) improves the performance of visual question answering by storing image-text pairs
in an external database and training a network to extract relevant knowledge to enhance model re-
sponses. Then, Xie et al. (2023) improves the zero and few-shot performance of the CLIP model by
augmenting the input image embeddings with image-text pair information from an external database.
In addition, Chen et al. (2024) and Liu et al. (2023) utilize the knowledge-enhanced models to im-
prove classification performance with diffusion models and customized visual models. However,
the above methods cater to classification for a given image. In our work, we use external knowledge
retrieval to improve the performance of crowd-counting in a weakly supervised learning manner.

3 PROPOSED METHOD

The overall idea of our proposed framework is to retrieve image-text information from an external
database for a given query image to enhance the inference performance for crowd counting as shown
in figure 2. We first discuss constructing the external database and the image-text data in section 3.1.
Next, we discuss the retrieval process in section 3.2, and the knowledge augmentation in section 3.3.

3.1 REFERENCE SET CONSTRUCTION

Text descriptions for simulated images. We utilize the crowd locations, weather conditions, and
time conditions available for each crowd image in the GCC dataset. For each crowd image, we
construct a text description like,

“The image has a [weather condition] weather with
[crowd count] people in the [time of day].”

For the weather conditions, we use {clear, cloudy, rainy, foggy} as the labels, and for
the time of day, we use {morning, evening, night} as the prompts. These text descriptions
are only constructed for the images that will be included in the reference database. We use 80% of
images from the GCC training set for the reference database. However, including only simulated
data in the reference set introduces a domain gap between simulated and real-world test images.
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(a) Retrieval and augmentation pipeline (b) Knowledge augmentation module
Figure 3: (a) In the retrieval and augmentation pipeline, we first do maximum inner product search
(MIPS) between query image embeddings (ei) and real image embeddings (Ψ(r)). For the most
similar Ψ(r), find the closest simulated embeddings (Ψ(s)) using MIPS. These retrieved image-text
embeddings (Ψ(sk) and Φ(sk)) and ei are passed through the augmentation module to get the count.
(b) The network flow of the augmentation module to extract non-parameterized knowledge.

Hence, to align the distribution of simulated and real data, we embed the simulated images in the
latent space of real images.
Real crowd image set construction. For the real crowd image set, we combine the existing publicly
available crowd counting datasets except for the dataset of which the performance is evaluated. e.g.,
suppose we evaluate the performance on ShanghaiTech Part-A, then the real crowd images in the
reference set will contain crowd images from ShanghaiTech Part-B, JHU-Crowd++, UCF-QNRF,
and NWPU-Crowd. This ensures that the image encoder has not seen any images from the test
distribution, unlike CrowdCLIP and AFreeCA.
Image encoder pre-training. We pre-train the image encoder using both real and simulated crowd
images with the ranking loss (Liu et al., 2018), which does not require any labels. Ranking loss
has been used to pre-train the image encoder in recent multi-modal crowd counting works like
CrowdCLIP and AFreeCA. To construct the ranking crops for the pre-training of the image encoder,
we follow the sampling procedure provided in Liu et al. (2018) and moderate it for the simulated
and real images separately. We pass the image embeddings of each crop through a linear layer to
map it to a count value. To enforce the ranking, we apply the pairwise ranking hinge loss, which for
a single pair is defined as:

Lr = max (0, ĉ(Il)− ĉ(Ih)) , (1)

to penalize incorrect ranking pairs, where ĉ(Il) is lower than ĉ(Ih), and Il and Ih represent two
ranking patches from the image. It should be noted that the Lr loss is proportional to the difference
between the estimates when the two estimates don’t obey the correct ranking order and help embed
the real and simulated images into an ordinal space (Li et al., 2022). The image encoder is trained
using the gradient updates given as:

∇Lr =

{
0 if ĉ(Il)− ĉ(Ih) ≤ 0

∇ĉ(Il)−∇ĉ(Ih) otherwise
(2)

with respect to the image encoder parameters. For a given image, we combine the losses of each
pair before taking the gradients. There will be

(
M
2

)
pairs, where M is the crops per image.

Reference vector database. After training the image encoder, we construct image crops of size
224× 224 from simulated and real crowd images. Next, we collect the image embeddings of these
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crops to create a vector database to perform knowledge retrieval under the maximum inner product.

