
Bandit Social Learning under Myopic Behavior

Kiarash Banihashem
University of Maryland, College Park

kiarash@umd.edu

MohammadTaghi Hajiaghayi
University of Maryland, College Park

hajiagha@umd.edu

Suho Shin
University of Maryland, College Park

suhoshin@umd.edu

Aleksandrs Slivkins
Microsoft Research NYC

slivkins@microsoft.com

Abstract

We study social learning dynamics motivated by reviews on online platforms. The
agents collectively follow a simple multi-armed bandit protocol, but each agent
acts myopically, without regards to exploration. We allow a wide range of myopic
behaviors that are consistent with (parameterized) confidence intervals for the arms’
expected rewards. We derive stark exploration failures for any such behavior, and
provide matching positive results. As a special case, we obtain the first general
results on failure of the greedy algorithm in bandits, thus providing a theoretical
foundation for why bandit algorithms should explore.1

1 Introduction

Reviews and ratings are pervasive in many online platforms. A customer consults reviews/ratings, then
chooses a product and then (often) leaves feedback, which is aggregated by the platform and served
to future customers. Collectively, customers face a tradeoff between exploration and exploitation,
i.e., between acquiring new information while making potentially suboptimal decisions and making
optimal decisions using information currently available. However, individual customers tend to act
myopically and favor exploitation, without regards to exploration for the sake of the others. On a
high level, we ask whether/how the myopic behavior interferes with efficient exploration. We are
particularly interested in learning failures when only a few agents choose an optimal action.

We distill this issue down to its purest form. We posit that the customers make one decision each and
do not observe any personalized payoff-relevant information prior to their decision, whether public
or private. In particular, the customers believe they are similar to one another. They have only two
alternative products/experiences to choose from, a.k.a., arms, and no way to infer anything about one
arm from the other. The platform provides each customer with full history on the previous agents.2

Concretely, we posit Bandit Social Learning (BSL): a variant of social learning in which the customers
(henceforth, agents) arrive sequentially and follow a simple multi-armed bandit protocol. Each agent
observes full history, chooses an arm, and receives a reward: a Bernoulli random draw whose mean
is arm-specific and unknown. Initial knowledge (a dataset with some samples of each arm) may be
available to all agents. When all agents are governed by a centralized algorithm, this setting is known
as stochastic bandits, a standard and well-understood variant of multi-armed bandits.

1Early versions of our results on the greedy algorithm (Corollary 3.6 and Theorem 6.1) have been available
in a book chapter by A. Slivkins [54, Ch. 11]. The authors acknowledge Mark Sellke for proving Theorem 6.1
and suggesting a proof plan for a version of Corollary 3.6. The authors are grateful to Mark Sellke and Chara
Podimata for brief collaborations (with A. Slivkins) in the initial stages of this project.

2In practice, online platforms provide summaries such as the average score and the number of samples.
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Mean rewards Beliefs Behavior Result

fixed “frequentist" η-confident Thm. 3.1 (main),
confidence intervals Thm. 3.9 (small N0).

unbiased/Greedy Cor. 3.6
ηt-pessimistic Thm. 3.10

Bayesian (independent) Bayesian-unbiased Thm. 5.1(a)
η-Bayesian-confident Thm. 5.1(b)

Bayesian (correlated) Bayesian (and correct) Bayesian-unbiased Thm. 6.1

Table 1: Our negative results: learning failures.

We allow a wide range of myopic behaviors that are consistent with observations. Given an arm,
consider the confidence interval for its mean reward, parameterized by η ≥ 0: the sample average
plus/minus the “confidence term”,

√
η/#samples. 3 An η-confident agent evaluates each arm to an

index: some number within this arm’s confidence interval (and otherwise arbitrary), and chooses an
arm with a largest index. (Computational implementation of this process is irrelevant to our model.)
Crucially, the η and the agents’ behavior are given and cannot be influenced by the platform.

This model subsumes the “unbiased” behavior, when the index equals the sample average, as well
as various “behavioral biases” (see “related work” for citations). Most notably: “optimism” and
“pessimism”, when the index is, resp., larger or smaller than the sample average. (These can also be
interpreted as, resp., risk seeking and risk aversion.) The model also allows for probabilistic decisions
(via randomized indices), correlated behaviors (when samples from one arm affect the behavioral
bias on another), and recency bias (when one favors more recent observations). Further, an agent may
treat each arm differently, and different agents may exhibit different biases.

We target the regime when parameter η is constant w.r.t. the number of agents T . I.e., the agents’
population is characterized by a constant η. We are interested in the asymptotic behavior when T
increases. An extreme version of our model, with η ∼ log(T ), is only considered for intuition and
sanity checks. Interestingly, this version subsumes two well-known bandit algorithms: UCB1 [6] and
Thompson Sampling [57, 52], which achieve optimal regret bounds. These algorithms can be seen
as behaviors: resp., extreme optimism and probability matching [49, 59], a well-known randomized
behavior. More “moderate” versions of these behaviors are consistent with η-confidence as defined
above, and are subject to the learning failures described below.

Our results. We are interested in learning failures when all but a few agents choose the bad arm,
and how the failure probability scales with the η parameter. Our main result is that with η-confident
agents, the failure probability is at least e−O(η) (see Section 3). Consequently, regret is at least
Ω(T · e−O(η)) for any given problem instance, in contrast with the O(log T ) regret rate obtained
by optimal bandit algorithms. Further, the e−O(η) scaling is the best possible: indeed, regret for
optimistic agents is at most O

(
T · e−Ω(η) + η

)
for a given problem instance (Theorem 4.1). Note

that the negative result deteriorates as η increases, and becomes vacuous when η ∼ log T ; the upper
bound then essentially matches the optimal O(log T ) regret of the UCB algorithm [6]).

We refine these results in several directions. First, if all agents are “unbiased”, the failure probability
scales as the difference in expected reward between the two arms (Corollary 3.6). Second, if all
agents are pessimistic, then any level of pessimism, whether small or large or different across agents,
leads to the similar failure probability as in the unbiased case (Theorem 3.10). Third, a small fraction
of optimists goes a long way! That is, if all agents are η-confident and even a q-fraction of them are
η-optimistic, then we obtain regret O

(
T · e−Ω(η) + η/q

)
regardless of the other agents.4

Our results extend to Bayesian agents who have independent priors across the arms and act according
to their posteriors. Such agents are consistent with our main model of η-confident agents, and
therefore are subject to the same negative results (Section 5). Further, we focus on Bayesian-unbiased
agents and allow arbitrary correlated Bayesian beliefs (when the agents can make inferences about
one arm from the observations on the other). We derive a general result on learning failures, assuming
that the mean rewards are actually drawn according to the beliefs (Section 6).

3Then the confidence interval contains the (true) mean reward with probability at least 1− 2e−2η .
4A similar result holds even the agents hold different levels of optimism, see Theorem 4.5.
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Mean rewards Beliefs Behavior Result

fixed “frequentist" η-optimistic Thm. 4.1
confidence ηt-optimistic, ηt ∈ [η, ηmax] Thm. 4.4

intervals small fraction of optimists Thm. 4.5

Table 2: Our positive results: upper bounds on regret.

Our results are summarized in Tables 1 and 2.

Implications for multi-armed bandits. The negative results for unbiased agents can be seen as
general results on the failure of the greedy algorithm: a bandit algorithm that always exploits. This
is a theoretical foundation for why bandit algorithms should explore – and indeed why one should
design them. We are not aware of any general results of this nature, whether published or known
previously as "folklore", which is quite surprising given the enormous literature on multi-armed
bandits. Therefore, we believe our results fill an important gap in the literature.

How surprising are these results? It has been folklore knowledge for several decades that the greedy
algorithm is inefficient in some simple special cases, and folklore belief that this should hold much
more generally. However, recent results reveal a more complex picture: the greedy algorithm fails
under some strong assumptions, but works well under some other strong assumptions (see Related
Work). Thus, it has arguably became less clear which assumptions would be needed for negative
results and what would be the “shape" and probability of learning failures.

Further, our results on η-confident agents explain why UCB1 algorithm requires extreme optimism,
why any algorithm based on narrow (constant-η) confidence intervals is doomed to fail, and also why
“pessimism under uncertainty" is not a productive approach for exploration.

Novelty and significance. BSL was not well-understood previously even with unbiased agents, as
discussed above, let alone for more permissive behavioral models. It was very unclear a priori how
to analyze learning failures and how strong would be the guarantees, in terms of the generality of
agents’ behaviors, the failure events/probabilities, and the technical assumptions.

On a technical level, our proofs have very little to do with standard lower-bound analyses in bandits
stemming from [43, 7]. These analysis apply any algorithm and prove “sublinear” lower bounds
on regret, such as Ω(log T ) for a given problem instance and Ω(

√
T ) in the worst case. Their main

technical tool is KL-divergence analysis showing that no algorithm can distinguish between a given
tuple of “similar” problem instances. In contrast, we prove linear lower bounds on regret, our results
apply to a particular family of behaviors/algorithms, and we never consider a tuple of similar problem
instances. Instead, we use anti-concentration and martingale tools to argue that the best arm is
never played (or played only a few times), with some probability. The result on correlated beliefs in
Section 6 has a rather short but “conceptual” proof which we believe is well-suited for a textbook.

While our positive results in Section 4 are restricted to “optimistic” agents, we do not assert that
such agents are necessarily typical. The primary point here is that our results on learning failures
are essentially tight. That said, “optimism” is a well-documented behavioral bias (e.g., see [50] and
references therein). So, a small fraction of optimists (leveraged in Theorem 4.5) is not unrealistic.

Our proofs are more involved compared to the standard analysis of the UCB1 algorithm. This is
because we cannot make the η parameter as large as needed to ensure that the complements of certain
“clean events” can be ignored. Instead, we need to define and analyze these “clean events” in a more
careful way. These difficulties are compounded in Theorem 4.5, our most general result. As far as the
statements are concerned, the basic result in Theorem 4.1 is perhaps what one would expect to hold,
whereas the extensions in Theorem 4.4 and Theorem 4.5 are more surprising.

