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ABSTRACT

Interval Bound Propagation (IBP) is so far the base of state-of-the-art methods
for training neural networks with certifiable robustness guarantees when potential
adversarial perturbations present, while the convergence of IBP training remains
unknown in existing literature. In this paper, we present a theoretical analysis
on the convergence of IBP training. With an overparameterized assumption, we
analyze the convergence of IBP robust training. We show that when using IBP
training to train a randomly initialized two-layer ReLU neural network with lo-
gistic loss, gradient descent can linearly converge to zero robust training error
with a high probability if we have sufficiently small perturbation radius and large
network width.

1 INTRODUCTION

It has been shown that deep neural networks are vulnerable against adversarial examples (Szegedy
et al., 2014; Goodfellow et al., 2015), where a human imperceptible adversarial perturbation can
easily alter the prediction by neural networks. This poses concerns to safety-critical applications
such as autonomous vehicles, healthcare or finance systems. To combat adversarial examples, many
defense mechanisms have been proposed in the past few years (Kurakin et al., 2016; Madry et al.,
2018; Zhang et al., 2019; Guo et al., 2018; Song et al., 2018; Xiao et al., 2020). However, due to the
lack of reliable measurement on adversarial robustness, many defense methods are later broken by
stronger attacks (Carlini & Wagner, 2017; Athalye et al., 2018; Tramer et al., 2020).

There are recently a line of robust training works, known as certified robust training (certified de-
fense), focusing on training neural networks with certified and provable robustness – the network is
considered robust on an example if and only if the prediction is provably correct for any perturbation
in a predefined set (e.g., a small `∞ ball) (Wang et al., 2018b; Bunel et al., 2018; Zhang et al., 2018;
Wang et al., 2018c; Wong & Kolter, 2018; Singh et al., 2018; 2019; Weng et al., 2018; Xu et al.,
2020). Certified defense methods provide provable robustness guarantees without referring to any
specific attack and thus do not rely on the strength of attack algorithms.

To obtain a neural network with certified robustness, a common practice is to derive a neural network
verification method that computes the upper and lower bounds of output neurons given an input
region under perturbation, and then train the model by optimizing the loss defined on the worst-
case output from verification w.r.t. any possible perturbation. Many methods along this line have
been proposed (Wong & Kolter, 2018; Wong et al., 2018; Mirman et al., 2018; Gowal et al., 2018;
Raghunathan et al., 2018a; Zhang et al., 2020a). Among these methods, Interval Bound Propagation
(IBP) (Mirman et al., 2018; Gowal et al., 2018) is a simple but effective and efficient method so
far, which propagates the interval bounds of each neuron through the network to obtain the output
bounds of the network. Most of the latest state-of-the-art certified defense works are at least partly
based on IBP training (Zhang et al., 2020a; Shi et al., 2021; Lyu et al., 2021; Zhang et al., 2021).

However, the convergence properties of IBP training remained unknown. For standard neural net-
work training (without considering adversarial perturbation, aka natural training), it has been shown
that gradient descent for overparameterized networks can provably converge to a global minimizer
with random initialization (Li & Liang, 2018; Du et al., 2019b;a; Jacot et al., 2018; Allen-Zhu
et al., 2019; Zou et al., 2018). Compared to standard training, IBP-based robust training has a very
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different training scheme which requires a different convergence analysis. First, in the robust train-
ing problem, input can contain perturbations and the training objective is defined differently from
standard training. Second, IBP training essentially optimizes a different network augmented with
IBP computation, as illustrated in Zhang et al. (2020a). Third, in IBP training, the activation state
of each neuron depends on the certified bounds rather than the values in standard neural network
computation, which introduces special perturbation-related terms in our analysis.

In this paper, we conduct a theoretical analysis to study the convergence of IBP training. Follow-
ing recent convergence analysis on Stochastic Gradient Descent (SGD) for standard training, we
consider IBP robust training with gradient flow (gradient descent with infinitesimal step size) for a
two-layer overparameterized neural network on a classification task. We summarize our contribu-
tions below:

• We provide the first convergence analysis for IBP-based certified robust training. On a
two-layer overparameterized ReLU network with logistic loss, with sufficiently small per-
turbation radius and large network width, gradient flow with IBP has a linear convergence
rate, and is guaranteed to converge to zero training error with high probability.

• This result also implies that IBP converges to a state where the certified robust accuracy
measured by IBP bounds tightly reflects the true robustness of the network.

• We show additional perturbation-related conditions required to guarantee the convergence
of IBP training and identify particular challenges in the convergence analysis for IBP train-
ing compared to standard training.

Notation We use lowercase letters to denote scalars, and use lower and upper case boldface let-
ters to denote vectors and matrices respectively. 1(·) stand for the indicator function. For a d-
dimensional vector x ∈ Rd, ‖x‖p is its `p-norm. For two sequences {an} and {bn}, n > 0, we have
an = O(bn) if and only if ∃C > 0,∃N > 0,∀n > N , an ≤ Cbn,. And we have an = Ω(bn) if and
only if ∃C > 0,∃N > 0,∀n > N , an ≥ Cbn.

2 RELATED WORK

2.1 CERTIFIED ROBUST TRAINING

The goal of certified robust training is to maximize the certified robust accuracy of a model evalu-
ated by provable robustness verifiers. Some works added heuristic regularizations during adversarial
training to improve certified robustness (Xiao et al., 2019; Balunovic & Vechev, 2020). More ef-
fectively, certified defense works typically optimize a certified robust loss which is a certified upper
bound of the loss w.r.t. all considered perturbations. Among them, Wong & Kolter (2018); Mirman
et al. (2018); Dvijotham et al. (2018); Wong et al. (2018); Wang et al. (2018a) used verification
with linear relaxation for nonlinear activations, and Raghunathan et al. (2018b) used semi-definite
relaxation. However, IBP (Mirman et al., 2018; Gowal et al., 2018), which computes and propagates
interval lower and bounds for each neuron, has been shown as efficient and effective and can even
outperform methods using more complicated relaxation (Lee et al., 2021; Jovanović et al., 2021).
Most of the effective certified defense methods are at least partly based on IBP. For example, Zhang
et al. (2020a) combined IBP with linear relaxation bounds; Lyu et al. (2021) designed a parameter-
ized activation; Zhang et al. (2021) designed a 1-Lipschitz layer with `∞-norm computation before
layers using IBP; Shi et al. (2021) accelerated IBP training with shortened training schedules. As
most state-of-the-art methods so far contain IBP as an important part, we focus on analyzing the
convergence of IBP training in this paper.

