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ABSTRACT

Sparse matrix computations are becoming increasingly significant in deep learn-
ing and graph analytics, driving the development of specialized hardware systems
known as accelerators to meet the growing need for optimized performance. Op-
timizing these computations, however, presents significant challenges due to their
sensitivity to variations in input sparsity patterns and code optimizations. While
ML-based cost models and search techniques have shown promise in optimiz-
ing sparse matrix computations in general-purpose hardware like CPUs, these
cost models require large datasets for effective training. Collecting such ex-
tensive datasets is particularly impractical for emerging hardware platforms that
only have access to expensive simulators in the early design stages. To over-
come this, we propose DASH, which trains learned cost models using low-cost
data samples from widely accessible general-purpose hardware (such as CPUs),
followed by few-shot fine-tuning to efficiently adapt to emerging hardware plat-
forms. DASH introduces a novel approach that leverages the homogeneity of input
features across different hardware platforms while effectively mitigating hetero-
geneity. This enables DASH to achieve comparable accuracy using only 5% of
the data samples required by a cost model trained exclusively using data samples
from an accelerator. We evaluate DASH on two critical sparse operations—SpMM
and SDDMM—on an emerging sparse accelerator using 715 distinct sparsity pat-
terns. Our experimental results show that DASH outperforms existing techniques
that use transfer learning by 28.44%, achieving average speedups of 1.47× (up to
5.46×) for SpMM and 1.39× (up to 4.22×) for SDDMM.

1 INTRODUCTION

Sparse matrix computations have gained increased significance with the recent advancements in
sparse deep learning and graph analytics (Beltagy et al. (2020); Ye & Ji (2021); Child et al. (2019);
Dao et al. (2021)) workloads. As a result, many hand-crafted performance optimization techniques
have been suggested in the literature that improve the runtime performance of sparse matrix com-
putations (Kjolstad et al. (2017); Ye et al. (2023); Hong et al. (2019); Jiang et al. (2020)). These
computations use compressed sparse formats (e.g., compressed sparse row) to only compute on non-
zero values of matrices. Since the non-zero distribution of values in these matrices can vary, it has
been challenging to come up with performance optimizations that work well across diverse inputs.

To overcome this challenge, machine learning (ML)-based program optimization techniques have
been introduced to optimize sparse matrix computations on established hardware platforms such
as CPUs and GPUs (Won et al. (2023); Yang et al. (2023)). These techniques adaptively select a
program configuration based on the input sparse matrix features. For example, WACO (Won et al.
(2023)) introduced learned cost models to predict the runtime cost of programs under different sparse
matrices and program configurations. It then used search-based techniques to automatically find the
optimal program configuration based on the cost model output. Overall, these ML-based techniques
show superior performance and adaptability across a diverse range of inputs compared to manually
crafted performance optimization techniques.

Recently, on the hardware front, new domain-specific machines specifically designed for sparse
operations are emerging (Aananthakrishnan et al. (2023); Gerogiannis et al. (2023); Hegde et al.
(2019); Li et al. (2023); Jin et al. (2024)). These machines, known as hardware accelerators, offer
significant speedups over established hardware platforms. Similar to CPUs and GPUs, sparse accel-
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erators offer different program configurations to accommodate diverse sparse inputs (Gerogiannis
et al. (2023); Jin et al. (2024); Li et al. (2023); Muñoz-Martı́nez et al. (2023); Gerogiannis et al.
(2024)) that should be configured by software performance optimizations. However, unlike CPUs
and GPUs, most emerging accelerators that are at early design stages, only have access to expensive
simulators. This poses a significant challenge for computer architects, as exhaustively evaluating all
potential program configurations to determine the best during the early stages is not feasible. Hence,
in the presence of any inefficiencies observed during early stage simulations, it has become difficult
to diagnose whether the inefficiencies stem from suboptimal hardware design choices or program
configurations. Further, when designing hardware accelerators, it would be ideal to avoid over-
provisioning hardware resources (e.g., increasing cache size) if such inefficiencies can instead be
mitigated via improved software strategies (e.g., adopting a different tiling strategy). Therefore, the
need to automatically select the optimal program configuration during the design space exploration
(DSE) phase of accelerator development is important, as it eliminates a dimension of complexity.

The learned cost models used in ML-based optimization techniques targeted at CPUs and GPUs are
trained with relatively large supervised datasets. Those datasets consist of program configurations
and sparse matrices as inputs, and runtimes as labels. Usually, these datasets consist of hundreds
of thousands of such labeled data items Won et al. (2023). Unfortunately, collecting datasets of
comparable size for emerging hardware accelerators that have only simulators – which is the case
for most – is prohibitively costly. The time needed for a simulation to complete is many orders of
magnitude longer than the real execution of the program on the actual chip. For example, it can take
up to two weeks to collect a single data point using the simulator of the state-of-the-art SPADE
sparse accelerator (Gerogiannis et al. (2023)). At the same time, the same program would take less
than a second to execute on the real chip when it is finally fabricated. Collecting large datasets would
require huge clusters running simulations for months or even years. Therefore, in order to bring the
same benefits of ML-based optimizations to accelerator platforms at their early stages, we need to
rethink learned cost model construction techniques that are data-frugal and highly sample-efficient.
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Figure 1: Transfer learning pipeline of DASH.
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Inspired by the success of transfer learning in other domains
(Weiss et al. (2016); Zhuang et al. (2020)), researchers have
proposed different transfer learning techniques to reduce data
requirements for training cost models (Sasaki et al. (2022);
Zheng et al. (2021)). The proposed solution is to leverage
knowledge transferred from cost models learned on one hard-
ware platform (source) to another (target) using the ubiquitous
pre-train and fine-tune paradigm (Krizhevsky et al. (2012)).
Such techniques have shown to reduce the data requirement
for the target platform. Therefore, potentially using such
techniques to transfer cost models learned on general-purpose
hardware platforms to emerging accelerator platforms can re-
duce the number of data points we need to collect from expen-
sive simulations (Figure 1). However, we notice that most of
the previous works have achieved effective knowledge transfer
only between general-purpose hardware platforms of the same
type (e.g. CPU-to-CPU, GPU-to-GPU)( Sasaki et al. (2022),Won et al. (2023), Zheng et al. (2021)).
Transferring between hardware of different types (e.g. CPU-to-accelerator) poses unique challenges.