3.2 IMAGE-TEXT RETRIEVAL

In knowledge retrieval, we extract K image-text pairs for an input image Ii. First, we get the image
embeddings ei of Ii using the pre-trained image encoder. Then, we perform the maximum inner
product search (MIPS) (Yu et al., 2017) with the image embeddings of the real crowd image crops in
the reference database. The MIPS is formulated such that, given a query vector (q ∈ Rd) and a set of
data vectors (V = {v1, v2, . . . , vn} ⊂ Rd), to find the nearest k-vectors (V∗ = {v∗1 , v∗2 , . . . , v∗k} ⊂
V) to q. V∗ should be found such that:

⟨q, v∗i ⟩ ≥ ⟨q, vj⟩, ∀vj /∈ V∗, and |V∗| = k,

where ⟨· , ·⟩ and | · | represent the vector inner product and cardinality. From the search, we
find the K/2 most similar real image crops. Next, for each real crowd crop, we will find the 2
most similar simulated crowd crops without any repetitions. i.e., if any two real crops share a
simulated crowd crop, we assign the simulated crop to the real crop that has the highest inner
product with Ii and assign the next most similar simulated crop to the remaining real crop. Once we
find K most similar simulated crop vectors, we extract their corresponding image crops {rVi

k }Kk=1

and the text descriptions {rLi

k }Kk=1 from our reference set. In the retrieval process, the reason
to extract real crops first is to align the simulated crops retrieved for real crowd images during
testing. Since we train the knowledge augmentation module (see section 3.3) and the count decoder
with simulated data, if we directly extract the K most similar simulated crops from the reference
set, the strong relationship of being from the same domain will not exist during testing with the
real images. However, by using real crops as an intermediary, we can alleviate this issue as the
connection between the retrieved simulated crops and input image will be stronger during testing
since the test image and intermediary reference crops are from the same domain. This intermedi-
ary process can be considered as a projection of the input image features onto the real image features.

3.3 KNOWLEDGE AUGMENTATION MODULE (KAM)

The overall architecture of the KAM is illustrated in figure 3b. In the KAM, we first extract the image
embeddings and the text embeddings for the retrieved image-text pairs ({rVi

k }Kk=1 and {rLi

k }Kk=1)
using the pre-trained image encoder (Ψ) and a pre-trained text encoder (Φ) as follows,

hVi

k = Ψ
(
rVi

k

)
and hLi

k = Φ
(
rLi

k

)
, (3)

where hVi

k and hLi

k represent the image embeddings and text embeddings of the kth image-text pair.
Since Ψ and Φ are pre-trained encoders, the embeddings in equation 3 can be pre-computed as these
models are frozen during training of the KAM and the count decoder.
Once the reference image embeddings {hVi

k }Kk=1 and the corresponding text embeddings {hLi

k }Kk=1
are extracted, we infuse this external knowledge to the input image embeddings (ei) using Multi-
head Attention (MHA) (Vaswani et al., 2017) in the KAM. First, we take ei, {hVi

k }Kk=1, and
{hLi

k }Kk=1 as the query, key, and value, respectively to produce text-knowledge-infused embeddings
(vLi ) given by,

vL
i = MHA(ei, {hVi

k }Kk=1, {h
Li

k }Kk=1). (4)

Here, input image embeddings will learn the weight aggregation of {hLi

k }Kk=1 depending on the
relationship between ei and {hVi

k }Kk=1. Similarly, we also produce image-knowledge-infused em-
beddings from the KAM. However, unlike vL

i , here we can use both {hVi

k }Kk=1 and {hLi

k }Kk=1 as key
while ei and {hVi

k }Kk=1 are kept as query and value, respectively. Hence, we produce two different
image-knowledge-infused embeddings denoted as vLV

i and vV V
i with {hVi

k }Kk=1 and {hLi

k }Kk=1 as
key, respectively. The KAM outputs vLV

i and vV V
i as follows,

vLV
i = MHA(ei, {hLi

k }Kk=1, {h
Vi

k }Kk=1),

vV V
i = MHA(ei, {hVi

k }Kk=1, {h
Vi

k }Kk=1).
(5)
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Then, the outputs of the KAM will be combined with the input image embeddings to produce the
augmented image embeddings (e

′

i) as follows,

e
′

i = ei + vL
i + vLV

i + vV V
i , (6)

as shown in figure 3b. Then e
′

i is passed through the count decoder to produce the crowd count ĉi.

3.4 LOSS FUNCTION

At the pre-training stage of the image encoder, we use the pairwise ranking hinge loss (Lr) as
described in equation 1. Then, to train the KAM and the count decoder, we utilize both L1 and L2

norm between the estimated and the ground truth count as follows,

L =
1

|B|
∑
Ii∈B

(L1(ĉi, ci) + λ L2(ĉi, ci))

=
1

|B|
∑
Ii∈B

(
∥ĉi − ci∥1 + λ ∥ĉi − ci∥22

)
,

(7)

where λ is a hyperparameter that is set equal to 0.01. In equation 7 ci and ĉi are the ground truth
and estimated count of the Ii input image in the batch B. The KAM and the count decoder are
trained only with the remaining 20% of simulated images that are not used to construct the reference
database. Therefore, we readily have ci of each training image, since we know the ground truth for
the simulated data.