On the theoretical analysis for IBP bounds, Baader et al. (2020) analyzed the universal approxima-
tion of IBP verification bounds, and Wang et al. (2020) extended the analysis to other activation
functions beyond ReLU. However, to the best of our knowledge, there is still no existing work
analyzing the convergence of IBP training.

The aforementioned methods for certified robustness target at robustness with deterministic certifi-
cation. There are also some other works on probabilistic certification such as randomized smooth-
ing (Cohen et al., 2019; Li et al., 2019; Salman et al., 2019) which is out of our scope.

2



Published as a conference paper at ICLR 2022

2.2 CONVERGENCE OF STANDARD NEURAL NETWORK TRAINING

There have been many works analyzing the convergence of standard neural network training. For
randomly initialized two-layer ReLU networks with quadratic loss, Du et al. (2019b) proved that
gradient descent can converge to a globally optimum with a large enough network width polynomial
in the data size. Ji & Telgarsky (2019) pushed the requirement of network width to a polylogarithmic
function. For deep neural networks, Allen-Zhu et al. (2019) proved that for deep ReLU networks,
gradient descent has a linear convergence rate for various loss functions with width polynomial in
network depth and data size. Chen et al. (2019) proved that a polylogarithmic width is also sufficient
for deep neural networks to converge. However, they only focus on standard training and cannot be
directly adapted to the robust training settings.

2.3 CONVERGENCE OF EMPIRICAL ADVERSARIAL TRAINING

Robust training is essentially a min-max optimization. For a training data distribution X , the objec-
tive for learning a model fθ parameterized by θ can be written as1:

arg min
θ

E(x,y)∼X max
∆∈S

`(fθ(x + ∆), y),

where (x, y) is a sample, `(·, y) is the loss function, S is the space of perturbations. Empirical
adversarial training approximates the inner minimization by adversarial attacks, and some works
analyzed the convergence of adversarial training: Wang et al. (2019) considered a first-order station-
ary condition for the inner maximization problem; Gao et al. (2019); Zhang et al. (2020b) showed
that overparameterized networks with projected gradient descent can converge to a state with robust
loss close to 0 and the the inner maximization by adversarial attack is nearly optimal; and Zou et al.
(2021) showed that adversarial training provably learns robust halfspaces in the presence of noise.

However, there is a significant difference between empirical adversarial training and certified robust
training such as IBP. Adversarial training involves a concrete perturbation ∆, which is an approx-
imate solution for the inner maximization and could lead to a concrete adversarial input x + ∆.
However, in IBP-based training, the inner maximization is computed from certified bounds, where
for each layer, the certified bounds of each neuron are computed independently, and thereby the cer-
tified bounds of the network generally do not correspond to any specific ∆. Due to this significant
difference, prior theoretical analysis on adversarial training, which requires a concrete ∆ for inner
maximization, is not applicable to IBP.

3 PRELIMINARIES

3.1 NEURAL NETWORKS

Following Du et al. (2019b), we consider a similar two-layer ReLU network. Unlike Du et al.
(2019b) which considered a regression task with the square loss, we consider a classification task
where IBP is usually used, and we consider binary classification for simplicity. On a training dataset
{(xi, yi)}ni=1, for every i ∈ [n], (xi, yi) is a training example with d-dimensional input xi(xi∈Rd)
and label yi(yi∈{±1}), and the network output is:

f(W,a,xi) =
1√
m

m∑
r=1

arσ(w>r xi), (1)

where m is the width of hidden layer (the first layer) in the network, W ∈ Rm×d is the weight ma-
trix of the hidden layer, wr(r∈ [m]) is the r-th row of W, a ∈ Rm is the weight vector of the second
layer (output layer) with elements a1, · · · , am, and σ(·) is the activation function. We assume the ac-
tivation is ReLU as IBP is typically used with ReLU. For initialization, we set ar∼unif[{1,−1}] and
wr∼N(0, I). Only the first layer is trained after initialization. Since we consider binary classifica-
tion, we use a logistic loss. For training example (xi, yi), we define ui(W,a,xi) := yif(W,a,xi),

1Here we use notations to denote the general robust training problem, but in our later analysis, we will have
different notations for a simplified problem setting.
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the loss on this example is computed as l(ui(W,a,xi)) = log(1 + exp(−ui(W,a,xi))), and the
standard training loss on the whole training set is

L =

n∑
i=1

l(ui(W,a,xi)) =

n∑
i=1

log
(

1 + exp(−ui(W,a,xi))
)
.

3.2 CERTIFIED ROBUST TRAINING

In the robust training setting, for original input xi (∀i ∈ [n]), we consider that the actual input
may be perturbed into xi + ∆i by perturbation ∆i. For a widely adopted setting, we consider `∞
perturbations, where ∆i is bounded by an `∞ ball with radius ε(0 ≤ ε ≤ 1), i.e., ‖∆i‖∞ ≤ ε.
For the convenience of subsequent analysis and without loss of generality, we make the following
assumption on each xi, which can be easily satisfied by normalizing the training data:
Assumption 1. ∀i ∈ [n], we assume there exists some ξ > 0, such that xi ∈ [ε, 1]d, ‖xi‖2 ≥ ξ.