Framing. We target the scenario in social learning when both actions and rewards are observable in
the future, and the agents do not receive any other payoff-relevant signals. As in much of algorithmic
game theory, we discuss the influence of self-interested behavior on the overall welfare of the system.
We consider how such behaviour can cause “learning failures”, which is a typical framing in the
literature on social learning. From the perspective of multi-armed bandits, we investigate the failures
of the greedy algorithm, and more generally any algorithm that operates on narrow confidence
intervals. We do not attempt to design new algorithms, as a version of UCB1 is proved optimal.
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Map of the paper. Section 2 defines our model. Section 3 derives the learning failures. Section 4
provides positive results for optimistic agents. Section 5 and Section 6 handle agents with Bayesian
beliefs. Most proofs are moved to the supplement.

Related work. A vast literature on social learning studies agents that learn over time in a shared
environment. A prominent topic is learning failures such as ours. Models vary across several
dimensions: e.g., the information acquired/transmitted, the communication network, agents’ life-span
and decision rules, etc. All models from prior work are very different from ours. In the supplement,
we separate our model from several most relevant ones: “sequential social learning” [27], “strategic
experimentation” [33], networked myopic learners [8, 46], and misspecified beliefs [31, 15, 25, 44].

Positive results for the greedy bandit algorithm [37, 11, 51] focus on contextual bandits, an extension
of stochastic bandits where a payoff-relevant signal (context) is available before each round. Equiva-
lently, each agent in BSL receives such signal along with the history (incl. all previous signals). Very
strong assumptions are needed: linearity of rewards and diversity of contexts. A similar result holds
for BSL with private signals, under different (and also very strong) assumptions on structure and
diversity [1]. In all this work, agents’ diversity substitutes for exploration, and structural assumptions
allow aggregation across agents. Moreover, the greedy algorithm obtains o(T ) regret in various
scenarios with a very large number of near-optimal arms [13, 35], e.g., in Bayesian bandits with
K �

√
T arms and independent uniform priors. We focus on a more basic model, with only two

arms and no contexts, where all these channels are ruled out.

Learning failures for the greedy algorithm are derived for bandit problems with 1-dimensional action
spaces under (strong) structural assumptions: e.g., dynamic pricing with linear demands [30, 22] and
dynamic control in a (generalized) linear model [42, 40]. In all these results, the failure probability is
only proved positive, but not otherwise characterized.

Incentivized exploration takes a mechanism design perspective on BSL, whereby the platform strives
to incentivize individual agents to explore for the sake of the common good. In most of this work,
starting from [41, 19], the platform controls the information flow, e.g., can withhold history and
instead issue recommendations, and uses this information asymmetry to create incentives; see [55],
[54, Ch. 11] for surveys.5 In particular, [48, 34, 53] target stochastic bandits as the underlying
learning problem, same as we do. In [34], the platform constructs a (very) particular communication
network for the agents, and then the agents engage in BSL on this network.

Non-Bayesian models of behavior are prominent in social learning, starting from DeGroot [21]:
agents use variants of statistical inference and/or naive rules-of-thumb to infer the state of the world.
In particular, our model of η-confident agents is essentially a special case of “case-based decision
theory” [26]. Well-documented behavioral biases allowed by our model include: optimism and
pessimism (e.g., [50] and [18, 12], resp., and references therein), risk aversion/risk seeking [36, 10],
recency bias (e.g., [24] and references therein), randomized decisions (with theory tracing back to
Luce [47]), and probability matching more specifically [49, 59].

Our perspective of multi-armed bandits is very standard in machine learning theory: we consider
asymptotic regret rates without time-discounting. The vast literature on regret-minimizing bandits is
summarized in books [17, 54, 45]. Stochastic bandits is a standard, basic version with i.i.d. rewards
and no auxiliary structure. Most relevant are the UCB1 algorithm [6], Thompson Sampling [57, 52]
(particularly the “frequentist” analyses thereof [2, 4, 38]), and the lower-bound results [43, 7].

2 Our model and preliminaries

Our model, called Bandit Social Learning, is defined as follows. There are T rounds, where T ∈ N
is the time horizon, and two arms (i.e., alternative actions). We use [T ] and [2] to denote the set of
rounds and arms, respectively.6 In each round t ∈ [T ], a new agent arrives, observes history histt
(defined below), chooses an arm at ∈ [2], receives reward rt ∈ [0, 1] for this arm, and leaves forever.
When a given arm a ∈ [2] is chosen, its reward is drawn independently from Bernoulli distribution

5Alternatively, the agents observe full history, but the platform uses payments to create incentives [23, 29, 20].
6Throughout, we denote [n] = { 1, 2 , . . . , n }, for any n ∈ N.
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with mean µa ∈ [0, 1]. 7 The mean reward is fixed over time, but not known to the agents. Some
initial data is available to all agents, namely N0 ≥ 1 samples of each arm a ∈ [2]. We denote them
r0
a,i ∈ [0, 1], i ∈ [N0]. The history in round t consists of both the initial data and the data generated

by the previous agents. Formally, it is a tuple of arm-reward pairs,

histt :=
(

(a, r0
a,i) : a ∈ [2], i ∈ [N0]; (as, rs) : s ∈ [t− 1]

)
.

We summarize the protocol for Bandit Social Learning as Protocol 1.

Protocol 1: Bandit Social Learning

Problem instance: two arms a ∈ [2] with (fixed, but unknown) mean rewards µ1, µ2 ∈ [0, 1] ;
Initialization: hist← {N0 samples of each arm };
for each round t = 1, 2, . . . , T do

agent t arrives, observes hist and chooses an arm at ∈ [2] ;
reward rt ∈ [ 0, 1 ] is drawn from Bernoulli distribution with mean µat ;
new datapoint (at, rt) is added to hist

Remark 2.1. The initial data-points represent reports created outside our model, e.g., by ghost
shoppers or influencers, and available before the products enter the market. One could interpret them
as a simple “frequentist” representation for the initial beliefs of the agents, with N0 as the beliefs’
“strength”. We posit N0 ≥ 1 to ensure that the arms’ average rewards are always well-defined.

If the agents were controlled by an algorithm, this protocol would correspond to stochastic bandits
with two arms, the most basic version of multi-armed bandits. A standard performance measure in
multi-armed bandits (and online machine learning more generally) is regret, defined as

Regret(T ) := µ∗ · T − E
[∑

t∈[T ] µat

]
, (2.1)

where µ∗ = max(µ1, µ2) is the maximal expected reward of an arm.

Each agent t chooses its arm at myopically. Each agent is endowed with some (possibly randomized)
mapping from histories to arms, and chooses an arm accordingly. This mapping, called behavioral
type, encapsulates how the agent resolves uncertainty on the rewards. More concretely, each agent
maps the observed history histt to an index Inda,t ∈ R for each arm a ∈ [2], and chooses an arm
with a largest index. The ties are broken independently and uniformly at random.

We allow for a range of myopic behaviors, whereby each index can take an arbitrary value in the
(parameterized) confidence interval for the corresponding arm. Formally, fix arm a ∈ [2] and round
t ∈ [T ]. Let na,t denote the number of times this arm has been chosen in the history histt (including
the initial data), and let µ̂a,t denote the corresponding average reward. Given these samples, standard
(frequentist, truncated) upper and lower confidence bounds for the arm’s mean reward µa (UCB and
LCB, for short) are defined as follows:

UCB
η
a,t := min

{
1, µ̂a,t +

√
η/na,t

}
and LCB

η
a,t := max

{
0, µ̂a,t −

√
η/na,t

}
, (2.2)

where η ≥ 0 is a parameter. The interval
[
LCB

η
a,t, UCB

η
a,t

]
will be referred to as η-confidence interval.

Standard concentration inequalities imply that µa is contained in this interval with probability at least
1− 2 e−2η (where the probability is over the random rewards, for any fixed value of µa). We allow
the index to take an arbitrary value in this interval:

Inda,t ∈
[
LCB

η
a,t, UCB

η
a,t

]
, for each arm a ∈ [2]. (2.3)

We refer to such agents as η-confident; η > 0 will be a crucial parameter throughout.

On special cases. Our model accommodates a number of behavioural biases. Most notably: unbiased
agents, who set Inda,t = µ̂a,t, η-optimistic agents, who set Inda,t = UCB

η
a,t, and η- pessimistic

agents who set Inda,t = LCB
η
a,t. Unbiased agents formally correspond to the greedy algorithm,

whereas extreme optimism, i.e., η-optimism with η ∼ log(T ), corresponds to UCB1 algorithm [6].

7Our results on upper bounds (Section 4) and Bayesian learning failures (Section 6) allow each arm to have
an arbitrary reward distribution on [0, 1]. We omit further mention of this to simplify presentation.
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Our model also allows a version of Thompson Sampling in which the posterior samples are truncated
to the η-confidence interval. 8 More generally, we allow Bayesian agents that preprocess observations
to a Bayesian posterior, and use the latter to define their indices. See the supplement for more details.

Preliminaries. When µ1, µ2 are fixed (not drawn from a prior), we posit µ1 > µ2, i.e., arm 1 is the
good arm, and arm 2 is the bad arm. Our guarantees depend on quantity ∆ := µ1 − µ2, called the
gap (between the two arms). It is a very standard quantity for regret bounds in multi-armed bandits.

We use the big-O notation to hide constant factors. Specifically, O(X) and Ω(X) mean, resp., “at
most c0 ·X” and “at least c0 ·X” for some absolute constant c0 > 0 that is not specified in the paper.
When and if c0 depends on some other absolute constant c that we specify explicitly, we point this
out in words and/or by writing, resp., Oc(X) and Ωc(X). As usual, Θ(X) is a shorthand for “both
O(X) and Ω(X)”, and writing Θc(X) emphasizes the dependence on c.

Algorithms UCB1 and Thompson Sampling achieve regret

Regret(T ) ≤ O( min( 1/∆,
√
T ) · log T ). (2.4)

This regret rate is essentially optimal among all bandit algorithms: it is optimal up to constant factors
for fixed ∆ > 0, and up to O(log T ) factors for fixed T (see “related work” for citations).

A key property of a reasonable bandit algorithm is that Regret(T )/T → 0; this property is also called
no-regret. Conversely, algorithms with Regret(T ) ≥ Ω(T ) are considered very inefficient.

3 Learning failures

We are interested in learning failures when all but a few agents choose the bad arm. More precisely,
we define the n-sampling failure as an event that all but at most n agents choose the bad arm.