Heterogeneous program configuration spaces. The program configurations for emerging sparse
accelerators – which become the input feature space of cost models – can be very different from those
that are available for general-purpose hardware. For example, emerging sparse accelerator plat-
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forms have software-managed buffers instead of hardware-managed caches and specialized, rather
than general-purpose, pipelines. This disparity in program configuration spaces for general-purpose
hardware and emerging accelerators makes it challenging to come up with highly accurate transfer
learning techniques. Existing heterogeneous transfer learning techniques (Liang et al. (2019)), such
as feature augmentation (Daumé III (2009); Duan et al. (2012)), offer a potential solution. How-
ever, these techniques often produce feature representations that are too sparse for the cost model
to effectively learn, specifically when accommodating a diverse set of program configuration across
different hardware platforms. Figure 2 shows the results of applying popular heterogeneous transfer
learning techniques – feature augmentation (FA) and feature mapping (FM) – to a sparse learned
cost model, WACO (Won et al. (2023)). Even when using data samples from 1000 matrices for fine-
tuning on the SPADE accelerator, the best configurations found under WACO+FA and WACO+FM
are far from the optimal. Therefore, we need better techniques to handle the heterogeneity of pro-
gram configurations present across different hardware platforms.

High sample efficiency requirement. Existing transfer learning solutions for learned cost models
that operate within homogeneous feature spaces, typically require at least 25% of the original dataset
that was used in a non-transfer learning setup to achieve competitive performance on the target
hardware platform (Sasaki et al. (2022)). The target dataset requirement for these solutions can
further increase due to the heterogeneous input feature spaces between general-purpose hardware
and emerging accelerators. This makes it infeasible to adopt existing solutions in their current form
for accelerators in early design stages. Therefore, we need data-frugal techniques.

DASH. In this paper, to overcome these challenges we present DASH, a novel framework for de-
veloping learned cost models which enables effective knowledge transfer (Figure 1). DASH uses
WACO’s (Won et al. (2023)) neural cost model architecture as the base model (WacoNet) but in-
corporates key changes to make it amenable for transfer learning. DASH enables the discovery of
better program configurations that are closer to the optimal (Figure 2), while requiring significantly
less accelerator data samples for fine-tuning.

DASH is centered around two key principles introduced in Neyshabur et al. (2020): feature reuse
and the capture of low-level statistical information. We observe that, even though the program con-
figurations between general-purpose hardware and accelerators are heterogeneous, there are certain
feature spaces that can be mapped due to their similarities. Motivated by this observation, we pro-
pose an approximate mapping of comparable code optimizations, effectively segregating the fea-
ture space generated by program configuration into homogeneous and heterogeneous components.
This allows feature reuse across the source and target platforms. The heterogeneous components
represent non-mappable hardware specific parameters that can be disparate across different plat-
forms. Such components can introduce challenges during transfer learning due to negative transfer.
To separately encode the heterogeneous feature spaces, we introduce a novel latent space repre-
sentation of the heterogeneous input feature space using an auto-encoder. This novel formulation
of the feature space allows us to effectively reuse features while minimizing the impact of negative
transfer. Further, we observe that certain layers of WacoNet do not contribute heavily to the final
prediction and this over-parameterization can hinder transferability due to over-fitting. To mitigate
this, DASH modifies WacoNet by reducing the number of layers and extracting features at various
depths and scales, effectively allowing the model to capture low-level statistical information.

We evaluate DASH on two widely used sparse operations, Sparse Matrix-Matrix Multiplication
(SpMM) and Sampled Dense-Dense Matrix Multiplication (SDDMM), by transferring from a CPU
to an emerging sparse accelerator SPADE (Gerogiannis et al. (2023)). Our experimental results show
that DASH outperforms existing techniques that leverage transfer learning by 28.44%, achieving an
average speedup of 1.47× (up to 5.46×) for SpMM and 1.39× (up to 4.22×) for SDDMM. To further
demonstrate the generalizability of our approach, we transferred from a CPU to a GPU, achieving
an average speedup 1.17× (up to 1.61×) for SpMM and 1.15× (up to 1.49×) for SDDMM.

In summary, this paper makes the following contributions.
• We introduce techniques to segregate and encode the homogeneous (approximate mapping

of comparable code optimizations) and heterogeneous (latent representation using an auto-
encoder) components of program configurations across different hardware platforms used for
sparse matrix computations.

• We introduce DASH, a novel framework for developing learned cost models that are amenable
to few-shot fine-tuning across different hardware platforms, leveraging above techniques.
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• We evaluate and show that DASH produces highly accurate transfer learned cost models for
emerging sparse accelerators at early design stages with minimal data collection overhead.
Specifically, we demonstrate that DASH achieves average speedups of 1.47× on SpMM and
1.39× on SDDMM on the state-of-the-art sparse accelerator SPADE. Furthermore, we perform
additional experiments and ablation studies to demonstrate its benefits and generalizability.

2 BACKGROUND AND RELATED WORK

2.1 SPARSE MATRIX COMPUTATIONS

Sparse matrix computations perform computational tasks that involve tensors where most of the
elements are zero. These computations are optimized to efficiently process only the non-zero values.
We describe two operations frequently used in these computations below.

Sparse Matrix-Matrix Multiplication (SpMM) is the operation of multiplying a sparse matrix
A ∈ RM×K with a dense matrix B ∈ RK×N , resulting in an output matrix D ∈ RM×N . The
SpMM operation can be expressed as Di,k =

∑
j Ai,j ·Bj,k, where Ai,j ̸= 0.

Sampled Dense-Dense Matrix Multiplication (SDDMM) is an operation that involves the mul-
tiplication of two dense matrices, followed by an elementwise multiplication with a sparse ma-
trix. Given a sparse matrix A ∈ RM×N , a sparse output matrix D ∈ RM×N , and two dense
matrices B ∈ RM×K and C ∈ RK×N , SDDMM operation can be expressed as Di,k = Ai,k ·∑

j (Bi,j · Cj,k) , where Ai,k ̸= 0.