In Du et al. (2019b), they also assume there are no parallel data points, and in our case we assume
this holds under any possible perturbation, formulated as:
Assumption 2. For perturbation radius ε, we assume that

∀i, j ∈ [n], i 6= j, ∀x′i ∈ B∞(xi, ε), ∀x′j ∈ B∞(xj , ε), x′i ∦ x′j ,

where B∞(xi, ε) stands for the `∞-ball with radius ε centered at xi.

IBP training computes and optimizes a robust loss L, which is an upper bound of the standard loss
for any possible perturbation ∆i (∀i ∈ [n]):

L ≥
n∑
i=1

max
∆i

{
log
(

1 + exp(−yif(W,a,xi + ∆i))
)
| ‖∆i‖∞ ≤ ε

}
.

To compute L, since log(·) and exp(·) are both monotonic, for every i ∈ [n], IBP first computes the
lower bound of ui(W,a,xi + ∆i) for ‖∆i‖∞ ≤ ε, denoted as ui. Then the IBP robust loss is:

L =

n∑
i=1

log(1 + exp(−ui)), where ui ≤ min
∆i

ui(W,a,xi + ∆i) (i ∈ [n]). (2)

IBP computes and propagates an interval lower and upper bound for each neuron in the network,
and then ui is equivalent to the lower bound of the final output neuron. Initially, the interval bound
of the input is [xi − ε · 1,x + ε · 1] given ‖∆i‖∞ ≤ ε, since xi − ε · 1 ≤ xi + ∆i ≤ xi + ε · 1
element-wisely holds. Then this interval bound is propagated to the first hidden layer, and we have
the interval bound for each neuron in the first layer:

∀r ∈ [m], σ
(
w>r xi − ε‖wr‖1

)
≤ σ

(
w>r (xi + ∆i)

)
≤ σ

(
w>r xi + ε‖wr‖1

)
.

These bounds are further propagated to the second layer. We focus on the lower bound of ui, which
can be computed from the bounds of the first layer by considering the sign of multiplier yiar:

ui(W,a,xi + ∆i) = yi
1√
m

m∑
r=1

arσ(w>r (xi + ∆i))

≥ 1√
m

m∑
r=1

{
1(yiar = 1)σ

(
w>r xi − ε‖wr‖1

)
+ 1(yiar = −1)σ

(
w>r xi + ε‖wr‖1

)}
:= ui. (3)

Then the IBP robust loss can be obtained as Eq. (2). And we define u := (u1, u2, · · · , un).

We define certified robust accuracy in IBP training as the percentage of examples that IBP bounds
can successfully certify that the prediction is correct for any concerned perturbation. An example
i(i ∈ [n]) is considered as robustly classified under IBP verification if and only if ui > 0. Let ũi be
the exact solution of the minimization in Eq. (2) rather than relaxed IBP bounds, we also define the
true robust accuracy, where the robustness requires ũi > 0. The certified robust accuracy by IBP
is a provable lower bound of the true robust accuracy.
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3.3 GRADIENT FLOW

Gradient flow is gradient descent with infinitesimal step size for a continuous time analysis, and it
is adopted in prior works analyzing standard training (Arora et al., 2018; Du et al., 2019a;b). In IBP
training, gradient flow is defined as:

∀r ∈ [m],
dwr(t)

dt
= − ∂L(t)

∂wr(t)
, (4)

where w1(t),w2(t), · · · ,wm(t) are rows of the weight matrix at time t, and L(t) is the IBP robust
loss defined as Eq. (2) using weights at time t.

3.4 GRAM MATRIX

Under the gradient flow setting as Eq. (4), for all i ∈ [n], we analyze the dynamics of ui during IBP
training, and we use ui(t) to denote its value at time t:

d

dt
ui(t) =

m∑
r=1

〈
∂ui(t)

∂wr(t)
,
dwr(t)

dt

〉
=

n∑
j=1

−l′(uj)Hij(t), (5)

where l′(uj) is the derivative of the loss, H(t) is a Gram matrix and defined as Hij(t) =∑m
r=1

〈
∂ui(t)
∂wr(t) ,

∂uj(t)

∂wr(t)

〉
(∀1 ≤ i, j ≤ n). We provide a detailed derivation in Appendix B.1.

The dynamic of ui can be described using H.

From Eq. (3), ∀i ∈ [n], r ∈ [m], derivative ∂ui(t)
∂wr(t) can be computed as follows:

∂ui(t)

∂wr(t)
=

1√
m
yiar

(
A+
ri(t)

(
xi − ε sign(wr(t))

)
+A−ri(t)

(
xi + ε sign(wr(t))

))
,

where sign(wr(t)) is element-wise for wr(t), and we define indicators

A+
ri(t) := 1(yiar = 1,wr(t)

>xi − ε‖wr(t)‖1 > 0),

A−ri(t) := 1(yiar = −1,wr(t)
>xi + ε‖wr(t)‖1 > 0).

Then elements in H can be written as:

Hij(t) =
1

m
yiyj

m∑
r=1

a2
r

(
A+
ri(t)

(
xi − ε sign(wr(t))

)
+A−ri(t)

(
xi + ε sign(wr(t))

))>
(
A+
rj(t)

(
xj − ε sign(wr(t))

)
+A−rj(t)

(
xj + ε sign(wr(t))

))

=
1

m
yiyj

(
x>i xj

m∑
r=1

αrij(t)− ε
( m∑
r=1

(βrij(t)xi + βrji(t)xj)
> sign(wr(t))

)
+ ε2d

m∑
r=1

γrij(t)

)
,

(6)

where αrij(t), βrij(t), γrij(t) are defined as follows

αrij(t) = (A+
ri(t) +A−ri(t))(A

+
rj(t) +A−rj(t)),

βrij(t) = (A+
ri(t) +A−ri(t))(A

+
rj(t)−A

−
rj(t)),

γrij(t) = (A+
ri(t)−A

−
ri(t))(A

+
rj(t)−A

−
rj(t)).