We make two technical assumptions:
mean rewards satisfy c < µ2 < µ1 < 1− c for some absolute constant c ∈ (0, 1/2), (3.1)

the number of initial samples satisfies N0 ≥ 64 η/c2 + 1/c. (3.2)

The meaning of (3.1) is that it rules out degenerate behaviors when mean rewards are close to the
known upper/lower bounds. The big-O notation hides the dependence on the absolute constant c,
when and if explicitly stated so. Assumption (3.2) ensures that the η-confidence interval is a proper
subset of [0, 1] for all agents; we sidestep this assumption later in Theorem 3.9.

Our main result allows arbitrary η-confident agents and asserts that 0-sampling failures happen with
probability at least pfail ∼ e−O(η). This is a stark failure when η is a constant relative to T .
Theorem 3.1 (η-confident agents). Suppose all agents are η-confident, for some fixed η ≥ 0. Make
assumptions (3.1) and (3.2). Then the 0-sampling failure occurs with probability at least 9

pfail = Ωc( ∆ +
√
η/N0 ) · e−Oc( η + N0∆2 ), where ∆ = µ1 − µ2. (3.3)

Consequently, Regret(T ) ≥ ∆ · pfail · T .

We emphasize generality: the agents can exhibit any behaviors consistent with η-confidence, possibly
different for different agents and different arms. From multi-armed bandit perspective, the theorem
implies that bandit algorithms consistent with η-confidence cannot have regret sublinear in T .

The guarantee in Theorem 3.1 deteriorates as the parameter η increases, and becomes vacuous when
η ∼ log(T ). This makes sense, as this regime of η is used in UCB1 algorithm.
Discussion 3.2. Assumption (3.2) is innocuous from the social learning perspective: essentially, the
agents hold initial beliefs grounded in data and these beliefs are not completely uninformed. From
the bandit perspective, this assumption is more substantive, as an algorithm can always choose to
discard data. In any case, we remove this assumption in Theorem 3.9 below.
Remark 3.3. A weaker version of (3.2), namely N0 ≥ η, is necessary to guarantee an n-sampling
failure for any η-confident agents. Indeed, suppose all agents are η-optimistic for arm 1 (the good
arm), and η-pessimistic for arm 2 (the bad arm). If N0 < η, then the index for arm 2 is 0 after the
initial samples, whereas the index of arm 1 is always positive. Then all agents choose arm 1.

8For η ∼ log T , this coincides with Thompson Sampling with very high probability.
9Throughout the paper, we use the notation Oc to hide the dependence on the absloute constant c.
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Next, we spell out two corollaries which help elucidate the main result.
Corollary 3.4. If the gap is sufficiently small, ∆ < O

(
1/
√
N0

)
, then Theorem 3.1 holds with

pfail = Ωc( ∆ +
√
η/N0 ) · e−Oc(η). (3.4)

Remark 3.5. The assumption in Corollary 3.4 is quite mild in light of the fact that when ∆ >

Ω
(√

log(T )/N0

)
, the initial samples suffice to determine the best arm with high probability.

Corollary 3.6. If all agents are unbiased, then Theorem 3.1 holds with η = 0 and

pfail = Ωc ( ∆ ) · e−Oc(N0 ∆2 ) (3.5)

= Ωc ( ∆ ) if ∆ < O( 1/
√
N0 ).

Remark 3.7. A trivial failure result for unbiased agents relies on the event E that all initial samples
of arm 1 (i.e., the good arm) are realized as 0. This would indeed imply a 0-sampling failure (as
long as at least one initial sample of arm 1 is realized to 1), but the event E happens with probability
exponential in N0, the number of initial samples. In contrast, in our result pfail only depends on N0

through the assumption that ∆ < O
(

1/
√
N0

)
.

Discussion 3.8. Corollary 3.6 can be seen as a general result on the failure of the greedy algorithm.
This is the first such result with a non-trivial dependence on N0, to the best of our knowledge.

We can remove assumption (3.2) and allow a small N0 if the behavioral type for each agent t also
satisfies natural (and very mild) properties of symmetry and monotonicity:

(P1) (symmetry) if all rewards in histt are 0, the two arms are treated symmetrically;10

(P2) (monotonicity) Fix any arm a ∈ [2], any t-round history H in which all rewards are 0 for
both arms, and any other t-round history H ′ that contains the same number of samples of
arm a such that all these samples have reward 1. Then

Pr [ at = a | histt = H ′ ] ≥ Pr [ at = a | histt = H ]. (3.6)

Note that both properties would still be natural and mild even without the “all rewards are zero”
clause. The resulting guarantee on the failure probability is somewhat cleaner.
Theorem 3.9 (small N0). Fix η ≥ 0, assume Eq. (3.1), and let N0 ∈ [1, N∗], where N∗ :=
d64η/c2 + 1/ce. Suppose each agent t is η-confident and satisfies properties (P1) and (P2). Then an
n-sampling failure, n = N∗ −N0, occurs with probability at least

pfail = Ωc( c
2N∗

) = Ωc( e
−Oc(η) ). (3.7)

Consequently, Regret(T ) ≥ ∆ · pfail · (T − n).

If all agents are pessimistic, we find that any levels of pessimism, whether small or large or different
across agents, lead to a 0-sampling failure with probability Ωc(∆), matching Corollary 3.6 for the
unbiased behavior. This happens in the (very reasonable) regime when

Ωc(η) < N0 < O(1/∆2). (3.8)

Theorem 3.10 (pessimistic agents). Suppose each agent t ∈ [T ] is ηt-pessimistic, for some ηt ≥ 0.
Suppose assumptions (3.1) and (3.2) hold for η = maxt∈[T ] ηt. Then the 0-sampling failure occurs

with probability lower-bounded by Eq. (3.5). Consequently, Regret(T ) ≥ Ωc(∆
2) · e−Oc(N0 ∆2 ).

We allow extremely pessimistic agents (ηt ∼ log T ), and the pessimism levels ηt can vary across
agents t. While the relevant parameter is η = maxt∈[T ] ηt, the failure probability in (3.5) does not
contain the e−η term. In particular, pfail = Ω(∆) when N0 < O(1/∆2). However, the dependence
on η “creeps in” through assumption (3.2), i.e., that N0 > Ωc(η).

Proof Overview. We first show that the average reward of arm 1 (the good arm), is upper bounded by
some threshold q1. This is only guaranteed with some probability and only when this arm is sampled
exactly N times, for a particular N ≥ N0. Next, we lower bound the average reward of arm 2 (the
bad arm): we show that with some probability it is always above some threshold q2 ∈ (q1, µ2). Focus

10That is, the behavioral type stays the same if the arms’ labels are switched.
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on the round t∗ when the good arm is sampled for the N -th time (if this ever happens). If both of
these events hold, from round t∗ onwards the bad arm will have a larger average reward by a constant
margin q2 − q1. Consequently, as we prove, the bad arm has a larger index, and therefore gets chosen.

The details of this argument differ from one theorem to another. For Theorem 3.1, it suffices to set
the thresholds q2, q1 such that q2 − q1 = Θ(

√
η/N0). For Theorem 3.10, we use a more involved

argument: since the LCB of an arm increases when it is played, playing this arm only strengthens the
preference of pessimistic agents for this arm. We are therefore less constrained in the choice of q1, q2

and we can prove that a learning failure occurs whenever q1 < q2.11 In both proofs, we also require
q1 and q2 to be close to µ1 and µ2, resp., so as to lower-bound the probability of the two desirable
events. For Theorem 3.9, the case of small N0, our analysis becomes more subtle. We can (in some
sense) simplify the two events defined above, but we need to introduce a third event: if arm 1 is
chosen by at least n agents (for a suitably defined n), then arm 2 is chosen by n agents before arm 1
is. The crux is a “deterministic" argument which derives a failure when all three events hold jointly.

To formalize, we represent realized rewards of each arm a as written out in advance on a “tape”,
where each entry is an independent Bernoulli draw with mean µa.12 The i-th entry is returned as
reward when and if arm a is chosen for the i-th time. (We start counting from the initial samples,
which comprise entries i ∈ [N0].) We analyze each arm separately (and then invoke independence).

We use some tools from probability: a sharp anti-concentration inequality for arm 1 and a martingale
argument for arm 2. Let (Xi)i∈N be a sequence of i.i.d. Bernoulli random variables with mean
p ∈ [c, 1− c], for some absolute constant c ∈ (0, 1/2). The anti-concentration is as follows:

(∀n ≥ 1/c, q ∈ (c/8, p) ) Pr
[

1
n

∑n
i=1 Xi ≤ q

]
≥ Ω( e−O(n(p−q)2 ) ), (3.9)

The martingale argument leads to this:

∀q ∈ [0, p) Pr
[
∀n ≥ 1 : 1

n

∑n
i=1 Xi ≥ q

]
≥ Ωc(p− q). (3.10)

We each tool to the tape for the respective arm, and lower bound the probability of the desirable event.

While the novelty is mainly in how we use these tools, the tools themselves are not very standard.
Eq. (C.1) follows from the anti-concentration inequality in [61] and a reverse Pinsker inequality in
[28]. More standard anti-concentration results via Stirling’s approximation lead to an additional
factor of 1/

√
n on the right-hand side of (C.1). For Eq. (C.2), we introduce an exponential martingale

and relate the event in Eq. (C.2) to a deviation of this martingale. We then use Ville’s inequality (a
version of Doob’s martingale inequality) to bound the probability that this deviation occurs.

4 Upper bounds for optimistic agents

We upper-bound regret for optimistic agents: we match the exponential-in-η scaling from Corol-
lary 3.4 and then extend this result to different behavioral types. On a technical level, we prove
three regret bounds of the same shape (4.1), but with a different Φ term. (The unified presentation
emphasizes this similarity.) Throughout, ∆ = µ1 − µ2 denotes the gap between the two arms.
Theorem 4.1. Suppose all agents are η-optimistic, for some fixed η > 0. Then, letting Φ = η,

Regret(T ) ≤ O
(
T · e−Ω(η) ·∆(1 + log 1/∆) + Φ/∆

)
. (4.1)

Discussion 4.2. The main take-away is that the exponential-in-η scaling from Corollary 3.4 is tight
for η-optimistic agents, and therefore the best possible lower bound for η-confident agents. This
result holds for any given N0, the number of initial samples.13 Our guarantee remains optimal in the
“extreme optimism” regime when η ∼ log(T ), matching the optimal regret rate, O ( log(T )/∆ ).