2.2 SPARSE MATRIX PROGRAMMING SYSTEMS AND HARDWARE

Table 1: Configurable program configuration parame-
ters available across CPU, GPU, and SPADE.

Configurable CPU GPU SPADE TypeParameters
Loop Strip-mining ✓ ✓ Numerical
Loop Reordering ✓ ✓ Categorical

Format Reordering ✓ Categorical
Loop Binding ✓ Categorical

Loop Unrolling ✓ Categorical
Tiling ✓ Numerical
Barrier ✓ Binary

Cache Bypassing ✓ Binary
Matrix Reordering ✓ Binary

Sparse matrix computations can be ex-
ecuted on a variety of hardware plat-
forms, including CPUs, GPUs, and ded-
icated sparse accelerators. The execu-
tion strategy for these computations de-
pends on both the hardware platform and
the corresponding programming system
used. In this work, for CPU execution,
we use TACO (Kjolstad et al. (2017)), a
domain-specific language and a compiler
designed for sparse tensor algebra and op-
timized for CPU. For GPU execution, we
employ SparseTIR (Ye et al. (2023)), a
sparse tensor compilation framework de-
veloped as an enhancement to TVM’s Ten-
sor IR(Chen et al. (2018a).) As our dedicated sparse accelerator, we use SPADE (Gerogiannis et al.
(2023)), which has a tiled-based instruction set architecture (ISA) to leverage different variations
of SpMM and SDDMM operations. Throughout the remainder of this paper, we will refer to this
dedicated sparse accelerator as SPADE.

A sparse matrix programming system supports a range of code optimizations that modify the struc-
ture of the code to enhance performance. The effectiveness of these code optimizations depends on
assigning specific values to the parameters of the program configuration. By tuning these param-
eters, we can significantly impact the runtime performance of sparse operations. Table 1 outlines
the configurable parameters available in program configurations for different hardware platforms
explored in this work. Further details on related code optimizations can be found in Appendix B.

2.3 ML-BASED COST MODELS

Learned Cost Models. Cost models act as fast and cost-effective proxies for executing workloads
on real hardware. Their primary goal is to accurately estimate the execution time of workloads as
they would perform on real hardware. To achieve this, these cost models can be trained on data
samples with various program configurations and then used to predict the program configuration
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that will deliver the optimal performance. Hence, generally, the training objective of cost models is
tied with minimizing |t∗CM − t∗|, where t∗ is the runtime of the true optimal program configuration
and t∗CM is the runtime of the best program configuration suggested by the cost model (accuracy
objective)(detailed Appendix A). Finding the best configuration suggested by the cost model is usu-
ally done using auxiliary intelligent search techniques such as simulated annealing, Monte Carlo
tree search, and reinforcement learning.

There have been numerous works on learned cost models to predict the runtime of different work-
loads targeting different hardware platforms Chen et al. (2018b); Adams et al. (2019). These tech-
niques range from simple XGBoost (Chen & Guestrin (2016)) based cost models Chen et al. (2018a)
to sophisticated deep neural network based models (Baghdadi et al. (2021); Kaufman et al. (2021);
Zhai et al. (2023); Zheng et al. (2020); Won et al. (2023)). WACO Won et al. (2023) is a learned
cost model specifically built for sparse matrix computations that we use as our base cost model.

Transfer Learning. Transfer learning is a technique that leverages knowledge gained from a task
in a source domain to improve the performance of a related task in a target domain, where data
collection can often be challenging (Bozinovski (2020)). There have been many successful ex-
amples of transfer learning techniques in a wide range of fields (Weiss et al. (2016)). Transfer
learning can be categorized into two main types: homogeneous transfer learning (Zhuang et al.
(2020)), where the input and label spaces are the same, and heterogeneous transfer learning (Day &
Khoshgoftaar (2017)), where either one or both can be different. In program optimization, transfer
learning has been successfully used to transfer cost models learned from one hardware platform to
another, primarily in homogeneous settings, to minimize the target domain data requirements Zheng
et al. (2021); Sasaki et al. (2022). In this work, we seek to minimize the target domain data re-
quirement during fine-tuning (Shen et al. (2021)), by targeting heterogeneous input feature spaces
present between general-purpose hardware and emerging sparse accelerators (data-collection objec-
tive))(detailed in Appendix A).

3 OUR METHODOLOGY: DASH

Autoencoder

Latent Encoder

Configuration Mapper

Sparse Convolution

Input Featurizer

(3)

(1)

(2)

Sparse Latent Config

Sparse Matrix

Program
Configurations

Homogenous

Heterogenous

Predictor
WACO

Program Embedder

Sparse Convolution

Input Featurizer

Sparse Config

Predictor

Program
Configurations

(a) (b)

(4)

Runtime Cost

Figure 3: A comparative overview of the enhanced cost model design in DASH (b) alongside
WACO’s cost model design (a), highlighting key differences.

In this section, we present DASH, a novel framework to design data-efficient learned cost models to
accelerate the execution of sparse matrix computations on emerging hardware platforms. The fol-
lowing subsections outline our contributions toward achieving the objectives set forth in Section 2.3;
maximizing the accuracy while minimizing the data collection overhead. In Section 3.1, we review
WACO’s cost model, which serves as the base model for our work. Section 3.2 provides an overview
of our key innovations, highlighting the enhancements in the cost model design that enable transfer
learning. In Section 3.3, we explore how the homogeneity of program configurations is leveraged
through the traits of comparable code optimizations. Finally, Section 3.4 addresses how we handle
the heterogeneity in program configurations introduced by hardware-specific code optimizations.

3.1 WACO’S COST MODEL

WACO (Figure 3(a)) (Won et al. (2023)) introduced the concept of directly feeding sparsity patterns
as raw data into cost models. WACO’s cost model employs submanifold sparse convolution net-

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

works (SCNN) (Graham & Van der Maaten (2017)) to extract features using the input featurizer. It
leverages a neural network-based program embedder to capture the impact of code optimizations on
sparse operations by encoding program configurations into embeddings. The program embeddings
are merged with the extracted sparsity pattern features produced by the input featurizer. The merged
inputs are then processed through a multi-layer perceptron predictor to estimate the execution cost.