Further, we define H∞ which is the elementwise expectation of H(0), to characterize H(0) on the
random initialization basis:

∀1 ≤ i, j ≤ n, H∞ij := E∀1≤r≤m,wr∼N(0,I),ar∼unif[{−1,1}]Hij(0),

where Hij(0) depends on the initialization of weights wr and ar. We also define λ0 := λmin(H∞)
as the least eigenvalue of H∞. We will prove that H(0) is positive definite with high probability, by
showing that H∞ is positive definite and bounding the difference between H(0) and H∞.
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4 CONVERGENCE ANALYSIS FOR IBP TRAINING

We present the following main theorem which shows the convergence of IBP training under certain
conditions on perturbation radius and network width:
Theorem 1 (Convergence of IBP Training). Suppose Assumptions 1 and 2 hold for the train-

ing data, and the `∞ perturbation radius satisfies ε ≤ O

(
min

(
δ2λ2

0

d2.5n3 ,
√

2dR

log(
√

2πd
R ξ)

))
, where

R = cδλ0

d1.5n2 , c =
√

2πξ
384 . For a two-layer ReLU network (Eq. (1)), suppose its width for the

first hidden layer satisfies m ≥ Ω

((
d1.5n4δλ0

δ2λ2
0−εd2.5n4

)2
)

, and the network is randomly initialized

as ar ∼ unif[{1,−1}],wr ∼ N(0, I), with the second layer fixed during training. Then for any
confidence δ(0<δ<1), with probability at least 1−δ, IBP training with gradient flow can converge
to zero training error.

The theorem contains two findings: First, for a given ε, as long as it satisfies the upper bound on ε
specified in the theorem, with a sufficiently large widthm, convergence of IBP training is guaranteed
with high probability; Second, when ε is larger than the upper bound, IBP training is not guaranteed
to converge under our analysis even with arbitrarily large m, which is essentially different from
analysis on standard training and implies a possible limitation of IBP training.

In the following part of this section, we provide the proof sketch for the main theorem.

4.1 STABILITY OF THE GRAM MATRIX DURING IBP TRAINING

We first analyze the stability of H during training since H can characterize the dynamic of the
training as defined in Eq. (5). We show that when there exists some R such that the change of
wr(∀r ∈ [m]) is restricted to ‖wr(t) − wr(0)‖2 ≤ R during training, we can guarantee that
λmin(H(t)) remains positive with high probability. This property will be later used to reach the
conclusion on the convergence. We defer the derivation for the constraint on R to a later part.

For all r ∈ [m], with the aforementioned constraint on wr(t), we first show that during the IBP
training, most of αrij(t), βrij(t), γrij(t) terms in Eq. (6) remain the same as their initialized values
(t = 0). This is because for for each of αrij(t), βrij(t), γrij(t), the probability that its value changes
during training can be upper bounded by a polynomial inR, and thereby the probability can be made
sufficiently small for a sufficiently small R, as the following lemma shows:
Lemma 1. ∀r ∈ [m], at some time t > 0, suppose ‖wr(t) −wr(0)‖2 ≤ R holds for some R, and
ε ≤

√
2dR

log(
√

2πd
R ξ)

holds, then for all 1≤ i, j≤n, we have

Pr(αrij(t) 6= αrij(0)),Pr(βrij(t) 6= βrij(0)),Pr(γrij(t) 6= γrij(0)) ≤ 12√
2πξ

(1 + ε)
√
dR := R̃.

We provide the full proof in Appendix A.1. Probabilities in Lemma 1 can be bounded as long as the
probability that each of indicator A+

ri(t), A
−
ri(t), A

+
rj(t), A

−
rj(t) changes is upper bounded respec-

tively. When the change of wr(t) is bounded, the indicators can change during the training only if at
initialization |wr(0)>xi±ε‖wr(0)‖1| is sufficiently small, whose probability can be upper bounded
(notation± here means the analysis is consistent for both + and− cases). To bound this probability,
while Du et al. (2019b) simply used the anti-concentration of standard Gaussian distribution in their
standard training setting, here our analysis is different due to additional perturbation-related terms
ε‖wr(0)‖1, and we combine anti-concentration and the tail bound of standard Gaussian in our proof.

We can then bound the change of the Gram matrix, i.e., ‖H(t)−H(0)‖2:
Lemma 2. ∀r ∈ [m], at some time t > 0, suppose ‖wr(t)−wr(0)‖2 ≤ R holds for some constant
R, for any confidence δ(0 < δ < 1), with probability at least 1− δ, it holds that

‖H(t)−H(0)‖2 ≤
12(1 + ε)(1 + 2ε+ ε2)d1.5n2

√
2πξδ

R. (7)

This can be proved by first upper bounding E[|Hij(t) −Hij(0)|] (∀1 ≤ i, j ≤ n) using Lemma 1,
and then by Markov’s inequality, we can upper bound ‖H(t) − H(0)‖2 with high probability.
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We provide the proof in Appendix A.2. And by triangle inequality, we can also lower bound
λmin(H(t)):
Corollary 1. ∀r ∈ [m], at some time t > 0, suppose ‖wr(t) − wr(0)‖2 ≤ R holds for some
constant R, for any confidence δ(0 < δ < 1), with probability at least 1− δ, it holds that

λmin(H(t)) ≥ λmin(H(0))− 12(1 + ε)(1 + 2ε+ ε2)d1.5n2

√
2πξδ

R, (8)

where λmin(·) stands for the minimum eigenvalue.

We also need to lower bound λmin(H(0)) in order to lower bound λmin(H(t)). Given Assumption 2,
we show that the minimum eigenvalue of H∞ is positive:
Lemma 3. When the dataset satisfies Assumption 2, λ0 := λmin(H∞) > 0 holds true.