4 EXPERIMENTAL DETAILS

4.1 IMPLEMENTATION DETAILS

We use the Vision Transform (ViT-B/16) (Dosovitskiy et al., 2021) as the image encoder with pre-
trained weights on ImageNet-21K (Deng et al., 2009) with the hidden dimension size set to 768.
The input image size to the image encoder is 224 × 224. For the text encoder we use the Sentence
Transformer (SentenceT) (Reimers & Gurevych, 2019). The SentenceT architecture has 6 Trans-
former block layers and outputs a 384 dimensional vector for each sentence. To reconcile the image
embeddings with the text embeddings, we project the output of the image encoder from a 768 di-
mensional vector to a 384 dimensional vector. Moreover, we use an MLP for the count decoder to
map the augmented image embeddings to the crowd count following Liang et al. (2022a).
We implement our framework with PyTorch (Paszke et al., 2019). All experiments are conducted
on 4 NVIDIA RTX A6000 GPUs, and we use a batch size of 32 for pre-training the image encoder
and training the KAM. First, the image encoder is trained for 200 epochs with unlabeled real crowd
images and simulated crowd images. To pre-train the image encoder with the ranking loss, we use
the AdamW optimizer (Loshchilov & Hutter, 2018) with a learning rate of 1e-3 and a weight decay
of 0.01 factor and a linear warm-up over ten epochs. We use five ranked crops with a 1 : 0.75 scaling
ratio between consecutive crops on real crowd images following Liu et al. (2018), whereas we use
four ranked crops with a 2 : 1 scaling ratio for the simulated crowd images. During pre-training of
the image encoder, we perform RandAugment (Cubuk et al., 2020), random horizontal flip, random
Gaussian blur, and random color distortions. To train the KAM and the count decoder for generalized
crowd-counting, we adopt the same optimizer with a learning rate of 1e-5 and perform training for
150 epochs using simulated data. To assess few-shot performance, we fine-tune the image encoder,
KAM, and count decoder on real labeled crowd images.

4.2 DATASETS AND METRICS

For the proposed method, we use the GCC dataset (Wang et al., 2019) to construct the reference
dataset and to train the KAM and the count decoder. We evaluate the proposed method on five
publicly available crowd datasets: JHU-Crowd++ (Sindagi et al., 2020), ShanghaiTech Part A and B
(Zhang et al., 2016), UCF-QNRF (Idrees et al., 2018), and NWPU-Crowd (Wang et al., 2020). The
performance is evaluated with the mean absolute error (MAE) and mean squared error (MSE).
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Table 1: Crowd counting performance on JHU-Crowd++, UCF-QNRF, and ShanghaiTech-Part A
and B datasets. We compare with other annotator-free methods and missing results are due to un-
available metrics in the corresponding paper. We provide the type of training data used by each
method. The data domains are either Real or Simulated. Each method uses as Labeled, Unlabeled,
and Pseudo labeled data.

Method Venue Training
data

SHB JHU SHA QNRF

MAE MSE MAE MSE MAE MSE MAE MSE

MCNN (Zhang et al., 2016) CVPR’16 Re La 26.4 41.3 188.9 483.4 110.2 173.2 277.0 426.0
P2PNet (Song et al., 2021) ICCV’21 Re La 6.3 9.9 - - 52.7 85.1 85.3 154.5
CLTR (Liang et al., 2022b) ECCV’22 Re La 6.5 10.6 59.5 240.6 56.9 95.2 85.8 141.3
STEERER (Han et al., 2023) ICCV’23 Re La 5.8 8.5 54.3 238.3 54.5 56.9 74.3 128.3

GCC-SFCN (Wang et al., 2019) CVPR’19 Si La
Re Un 19.9 28.3 - - 123.4 193.4 230.4 384.5

CSS-CCNN (Babu Sam et al., 2022) ECCV’22 Re Un - - 217.6 651.3 197.3 295.9 437.0 722.3
CrowdCLIP (Liang et al., 2023) CVPR’23 Re Ps 69.3 85.8 213.7 576.1 146.1 236.3 283.3 488.7
SYRAC (D’Alessandro et al., 2023) arXiv Re Ps 49.0 60.3 194.0 583.9 196.0 295.2 390.0 697.5
AFreeCA (D’Alessandro et al., 2024) ECCV’24 Re Ps 35.0 50.7 173.8 519.4 152.7 219.0 283.1 453.2
Ours Si La

Re Un 23.0 30.7 142.3 443.6 118.4 186.1 214.9 363.4

Table 2: Performance on the NWPU-Crowd test dataset. We used the publicly available code bases
to evaluate the performance of the annotator-free methods. We provide the type of training data used
by each method. The data domains are either Real or Simulated. Each method uses as Labeled,
Unlabeled, and Pseudo labeled data.