3.2 OVERVIEW OF ENHANCEMENTS TO ENABLE TRANSFER LEARNING

We build upon WACO considering it as our base model by refining its architecture to better facilitate
transfer learning across diverse hardware platforms. Our improved cost model design (Figure 3(b)) is
structured around four key components: configuration mapper, input featurizer, latent encoder, and
predictor. The configuration mapper (Figure 3(b)(1)) and latent encoder (Figure 3(b)(2)) replace the
program embedder in WACO, while the input featurizer (Figure 3(b)(3)) has been modified to more
effectively capture low-level information from sparsity patterns. Both the configuration mapper and
the input featurizer remain consistent across hardware platforms, serving as key components that
enable efficient knowledge transfer.

Configuration Mapper (FM). The configuration mapper captures homogeneity across hardware
platforms by processing program configurations (cj) and their parameters to identify similarities in
code optimizations across various platforms. We designed it to approximately map similar configu-
ration parameters across different hardware platforms (described in Section 3.3) to a unified feature
space. This is achieved by using explicit mapping functions. The resulting parameters are subse-
quently passed through a multi-layer perceptron (MLP) to produce the final configuration vector
pj . In this work, we approximate the code optimizations loop strip-mining and loop reordering as
pj = FM(ϕ(·), π(·), cj). using the mapping functions ϕ and π, as detailed in Section 3.3.

Input Featurizer (IFE). Matrices with identical dimensions and non-zero elements can exhibit
vastly different sparsity patterns, making it difficult to extract meaningful features based only on
statistical properties. Building on WACO’s input featurizer Won et al. (2023), we modify the net-
work architecture (Figure 3) to more effectively capture low-level information from sparsity patterns.
Our network consists of 12 SCNN layers (compared to 14 layers in WACO), arranged in 4 blocks,
each containing 3 sparse convolution layers. At the end of each block, we apply max pooling to
condense spatial information. We increase the number of channels across blocks up to 256, whereas
WACO kept them fixed at 32. These additional channels enables our design to capture hierarchical
features more effectively throughout the network compared to WACO. For a given sparse matrix M ,
our input featurizer generates a sparse feature vector sM , expressed as sM = IFE(M).

Latent Encoder (LE). We handle the heterogeneity of program configurations across hardware
platforms using per-target autoencoders that compress the heterogeneous components of the config-
urations into compact latent representations (described in Section 3.4). An autoencoder is trained
for each target–sparse primitive pair. During both training and inference, the latent encoder LE
processes a configuration (cj), transforming it into a latent representation zj = LE(cj), that encap-
sulates the unique characteristics of the program configuration.

Predictor (P). As the final component of the cost model, the predictor (Figure 3(b)(4)) integrates
the three feature vectors from the preceding components into a single unified vector, encapsulat-
ing all key information about the sparsity pattern and program configuration. This unified vector
(sM∥pj∥zj) is passed through a multi-layer perceptron (MLP) to eventually output a scalar value
representing the predicted execution cost, which can be expressed as r̂M,cj = P(pj∥sM∥zj).

3.3 EXPLOITING HOMOGENEITY: APPROXIMATE MAPPING OF CODE OPTIMIZATIONS

Different hardware platforms often use distinct programming systems, leading to variations in how
code optimizations are parameterized (Figure 1). Further, an optimization available in one platform
may not be directly available on another, requiring the combination of multiple other code optimiza-
tions to replicate the same impact. For example, loop strip-mining code optimization on CPUs can
be closely approximated by collectively applying barrier and tiling optimizations in SPADE. By
mapping the effects of these code optimizations using their program configuration parameters, we
can expose patterns that facilitate effective knowledge transfer across hardware platforms. In this
section, we present our approaches for approximately merging loop strip-mining, barrier, and tiling
optimizations between CPU and SPADE, and loop reordering optimization between CPU and GPU.
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Loop strip-mining is a code optimization that decomposes large software loops into smaller seg-
ments to optimize computations for memory utilization and cache performance. In our context, it
is applied to loops iterating over the indices i, j, and k of matrices in SpMM and SDDMM sparse
operations (Section 2.1), where parameters I , J , and K are used to split these loops into outer and
inner segments, resulting in a loop nest of six decomposed loops. The resulting loop segments are
{i1, i2, j1, j2, k1, k2} and their execution order is denoted by ω. In SPADE, we approximate this us-
ing barrier and tiling optimizations. Tiling decomposes a matrix into smaller blocks to optimize data
reuse in the local memory, while barrier controls the execution order of tiles. For example, enabling
barrier optimization pauses the tiles scheduled by a control processing element until all previous
tiles have been completed (Gerogiannis et al. (2023)). Similar to strip-mining parameters, the tiling
parameters for i, j, and k indices of matrices are represented in SPADE as pcol, prow, dsplit, respec-
tively, while barrier is represented by b, where b = 1 if barrier is enabled, and b = 0 otherwise.
Intuitively, tiling divides computations into smaller blocks, while barriers control synchronization
during execution. By enabling and disabling barriers for various tiling configurations, we can dictate
the order of computation. This resembles loop strip-mining and reordering in CPUs, where optimiz-
ing loop execution enhances performance and cache utilization. We can approximately map tiling
and barrier parameters to the corresponding strip-mining parameters using the mapping function
ϕ : {pcol, prow, ssplit, b} → {I, J,K, ω} as follows:

ϕ(pcol, prow, ssplit, b) = (I, J,K, ω)

I ≈ pcol, J ≈ prow, K ≈ ssplit; ω =

{
[k2, j2, i2, i1, j1, k1] if b = 1

[k2, i2, j2, i1, j1, k1] if b = 0

Loop reordering is a code optimization that adjusts the execution order ω of loops to improve cache
efficiency and facilitate parallel processing. It is often applied after loops are strip-mined. Here, we
examine how this can be approximated for both CPU (a1) and GPU (a3). In CPU, loop strip-mining
results in six decomposed loops {i1, i2, j1, j2, k1, k2}. Similarly, in GPU, loop strip-mining pro-
duces six loop segments, but the loop structure differs {i1, i2, j, k1, k2, k3} due to architectural
changes of the platform. We approximate them using Ω(·) function that determines the index of a
loop segment and a mapping function πai