The lemma can be similarly proved as Theorem 3.1 in Du et al. (2019b), but we have a different
Assumption 2 considering perturbations. We discuss in more detail in Appendix A.3. Then we can
lower bound λmin(H(0)) by Lemma 3.1 from Du et al. (2019b):
Lemma 4 (Lemma 3.1 from Du et al. (2019b)). If λ0 > 0, for any confidence δ(0 < δ < 1), take
m = Ω(n

2

λ2
0

log(nδ )), then with probability at least 1− δ, it holds true that λmin(H(0)) ≥ 3
4λ0.

Although we have different values in H(0) for IBP training, we can still adopt their original lemma
because their proof by Hoeffding’s inequality is general regardless of values in H(0). We then
plug in λmin(H(0)) ≥ 3

4λ0 to Eq. (8), and we solve the inequality to find a proper R such that
λmin(H)(t) ≥ λ0

2 , as shown in the following lemma (proved in Appendix A.4):
Lemma 5. For any confidence δ(0 < δ < 1), ∀r ∈ [m], suppose ‖wr(t) − wr(0)‖2 ≤ R holds,
where R = cδλ0

d1.5n2 with c =
√

2πξ
384 , then probability at least 1− δ, λmin(H(t)) ≥ λ0

2 holds.

Therefore, we have shown that with overparameterization (required by Lemma 4), when wr is rel-
atively stable during training for all r ∈ [m], i.e., the maximum change on wr(t) is upper bounded
during training (characterized by the `2-norm of weight change restricted by R), H(t) is also rela-
tively stable and remains positive definite with high probability.

4.2 CONVERGENCE OF THE IBP ROBUST LOSS

Next, we can derive the upper bound of the IBP loss during training. In the following lemma, we
show that when H(t) remains positive definite, the IBP loss L(t) descends in a linear convergence
rate, and meanwhile we have an upper bound on the change of wr(t) w.r.t. time t:

Lemma 6. Suppose for 0 ≤ s ≤ t, λmin(H(t)) ≥ λ0

2 , we have

L(t) ≤ exp

(
2L(0)

)
L(0) exp

(
− λ0t

2

)
, ‖wr(t)−wr(0)‖2 ≤

nt√
m
.

This lemma is proved in Appendix A.5, which follows the proof of Lemma 5.4 in Zou et al. (2018).
To guarantee that λmin(H(s)) ≥ λ0

2 for 0 ≤ s ≤ t, by Lemma 5, we only require nt√
m
≤ R =

cδλ0

d1.5n2 , which holds sufficiently by

t ≤ cδλ0
√
m

d1.5n3
. (9)

Meanwhile, for each example i, the model can be certified by IBP on example i with any `∞ per-
turbation within radius ε, if and only if ui > 0, and this condition is equivalent to l(ui) < κ, where
κ := log(1 + exp(0)). Therefore, to reach zero training error on the whole training set at time t, we
can require L(t) < κ, which implies that ∀1 ≤ i ≤ n, l(ui) < κ. Then with Lemma 6, we want the
upper bound of L(t) to be less than κ:

L(t) ≤ exp

(
2L(0)

)
L(0) exp

(
− λ0t

2

)
< κ,
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which holds sufficiently by

t >
4

λ0

(
log

(
L(0)

κ

)
+ L(0)

)
. (10)

To make Eq. (10) reachable at some t, with the constraint in Eq. (9) we require:

4

λ0

(
log

(
L(0)

κ

)
+ L(0)

)
<
cδλ0
√
m

d1.5n3
. (11)

The left-hand-side of Eq. (11) can be upper bounded by

4

λ0

(
log

(
L(0)

κ

)
+ L(0)

)
=

4

λ0
(L(0) + log(L(0))− log(κ)) ≤ 4

λ0
(2L(0)− log(κ)).

Therefore, in order to have Eq. (11) hold, it suffices to have

4

λ0
(2L(0)− log(κ)) <

cδλ0
√
m

d1.5n3
=⇒ L(0) + c0 <

c′δλ2
0

√
m

d1.5n3
, (12)

where c′ := c
8 and c0 are positive constants.

Since L(0) has randomness from the randomly initialized weight W, we need to upper bound the
value of L(0) as we show in the following lemma (proved in Appendix A.6 by concentration):
Lemma 7. In natural training, for any confidence δ(0 < δ < 1), with probability at least 1 − δ,
L(0) = O(nδ ) holds. In IBP training, for any confidence δ(0 < δ < 1), with probability at least
1− δ, L(0) = O(n

√
mdε
δ + n

δ ) holds.

And this lemma implies that with large n and m, there exist constants c1, c2, c3 such that

L(0) ≤ c1n
√
mdε

δ
+
c2n

δ
+ c3. (13)

Plug Eq. (13) into Eq. (12), then the requirement in Eq. (12) can be relaxed into:

c′δλ2
0

√
m

d1.5n3
>
c1n
√
mdε

δ
+
c2n

δ
+ c3 + c0 =⇒

(
c′δλ2

0

d1.5n3
− c1ndε

δ

)√
m >

c2n

δ
+ c4, (14)

where c4 := c3 + c0 is a constant. As long as Eq. (14) holds, Eq. (11) also holds, and thereby IBP
training is guaranteed to converge to zero IBP robust error on the training set.

4.3 PROVING THE MAIN THEOREM

Finally, we are ready to prove the main theorem. To make Eq. (11) satisfied, we want to make its
relaxed version, Eq. (14) hold by sufficiently enlarging m. This requires that the coefficient of

√
m

in Eq. (14) , c′δλ2
0

d1.5n3 − c1ndε
δ to be positive, and we also plug in the constraint on ε in Lemma 1:

c′δλ2
0

d1.5n3
− c1ndε

δ
> 0, ε ≤

√
2dR

log(
√

2πd
R ξ)

.

Combining these two constraints, we can obtain the constraint for ε in the main theorem:

ε < min

(
c′δ2λ2

0

c1d2.5n3
,

√
2dR

log(
√

2πd
R ξ)

)
.

Then by Eq. (14), our requirement on width m is

m ≥ Ω

(( d1.5n4δλ0

δ2λ2
0 − εd2.5n4

)2
)
.