Method Venue Training
data

Overall Scene Level (MAE)

MAE MSE Avg. S0 S1 S2 S3 S4

MCNN (Zhang et al., 2016) CVPR’16 Re La 232.5 714.6 1171.9 356.0 72.1 103.5 509.5 4818.2
P2PNet (Song et al., 2021) ICCV’21 Re La 72.6 331.6 510.0 34.7 11.3 31.5 161.0 2311.6
CLTR (Liang et al., 2022b) ECCV’22 Re La 74.4 333.8 532.4 4.2 7.3 30.3 185.5 2434.8
STEERER (Han et al., 2023) ICCV’23 Re La 63.7 309.8 410.6 48.3 6.0 25.9 158.3 1814.5

CSS-CCNN (Babu Sam et al., 2022) ECCV’22 Re Un 433.0 868.3 1965.3 368.3 233.7 289.6 689.6 8245.3
CrowdCLIP (Liang et al., 2023) CVPR’23 Re Ps 374.9 899.4 1646.2 305.7 190.5 237.3 677.2 6820.6
SYRAC (D’Alessandro et al., 2023) arXiv Re Ps 344.5 958.5 1540.6 268.5 182.9 215.4 610.8 6425.8
Ours Si La

Re Un 340.1 863.8 1358.0 248.9 153.3 226.4 672.1 5489.7

5 RESULTS AND ANALYSIS

5.1 ANNOTATOR-FREE PERFORMANCE

As reported in tables 1 and 2, the proposed ReGe-Count surpasses state-of-the-art methods: GCC-
SFCN, CrowdCLIP, AFreeCA by considerable margins across all evaluated datasets. Moreover,
ReGe-Count surpasses state-of-the-art annotator-free methods by considerable margins in terms of
MAE for the NWPU-Crowd test dataset. The performance against CSS-CCNN comes from per-
forming zero-shot on the target distribution under weak supervision, which has been better than
self-supervision. Then, actively using language information has aided in surpassing CrowdCLIP,
which does not use text information for estimation. The performance across different datasets indi-
cates that the proposed method performs well under different conditions, as these datasets specifi-
cally represent congested and sparse scenes. Furthermore, we have provided some qualitative results
in figure 5 with the individual patch counts to better illustrate the performance of our method. Fur-
thermore, ReGe-Count method demonstrates highly competitive performance against some widely
adopted fully supervised methods like MCNN (Zhang et al., 2016).

5.2 ABLATION STUDY

Effectiveness of knowledge retrieval. In figure 4, we provide the top-4 retrieved simulated sam-
ples and the corresponding text information for two query images. The first query image is an
indoor photo where the individuals are placed in an ordered manner. The first image retrieved by the
query resembles the ordered structure in the image, even though the retrieved patch is an outdoor
image (the GCC dataset contains only outdoor images.) Though the rest of the samples do not con-
tain the ordered structure, those images mimic other aspects like the orientation of how individuals
are placed and size constancy. To quantify the spatial similarity, we considered the density maps.
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Figure 4: Top-4 retrieved simulated samples and text descriptions for a real query patch. The first
query is an indoor image with an ordered placement of people. The retrieved patches resemble the
ordered structure of the query, though retrieved images are outdoor. The second query is an outdoor
night image. The retrieved samples match the image conditions and the orientation of the location.

Figure 5: Qualitative results from ReGe-Count.

We measured the SSIM of
each retrieved image with
the query image, where
the SSIM values varied
between 0.88 and 0.82,
which indicates a high
spatial similarity of object
placement. The second
query image is a dark and
outdoor sample with ran-
dom placement. The re-

trieved samples for the second query either have a darker background or belong to the night condi-
tions. Specifically, the first extracted sample also simulates the background of the query image. Like
in the first query image, the orientation of human placement is also present in the extracted simulated
patches. Also, the SSIM values for the density maps for the second example range from 0.90-0.92,
indicating a strong spatial similarity for object placement. However, this high SSIM number could
also be driven by the fact that there are fewer people in the second case, and most of the density map
is empty. Regardless, figure 4 gives insight as to how retrieving from an external dataset can facili-
tate the generalized capabilities of the network as the crowd count of the extracted patches provides
closer estimates.

Table 3: Generalized cross-dataset performance
comparison with simulated GCC dataset training.

Method JHU SHA QNRF SHB

DGCC 544.4 351.2 454.8 112.1
CSS-CCNN 234.3 258.8 315.5 77.0
CrowdCLIP 226.7 162.7 325.4 82.9
Ours* 170.2 143.1 223.6 28.6
Ours 142.3 118.4 214.9 23.0
Ours* does not have the retrieval module and count decoder is fine-tuned with
labeled synthetic data.