What if different agents can hold different behavioral types? First, let us allow agents to have varying
amounts of optimism, possibly different across arms and possibly randomized.
Definition 4.3. Fix ηmax ≥ η > 0. An agent t ∈ [T ] is called [ η, ηmax ]-optimistic if its index Inda,t
lies in the interval

[
UCB

η
a,t, UCB

ηmax

a,t

]
, for each arm a ∈ [2].

11We also require q1 >
√
η/N0 to ensure that the confidence lower bounds are not truncated to zero.

12This is an equivalent (and well-known) representation of rewards in stochastic bandits.
13For ease of exposition, we do not track the improvements in regret when N0 becomes larger.
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We show that the guarantee in Theorem 4.1 is robust to varying the optimism level “upwards”.
Theorem 4.4 (robustness). Fix ηmax ≥ η > 0. Suppose all agents are [ η, ηmax ]-optimistic. Then
regret bound (4.1) holds with Φ = ηmax.

Note that the upper bound ηmax has only a mild influence on the regret bound in Theorem 4.4.

Our most general result only requires a small fraction of agents to be optimistic, whereas all agents
are only required to be ηmax-confident (allowing all behaviors consistent with that).
Theorem 4.5 (recurring optimism). Fix ηmax ≥ η > 0. Suppose all agents are ηmax-confident.
Further, suppose each agent’s behavioral type is chosen independently at random so that the agent is
[ η, ηmax ]-optimistic with probability at least q > 0. Then regret bound (4.1) holds with Φ = ηmax/q.

Thus, with even a small fraction of optimists, q > 1
∆·o(T ) , the behavioral type of less optimistic

agents does not have much impact on regret. In particular, it does not hurt much if they become very
pessimistic. A small fraction of optimists goes a long way! Further, a small-but-constant fraction of
extreme optimists, i.e., η, ηmax ∼ log(T ) in Theorem 4.5, yields optimal regret rate, log(T )/∆.

5 Learning failures for Bayesian agents

In this section, we posit that agents are endowed with Bayesian beliefs. The basic version is that
all agents believe that the mean reward of each arm is initially drawn from a uniform distribution
on [0, 1]. (We emphasize that the mean rewards are fixed and not actually drawn according to these
beliefs.) Each agent t computes a posterior Pa,t for µa given the history histt, for each arm a ∈ [a],
and maps this posterior to the index Inda,t for this arm.14

The basic behavior is that Inda,t is the posterior mean reward, E [Pa,t ]. We call such agents
Bayes-unbiased. Further, we consider a Bayesian version of η-confident agents, defined by

Inda,t ∈ [Qa,t(ζ), Qa,t(1− ζ) ] for each arm a ∈ [2], (5.1)

where Qa,t(·) denotes the quantile function of the posterior Pa,t and ζ ∈ (0, 1/2) is a fixed parameter
(analogous to η elsewhere). The interval in Eq. (5.1) is a Bayesian version of η-confidence intervals.
Agents t that satisfy Eq. (5.1) are called ζ-Bayes-confident.

We allow more general beliefs given by independent Beta distributions. For each arm a ∈ [2],
all agents believe that the mean reward µa is initially drawn as an independent sample from Beta
distribution with parameters αa, βa ∈ N. Our results are driven by parameterM = maxa∈[2] αa+βa.
We refer to such beliefs as Beta-beliefs with strength M . The intuition is that the prior on each arm a
can be interpreted as being “based on” αa + βa − 2 samples from this arm.15

Our technical contribution here is that Bayes-unbiased (resp., ζ-Bayes-confident) agents are η-
confident for a suitably large η, and therefore subject to the learning failure in Theorem 3.1.
Theorem 5.1. Consider a Bayesian agent that holds Beta-beliefs with strength M ≥ 1.

(a) If the agent is Bayes-unbiased, then it is η-confident for some η = O(M/
√
N0).

(b) If the agent is ζ-Bayes-confident, then it is η-confident for η = O
(
M/
√
N0 + ln(1/ζ)

)
.

Discussion 5.2. Beta-beliefs may be completely unrelated to the actual mean rewards. If ζ and M
are constants relative to T , the resulting η is constant, too. Our guarantee is stronger if the beliefs are
weak (i.e., M is small) or are “dominated” by the initial samples, in the sense that N0 > Ω(M2).
Discussion 5.3. ζ-Bayes-confident agents subsume Bayesian version of optimism and pessimism,
where the index Inda,t is defined as, resp., Qa,t(1 − ζ) and Qa,t(ζ), as well as all the Bayesian
versions of all other behaviorial biases discussed previously as special cases of η-confidence.

6 Bayesian model with arbitrary priors

We consider Bayesian-unbiased agents in a “fully Bayesian” model such that the mean rewards are
actually drawn from a prior. We are interested in Bayesian probability and Bayesian regret, i.e., resp.,

14Note that the Bayesian update for agent t does not depend on the beliefs of the previous agents.
15More precisely, any Beta distribution with integer parameters (α, β) can be seen as a Bayesian posterior

obtained by updating a uniform prior on [0, 1] with α+ β − 2 data points.
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probability and regret in expectation over the prior. We focus on learning failures when the agents
never choose an arm with the largest prior mean reward (as opposed to an arm with the largest realized
mean reward, which is not necessarily the same arm). We do not explicitly allow initial samples
(i.e., we posit N0 = 0 here), because they are implicitly included in the prior.

Compared to Section 5, the benefit is that we allow arbitrary priors, possibly correlated across the
two arms. Further, our guarantee does not depend on the prior, other than through the prior gap
E[µ1 − µ2], and does not contain any hidden constants. On the other hand, the guarantees here are
only in expectation over the prior, whereas the ones in Section 5 hold for fixed µ1, µ2. Also, our
result here is restricted to Bayesian-unbiased agents.
Theorem 6.1. Suppose the pair (µ1, µ2) is initially drawn from some Bayesian prior P such that
E[µ1] > E[µ2]. Assume that all agents are Bayesian-unbiased, with beliefs given by P . Then with
Bayesian probability at least E[µ1 − µ2], the agents never choose arm 2.

Proof. W.l.o.g., assume that agents break ties in favor of arm 2. In each round t, the key quantity is
Zt = E[µ1 − µ2 | histt]. Indeed, arm 2 is chosen if and only if Zt ≤ 0. Let τ be the first round
when arm 2 is chosen, or T + 1 if this never happens. We use martingale techniques to prove that

E[Zτ ] = E[µ1 − µ2]. (6.1)

We use the optional stopping theorem (OST). We observe that τ is a stopping time relative to
H = ( histt : t ∈ [T + 1] ), and (Zt : t ∈ [T + 1] ) is a martingale relative to H. 16 OST asserts
that E[Zτ ] = E[Z1] for any martingale Zt and any bounded stopping time τ . Eq. (6.1) follows
because E[Z1] = E[µ1 − µ2]. On the other hand, by Bayes’ theorem it holds that

E[Zτ ] = Pr [ τ ≤ T ]E[Zτ | τ ≤ T ] + Pr [ τ > T ]E[Zτ | τ > T ] (6.2)

Recall that τ ≤ T implies that arm 2 is chosen in round τ , which in turn implies that Zτ ≤ 0. It
follows that E[Zτ | τ ≤ T ] ≤ 0. Plugging this into Eq. (6.2), we find that

E[µ1 − µ2] = E[Zτ ] ≤ Pr [ τ > T ] = Pr [ arm 2 never chosen ].

As a corollary, we derive a 0-sampling failure, leading to Ω(T ) Bayesian regret. Specifically, the
agents start out playing arm 1 (because it has a higher prior mean reward), and never try arm 2 when
it is in fact the best arm. This happens whenever the prior is independent across arms and has a
positive density on the entire [0, 1] interval (see the supplement for the exact statement). Note that it
is a (much) more general family of priors compared to independent Beta-priors allowed in Section 5.

7 Conclusions and open questions

We examine the dynamics of social learning in a multi-armed bandit scenario, where agents sequen-
tially choose arms and receive rewards, and observe the full history of previous agents. For a range of
agents’ myopic behavior, we investigate how they impact exploration, and provide tight upper and
lower bounds on the learning failure probabilities and regret rates. In particular, we obtain the first
general results on the failure of the greedy algorithm in bandits.

With our results as a “departure point”, one could study BSL in more complex bandit models with
many arms and/or some known structure of rewards that the agents’ myopic behaviour would account
for.17 The greedy algorithm fails for some structures (e.g., our current model) and works well for
some others (e.g., for linear contextual bandits with smoothed contexts [37, 11, 51], or when all arms
have the same rewards). The whole world is in between these two extremes. It is not at all clear
which structures would cause learning failures and which would enable learning, and which structures
would be amenable to analysis, one way or another.
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A Related Work on Social Learning

A vast literature on social learning studies agents that learn over time in a shared environment. A
prominent topic is the presence or absence of learning failures such as ours. Models vary across
several dimensions, such as: which information is acquired or transmitted, what is the communication
network, whether agents are long-lived or only act once, how they choose their actions, etc. Below
we discuss several lines of work that are most relevant.

In “sequential social learning”, starting from [9, 60, 14, 56], agents observe private signals, but only
the chosen actions are observable in the future; see Golub and Sadler [27] for a survey. The social
planner (who chooses agents’ actions given access to the knowledge of all previous agents) only
needs to exploit, i.e., choose the best action given the previous agents’ signals, whereas in our model
it also needs to explore. Learning failures are (also) of primary interest, but they occur for an entirely
different reason: restricted information flow, i.e., the fact that the private signals are not observable in
the future.

“Strategic experimentation”, starting from Bolton and Harris [16] and Keller et al. [39], studies
long-lived learning agents that observe both actions and rewards of one another; see Hörner and
Skrzypacz [33] for a survey. Here, the social planner also solves a version of multi-armed bandits,
albeit a very different one (with time-discounting, “safe” arm that is completely known, and “risky”
arm that follows a stochastic process). The main difference is that the agents engage in a complex
repeated game where they explore but prefer to free-ride on exploration by others.