This completes the proof of the main theorem.s In our analysis, we focus on IBP training with ε > 0.
But IBP with ε = 0 can also be viewed as standard training. By setting ε = 0, if m ≥ Ω(n

8d3

λ4
0δ

4 ),
our result implies that for any confidence δ (0 < δ < 1), standard training with logistic loss also
converges to zero training error with probability at least 1− δ. And as ε gets larger, the required m
for convergence also becomes larger.
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Figure 1: Experimental results.

5 EXPERIMENTS

We further conduct experiments to compare the convergence of networks with different widthsm for
natural training and IBP training respectively. We use the MNIST (LeCun et al., 2010) dataset and
take digit images with label 2 and 5 for binary classification. And we use a two-layer fully-connected
ReLU network with a variable width. We train the model for 70 epochs with SGD, and we keep ε
fixed throughout the whole training process. We present results in Figure 1. First, compared with
standard training, for the same width m, IBP has higher training errors (Figure 1a). Second, for
relatively large ε (ε = 0.04), even if we enlarge m up to 80,000 limited by the memory of a single
GeForce RTX 2080 GPU, IBP error is still far away from 0 (Figure 1a). This is consistent with
our main theorem that when ε is too large, simply enlarging m cannot guarantee the convergence.
Moreover, when ε is even larger, IBP training falls into a local minimum of random guess (with
errors close to 50%) (Figure 1b). We conjecture that this is partly because λ0 can be very small
with a large perturbation, and then the training can be much more difficult, and this difficulty cannot
be alleviated by simply enlarging the network width m. Existing works with IBP-based training
typically use a scheduling on ε and gradually increase ε from 0 until the target value for more stable
training. Overall, the empirical observations match our theoretical results.

6 CONCLUSION

In this paper, we present the first theoretical analysis of IBP-based certified robust training, and
we show that IBP training can converge to zero training error with high probability, under certain
conditions on perturbation radius and network width. Meanwhile, since the IBP robust accuracy
is a lower bound of the true robust accuracy (see Section 3.2), upon convergence the true robust
accuracy also converges to 100% on training data and the certification by IBP accurately reflects
the true robustness. Our results have a condition requiring a small upper bound on ε, and it will be
interesting for future work to study how to relax this condition, take the effect of ε scheduling into
consideration, and extend the analysis to deeper networks.
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A PROOF OF LEMMAS

A.1 PROOF OF LEMMA 1

Proof. For all i ∈ [n], r ∈ [m], we first consider the change of indicator 1(wr(t)
>xi±ε‖wr(t)‖1 >

0) during training compared to the value at t = 0 (the notation ± here means the analysis is consis-
tent for both + and− cases). Under the constraint that ‖wr(t)±wr(0)‖2 ≤ R and ‖xi‖∞ ∈ [0, 1]d,
we have (see Appendix B.2 for details):∣∣wr(t)

>xi ± ε‖wr(t)‖1 − (wr(0)>xi ± ε‖wr(0)‖1)
∣∣ ≤ (1 + ε)

√
dR. (15)

Thereby, if sign(wr(t)
>xi ± ε‖wr(t)‖1) 6= sign(wr(0)>xi ± ε‖wr(0)‖1), then at initialization,

we must have

|wr(0)>xi ± ε‖wr(0)‖1| ≤ (1 + ε)
√
dR. (16)

We want to upper bound the probability that Eq. (16) holds. It is easy to show that if the following
two inequalities hold, then Eq. (16) does not hold for sure:

|wr(0)>xi| ≥ 2(1 + ε)
√
dR, (17)

ε‖wr(0)‖1 ≤ (1 + ε)
√
dR. (18)

Therefore,

Pr

(
|wr(0)>xi ± ε‖wr(0)‖1| ≤ (1 + ε)

√
dR

)
≤ 1− Pr

(
|wr(0)>xi| ≥ 2(1 + ε)

√
dR and ‖wr(0)‖1 ≤ (1 + ε)

√
dR

)
.

For Eq. (17), by anti-concentration inequality for Gaussian, we have

Pr(|wr(0)>xi| ≤ 2(1 + ε)
√
dR) ≤ 4(1 + ε)

√
dR√

2πξ
. (19)

In other words, with probability at least 1 − 4(1 + ε)
√
dR/(

√
2πξ), Eq. (17) holds. And for Eq.

(18), by the tail bound of standard Gaussian and union bound, we have

Pr(ε‖wr(0)‖1 ≤ (1 + ε)
√
dR) ≥ 1− 2d exp

(
− 2(1 + ε)2dR2

ε2

)
. (20)

Combining Eq. (19) and Eq. (20), Eq. (16) holds with at most the following probability

4(1 + ε)
√
dR√

2πξ
+ 2d exp

(
− 2(1 + ε)2dR2

ε2

)
. (21)

Here we require ε to be sufficiently small such that

(1 + ε)
√
dR√

2πξ
≥ d exp

(
− 2(1 + ε)2dR2

ε2

)
(22)

and we can solve the inequality to obtain an upper bound for ε (detailed in Appendix B.3):

ε ≤
√

2dR

log(
√

2πd
R ξ)

, (23)

and in this case Eq. (21) holds with probability at least

6√
2πξ

(1 + ε)
√
dR.
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Therefore, we upper bound the probability:

Pr
(

sign(wr(t)
>xi ± ε‖wr(t)‖1) 6= sign(wr(0)>xi ± ε‖wr(0)‖1)

)
≤ 6√

2πξ
(1 + ε)

√
dR.

Thereby

∀i ∈ [n], r ∈ [m], Pr(A+
ri(t) 6= A+

ri(0)),Pr(A−ri(t) 6= A−ri(0)) ≤ 6√
2πξ

(1 + ε)
√
dR.