To validate the effectiveness of our proposed
method for annotator-free crowd counting on
the target distribution, we compare ReGe-
Count with CrowdCLIP, CSS-CCNN, and
DGCC (Du et al., 2023). Note that Crowd-
CLIP is a vision-language-based counting
method, CSS-CCNN is a self-supervised
counting method, and DGCC is a domain
generalization-based counting method. Here,
we only consider labeled simulated data and
unlabeled real data and follow the training
pipeline provided in public codebases. For
DGCC, we train the pipeline with only simu-
lated data, as DGCC requires labeled data. However, for CrowdCLIP and CSS-CCNN, we pre-train
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the image encoders using both simulated and real crowd datasets, as the pre-training stage only
requires unlabeled images. Also, in the real crowd dataset for pre-training, we don’t include the
training images of the test distribution in comparison with ReGe-Count training scheme. The
results of this ablation are provided in table 3. As observed from table 3, DGCC fails to generalize
to real crowd images when purely trained on simulated crowd images. Furthermore, CrowdCLIP
and CSS-CCNN performed worse than ReGe-Count by a significant margin. This is because
CrowdCLIP operates in the classification scenario instead of our regression-based method. Also,
in contrast to our ReGe-Count, CrowdCLIP does not use language understanding to produce the
crowd count. Note that CSS-CCNN assumes the crowd counts distribution of patches to follow
the power law for simulated images, which might also be invalid. Furthermore, we consider
the performance without the KAM in Ours*, which performs worse than the proposed method.
We provide an analogy for this observation. In the training stage of Ours*, the network learns
multi-modal (vision-language) concepts with the training distribution. Then, given a query image
during testing, Ours* attempts to perform a closed-book inference and may return a false prediction
if it cannot relate the query (real image) with the learned concepts.

Qualitative analysis. To understand the most influential aspects of the pipeline, especially in the
Knowledge Augmentation Module, we consider the attention weights by different augmentations.
First, we consider the attention maps (see figure 6) in the KAM module for a test image and the
closest retrieved image for different keywords in the text description. In both cases, the maps cor-
responding to the ‘count’ keyword have high scores compared to the maps of the other keywords.
This indicates that the ‘count’ text features will highly influence the augmented embeddings passed
to the decoder. Further, the attention maps highlight the areas of crowds that exist in the scene for
the retrieved image, demonstrating the visual understanding of people with the count. In addition,
the ‘time of day’ keyword has provided some background context in the retrieved scene in the first
example, whereas the ‘weather’ keyword features will have a minimal effect on the augmented em-
beddings compared to the other two. Also, we consider the attention between the test image’s image
embeddings and the retrieved description’s text embeddings. By averaging and normalizing the at-
tention weights, we could compute attention scores assigned to each word token. For instance, we
considered an image crop of an indoor scene with low illumination. For this example, the attention
scores produced for each word token were: The (0.000) image (0.002) has (0.000) a (0.000) clear
(0.030) weather (0.000) with (0.000) 52 (0.905) people (0.003) in (0.000) the (0.000) night (0.060).
The attention scores are high for the crowd count, time of day, and weather, as these three keywords
carry information among different images because the remaining text words are common across all
text descriptions. Since both test image and retrieval embeddings are generated from the same en-
coder, these attention scores highlight which feature maps are more influential due to the way the
attention mechanism is developed.
Effective use of text modality. We compare the change in performance with different text prompts
to demonstrate the effective use of text modality for crowd-counting in ReGe-Count compared to
CrowdCLIP. While CrowdCLIP has explored text modality for crowd counting first, the setting pro-
posed in CrowdCLIP uses text embeddings as reference vectors to train the image encoder rather
than using text information to produce the count. For example, when we change the text prompt
from “The photo contains [count] people” to “There are [count] people
in the photo”, the performance of CrowdCLIP changed significantly (283.3→488.1) as op-
posed to ours (214.9→216.4). Hence, CrowdCLIP has underutilized the potential of text informa-
tion compared to our work.

Table 4: Different augmentations

Fusion type
K

MAE

vLi vLV
i vV V

i JHU SHA QNRF

✗ ✗ ✗ - 170.2 143.1 223.6
✓ ✗ ✗ 32 148.6 123.6 224.4
✓ ✓ ✓ 32 142.3 118.4 214.9
✓ ✓ ✓ 16 145.9 121.4 220.4
✓ ✓ ✓ 64 143.9 119.7 217.3

Table 5: Ablation of keywords

Method JHU SHA QNRF

baseline 142.3 118.4 214.9
count 147.5 117.6 215.8
+ time of day 143.5 118.1 215.1
+ weather 147.8 118.3 216.1

9
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Figure 6: Attention maps corresponding to different keywords

Different augmentation ar-
chitectures. We conducted
additional experiments to assess
various design options within the
KAM architecture, as outlined
in table 4 since the KAM is the
sole addition to the baseline
architecture. For the baseline,
the count decoder is trained with
the simulated data without any
image-text retrieval and knowl-
edge enhancement. Initially, we
consider vL

i as the ultimate aug-
mented representation. In this
scenario, the KAM assimilates

relevant information from the reference texts, generating the final embedding. Including textual
cues leads to a notable performance improvement compared to the baseline. After that, we augment
vLV
i and vV V