: {i1, i2, . . . , k2, ωai
} → {i1, i2, . . . , k3, ω′

ai
} as follows:

πa1(i1, i2, j1, j2, k1, k2, ωa1) =
(
i1, i2, j1, j2, k1, k2, k3, ω

′
a1

)
; k3 = 1, Ωa1(k2)+1 = Ωa1(k3)

πa2(i1, i2, j, k1, k2, k3, ωa3) =
(
i1, i2, j, j

′
, k1, k2, k3, ω

′
a3

)
; j

′
= 1, Ωa3

(j) + 1 = Ωa3
(j

′
)

3.4 MITIGATING HETEROGENEITY: ENCODE HARDWARE-SPECIFIC CODE OPTIMIZATIONS

While we can use the strategies described in Section 3.3 to approximate code optimizations with ho-
mogeneity, such techniques are not applicable to hardware-specific code optimizations. An existing
approach for representing hardware-specific code optimizations across different hardware platforms
is to encode them using feature augmentation. However, this results in excessively sparse feature
vectors, as code optimizations that are not applicable to a selected hardware platform are zeroed out.
Training models on such sparse feature vectors often leads to sub-optimal performance (Figure 15).

To address this limitation, we propose indexing the parameters of the heterogeneous component
of the program configurations for each platform ai using low-dimensional latent representations.
Specifically, we train an autoencoder AEai

to learn a latent representation zj for each configuration
cj ∈ Cai

. This is accomplished by determining the value ranges for all parameters of the hetero-
geneous component in the program configurations, followed by training an autoencoder to learn an
unsupervised embedding of this parameterization. Once trained, we use the encoder LEai

in AEai
,

which takes each configuration (cj) as input and transforms it into its corresponding latent represen-
tation zj , where zj is a fixed-size vector. By compressing configurations from different hardware
platforms—each with varying parameters and ranges—into fixed-size vectors, we standardize the
input for hardware-specific optimizations into the cost model. This compression significantly sim-
plifies the model compared to feature augmentation, as the cost model now processes fewer input
features, reducing its computational complexity. Since the hardware-specific optimizations from
different hardware platforms are now represented in a unified latent feature space, it becomes fea-
sible to capture any similarities in how they impact performance, which can then be leveraged in
fine-tuning. Finally, this approach facilitates the seamless integration of emerging hardware plat-
forms into DASH, as we can extend DASH to support new target hardware platforms by training
new autoencoders and fine-tuning, eliminating the need to retrain the source model from scratch.
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4 EVALUATION

4.1 DATASET, TRAINING AND EVALUATION SETUP

Dataset. Our experiments were conducted using real-world sparse matrices sourced from the
SuiteSparse Matrix Collection (Davis & Hu (2011)). This dataset has been widely used in previ-
ous work (Hong et al. (2019); Jiang et al. (2020); Won et al. (2023)) and covers a broad spectrum
of domains, ensuring a realistic and comprehensive evaluation of DASH’s performance. To col-
lect the training dataset, we performed the sparse matrix operations SpMM and SDDMM on three
distinct hardware platforms: an Intel Xeon Gold 6348 CPU with 1TB of RAM, an NVIDIA A100
GPU paired with an Intel Xeon Platinum 8358, and SPADE, a simulated sparse accelerator with 32
processing elements operating at 0.8GHz.We gathered data samples using 1500 matrices for each
hardware platform to use for model training and validation. For each matrix, we randomly sampled
100 program configurations to have diverse and representative training datasets across all platforms.

Baselines and Implementation. We executed SpMM and SDDMM on CPU, GPU, and SPADE
using the respective programming systems introduced in Section 2.2. We used the default opti-
mizations of these programming systems as our baseline environment. We implemented DASH in
PyTorch, utilizing MinkowskiEngine (Choy et al. (2019)) to handle sparse convolution. Separate
models were developed for SpMM and SDDMM to conduct precise performance predictions.

Cost Model Evaluation. We evaluated DASH’s performance on 715 real-world matrices from the
SuiteSparse Matrix Collection, ensuring that none of the evaluation data samples overlapped with
the training set. For each matrix, we predicted the runtime cost across all program configurations
and selected the top-1 and top-5. For each of the top-1 and top-5, we executed the selected program
configurations on the target platform and identified the one with the shortest runtime. We then
compared our results to the normalized runtime of the baseline executions, WacoNet with feature
augmentation, and WacoNet with feature mapping by calculating the geometric mean (geomean)
speedups for each to quantify DASH’s overall effectiveness.
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Figure 4: Geomean speedups of DASH and other techniques, normalized to the baseline.

4.2 TRANSFERABILITY OF COST MODELS

Pre-training and Fine-tuning Procedure. We trained source models on CPU using data samples
from 100 matrices. The matrices were randomly selected from the training set while ensuring a
balanced representation of their dimensions and sparsity. We empirically demonstrate in Section 4.3
(Figure 11) that training the source model with 100 matrices struck an optimal balance. Once the
source model was trained, we performed few-shot fine-tuning on SPADE with only using data sam-
ples from 5 matrices. This decision was made to achieve the best trade-off between our objectives
for accuracy and data collection (detailed in Section 4.3 (Figure 12)). We chose to train the source
model on CPU since WacoNet was originally trained on it and it offers widespread accessibility.

Transferability to SPADE. Figure 15 illustrates the geomean speedups achieved using multiple
techniques: zero-shot inference from the source model (zero-shot), a model trained exclusively on
the target hardware using the fine-tuning dataset (no transfer), WacoNet with feature augmentation
(WACO+FA), WacoNet with feature mapping (WACO+FM), and DASH’s performance for both the
top-1 and top-5 (k-best) predicted program configurations. Our results show that DASH consistently
outperformed other techniques across both sparse operations and hardware platforms. Specifically
for SPADE, DASH (Top-1) achieved an average speedup of 1.40× for SpMM, reaching 90% of
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the optimal speedup of 1.55×. When expanding DASH (Top-5), it delivered an average speedup of
1.47×, achieving 95% of the optimal speedup. The optimal speedup was determined by running
all possible configurations for the evaluation matrices and selecting the fastest execution time for
each matrix. Similarly, for SDDMM in SPADE, DASH (Top-1) achieved an average speedup of
1.27× and DASH (Top-5) achieved an average speedup of 1.39×. This emphasizes DASH’s ability
to consistently find near-optimal program configurations with minimal fine-tuning across multiple
sparse operations. The speedup gained for zero-shot inference from the source model was signifi-
cantly lower than the baseline. In contrast, fine-tuning on a few data samples from SPADE led to
significant performance gains demonstrating DASH’s effectiveness in transferring knowledge.