Note that at least one of A+
ri(t) and A−ri(t) always remains zero during training, because condition

yiar = 1 in A+
ri(t) and condition yiar = −1 in A−ri(t) are mutually exclusive. Then

Pr(A+
ri(t) +A−ri(t) 6= A+

ri(0) +A−ri(0)) ≤ 6√
2πξ

(1 + ε)
√
dR,

Pr(A+
ri(t)−A

−
ri(t) 6= A+

ri(0)−A−ri(0)) ≤ 6√
2πξ

(1 + ε)
√
dR.

Next we can upper bound the probability that each of αrij(t), βrij(t), γrij(t) (∀i, j ∈ [n], r ∈ [m])
changes respectively:

Pr(αrij(t) 6= αrij(0)),Pr(βrij(t) 6= βrij(0)),Pr(γrij(t) 6= γrij(0)) ≤ 12√
2πξ

(1 + ε)
√
dR.

A.2 PROOF OF LEMMA 2

Proof. With Lemma 1, we can bound the expectation of the change for each element in H(t) (Eq.
(6)) as:

E[|Hij(t)−Hij(0)|]

≤ 1

m
E
(
mR̃‖xi‖2‖xj‖2 + εmR̃

(
(‖xi‖2 + ‖xj‖2)‖ sign(wr(t))‖2

)
+ ε2dmR̃

)
≤ R̃d(1 + 2ε+ ε2)

=
12(1 + ε)(1 + 2ε+ ε2)d1.5

√
2π

(∀i, j ∈ [n])

Then by Markov’s inequality, we have that with probability at least 1− δ,

‖H(t)−H(0)‖2 ≤
∑

i∈[n],j∈[n]

|Hij(t)−Hij(0)| ≤ 12(1 + ε)(1 + 2ε+ ε2)d1.5n2

√
2πξδ

R.

A.3 PROOF OF LEMMA 3

Proof. First for simplicity, we define ρi = −A+
ri(0) +A−ri(0) (ρi ∈ {−1, 0, 1}), and

φ(xi)(wr(0)) = yi

(
xi + ερi sign(wr(0)

)
1

(
wr(0)>

(
xi + ερi sign(wr(0))

)
> 0

)
.

To prove that λ0 > 0, similar as Theorem 3.1 in Du et al. (2019b), we need to prove that for any
r ∈ [m], if η1, η2, ..., ηn (∀i ∈ [n], ηi ∈ R) satisfy

∑n
i=1 ηiφ(xi)(wr(0)) = 0 almost everywhere

(a.e.) for any wr(0), we have ∀i ∈ [n], ηi = 0.

In Theorem 3.1 in Du et al. (2019b), it is proved that for φ′(xi)(w) = xi1(w>xi) (i ∈ [n]), when
∀i 6= j,xi ∦ xj holds, for any η1, η2, ..., ηn(∀i ∈ [n], ηi ∈ R), if

n∑
i=1

ηiφ
′(xi)(wr(0)) = 0,
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then ∀i ∈ [n], ηi = 0. For any r ∈ [m], by taking ∀i ∈ [n],x′i = xi + ερi sign(wr(0)), we
have φ(xi)(wr(0)) = φ′(x′i)(wr(0)), and it holds that x′i ∈ B∞(xi, ε),x

′
j ∈ B∞(xj , ε). Then if

xi ∦ xj ,∀i, j, η1, η2, ..., ηn satisfy
∑n
i=1 ηiφ

′(x′i)(wr(0)) = 0 a.e., we have ∀i ∈ [n], ηi = 0.

Therefore if ∀i, j ∈ [n], i 6= j,∀x′i ∈ B∞(xi, ε),∀x′j ∈ B∞(xj , ε),x
′
i ∦ x′j , if η1, ..., ηn satisfy

∑
i

ηiφ(xi)(wr(0)) = 0,

then ∑
i

ηiφ
′(x′i)(wr(0)) = 0

also holds, and then ∀i ∈ [n], ηi = 0.

A.4 PROOF OF LEMMA 5

Proof. The lemma can be proved by solving inequality

λmin(H(t)) ≥ λmin(H(0))− 12(1 + ε)(1 + 2ε+ ε2)d1.5n2

√
2πξδ

R ≥ λ0

2
. (24)

According to Lemma 4, λmin(H(0)) ≥ 3
4λ0. And with Eq. (8), in order to ensure λmin(H(t)) ≥ λ0

2 ,
we can make

12(1 + ε)(1 + 2ε+ ε2)d1.5n2

√
2πξδ

R ≤ λ0

4
.

This yields

R ≤
√

2πξδλ0

48(1 + ε)(1 + 2ε+ ε2)d1.5n2
.

Note that 0 ≤ ε ≤ 1, and thus 1 + ε ≤ 2 and 1 + 2ε + ε2 ≤ 4 can be upper bounded by constants
respectively. Then we can take

R ≤
√

2πξδλ0

384d1.5n2
=

cδλ0

d1.5n2
, where c =

√
2πξ

384
,

and in this case λmin(H(t)) ≥ λ0

2 w.p. at least 1− δ probability.

A.5 PROOF OF LEMMA 6

Proof. The proof of this lemma is inspired by the proof of Lemma 5.4 in Zou et al. (2018). In our
proof, we define f(x) = (f(x1), f(x2), ..., f(xn)), where f(x) is a scalar function and x is a vector
of length n. When λmin(H)(s) ≥ λ0

2 holds for 0 ≤ s ≤ t, we can bound the derivative of L(t):
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dL(u)

dt
=

n∑
i=1

l′(ui)
∂ui
∂t

= −
n∑
i=1

l′(ui)

n∑
j=1

l′(uj)Hij

= −l′(u)>Hl′(u)

(i)

≤ −λ0

2

n∑
i=1

l′(ui)
2

(ii)

≤ λ0

2

n∑
i=1

l′(ui)

(iii)

≤ −λ0

2

n∑
i=1

min(1/2,
l(ui)

2
)

(iv)

≤ −λ0

2
min

(
1/2,

n∑
i=1

l(ui)

2

)
= −λ0

2
min(1/2,

L(u)

2
)

(v)

≤ −λ0

2

1

2 + 2/L(u)
,

where (i) is due to λmin(H) ≥ λ0, (ii) is due to−l′(u) ≤ 1, (iii) holds due to the following property
of cross entropy loss −l′(u) ≥ min(1/2, l(u)

2 ), (iv) holds due to the function min(1/2, x) is a
concave function and Jenson’s inequality, (v) holds due to min(a, b) ≥ 1

1/a+1/b

Therefore, we have

2
dL(u)

dt
+

2

L(u)

dL(u)

dt
≤ −λ0

2
.