i , separately. Providing visual cues based on the image-text relation has not seemed
effective. Still, it has improved the performance when combined with the remaining augmentations.
More details are provided in the supplementary.
Different K-value in retrieval. We experiment with different retrieval quantities and their effect
on performance. We vary between K = {16, 32, 64} for image and text pairs from the external
simulated dataset. The results are tabulated from rows 4-6 in table 4. Our module exhibits consistent
performance across different K values, with the model achieving slightly superior results when K
is set to 32 compared to other configurations. The performance decrease with a higher K value
could arise when the count information provided by the least similar retrieved crops is significantly
different from the true count.
Effect of the text description. The text description adds context to retrieved scenes, but its impact
on performance varies. Ablation studies in table 5 show that using all three keywords produces
similar results for SHA and QNRF datasets, indicating that additional context keywords do not
significantly influence performance. However, for the JHU dataset, the time of day keyword
improves performance, unlike the weather keyword, which can be omitted without affecting results.
The difference arises because JHU, a larger dataset, includes diverse scene illuminations, while
SHA and QNRF primarily feature bright scenes. Thus, the time of day keyword enhances context
for JHU by differentiating illumination levels, whereas it has little effect on the other datasets.
Few-shot performance. We analyze the few-shot performance of crowd counting with knowledge
retrieval. Here, we fine-tune the pre-trained image encoder for a fair comparison with weakly-
supervised TransCrowd (Liang et al., 2022a). The few shot performance (MAE) of ReGe-Count
is tabulated in table 6 for the JHU-Crowd++, ShanghaiTech, and UCF-QNRF datasets. Values
reported in table 6 are the average of five realizations for each training data percentage. ReGe-Count
delivers state-of-the-art counting results for weakly supervised methods surpassing TransCrowd
while operating at 90% of the train data.

6 CONCLUSION

ReGe-Count introduces a novel framework for transferring language
knowledge to enhance generalized crowd counting. It is the first to

Table 6: Few-shot and full training performance
with knowledge retrieval.

Method JHU SHA QNRF SHB

10%-Real 95.0 158.3 212.3 22.3
25%-Real 82.7 138.2 183.2 20.3
50%-Real 67.7 107.1 152.9 14.9
90%-Real 55.2 64.8 95.9 9.2
TransCrowd 56.8 66.1 97.2 9.3

apply knowledge retrieval to improve annotator-
free crowd-counting accuracy. Notably, ReGe-
Count achieves state-of-the-art performance in
annotator-free crowd counting and addresses the
high annotation costs associated with labeling
real crowd images. By effectively leveraging
large-scale, annotation-free simulated data, our
approach underscores the potential of knowledge-
enhanced models for crowd counting, paving the
way for future research at the intersection of vi-
sion and language models.
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APPENDIX

This appendix is organized as follows.

• In section A, we illustrate the simulated image embedding retrieval process, including the inter-
mediate processes.

• In section B, we provide results and explanations for additional ablation studies.

• In section C, examples of the retrieved simulated samples in the case of negative samples and
congested scenes.

• In section D, we compare the inference performance of the proposed method with other annotator-
free crowd counting methods.

• In section E, we provide details of the datasets and metrics we used.

• In section F, the computational efficiency of the image retrieval process is analyzed.

• In section G, the computational cost and inference performance against counting performance are
discussed.

• In section H, we provide a theoretical explanation for the improvement from the knowledge aug-
mentation.

A IMAGE RETRIEVAL PROCESS

Figure 7: Knowledge retrieval process

In this section, we elaborate on the knowledge retrieval process described in section 3.2 using il-
lustrations. In knowledge retrieval, we extract K image-text pairs for an input image Ii. First, we
get the image embeddings ei of Ii using the pre-trained image encoder (Ψ). Since ei is produced
from Ψ and Ψ is trained using real images and simulated images, we assume ei lies on the same
embeddings space as the image embeddings of the real and simulated images. This is demonstrated
in figure 7a where the gray color image embedding is in the same manifold as the red color real im-
age embeddings and blue color simulated image embeddings. Next, we perform the maximum inner
product search (MIPS) with the image embeddings of the real crowd image crops in the reference
database.
In figure 7b, we demonstrate the retrieval of the closest embedding. In MIPS, first, we compute the
distance between ei and real image embeddings under the vector inner product. Then, we find the
real image embedding closest to or the most similar to ei. Then, we perform MIPS between the
selected real image embedding and the simulated image embeddings. In figure 7c, we demonstrate
the retrieval of the closest simulated embedding.
Furthermore, in figure 8, we provide an illustration of the two-stage retrieval process with examples
for the 2-nearest neighbors. First, the input image embedding will perform MIPS to find the closest
embeddings from the real image dataset. Then, for each real image embedding (outlined in red),
MIPS will find the closest embeddings from the simulated image dataset. These simulated image
embeddings (outlined in blue) are passed to the KAM for knowledge augmentation.
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Figure 8: Two-stage retrieval with examples with 2-nearest neighbors. First, we find the nearest
real image embeddings (outlined in red). Then, for each real image embedding we find the nearest
simulated image embeddings (outlined in blue).