Transferability to GPU. To further showcase DASH’s ability to transfer knowledge across different
hardware platforms, we extended our evaluation to GPU (Figure 15). The speedup trends on GPU
aligned with those observed on SPADE, reinforcing the effectiveness of DASH. DASH (Top-1)
delivered an average speedup of 1.03× and DASH (Top-5) yielded an average speedup of 1.17× for
SpMM, with the optimal achievable speedup being 1.25×. In comparison, cusparseSpMM achieved
a lower average speedup of 1.01×. For SDDMM, DASH (Top-1) resulted in an average speedup
of 1.07×, while DASH (Top-1) yielded a 1.15× speedup, with the optimal being 1.22×. Zero-shot
inference on the GPU was significantly worse compared to Zero-shot for SPADE, with speedups
falling well below the baseline. This discrepancy is likely due to the larger inherent architectural
differences between the CPU and GPU. Further, we evaluated the end-to-end performance impact
on GPU for graph convolutional networks. Our results had a 1.06× overall speedup over DGL when
training for 100 epochs with DASH (Top-1) on the Wiki-Talk matrix (∼2M rows) from the test set.

Comparison with Other Transfer Learning Techniques. For comparisons, we modified WacoNet
to support feature augmentation and feature mapping, as it is not inherently optimized for hetero-
geneous transfer. Despite these modifications, DASH consistently outperformed both. For SpMM
on SPADE, WACO+FA had an average speedup of 1.04×, while WACO+FM resulted in a slightly
higher average speedup of 1.09×. In comparison, DASH delivered an average speedup of 1.40×,
outperforming its closest alternative (WACO+FM) by 28.44%. The sub-optimal performance of
WACO+FA and WACO+FM can be attributed to the increased sparsity in the feature space due to
feature augmentation and their limited capacity to effectively mitigate the heterogeneity.
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Figure 5: DASH per-matrix speedups (SpMM).
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Figure 6: Loss and accuracy during training.

4.3 ADDITIONAL EXPERIMENTS AND ABLATION STUDIES FOR SPMM ON SPADE

Speedup Performance. Figure 5 shows the speedups achieved by DASH (Top-1) across all evalu-
ated matrices. Matrices where the baseline outperformed DASH are indicated below the y = 1 dotted
line. While the baseline outperformed DASH on a few matrices, the overall results demonstrate that
DASH delivered substantial speedups (as high as 5.46x) for the majority of the dataset.

Cost Model Accuracy. Figure 6 shows the accuracy of DASH’s cost model across training epochs
using Pairwise Ranking Loss (PRL), Ordered Pair Accuracy (OPA), and Kendall’s Tau (K-Tau).
The steady decline in PRL for both training and validation loss indicates that the model effectively
learns to rank program configurations without over-fitting. OPA and K-Tau demonstrated steady
improvement, reaching 0.80 and 0.61, respectively, indicating that the training process is effective.

Component-Level Contributions. The effectiveness of our cost model relies on the inclusion of
all components, each contributing uniquely to the overall performance. As illustrated in Figure 7,
the exclusion of individual components leads to a noticeable decline in speedups. For example,
excluding the input featurizer (IFE) causes a decline from 1.40x to 1.26x. Similarly, omitting the
configuration mapper (FM) leads to a further decline to 1.16x, and excluding latent encoder (LE)

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

1.0

1.2

1.4

1.6

Ge
om

ea
n 

Sp
ee

du
p

1.01

1.16

1.26

1.40

1.55

w/o LE
w/o FM
w/o IFE

DASH (Top-1)
Optimal

Figure 7: Ablation
study for SpMM.

1.2

1.3

1.4

1.5

1.6

Ge
om

ea
n 

Sp
ee

du
p

1.32 1.34 1.36
1.40

1.55

LSTM
GRU
TF

DASH (Top-1)
Optimal

Figure 8: Selection
of MLP predictor.

1.0

1.2

1.4

1.6

Ge
om

ea
n 

Sp
ee

du
p

1.01 1.04

1.31
1.40

1.55

VAE
FA
PCA

DASH (Top-1)
Optimal

Figure 9: Selection
of auto-encoders.

1.2

1.3

1.4

1.5

1.6
Ge

om
ea

n 
Sp

ee
du

p

1.29

1.38
1.43

1.40

1.55

NT 5
NT 100
NT 1000

DASH (Top-1)
Optimal

Figure 10: No
transfer learning.

1.0

1.2

1.4

1.6

Ge
om

ea
n 

Sp
ee

du
p

1.07

1.21

1.401.36

1.19

1.55

CPU 5
CPU 20
DASH (Top-1)

CPU 500
CPU 1000
Optimal

Figure 11: Impact
of negative transfer.

1.0

1.2

1.4

1.6

Ge
om

ea
n 

Sp
ee

du
p

1.00

1.401.411.421.43

1.55

Baseline
TL 5
TL 100

TL 1000
NTL 1000
Optimal

Figure 12: Impact
of number of sam-
ples in fine-tuning.

lowers speedup to 1.01x. This emphasizes that each component contributes
uniquely to the model’s high performance, and all need to act synergistically
to maximize the benefits of knowledge transfer.

Selection of MLP Predictor. As shown in Figure 3, the MLP predictor from
WACO’s base cost model was retained in our enhanced design. Figure 8 pro-
vides a comparative analysis of alternative predictors, including LSTM, GRU,
and Transformer (TF). The results demonstrate that our proposed cost model
design outperforms the alternatives, with the TF predictor achieving the next
best performance with 1.36× speedup. These findings highlight that an MLP
predictor is sufficient to deliver robust performance with limited data. In con-
trast, the suboptimal performance of the TF predictor can be attributed to the
limited dataset size, as the high simulation costs associated with emerging
hardware make it challenging to collect larger datasets for fine-tuning.