By integration on both sides from 0 to t, we have

L(u(t))− L(u(0)) + log

(
L(u(t))

)
− log

(
L(u(0))

)
≤ −λ0t

4
.

Therefore, we have

log

(
L(u(t))

)
≤ −λ0t

4
+ L(u(0)) + log

(
L(u(0))

)
,

which yields

L(u(t)) ≤ exp

(
− λ0t

4

)
exp

(
L(u(0))

)
L(u(0)).

And we can bound the change of wr.∥∥∥∥dwr(t)

dt

∥∥∥∥
2

=

∥∥∥∥dL(t)

dwr

∥∥∥∥
2

=

∥∥∥∥ n∑
i=1

l′(ui)
1√
m
aryiσ

′(〈wr,xi ± ε‖wr‖1〉)(xi ± ε‖wr‖1)

∥∥∥∥
2

≤ 1√
m

n∑
i=1

‖l′(ui)‖2

≤ n√
m
,
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where σ′(·) stands for the derivative of the ReLU activation. Thus

‖wr(t)−wr(0)‖2 ≤
nt√
m
.

A.6 PROOF OF LEMMA 7

Proof. We first prove the standard training part. As we have defined previously that

L(0) =

n∑
i=1

log(1 + exp(−ui(0))),

where

ui(0) = yi
1√
m

m∑
r=1

arσ(wr(0)>xi).

For each arσ(wr(0)>xi), r ∈ [m], i ∈ [n], note that the randomness only comes from random
initialization for wr, there is 1

2 possibility that it is equal to 0, and another 1
2 possibility that it

follows a normal distribution N (0, σ2
i ), where σi = ‖xi‖22. Therefore, we have

E(arσ(wr(0)>xi)) = 0,

Var(arσ(wr(0)>xi)) =
σ2
i

2
,

E
(

1√
m

m∑
r=1

arσ(wr(0)>xi)

)
= 0,

Var
(

1√
m

m∑
r=1

arσ(wr(0)>xi)

)
=
σ2
i

2
.

Therefore, by Chebyshev’s inequality, we can bound

Pr(|ui(0)| ≤ σ2
i

2δ
) ≥ 1− δ.

And we can bound L(0) = O(
nmaxni=1 σ

2
i

2δ ) = O(nδ ) with probability at least 1− δ.

For IBP training,

ui(0) =
1√
m

m∑
r=1

1(yiar = 1)σ
(
wr(0)>xi − ε‖wr(0)‖1

)
+ 1(yiar = −1)σ

(
wr(0)>xi + ε‖wr(0)‖1

)
.

Thus

|ui(0)− ui(0)| ≤ 1√
m
mε‖wr(0)‖1 =

√
mε‖wr(0)‖1.

By E(‖wr‖1) = O(d) and Markov’s inequality, with probability at least 1− δ,

|ui(0)− ui(0)| ≤ O(

√
mdε

δ
).

And we can bound L(0) = O(n
√
mdε
δ + n

δ ) with probability at least 1− δ.
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B DETAILED DERIVATION FOR OTHER EQUATIONS OR INEQUALITIES

B.1 DERIVATION ON THE DYNAMICS OF ui(t)

We provide a detailed derivation on the dynamics of ui(t) presented in Eq. (5), which we use Hi(t)
to describe d

dtui(t):

d

dt
ui(t) =

m∑
r=1

〈
∂ui(t)

∂wr(t)
,
dwr(t)

dt

〉

=

m∑
r=1

〈
∂ui(t)

∂wr(t)
,−∂L(W(t),a)

∂wr(t)

〉

=

m∑
r=1

〈
∂ui(t)

∂wr(t)
,−

n∑
j=1

l′(uj)
∂uj(t)

∂wr(t)

〉

=

n∑
j=1

−l′(uj)
m∑
r=1

〈
∂ui(t)

∂wr(t)
,
∂uj(t)

∂wr(t)

〉

=

n∑
j=1

−l′(uj)Hij(t),

B.2 DERIVATION FOR EQ. (15)

Eq. (15) basically comes by triangle inequality:∣∣wr(t)
>xi − ε‖wr(t)‖1 − (wr(0)>xi − ε‖wr(0)‖1)

∣∣
=
∣∣(wr(t)−wr(0))>xi − ε‖wr(t)‖1 + ε‖wr(0)‖1

∣∣
≤ |(wr(t)−wr(0))>xi|+ ε

∣∣‖wr(t)‖1 − ‖wr(0)‖1
∣∣

≤ |(wr(t)−wr(0))>xi|+ ε
∥∥wr(t)−wr(0)

∥∥
1

≤ (1 + ε)
√
dR.

B.3 DERIVATION FOR EQ. (23)

We solve the inequality in Eq. (22) to derive an upper bound for ε in Eq. (23):

1√
2πξ

(1 + ε)
√
dR ≥ 1√

2πξ

√
dR ≥ d exp

(
− 2(1 + ε)2dR2

ε2

)
,

R√
2πdξ

≥ exp

(
− 2(1 + ε)2dR2

ε2

)
,

log

(
R√
2πdξ

)
≥ −2(1 + ε)2dR2

ε2
,

and then we can require

log

(
R√
2πdξ

)
≥ −2dR2

ε2
≥ −2(1 + ε)2dR2

ε2
⇒ ε ≤

√
2dR

log(
√

2πd
R ξ)

.
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