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ABSTRACT

Imbalanced data distributions are prevalent in real-world scenarios, presenting sig-
nificant challenges in both classification and regression tasks. This imbalance
often causes deep learning models to overfit in regions with abundant data (many-
shot regions) while underperforming in regions with sparse data (few-shot re-
gions). Such characteristics limit the applicability of deep learning models across
various domains, notably in healthcare, where rare cases often carry greater clini-
cal significance. While recent studies have highlighted the benefits of incorporat-
ing distributional information in imbalanced classification tasks, similar strategies
have been largely unexplored in imbalanced regression. To address this gap, we
propose Dist Loss, a novel loss function that integrates distributional informa-
tion into model training by jointly optimizing the distribution distance between
model predictions and target labels, alongside sample-wise prediction errors. This
dual-objective approach encourages the model to balance its predictions across
different label regions, leading to significant improvements in accuracy in few-
shot regions. We conduct extensive experiments across three datasets spanning
computer vision and healthcare: IMDB-WIKI-DIR, AgeDB-DIR, and ECG-K-
DIR. The results demonstrate that Dist Loss effectively mitigates the impact of
imbalanced data distributions, achieving state-of-the-art performance in few-shot
regions. Furthermore, Dist Loss is easy to integrate and complements exist-
ing methods. To facilitate further research, we provide our implementation at
https://github.com/Ngk03/DIR-Dist—-Loss.

1 INTRODUCTION

Imbalanced data distributions are prevalent in the real world, where certain target values are sig-
nificantly underrepresented Buda et al.| (2018); [Liu et al.| (2019). In imbalanced regression tasks,
deep learning models tend to bias their predictions toward regions with abundant data (many-shot
regions) to minimize overall error, resulting in significantly higher errors in sparse-data regions
(few-shot regions). This phenomenon severely limits the applicability of deep learning models in
certain contexts, such as healthcare scenarios where rare cases often carry significant importance,
and significant errors in these samples could lead to potential adverse events.

Taking the prediction of potassium concentration from electrocardiogram (ECG) signals as an ex-
ample, the model takes ECG signals as input and predicts the corresponding potassium concentra-
tion. Figure|[Ta|illustrates the distribution of potassium concentrations in a real-world dataset, where
the majority of samples fall within the normal range, while abnormal potassium concentrations (<
3.5 mmol/L or > 5.5 mmol/L) are rare and concentrated in the few-shot region. Due to this im-
balance, deep learning models tend to bias their predictions towards the normal range in order to
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Figure 1: A real-world healthcare task of potassium (K*) concentration regression from ECGs. (a)
Both hyperkalemia (high K™) and hypokalemia (low KT) are predominantly found in the few-shot
region, with normal KT are located in the many-shot region. Hyperkalemia and hypokalemia are
life-threatening conditions that can lead to cardiac arrest and ventricular fibrillation, necessitating
accurate and timely detection. Conversely, normal K+ concentrations (the many-shot region) are
of little concern, as inaccurate and untimely detection of these samples has minimal impact. Here,
we follow |Yang et al.| (2021) to define the few-, median-, many-shot regions. (b) illustrates the
significant distribution discrepancy between the vanilla model’s predictions and the labels, stemming
from the imbalanced data distribution. Here, the term “vanilla model” refers to a model that employs
no specialized techniques to address imbalanced data. The orange histogram represents the label
distribution, while the blue histogram depicts the prediction distribution from the vanilla model. It is
evident that the model’s predictions are heavily concentrated in the many-shot region and seldom fall
into the few-shot region. (c) demonstrates the effectiveness of Dist Loss in reducing the distribution
discrepancy. The orange histogram indicates the label distribution, and the blue histogram shows
the prediction distribution from the model enhanced with Dist Loss. It is clear that the distribution
discrepancy is significantly reduced.

minimize overall error (Figure [Ib). However, abnormal potassium concentrations can severely af-
fect metabolism and cardiac function, potentially leading to life-threatening arrhythmias or sudden
death |Ferreira et al.| (2020); (Crotti et al.| (2020); Kim et al.| (2023)). Therefore, in clinical settings,
accurately predicting abnormal potassium concentrations is far more critical than accurately identi-
fying normal levels |Galloway et al.| (2019); [Harmon et al.| (2024)), yet this remains a challenge for
existing deep learning models. Enhancing model accuracy in the few-shot region under imbalanced
data distributions continues to be both a significant challenge and an important goal Branco et al.
(2017); |Steininger et al.| (2021)).