Selection of Auto-Encoders. Figure 9 shows our investigation into various
methods for handling the heterogeneous components of program configura-
tions. We evaluated choices ranging from conventional feature augmentation
(FA) to principal component analysis (PCA), auto-encoders, and variational
auto-encoders (VAE). Our findings reveal that auto-encoders were the most
effective for capturing heterogeneous optimizations in a latent space. This
was further supported by the smaller validation loss observed when training
the auto-encoder to learn these latent representations.

Data Collection Overhead w/o Transfer Learning. Figure 10 shows that
without transfer learning, the overhead of data collection becomes significant
on emerging hardware due to the high costs of running simulations. For ex-
ample, models trained exclusively on SPADE would require 20×–200× more
target data samples (collected using 100–1000 matrices) to match or surpass
the speedups achieved through DASH via transfer learning.

Impact of Negative Transfer. Figure 11 shows that using a large dataset to
train the source model (e.g., data samples from 1000 matrices) does not nec-
essarily lead to better outcomes. As the size of the training dataset increases,
the model becomes overly specialized to the source platform, diminishing its
adaptability during fine-tuning. For example, training on the CPU (source)
with data from 100 matrices and fine-tuning on SPADE (target) with data
from 5 matrices produces the best results. In contrast, training the source
model with data from 1,000 matrices yields sub-optimal performance. This
highlights the importance of balancing the source model’s training dataset to
avoid over-specialization and minimize the impact of negative transfer.

Number of Samples in Fine-Tuning. In Figure 12, we show DASH’s perfor-
mance as fine-tuning data samples increase. Despite fine-tuning on data from
1,000 matrices, the maximum speedup saturates at 1.42×. We can achieve a
comparable speedup of 1.40× with data from 5 matrices, which shows the
diminishing returns associated with larger datasets. Further, the non-transfer
learning setup achieved a marginally higher speedup of 1.43× when using
data from 1,000 matrices. However, considering the significant data collec-
tion overhead, these marginal improvements are not deemed beneficial.

5 CONCLUSION

In this paper, we introduced DASH, a novel framework to develop data-
efficient learned cost models to optimize sparse matrix computations for
emerging hardware platforms. DASH leverages a unique technique that cap-
italizes on the homogeneity of input features across different platforms while
effectively mitigating heterogeneity. This enables DASH to train cost models
using low-cost data samples from widely accessible general-purpose hard-
ware (such as CPUs) and then fine-tune them for emerging hardware plat-
forms with few-shot learning. Our results demonstrate that DASH is able to
achieve near-optimal accuracy while maintaining significant sample efficiency.
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A PROBLEM FORMULATION

In this work, our aim is to build accurate learned cost models for emerging hardware platforms
to enable faster identification of optimal program configurations. A key challenge is the need to
maximize the accuracy of the cost model (accuracy objective) while using as few expensive (i.e.
collected through simulation) data samples as possible (data collection objective). We first formalize
the program optimization objective and then tie it with the cost model objectives.

A.1 PROGRAM OPTIMIZATION SELECTION

The goal of program optimization in sparse matrix computations is to select the optimal program
configuration for a given hardware platform and input sparsity pattern from the total configuration
space. Let configuration space Ca be the set {c1, c2, . . . , cma

} of all valid program configurations
for a given hardware platform a (ma ∈ Z+). For example, for CPU, a valid configuration from
CCPU is a tuple of program configuration parameters for loop strip-mining, loop reordering, and
format reordering (Table 1). The optimal program configuration minimizes the execution time of a
sparse matrix computation. For an input sparse matrix (sparsity pattern) M , the optimal program
configuration on platform a can be given as, c∗ = argminci∈Ca Ta(M, ci), where Ta is the execu-
tion time function for platform a (ground truth runtime). The execution time for the optimal program
configuration is given by t∗ = Ta(Ml, c

∗).

A.2 COST MODEL PERFORMANCE AND DATA EFFICIENCY OBJECTIVES

We approximate the ground truth runtime Ta using learned cost models. Usually, these cost models
are trained with one objective: to achieve high accuracy. However, due to the high cost of simulation
in emerging hardware, we also want to minimize the amount of data samples required from these
platforms for model training. We formalize these two objectives as follows.

Data Collection Objective (DCE). Let Da = {(Ml, ci), ti | i ∈ ma , l ∈ Z+} be the dataset
collected from hardware platform a, and let βa represent the average cost of collecting a single data
sample from the platform. Our objective is to minDa

βa × |Da|.
Accuracy Objective. Let CMa (which approximates Ta) be the learned cost model trained on
dataset Da. If the best program configuration returned by the cost model (c∗CMa

) has an actual
execution time t∗CMa

, our objective is to min |t∗CMa
− t∗|, where t∗ is the execution time for the

optimal configuration. For a set of input sparse matrices {M1,M2, . . . ,Mk}, our objective can be
extended to minimizing the Absolute Percentage Error (APE) across all matrices:

APE =
1

k

k∑
l=1

|t∗CMa,Ml
− t∗Ml

|
t∗Ml

× 100

where t∗CMa,Ml
denotes the execution times for the predicted best program configuration for the

input sparse matrix Ml and t∗Ml
denote the optimal program configurations for the same matrix.