Bala and Goyal [8] and Lazer and Friedman [46] consider a network of myopic learners, all faced with
the same bandit problem and observing each other’s actions and rewards. The interaction protocol
is very different from ours: agents are long-lived, act all at once, and only observe their neighbors
on the network. Other specifics are different, too. Bala and Goyal [8] makes strong assumptions on
learners’ beliefs, which would essentially cause the greedy algorithm to work well in BSL. In Lazer
and Friedman [46], each learner only retains the best observed action, rather than the full history.
Both papers study social learning under different network topologies.

Prominent recent work, e.g., [31, 15, 25, 44], targets agents with misspecified beliefs, i.e., beliefs
whose support does not include the correct model. The framing is similar to BSL with Bayesian-
unbiased agents: agents arrive one by one and face the same decision problem, whereby each agent
makes a rational decision after observing the outcomes of the previous agents.18 Rational decisions
under misspecified beliefs make a big difference compared to BSL, and structural assumptions about
rewards/observations and the state space tend to be very different from ours. The technical questions
being asked tend to be different, too. E.g., convergence of beliefs is of primary interest, whereas the
chosen arms and agents’ beliefs/estimates trivially converge in our setting. 19

B Preliminaries: Reward-Tape

It is convenient for our analyses to interpret the realized rewards of each arm as if they are written out
in advance on a “tape”. We posit a matrix

(
Tapea,i ∈ [0, 1] : a ∈ [2], i ∈ [T ]

)
, called reward-tape,

such that each entry Tapea,i is an independent Bernoulli draw with mean µa. This entry is returned
as reward when and if arm a is chosen for the i-th time. (We start counting from the initial samples,
which comprise entries i ∈ [N0].) This is an equivalent (and well-known) representation of rewards
in stochastic bandits.

We will use the notation for the UCBs/LCBs defined by the reward-tape. Fix arm a ∈ [2] and n ∈ [T ].
Let µ̂tapea,n = 1

n

∑
i∈[n] Tapea,i be the average over the first n entries for arm a. Now, given η ≥ 0,

define the appropriate confidence bounds:

UCBtape, ηa,n := min
{

1, µ̂tapea,n +
√
η/n

}
and LCBtape, ηa,n := max

{
0, µ̂tapea,n −

√
η/n

}
. (B.1)

18The original framing in this work posits a single learner that makes (possibly) myopic decisions over time
and observes their outcomes. An alternative interpretation is that each decision is made by a new myopic agent
who observes the history.

19Essentially, if an arm is chosen infinitely often then the agents beliefs/estimates converge on its true mean
reward; else, the agents eventually stop receiving any new information about this arm.
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C Proofs from Section 3: Learning Failures

Our proofs rely on two tools from Probability (proved in Section C.4 and C.5): a sharp anti-
concentration inequality for Binomial distribution and a lemma that encapsulates a martingale
argument.

Lemma C.1 (anti-concentration). Let (Xi)i∈N be a sequence of independent Bernoulli random
variables with mean p ∈ [c, 1− c], for some c ∈ (0, 1/2) interpreted as an absolute constant. Then

(∀n ≥ 1/c, q ∈ (c/8, p) ) Pr
[

1
n

∑n
i=1 Xi ≤ q

]
≥ Ω( e−O(n(p−q)2 ) ), (C.1)

where Ω(·) and O(·) hide the dependence on c.

Lemma C.2 (martingale argument). In the setting of Lemma C.1,

∀q ∈ [0, p) Pr
[
∀n ≥ 1 : 1

n

∑n
i=1 Xi ≥ q

]
≥ Ωc(p− q). (C.2)

The overall argument will be as follows. We will use Lemma C.1 to upper-bound the average reward
of arm 1, i.e., the good arm, by some threshold q1. This upper bound will only be guaranteed to
hold when this arm is sampled exactly N times, for a particular N ≥ N0. Lemma C.2 will allow
us to uniformly lower-bound the average reward of arm 2, i.e., the bad arm, by some threshold
q2 ∈ (q1, µ2). Focus on the round t∗ when the good arm is sampled for the N -th time (if this ever
happens). If the events in both lemmas hold, from round t∗ onwards the bad arm will have a larger
average reward by a constant margin q2 − q1. We will prove that this implies that the bad arm has a
larger index, and therefore gets chosen by the agents. The details of this argument differ from one
theorem to another.

Lemma C.1 is a somewhat non-standard statement which follows from the anti-concentration in-
equality in [61] and a reverse Pinsker inequality in [28]. More standard anti-concentration results via
Stirling’s approximation lead to an additional factor of 1/

√
n on the right-hand side of (C.1). For

Lemma C.2, we introduce an exponential martingale and relate the event in (C.2) to a deviation of
this martingale. We then use Ville’s inequality (a version of Doob’s martingale inequality) to bound
the probability that this deviation occurs.

C.1 Proof of Theorem 3.1: η-confident agents

Fix thresholds q1 < q2 to be specified later. Define two “failure events”:

Fail1: the average reward of arm 1 after the N0 initial samples is below q1;

Fail2: the average reward of arm 2 is never below q2.

In a formula, using the reward-tape notation from Appendix B, these events are

Fail1 :=
{
µ̂tape1, N0

≤ q1

}
and Fail2 :=

{
∀n ∈ [T ] : µ̂tape2,n ≥ q2

}
. (C.3)

We show that event Fail := Fail1 ∩ Fail2 implies the 0-sampling failure, as long as the margin
q2 − q1 is sufficiently large.

Claim C.3. Assume q2− q1 > 2 ·
√
η/N0 and event Fail. Then arm 1 is never chosen by the agents.

Proof. Assume, for the sake of contradiction, that some agent chooses arm 1. Let t be the first
round when this happens. Note that Ind1,t ≥ Ind2,t. We will show that this is not possible by
upper-bounding Ind1,t and lower-bounding Ind2,t.

By definition of round t, arm 1 has been previously sampled exactly N0 times. Therefore,

Ind1,t ≤ µ̂tape1, N0
+
√
η/N0 (by definition of index)

≤ q1 +
√
η/N0 (by Fail1)

< q2 −
√
η/N0 (by assumption).
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Let n be the number of times arm 2 has been sampled before round t. This includes the initial
samples, so n ≥ N0. It follows that

Ind2,t ≥ µ̂tape2,n −
√
η/n (by definition of index)

≥ q2 −
√
η/N0 (by Fail2 and n ≥ N0).

Consequently, Ind2,t > Ind1,t, contradiction.

In what follows, let c be the absolute constant from assumption (3.1).

Let us lower bound Pr [ Fail ] by applying Lemmas C.1 and C.2 to the reward-tape.
Claim C.4. Assume c/4 < q1 < q2 < µ2. Then

Pr [ Fail ] ≥ qfail := Ωc(µ2 − q2) · e−Oc(N0(µ1−q1)2 ). (C.4)

Proof. To handle Fail1, apply Lemma C.1 to the reward-tape for arm 1, i.e., to the random sequence
(Tape1,i)i∈[T ], with n = N0 and q = q1. Recalling that N0 ≥ 1/c by assumption (3.2),

Pr [ Fail1 ] ≥ Ωc

(
e−Oc(N0(µ1−q1)2 )

)
.

To handle Fail2, apply Lemma C.2 to the reward-tape for arm 2, i.e., to the random sequence
(Tape2,i)i∈[T ], with threshold q = q2. Then

Pr [ Fail2 ] ≥ Ωc(µ2 − q2).

Events Fail1 and Fail2 are independent, because they are determined by, resp., realized rewards of
arm 1 and realized rewards of arm 2. The claim follows.

Finally, let us specify suitable thresholds that satisfy the preconditions in Claims C.3 and C.4:

q1 := µ2 − 4 ·
√
η/N0 − c∆/4 and q2 := µ2 −

√
η/N0 − c∆/4.

Plugging in µ2 ≥ c and N0 ≥ 64 · η/c2, it is easy to check that q1 ≥ c/4, as needed for Claim C.4.

Thus, the preconditions in Claims C.3 and C.4 are satisfied. It follows that the 0-failure happens with
probability at least qfail, as defined in Claim C.4. We obtain the final expression in Eq. (3.3) because
µa − qa = Θc(∆ +

√
η/N0) for both arms a ∈ [2].

C.2 Proof of Theorem 3.10: pessimistic agents

We reuse the machinery from Section C.1: we define event Fail := Fail1 ∩ Fail2 as per Eq. (C.3),
for some thresholds q1 < q2 to be specified later, and use Claim C.4 to bound Pr [ Fail ]. However,
we need a different argument to prove that Fail implies the 0-sampling failure, and a different way
to set the thresholds.
Claim C.5. Assume q1 >

√
η/N0 and event Fail. Then arm 1 is never chosen by the agents.

Proof. Assume, for the sake of contradiction, that some agent chooses arm 1. Let t be the first
round when this happens. Note that Ind1,t ≥ Ind2,t. We will show that this is not possible by
upper-bounding Ind1,t and lower-bounding Ind2,t.

By definition of round t, arm 1 has been previously sampled exactly N0 times. Therefore,

Ind1,t = max{0, µ̂tape1, N0
−
√
η/N0} (by definition of index)

≤ max{0, q1 −
√
η/N0} (by Fail1)

= q1 −
√
η/N0 (by assumption).

Let n be the number of times arm 2 has been sampled before round t. This includes the initial
samples, so n ≥ N0. It follows that

Ind2,t ≥ µ̂tape2,n −
√
η/n (by definition of index)

≥ q2 −
√
η/N0 (by Fail2 and n ≥ N0).

Consequently, Ind2,t > Ind1,t, contradiction.

17



Now, set the thresholds q1, q2 as follows:

q1 := µ2 − c∆/4 and q2 := µ2 − c∆/8.

Plugging in µ2 ≥ c and N0 ≥ 64 · η/c2, it is easy to check that the preconditions in Claims C.4
and C.5 are satisfied. So, the 0-failure happens with probability at least qfail from Claim C.4. The
final expression in Eq. (3.3) follows because µa − qa = Θc(∆) for both arms a ∈ [2].

C.3 Proof of Theorem 3.9: small N0

We focus on the case when N0 ≤ N∗ := d64η/c2 + 1/ce. We can now afford to handle the initial
samples in a very crude way: our failure events posit that all initial samples of the good arm return
reward 0, and all initial samples of the bad arm return reward 1.