B ADDITIONAL ABLATION STUDIES

Detailed ablation on augmentations The crucial module of the pipeline is the Knowledge Augmen-
tation Module (KAM). In the KAM, we use three different embedding augmentations, as depicted
by the first three columns of table 4.
The performance gain by each augmentation type is provided for only vL

i in table 4. Therefore,
to understand which augmentation types improve the performance, we provide the counting per-
formance for each augmentation type and their combinations compared against the baseline per-
formance in the table 7. The most performance gain has come from the components vLi and vV V

i
compared to the baseline method. The two augmentations deliver text information and visual infor-
mation, respectively, but the cross-attention is taken between the image embeddings and retrieved
patch embeddings. However, the performance gain from vLV

i is marginal compared to the other two
augmentations where the cross-attention is taken between the image and retrieved text embeddings.

Table 7: Detailed ablation of different augmentations

Fusion type
K

MAE

vL
i vLV

i vV V
i JHU SHA QNRF

✗ ✗ ✗ - 170.2 143.1 223.6
✓ ✗ ✗ 32 148.6 123.6 215.4
✗ ✓ ✗ 32 152.8 128.3 219.8
✗ ✗ ✓ 32 145.3 125.8 216.5
✓ ✓ ✗ 32 149.3 122.3 221.7
✓ ✗ ✓ 32 142.8 118.8 215.7
✓ ✓ ✓ 32 142.3 118.4 214.9

Different retrieval processes. We consider the effect of not using real crowd images in the re-
trieval process and directly retrieving from the simulated dataset. However, the image encoder is
pre-trained with real crowd images in the mix. When directly retrieving from the simulated dataset,
we observed an MAE of 243.8 for JHU-Crowd++, which is poorer than the CrowdCLIP and CSS-
CCNN performances. This is because, even though the image encoder is trained to embed real and
simulated images in the same space, the training of the KAM and the decoder disregards the domain
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gap between real and simulated images.
Different amount of reference data. We evaluate the effect of the reference set size on the perfor-
mance for five cardinalities by randomly sampling 10%, 25%, 50%, 75%, and 80% image-text pairs
from GCC dataset. The ablation study recorded an average MAE of 224.2, 210.6, 174.0, 144.7, and
142.8, respectively, on JHU-Crowd++ for five trials. The performance was higher for larger refer-
ence set sizes. This is because in larger reference databases, for a given test image crop, a positive
simulated crop is closer than in smaller databases, providing more accurate information retrieval.

C QUALITATIVE RESULTS

Figure 9: Retrieved synthetic crops for a negative sample (top row) and congested sample (bottom
row).

We provide qualitative results to demonstrate the performance of the retrieval process in the proposed
method in figure 9. In the first row, we have a negative test image. Most of the retrieved test images
for the negative sample had zero crowd counts and had similar backgrounds. Nonetheless, some
retrieved patches had smaller counts (< 4) where the background was similar to the test image. In
the second row, we have a congested test image. The retrieved patches for the congested scene are of
similar crowd density patterns, even though most of the images do not fill up the entire image. This
validates the idea that the retriever searches for simulated images that resemble the crowd density
pattern of the test image, as first mentioned in section 5.2 with figure 4.

D INFERENCE SPEED

We present a comparison of inference speeds, as outlined in table 8. The runtime of our proposed
annotator-free method is significantly higher than other annotator-free methods, such as CrowdCLIP
and CSS-CCNN. CrowdCLIP gives an interval of FPS values as it uses progressive filtering for
crowd patches with people, whereas the proposed work only has one forward pass through the
image encoder. Then, CSS-CCNN utilizes a larger decoder to estimate the density map to predict
the count, whereas we only use a linear layer to estimate the count directly. Additionally, the use
of a vector database to retrieve samples improves inference time as the retrieval operation is simply
the vector inner product. Notably, fully supervised methods necessitate maintaining high-resolution
features to produce quality density maps. For instance, in CSRNet Li et al. (2018), features are
1/8 the size of the input, while in BL Ma et al. (2019), they are 1/16 the size, resulting in slower
inference speeds.

E DATASETS

JHU-Crowd++Sindagi et al. (2020) contains 2, 722 training images, 500 validation images, and
1, 600 testing images, collected from diverse scenarios. The total number of people in each image
ranges from 0 to 25, 791.
ShanghaiTechZhang et al. (2016) contains 1, 198 crowd images with 330, 165 annotations. The
images of the dataset are divided into two parts: Part A and Part B. In particular, Part A contains 300
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Table 8: The comparisons of Frames Per Second (FPS) between our method and other methods. The
results are conducted on an NVIDIA A6000 GPU
Method Annotated data Label Resolution FPS
CSRNetLi et al. (2018) Real density 1024× 768 18.4
BL Ma et al. (2019) Real density 1024× 768 21.3