A.3 EVALUATIONS FOR COST MODEL OBJECTIVES

To evaluate the cost model objectives, we conducted the following experiments for SpMM on
SPADE. For simplicity in the calculations, we set βCPU = 1 and βSPADE = 1000. However, a
CPU execution typically takes milliseconds, while a SPADE execution can extend up to two weeks.
We explored 11 distinct models across four different categories, differentiated by the number of data
samples they were trained on, while the cost model architecture remained the same. Category I
consists of models (NT d) trained exclusively on data samples from d matrices executed on SPADE.
Category II includes transfer-learned models (TL d), which were pre-trained with data samples from
100 matrices on CPU (10,000 data samples) and then fine-tuned on SPADE with data samples from d
matrices. Category III consists of models (CPU d) pre-trained with varying numbers of data samples
from d matrices on CPU and then fine-tuned on data samples from 5 matrices on SPADE. Finally,
we did zero-shot inference (Zero-Shot) from a model pre-trained on CPU with data samples from
100 matrices without additional fine-tuning on SPADE.
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Models trained exclusively on SPADE data samples (NT d) generally exhibit increasing speedup and
decreasing APE as the number of SPADE data samples increases. For example, NT 1000, trained on
100,000 SPADE data samples, achieves the highest speedup of 1.43 and an APE of 7.06. However,
the data collection overhead for these models rises significantly with the number of SPADE samples,
making the use of them impractical due to the long simulation times. In contrast, the TL models,
which are pre-trained on CPU data and fine-tuned on SPADE samples, demonstrate an excellent
balance between speedup, APE, and DCE. TL 5 model, for instance, delivers a competitive speedup
of 1.40 and a low APE of 7.28, while maintaining an excellent DCE of 0.51.

Model Data Samples Dash (Top-1) Speedup APE DCE/106
CPU SPADE

NT 5 - 500 1.29 15.02 0.50
NT 100 - 10000 1.38 9.42 10.00
NT 1000 - 100000 1.43 7.06 100.00
TL 5 (CPU 100) 10000 500 1.40 9.58 0.51
TL 100 10000 10000 1.41 8.74 10.01
TL 1000 10000 100000 1.42 7.28 100.01
CPU 5 500 500 1.07 27.80 0.50
CPU 20 2000 500 1.21 19.35 0.50
CPU 500 50000 500 1.36 16.34 0.55
CPU 1000 100000 500 1.19 36.00 0.60
Zero-Shot (CPU) 10000 - 0.71 46.22 0.01

Table 2: Comparison of cost model performance with varying data samples from CPU and SPADE.

A.4 LEARNING OBJECTIVE

Our objective is to train a cost model that effectively learns to identify a program configuration
that minimizes the runtime of a sparse operation for a given sparsity pattern. To achieve this, we
begin by training our cost model to learn the relative rankings of program configurations during
execution, enabling it to accurately identify optimal configurations based on their performance. This
allows us to combine our cost model with a search technique to efficiently select the top-k (k-best)
program configurations from the configuration space. We use the pairwise ranking loss as our
learning objective (implemented using margin ranking loss) to rank program configurations based
on their true performance differences. For a given input matrix M , the pairwise ranking loss (L)
across all program configuration pairs can be defined as L =

∑
(c1,c2)

max(0, 1−(r̂M,c1 − r̂M,c2)) ·
δtrue; δtrue = sign(tM,c1−tM,c2) where r̂M,c1 and r̂M,c2 are the predicted scores for configurations
c1 and c2, respectively; tM,c1 and tM,c2 represent their actual runtimes; and δtrue signifies the true
performance difference where sign(x) returns 1 if x > 0, -1 if x < 0, and 0 if x = 0. This
ensures that the model is penalized when the predicted ranking does not align with the true ranking.
By minimizing this loss (L), DASH improves its ability to accurately rank and identify the top-k
program configurations. This also contributes to achieving our accuracy objective (Section A.2).

B CODE OPTIMIZATIONS ACROSS HARDWARE PLATFORMS

• Loop strip-mining: Breaks down large software loops into smaller segments to optimize
cache utilization.

• Loop reordering: Adjusts the execution order of loops to improve cache efficiency. Typi-
cally, it is applied after loop strip-mining.

• Format reordering: Reorganizes the data structure layout of sparsity patterns in memory to
optimize memory access patterns

• Parallelization: Distributes tensor computations across multiple threads or processors to
run tasks simultaneously.

• Loop binding: Assigns specific loop iterations to threads for parallel processing.
• Loop unrolling: Executes multiple iterations of a loop in a single iteration, reducing loop

control overhead and boosting execution speed.
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• Tiling: Decomposes a matrix into smaller blocks to optimize data reuse in the local memory
and improve cache efficiency.

• Barrier: Applying a barrier would ensure all threads finish processing their current tile
(synchronized) before progressing to the next stage.

• Cache bypassing: Capability of bypassing caches to to reduce cache pollution.
• Matrix reordering: Enhances data locality by reordering the input matrix.

C HYPERPARAMTERS

Table 3: Hyperparameters for model training/fine-tuning

Hyperparameter Value
Learning Rate 0.0001

Batch Size 32
Optimizer Adam

Number of Epochs 100
Loss Function MarginRankingLoss

Table 4: Composition of layers in the Input Featurizer (IFE)

Layer Description
Layer 1 MinkowskiConvolution (in channels, 32, kernel size=5)
Layer 2 MinkowskiConvolution (32, 32, kernel size=3)
Layer 3 MinkowskiConvolution (32, 64, kernel size=3) MinkowskiMaxPooling
Layer 4 MinkowskiConvolution (64, 64, kernel size=3)
Layer 5 MinkowskiConvolution (64, 64, kernel size=3)
Layer 6 MinkowskiConvolution (64, 128, kernel size=3) MinkowskiMaxPooling
Layer 7 MinkowskiConvolution (128, 128, kernel size=3)
Layer 8 MinkowskiConvolution (128, 128, kernel size=3)
Layer 9 MinkowskiConvolution (128, 256, kernel size=3)MinkowskiMaxPooling

Layer 10 MinkowskiConvolution (256, 256, kernel size=3)
Layer 11 MinkowskiConvolution (256, 256, kernel size=3)
Layer 12 MinkowskiConvolution (256, 256, kernel size=3)

Global Pooling Layer MinkowskiGlobalAvgPooling

Table 5: Composition of layers in the Predictor (P)

Component/Layer Input Size Output Size
Matrix Embedding (x) 128 128

Configuration Embedding (y) 53 64
Latent Embedding (z) 64 64
Concatenation (xyz) 128 + 64 192

Predictor Layer 1 192 128
Predictor Layer 2 128 64
Predictor Layer 3 64 1
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D ADDITIONAL RESULTS
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Figure 13: DASH (Top-5) per-matrix speedups (SpMM)
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Figure 14: DASH (Top-1) per-matrix speedups (SDDMM)
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Figure 15: DASH (Top-5) per-matrix speedups (SDDMM)
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