Fail1 :=
{
∀i ∈ [1, N∗] : Tape1,i = 0

}
,

Fail2 :=
{
∀i ∈ [1, N∗] : Tape2,i = 1 and ∀i ∈ [T ] : µ̂tape2,i ≥ q2

}
.

Here, q2 > 0 is the threshold to be defined later.

On the other hand, our analysis given these events becomes more subtle. In particular, we introduce
another “failure event" Fail3, with a more subtle definition: if arm 1 is chosen by at least n :=
N∗ −N0 agents, then arm 2 is chosen by n agents before arm 1 is.

We first show that Fail := Fail1 ∩ Fail2 ∩ Fail3 implies the n-sampling failure.

Claim C.6. Assume that q2 ≥ c/4 and Fail holds. Then at most n = N∗ −N0 agents choose arm
1.

Proof. For the sake of contradiction, suppose arm 1 is chosen by more than n agents. Let agent t be
the (n+ 1)-th agent that chooses arm 1. In particular, Ind1,t ≥ Ind2,t.

By definition of t, arm 1 has been previously sampled exactly N∗ times before (counting the N0

initial samples). Therefore,

Ind1,t ≤ µ̂tape1,N∗ +
√
η/N∗ (by η-confidence)

=
√
η/N∗ (by event Fail1)

≤ c/8 (by definition of N∗).

Let m be the number of times arm 2 has been sampled before round t. Then

Ind2,t ≥ µ̂tape2,m −
√
η/m (by η-confidence)

≥ q2 −
√
η/m (by event Fail2)

≥ q2 −
√
η/N∗ (since m ≥ N∗ by event Fail3)

≥ q2 − c/8 (by definition of N∗)
> c/8 (since q2 ≥ c/2).

Therefore, Ind2,t > Ind1,t, contradiction.

Next, we lower bound the probability of Fail1 ∩ Fail2 using Lemma C.2.

Claim C.7. If q2 < µ2 then Pr [ Fail1 ∩ Fail2 ] ≥ Ωc(µ2 − q2) · c2N∗
.

Proof. Instead of analyzing Fail2 directly, consider events

E :=
{
∀i ∈ [1, N∗] : Tape2,i = 1

}
and E ′ :=

{
∀m ∈ [N∗ + 1, T ] : 1

m−N∗

∑m
i=N∗+1 Tape2,i ≥ q2

}
.

Note that E ∩E ′ implies Fail2. Now, Pr [ Fail1 ] ≥ µ1
N∗ ≥ cN∗

and Pr [ E ] ≥ (1−µ2)N
∗ ≥ cN∗

.
Further, Pr [ E ′ ] ≥ Ωc(µ2 − q2) by Lemma C.2. The claim follows since these three events are
mutually independent.
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To bound Pr [ Fail ], we argue indirectly, assuming Fail1 ∩ Fail2 and proving that the conditional
probability of Fail3 is at least 1/2. While this statement feels natural given that Fail1 ∩ Fail2

favors arm 2, the proof requires a somewhat subtle inductive argument. This is where we use the
symmetry and monotonicity properties from the theorem statement.

Claim C.8. Pr [ Fail3 | Fail1 ∩ Fail2 ] ≥ 1
2 .

Now, we can lower-bound Pr [ Fail ] by Ωc(µ2−q2) ·c2N∗
. Finally, we set the threshold to q2 = c/2

and the theorem follows.

Proof of Claim C.8. Note that event Failt is determined by the first N∗ entries of the reward-tape
for both arms, in the sense that it does not depend on the rest of the reward-tape.

For each arm a and i ∈ [T ], let agent τa,i be the i-th agent that chooses arm a, if such agent exists,
and τi = T + 1 otherwise. Then

Fail3 = { τ2,n ≤ τ1,n } = { τ1,n ≥ 2n } (C.5)

Let E be the event that the first N∗ entries of the reward-tape are 0 for both arms. By symmetry
between the two arms (property (P1) in the theorem statement) we have

Pr [ τ2,n < τ1,n | E ] = Pr [ τ2,n > τ1,n | E ] = 1/2,

and therefore

Pr [ Fail3 | E ] = Pr [ τ2,n ≤ τ1,n | E ] ≥ 1/2. (C.6)

Next, for two distributions F,G, write F �fosd G if F first-order stochastically dominates G. A
conditional distribution of random variable X given event E is denoted (X|E). For each i ∈ [T ], we
consider two conditional distributions for τ1,i: one given Fail1 ∩ Fail2 and another given E , and
prove that the former dominates:

( τ1,i | Fail1 ∩ Fail2 ) �fosd ( τ1,i | E ) ∀i ∈ [T ]. (C.7)

Applying (C.7) with i = n, it follows that

Pr [ Fail3 | Fail1 ∩ Fail2 ] = Pr [ τ1,n ≥ 2n | Fail1 ∩ Fail2 ]

≥ Pr [ τ1,n ≥ 2n | E ] = 1/2.

(The last equality follows from (C.6) and Eq. (C.6).) Thus, it remains to prove (C.7).

Let us consider a fixed realization of each agents’ behavioral type, i.e., a fixed, deterministic mapping
from histories to arms. W.l.o.g. interpret the behavioral type of each agent t as first determin-
istically mapping history histt to a number pt ∈ [0, 1], then drawing a threshold θt ∈ [0, 1]
independently and uniformly at random, and then choosing arm 1 if and only if pt ≥ θt. Note that
pt = Pr [ at = 1 | histt ]. So, we pre-select the thresholds θt for each agent t. Note the agents retain
the monotonicity property (P2) from the theorem statement. (For this property, the probabilities on
both sides of Eq. (3.6) are now either 0 or 1.)

Let us prove (C.7) for this fixed realization of the types, using induction on i. Both sides of (C.7) are
now deterministic; let Ai, Bi denote, resp., the left-hand side and the right-hand side. So, we need to
prove that Ai ≥ Bi for all i ∈ [n]. For the base case, take i = 0 and define A0 = B0 = 0. For the
inductive step, assume Ai ≥ Bi for some i ≥ 0. We’d like to prove that Ai+1 ≥ Bi+1. Suppose, for
the sake of contradiction, that this is not the case, i.e., Ai+1 < Bi+1. Since Ai < Ai+1 by definition
of the sequence (τa,i :∈ [T ]), we must have

Bi ≤ Ai < Ai+1 < Bi+1.

Focus on round t = Ai+1. Note that the history histt contains exactly i agents that chose arm
1, both under event Fail1 ∩ Fail2 and under event E . Yet, arm 2 is chosen under E , while arm
1 is chosen under Fail1 ∩ Fail2. This violates the monotonicity property (P2) from the theorem
statement. Thus, we’ve proved (C.7) for any fixed realization of the types. Consequently, (C.7) holds
in general.

19



C.4 Proof of Lemma C.1

Proof. We use the following sharp lower bound on the tail probability of binomial distribution.

Theorem C.9 (Theorem 9 in [61]). Let n ∈ N be a positive integer and let (Xi)i∈[n] be a sequance
of i.i.d Bernoulli random variables with prameter p. For any β > 1 there exists constants cβ and Cβ
that only rely on β, such that for all x satisfying x ∈ [0, npβ ] and x+ n(1− p) ≥ 1, we have

Pr

[
n∑
i=1

Xi ≤ np− x

]
≥ cβe−CβnD(p− xn ||p),

where D(x||y) denotes the KL divergence between two Bernoulli random variables with parameters
x and y.

We use the above result with x = n(p− q) and β = 1−c
1− 9

8 c
. Note that β > 1 since c < 1

2 . We first
verify that x, β satisfy the conditions of the lemma. The x+ n(1− p) ≥ 1 condition holds by the
assumption n ≥ 1/c:

x+ n(1− p) ≥ n(1− p) ≥ nc ≥ 1.

As for the x ≤ np
β condition, by definition of x,

np

x
=

np

n(p− q)
=

p

p− q
.

Since p ≤ 1− c and p
p−q is decreasing in p for p ≥ q, we can further bound this with

p

p− q
≥ 1− c

1− c− q
≥ 1− c

1− c− c
8

= β,

where the second inequality follows from q ≥ c/8 and q < p ≤ 1 − c, together with the fact that
1−c

1−c−q is decreasing in q for q < 1− c. We obtain x ≤ np
β by rearranging.

Invoking Theorem C.9 with the given values, we obtain

Pr

[ ∑n
i=1Xi

n
≤ q

]
≥ cβe−CβnD(q||p) = Ω(e−O(nD(q||p))). (C.8)

Next, we use the following type of reverse Pinsker’s inqeuality to upper bound D(q||p).

Theorem C.10 ([28]). For any two probability measures P and Q on a finite support X , if Q is
absolutely continuous with respect to P , then the their KL divergence D(Q||P ) is upper bounded by

2
αP
δ(Q,P )2 where αP = minx∈X P (x) and δ(Q,P ) denotes the total variation distance between

P and Q.

Setting P = Bernoulli(p) andQ = Bernoulli(q), we have αP = min(p, 1−p), and δ(Q,P ) = p−q
Therefore, since min(p, 1− p) ≥ c by assumption, we conclude D(q||p) ≤ O((p− q)2). Plugging
this back in Equation (C.8) finshes the proof.

C.5 Proof of Lemma C.2

Our proof will rely on the following doob-style inequality for (super)martingales.

Lemma C.11 (Ville’s Inequality [58]). Let (Zn)n≥0 be a positive supermartingale with respect to
filtration (Fn)n≥0, i.e. Zn ≥ E [Zn+1|Fn ] for any n ≥ 0. Then the following holds for any x > 0,

Pr

[
max
n≥0

Zn ≥ x
]
≤ E [Z0 ]/x.

In order to use this result, we will define the martingale Zn := u
∑n
i=1(Xi+1−q) for a suitable choice

of u as specified by the following lemma.
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Lemma C.12. Let c be an absolute constant. For any p ∈ (c, 1− c) and q ∈ (0, p), there exists a
value of u ∈ (0, 1) such that

(p · u1−q + (1− p) · u−q) = 1. (C.9)

In addition, u satisfies

p(1− u1−q) ≥ Ω(p− q). (C.10)

Proof. To see why such a u exists, define f(x) = (p · x1−q + (1− p) · x−q). It is clear that f(1) = 1
and limx→0 f(x) =∞ as limx→0(1− p)x−q =∞. Furthermore,

f ′(x) = p · (1− q) · x−q + (1− p) · (−q) · x−q−1,

which implies
f ′(1) = p(1− q)− (1− p)q = p− q > 0.