CSS-CCNN Babu Sam et al. (2022) ✗ ✗ 1024× 768 37.4
CrowdCLIP Liang et al. (2023) Real count text 1024× 768 [24.0, 50.8]
Ours Synthetic count 1024× 768 42.8

training images and 182 testing images, and Part B consists of 400 training images and 316 testing
images.
UCF-QNRFIdrees et al. (2018) contains 1, 535 images captured from unconstrained crowd scenes
with about one million annotations. It has a count range of 49 to 12, 865, with an average count
of 815.4. Specifically, the training set consists of 1, 201 images and the testing set consists of 334
images.
NWPU-CrowdWang et al. (2020), a large-scale and challenging dataset, consists of 5, 109 images,
2, 133, 375 instances annotated elaborately. To be specific, the images are randomly split into three
parts, including training, validation, and testing sets, which contain 3, 109, 500, and 1, 500 images,
respectively.
GCCWang et al. (2019) dataset consists of 15, 212 images, with a resolution of 1080×1920, contain-
ing 7, 625, 843 persons. Compared with the existing datasets, GCC is a larger-scale crowd counting
dataset in terms of both the number of images and the number of persons.
Metrics we used for evaluate the counting performance were MAE and MSE as defined below:

MAE =

N∑
n=1

1

N
|cn − ĉn| and MSE =

√√√√ N∑
n=1

1

N
|cn − ĉn|2, (8)

where cn and ĉn are the groundtruth and predicted crowd count of the nth image out the the N
images tested.

F EFFICIENCY ANALYSIS

For the retrieval process, we use the naive maximum inner product search. This involves computing
the similarity between image embeddings and crop embeddings in the reference database and sorting
the similarity scores to find the closest neighbors.
Suppose the reference database is of size N , the embedding dimensionality is of size d, and we
need to find the nearest k neighbors. Then, the computational efficacy of the whole process is
O(N · d + N · log k). Accordingly, as the retrieval space scales, the time it takes for the retrieval
process will increase. However, for larger reference databases, using approximation methods such
as the k-d tree, the computational complexity can be reduced to O(logN) for smaller dimensional
sizes, but still, the time consumed will increase with the size of the reference database.

G COMPUTATIONAL COST AND COMPLEXITY

We provide a comparison for the inference speed in table 8 in supplementary material. However, we
will itemize the inference time and the computational complexity for the model with and without
the KAM, along with the accuracy. For the proposed method, the inference time and computational
complexity are influenced by three components: Image encoder and count decoder, knowledge re-
trieval process, and KAM. We tabulate the computational complexity in the following table.
The MAE performance for the JHU public dataset is given in the table 9. The baseline corresponds
to the network without the KAM and the minimum model latency without the proposed improve-
ments. The MIPS corresponds to the retrieval process with the inner product search to find the 16
nearest neighbors for a given image embedding. In table 9, GFLOPS measures the rate at which a
computing system can execute floating-point operations. This rate is influenced by the number of
retrieved data we feed into the KAM module. Which is why the GLOPS is higher than the baseline.
However, for a single retrieved image-text pair, the GLOPS is 4.368. As a fellow transformer-based



918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Table 9: Computational efficiency of the architecture

GFLOPS Time (ms) MAE

Baseline 70.564 8.55 170.2
MIPS - 3.51 -
KAM 151.196 18.32 142.3

model, crowd clip has a higher number of transformer modules compared to our architecture
since CrowdCLIP uses two ViT-B/16 for visual encoding in addition to the transformer-based text
encoder.

H THEORETICAL ANALYSIS

To explain the contribution of knowledge augmentation to improving zero-shot crowd-counting, we
use a probabilistic approach.
The goal is to predict the crowd-count ci for the target embedding ei. Using a probabilistic frame-
work, the prediction can be expressed as:

Psource(ci|ei) = Psource(ci|e
′

i),

where the augmented embedding is:

e
′

i = ei + vL
i + vLV

i + vV V
i .

Using Bayes’ rule, we can rewrite the probability as follows:

Psource(ci|e
′

i) ∝ P (e
′

i|ci)Psource(ci),

where P (e
′

i|ci) and P (ci) denote the likelihood of the augmented embedding given the count and
the prior probability of the count derived from the source distribution.
Then, the likelihood can be decomposed as

P (e
′

i|ci) ∝ P (ei|ci)
∏
n

P (vn
i |ci)

where vni is each individual augmentation type from the KAM. However, each individual augmen-
tation is computed from the KAM using the retrieved embeddings from the reference database.
Therefore, the likelihood can be updated as:

P (e
′

i|ci) ∝ P (ei|ci)
∏
n

K∏
k=1

P (rnik|ci)

where rnik denotes the retrieved embedding augmented with multi-head attention (MHA), and k is the
index of the retrieved embedding. Each vn

i thus encodes the aggregated likelihood information from
its corresponding patches, ensuring that eaug effectively aligns with the count ci as MHA behaves as
a projection of the query embedding to the key embedding. Consequently, the retrieved embeddings
vni encode domain-specific patterns, improving the likelihood estimation.
Without the retrieved embeddings, the likelihood distribution will only depend on ei, and as augmen-
tations are introduced, the likelihood distribution is influenced by the source domain information.
The influence of the source likelihood increases with the number of retrieved embeddings. In return,
the posterior distribution Psource(ci|e

′

i) becomes a sharper posterior distribution. As the posterior
distribution becomes sharper, the uncertainty involved with the prediction reduces, improving the
prediction accuracy.
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