Therefore, f(x) is decreasing at x = 1. Since limx→0 f(x) > f(1), this implies that f(u) = f(1)
for some u ∈ (0, 1), proving Equation (C.9).

We now prove Equation (C.10), define x0 as x0 = (1−p)q
p(1−q) . Note that x0 < 1 since p > q. We claim

that u ≤ x0. To see why, we first note that f ′(x) can be rewritten as

x−q−1 (xp(1− q)− (1− p)q) .
It is clear that f ′(x0) = 0. Since xp(1− q)− (1− p)q is increasing in x, this further implies that
f ′(x) > 0 for x > x0. Now, if u > x0, then since f ′(x) > 0 for x > x0, we would conclude that
f(u) < f(1), which is not possible since f(u) = f(1) = 1. Therefore, u ≤ x0 as claimed.

We now claim that x1−q
0 ≤ 1− p+ q. This would finish the proof since, together with u ≤ x0, this

would imply

p(1− u1−q) ≥ p(1− x1−q
0 ) ≥ p(p− q) = Ω(p− q),

where for the last equation we have used the assumption p ∈ (c, 1− c).

To prove the claim, define ε := p − q. We need to show that x1−q
0 ≤ 1 − ε, or equivalently

ln(x0) ≤ ln(1−ε)
1−q . By defintion of x0, this is equivalent to

ln

(
(1− p)(p− ε)
(1− p+ ε)p

)
≤ 1

1− p+ ε
ln(1− ε). (C.11)

Fix p and consider both hand sides as a function of ε. Putting ε = 0, both hands side coincide as they
both equal 0. To prove Euqation (C.11), it suffices to show that as we increase ε, the left hand side
decreases faster than the right hand side. Equivalently, we need to show that the derivative of the
LHS with respect to ε is larger than the derivative of the RHS with respect to ε for ε ≤ [0, p]. Taking
the derivative with respect to ε on LHS, we obtain

d

dε
(ln(1− p) + ln(p− ε)− ln(1− p+ ε)− ln(p)) = − 1

p− ε
− 1

1− p+ ε
.

Similarly taking the derivative on RHS we obtain

d

dε

(
ln(1− ε)
1− p+ ε

)
= − 1

(1− ε)(1− p+ ε)
− ln(1− ε)

(1− p+ ε)2
.

We therefore need to show that
−1

1− p+ ε
+
−1

p− ε
≤ −1

(1− p+ ε)(1− ε)
+
− ln(1− ε)
(1− p+ ε)2

. (C.12)

We note however that
−1

1− p+ ε
+
−1

p− ε
=

ε− p− 1 + p− ε
(1− p+ ε)(1− ε)

=
−1

(1− p+ ε)(1− ε)
.

Therefore Equation (C.12) is equivalent to
− ln(1− ε)
(1− p+ ε)2

≥ 0,

which is true since ε ∈ [0, p]. This proves the claim x1−q
0 ≤ 1− ε, finishing the proof.
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We now prove Lemma C.2 using Lemma C.11 and C.12.

proof of Lemma C.2. Define the random variable Yi as Yi = Xi+1−q. Note that Yi takes value 1−q
with probability p and takes −q with probability 1 − p. Set u to be the value specified in Lemma
C.12. For n ≥ 0, define Zn := u

∑n
i=1 Yi . We first observe that Zn is a martingale with respect to

Y1, . . . , Yn as

E [Zn+1|Y1, . . . Yn ] = E
[
u
∑n+1
i=1 Yi |Y1, . . . Yn

]
= u

∑n
i=1 Yi · (p · u1−q + (1− p) · u−q)

= u
∑n
i=1 Yi = Zn.

Since 0 < u < 1, this further implies

Pr

[
∀n ≥ 0 :

n∑
i=1

Yi ≥ q − 1

]
= 1− Pr

[
∃n ≥ 0 :

n∑
i=1

Yi < q − 1

]

= 1− Pr

[
max
j∈[n]
{u

∑j
i=1 Yi} ≥ uq−1

]
≥ 1− E [Z1 ]

uq−1

= 1− u1−q,

where the first inequality follows from Lemma C.11 and the final equality follows from E [Z1 ] =
E [Z0 ] = E

[
u0
]

= 1.

Since Yi is a function of Xs+1, we independently have X1 = 1 with probability p. Therefore, with
probability p(1− u1−q).

Xi = 1 and ∀n ≥ 1 :

n∑
i=2

(Xi − q) ≥ q − 1,

which further implies
∑n
i=1(Xi − q) ≥ 0. Therefore,

Pr

[
∀n ≥ 1 :

∑n
i=1Xi

n
≥ q

]
≥ p(1− u1−q) ≥ Ω(p− q),

where the inequality follows from Equation (C.10).

D Proofs from Section 4: Upper Bounds for Optimistic Agents

D.1 Proof of Theorem 4.1 and Theorem 4.4

We define certain “clean events” to capture desirable realizations of random rewards, and decompose
our regret bounds based on whether or not these events hold. The “clean events” ensure that the index
of each arm is not too far from its true mean reward; more specifically, that the index is “large enough”
for the good arm, and “small enough” for the bad arm. We have two “clean events”, one for each arm,
defined in terms of the reward-table as follows:

Clean
η
1 :=

{
∀i ∈ [T ] : UCB

tape, η
1,i ≥ µ1 −∆/2

}
, (D.1)

Clean
η
2 :=

{
∀i ≥ 64 η/∆2 : UCB

tape, η
2,i ≤ µ2 + ∆/4

}
. (D.2)

Our analysis is more involved compared to the standard analysis of the UCB1 algorithm [6], essentially
because we cannot make η be “as large as needed” to ensure that clean events hold with very high
probability. For example, we cannot upper-bound the deviation probability separately for each
round and naively take a union bound over all rounds.20 Instead, we apply a more careful “peeling
technique”, used e.g., in Audibert and Bubeck [5], so as to avoid any dependence on T in the lemma
below.

20Indeed, this would only guarantee that clean events hold with probability at least 1−O(T · e−Ω(η)), which
in turn would lead to a regret bound like O(T 2 · e−Ω(η)).
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Lemma D.1. The clean events hold with probability

Pr [ Cleanη1 ] ≥ 1−O
(

(1 + log(1/∆)) · e−Ω(η)
)
, (D.3)

Pr [ Cleanη2 ] ≥ 1−O
(
e−Ω(η)

)
. (D.4)

We show that under the appropriate clean events, η-optimistic agents cannot play the bad arm too
often. In fact, this claim extends to [η, ηmax]-optimistic agents.
Claim D.2. Assume that events Clean

η
1 and Clean

ηmax

2 hold. Then [η, ηmax]-optimistic agents
cannot choose the bad arm more than 64 ηmax/∆

2 times.

Proof. For the sake of contradiction, suppose [η, ηmax]-optimistic agents choose the bad arms at
least n = 64 ηmax/∆

2 times, and let t be the round when this happens. However, by event Cleanη1 ,
the index of arm 1 is at least µ1 − ∆/2. By event Cleanηmax

2 , the index of arm 2 is at least
UCB

tape, η
i,n ≤ µ2 + ∆/4, which is less than the index of arm 1, contradiction.

For the “joint” clean event, Clean := Clean
η
1 ∩ Clean

ηmax

2 , Lemma D.1 implies

Pr [ Clean ] ≥ 1−O
(

log ( 1/∆ ) · e−Ω(η)
)
. (D.5)

When the clean events fail, we upper-bound regret by ∆ · T , which is the largest possible. Thus,
Lemma D.2 and Eq. (D.5) imply Theorem 4.4, which in turn implies Theorem 4.1 as a special case.

D.2 Proof of Theorem 4.5

We reuse the machinery from Section D.1, but we need some extra work. Recall that all agents are
assumed to be ηmax-confident, whereas only a fraction are optimistic. Essentially, we rely on the
optimistic agents to sample the good arm sufficiently many times (via Claim D.2). Once this happens,
all other agents “fall in line” and cannot choose the bad arm too many times.

In what follows, let m = 1 + 64 ηmax/∆
2.

Claim D.3. Assume Clean. Suppose the good arm is sampled at least m times by some round t0.
Then after round t0, agents cannot choose the bad arm more than m times.

Proof. For the sake of contradiction, suppose agent t ≥ t0 has at least m samples of the bad arm
(i.e., n2,t ≥ m), and chooses the bad arm once more. Then the index of the good arm satisfies

Ind1,t ≥ LCB
ηmax

1,t (ηmax-confident agents)

≥ LCB
tape, ηmax

1,m (by definition of t0)

≥ UCB
tape, ηmax

1,m − 2
√
ηmax/m (by definition of UCBs/LCBs)

≥ UCB
tape, η
1,m − 2

√
ηmax/m (since ηmax ≥ η)

> µ1 −∆/2 (by Cleanη1 and the definition of m).
The index of the bad arm satisfies

Ind2,t ≤ UCB
η
1,t (η-confident agents)

≤ µ2 + ∆/4 (by Cleanη1 and the definition of m),
which is strictly smaller than Ind1,t, contradiction.

For Claim D.3 to “kick in”, we need sufficiently many optimistic agents to arrive by time t0. Formally,
let Et be the event that at least 2m agents are [ η, ηmax ]-optimistic in the first t rounds.
Corollary D.4. Assume Clean. Further, assume event Et0 for some round t0. Then (by Claim D.2)
the good arm is sampled at least m times before round t0. Consequently (by Claim D.3), agents
cannot choose the bad arm more than m+ t0 times.

Finally, it is easy to see by Chernoff Bounds that Pr [ Et0 ] ≥ 1 − e−Ω(η) for some t0 = O(m/q),
where q is the probability from the theorem statement. So, Pr [ Clean ∩ Et0 ] is lower-bounded as in
Eq. (D.5). Again, when Clean ∩ Et0 fails, we upper-bound regret by ∆ · T . So, Corollary D.4 and
the lower bound on Pr [ Clean ∩ Et0 ] implies the theorem.
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D.3 Proof of Lemma D.1

We assume without loss of generality that η > 2. If η ≤ 2, the Lemma’s statement can be made
vacuous using large enough constants in O. In addition, for mathematical convenience, we will
assume that the tape for each arm is infinite, even though the entries after T will never actually be
seen by any of the agents.

For each arm a, we first separately consider each interval of the form [n, 2n] and bound the probability
that UCBtape, ηa,i deviates too much from µa for i ∈ [n, 2n]. While this can be done crudely by applying
a union bound over all i, we use the following maximal inequality.

Lemma D.5 (Eq. (2.17) in [32]). Given a sequence of i.i.d. random variables (Xi)i∈[n] in [0, 1] such
that E [Xi ] = µ, the inequality states that for any x > 0,

Pr

∃i ∈ [n] :

∣∣∣∣∣∣
i∑

j=1

(Xj − µ )

∣∣∣∣∣∣ > x

 ≤ 2e−
2x2

n .

Focusing on some interval of the form [n, 2n] for n ∈ N, and applying this inequality to the reward
tape of arm a, we conclude that

Pr
[
∃i ∈ [n, 2n] :

∣∣ µ̂tapea,i − µa
∣∣ ≥ x ] ≤ O(e−Ω(nx2)). (D.6)

Define f := d64η/∆2e. We note that f = Θ(η/∆2) given the assumption η > 2. In order to bound
Pr [ Cleanη2 ], we will apply this inequality to each interval [n, 2n] for n ≥ f , and take a union bound.
Formally,

1− Pr [ Cleanη2 ] ≤ Pr
[
∃i ≥ f : µ̂

tape
2,i > µ2 + ∆/8

]
(Since

√
η/i ≤ ∆/8 for i ≥ f )

≤
∞∑
r=0

Pr
[
∃i ∈ [f2r, f2r+1] : µ̂tape2,i > µ2 + ∆/8

]
(Union bound)

≤ O

( ∞∑
r=0

e−Ω(η2r)

)
(By Eq. (D.6))

≤ O

( ∞∑
r=0

e−Ω(η(r+1))

)
(Since 2r ≥ r + 1 for r ∈ N)

= O(
1

eΩ(η) − 1
) (Sum of geometric series)

≤ O(e−Ω(η)) (By η > 2)

In order to bound Pr [ Cleanη1 ], we separately handle the intervals n < f and n ≥ f . For n ≥ f ,
repeating the same argument as above for arm 1 implies

Pr
[
∃i ≥ f : µ̂tape1,i < µ1 −∆/8

]
≤ O(e−Ω(η)).

For n < f , we use a modified argument that utilizes the extra
√
η/i term in UCB

tape, η
1,i . Instead of

bounding the probability µ̂tape1,i having deviation ∆/8, we bound the probability that it deviates by
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√
η/i. This results in a marked improvement because

√
η/i increases as we decrease i. Formally,

Pr
[
∃i ∈ [1, f ] : µ̂tape1,i < µ1 −

√
η/i
]

≤
dlog(f)e∑
r=0

Pr
[
∃i ∈ [2r, 2r+1] : µ̂tape1,i < µ1 −

√
η/i
]

(Union bound)

≤
dlog(f)e∑
r=0

Pr
[
∃i ∈ [2r, 2r+1] : µ̂tape1,i < µ1 −

√
η/2r+1

]
(By assumption on i)

≤ O

 dlog(f)e∑
r=0

e−Ω(η)

 (By Eq. (D.6))

= O(dlog(f)ee−Ω(η)).

Finally, we note that since η > 2,

dlog(f)e ≤ O(1 + log(f)) = O(1 + log(η) + log(1/∆)).

This implies Eq. (D.3) because O(log(η)e−Ω(η)) can be rewritten as O(e−Ω(η)) by changing the
constant behind Ω.

E Proofs from Section 5: Learning Failures for Bayesian Agents

In this section, we prove Theorem 5.1. We first briefly review some properties of the beta distribution.
Throughout the section, we consider a beta distribution with parameters α, β.
Lemma E.1 (Fact 1 in [3]). Let FBn,p denote the CDF of the binomial distribution with paramters
n, p and F betaα,β denote the CDF of the beta distribution. Then,

F betaα,β (y) = 1− FBα+β−1,y(α− 1)

for α, β that are positive integers.

Using Hoeffding’s inequality for concentration of the binomial distribution, we immediately obtain
the following corollary.
Corollary E.2. Define ρα,β := α−1

α+β−1 . If X is sampled from the beta distribution with parameters
(α, β),

Pr [ |X − ρα,β | ≤ y ] ≤ 2e−(α+β−1)y2 .

In addition, letting Q(.) denote the quantile function of the distribution,

[Q(ζ), Q(1− ζ)] ⊆

[
ρα,β −

√
ln(2/ζ)

α+ β − 1
, ρα,β +

√
ln(2/ζ)

α+ β − 1

]
,

Let αa,n, βa,n denote the posterior distribution after observing n entries of the tape for arm a. Note
that since we are assuming independent priors, the posterior for each arm is independent of the
seen rewards of the other arm. Define Ma,n := αa,n + βa,n. We note that by definition, αa,0, βa,0
coincide with the prior αa, βa. We analogously define Ma := αa + βa. Define ρa,n :=

αa,n−1
Ma,n−1 and

ξa,n :=
αa,n
Ma,n

. We note that ξa,n is the mean of the posterior distribution after observing n entries of
arm a.

Lemma E.3. For all n ≥ 0,
∣∣ µ̂tapea,n − ξa,n

∣∣ ≤ O ( Ma,0

n+Ma,0

)
.

Proof. After observing n entries, the posterior parameters satisfy

αa,n := αa,0 +
∑
i≤n

Tapea,i, βa,n := βa,0 +
∑
i≤n

(1− Tapea,i).
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It follows that

ξa,n =
αa,0 +

∑
i≤n Tapea,i

αa,0 + βa,0 + n
.

Defining X :=
∑
i≤n Tapea,i, we can bound the difference between ξa,n and µ̂tapea,n as∣∣∣∣ αa,0 +X

Ma,0 + n
− X

n

∣∣∣∣ =

∣∣∣∣ nαa,0 + nX − nX −XMa,0

n(n+Ma,0)

∣∣∣∣
=

∣∣∣∣ nαa,0 −XMa,0

n(n+Ma,0)

∣∣∣∣
≤ αa,0
n+Ma,0

+
Ma,0

n+Ma,0
(Since X ≤ n)

≤ O
(

Ma,0

n+Ma,0

)

Lemma E.4. For all n ≥ 0, | ξa,n − ρa,n | ≤ O
(

1
n+Ma,0

)
.

Proof.∣∣∣∣ αa,n − 1

Ma,n − 1
− αa,n
Ma,n

∣∣∣∣ =

∣∣∣∣ −Ma,n + αa,n
Ma,n(Ma,n − 1)

∣∣∣∣
≤ Ma,n

Ma,n(Ma,n − 1)

=
1

Ma,n − 1

= O

(
1

n+Ma,0

)
(Since Ma,n = Ma,0 + n and Ma,0 ≥ 1)

We can now prove Theorem 5.1.

Proof of Theorem 5.1. We start with part (a). Set η to be large enough such that∣∣ µ̂tapea,n − ξa,n
∣∣ ≤√ η

n
.

Since Ma

n+Ma
≤ Ma

n , by Lemma E.3, this can be achieved with η ≥ O(Ma/
√
N0), which proves part

(a).

For part (b), set η to be large enough such that
∣∣ µ̂tapea,n − ρa,n

∣∣ ≤ 1
2 ·
√

η
n . Given, Lemmas E.3 and

E.4, this can be achieved with η ≥ O(Ma/
√
N0). Since M − 1 ≥ n, we can further gaurantee

ln(2/ζ)
M−1 ≤

η
4n by setting η ≥ O(ln(1/ζ)), which finishes the proof together with Corollary E.2.

F The corollary from Section 6

As a corollary of Theorem 6.1, we derive a 0-sampling failure, leading to Ω(T ) Bayesian regret.
Specifically, the agents never try arm 2 when it is in fact the best arm. This happens whenever the
prior is independent across arms and has a positive density on the entire [0, 1] interval.
Corollary F.1. In the setting of Theorem 6.1, suppose the prior P is independent across arms and
has a positive density for each arm (i.e., has probability density function that is strictly positive on
[0, 1]). Then E[Regret(T )] ≥ cP · T , where the constant cP > 0 depends only on the prior P .

This follows from a more explicit, but more cumbersome corollary.
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Corollary F.2. Denote µ0
1 = E[µ1] and µ0

2 = E[µ2]. Consider independent priors such that
Pr [µ1 = 1 ] < (µ0

1 − µ0
2)/2. Pick any α > 0 such that Pr [µ1 ≥ 1− 2α ] ≤ (µ0

1 − µ0
2)/2. Then

Bayesian regret is at least T ·
(
α/2 (µ0

1 − µ0
2) Pr [µ2 > 1− α ]

)
.

Proof. Let E1 be the event that µ1 < 1 − 2α and arm 2 is never chosen. By Theorem 6.1 and the
definition of α, we have Pr [ E1 ] ≥ (µ0

1 − µ0
2)/2.

Let E2 be the event that µ2 > 1− α. Under event E1 ∩ E2, each round contributes µ2 − µ1 ≥ α to
regret, so E[R(T ) | E1 ∩ E2] ≥ αT .

Since event E1 is determined by the prior on arm 1 and the rewards of arm 2, it is independent from
E2. It follows that

E[R(T )] ≥ E[R(T ) | E1 ∩ E2] · Pr [ E1 ∩ E2 ]

≥ αT · (µ0
1 − µ0

2)/2 · Pr [ E2 ].

27


	Introduction
	Our model and preliminaries
	Learning failures
	Upper bounds for optimistic agents
	Learning failures for Bayesian agents
	Bayesian model with arbitrary priors
	Conclusions and open questions
	Acknowledgements
	Related Work on Social Learning
	Preliminaries: Reward-Tape
	Proofs from Section 3: Learning Failures
	Proofs from Section 4: Upper Bounds for Optimistic Agents
	Proofs from Section 5: Learning Failures for Bayesian Agents
	The corollary from Section 6