In imbalanced regression tasks, a significant challenge lies in the substantial discrepancy between
the distribution of the model’s predictions and the true label distribution, as illustrated in Figure [Tb}
The orange histogram represents the ground truth, while the blue histogram depicts the distribu-
tion of predictions made by the vanilla model, which refers to a model trained without techniques
specifically designed to address data imbalance (using L1 loss here). It is evident that the model
predominantly predicts values within the many-shot region, with very few predictions falling within
the few-shot region. This discrepancy highlights a critical consequence of imbalanced data distribu-
tions: the misalignment between the model’s predictions and the target labels. While prior research
has focused on addressing the adverse effects of class imbalance in classification tasks by incorporat-
ing distributional information into the training process Feng et al.|(2018)); Zheng et al. (2020); Tian
et al.|(2020), similar strategies have been largely unexplored in imbalanced regression. Therefore, a
key research direction is to investigate whether leveraging distributional information can effectively
reduce prediction errors in the few-shot region by aligning the distribution of the model’s predictions
with the underlying label distribution.

Based on this concept, we propose Dist Loss, a novel loss function comprising two key compo-
nents: distribution alignment optimization, which minimizes the discrepancy between the model’s
prediction distribution and the label distribution, and sample-wise prediction optimization, which
ensures accurate predictions at the individual sample level. The distribution alignment optimization
is achieved through three steps: (1) Generating pseudo-labels: we apply kernel density estima-
tion (KDE) to the label set|Parzen|(1962)) to model the label distribution and sample pseudo-labels
that reflect this distribution; (2) Constructing pseudo-predictions: we sort the model’s predictions
to construct pseudo-predictions that represent the prediction distribution; (3) Measuring distribu-
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tion discrepancy: we approximate the discrepancy between the prediction and label distributions by
computing the distance between the pseudo-labels and pseudo-predictions. By jointly optimizing
distribution alignment and sample-wise prediction accuracy, Dist Loss mitigates errors in individual
predictions while ensuring that the model’s prediction distribution better conforms to the label distri-
bution. As shown in Figure|lc] this approach effectively addresses the distribution mismatch caused
by data imbalance and has been proven to improve prediction accuracy in the few-shot regions.

To validate the effectiveness of Dist Loss, we conduct comprehensive experiments on three datasets
spanning computer vision and healthcare: IMDB-WIKI-DIR, AgeDB-DIR, and our meticulously
curated ECG-K-DIR dataset. Our results demonstrate a substantial improvement in accuracy for
rare samples, leading to state-of-the-art (SOTA) performance. Furthermore, our experiments show
that Dist Loss is compatible with existing techniques, yielding further performance gains when
integrated.

In summary, the contributions of this paper are:

* We analyze the impact of imbalanced data distributions in regression from a distributional
perspective and introduce the concept of aligning the model’s prediction distribution with
the label distribution by leveraging distributional priors.

* We propose a differentiable approach for measuring distribution distance in regression
tasks, extending distribution alignment techniques from classification to regression.

* Extensive experiments on diverse datasets demonstrate the effectiveness of Dist Loss in
imbalanced regression, achieving SOTA performance in few-shot regions.

2 RELATED WORK

2.1 IMBALANCED CLASSIFICATION

Research on the problem of imbalanced classification mainly focuses on improving the loss function
to enhance the model’s ability to identify the minority class. Weighted cross entropy [King & Zeng
(2001) gives higher weights to minority class samples, allowing the model to pay more attention to
minority class samples when facing class imbalance. Focal loss [Lin| (2017)) reduces the influence
of the majority class by dynamically adjusting the weights in the loss function, further improving
the performance of the minority class. Combining data augmentation and resampling techniques
is also a common strategy. RUSBoost |Seiffert et al.| (2009) combines random undersampling and
boosting to reduce the majority class while maintaining the performance of the model. SMOTE
Chawla et al.| (2002)) further improves the classification results by expanding the minority class
data through synthetic samples. The combination of adversarial training and loss functions has
also gradually attracted attention, and adversarial reweighting Sagawa et al.| (2019) improves the
accuracy of minority classes.

2.2 IMBALANCED REGRESSION

Unlike classification tasks, where labels are discrete and bounded, regression tasks involve continu-
ous and unbounded labels, and the distances between labels carry meaningful semantic information.
These fundamental differences prevent methods designed for imbalanced classification from being
directly applied to imbalanced regression. Existing methods for addressing imbalanced regression
can be categorized into three levels: input, feature, and model output. At the input level, meth-
ods primarily focus on resampling the training dataset. SMOTE |Chawla et al.| (2002); Torgo et al.
(2013) and its variant SMOGN Branco et al.[(2017) generate new samples by interpolating between
minority samples and their nearest neighbors. Branco et al.| (2018)) further enhances this approach
by integrating a bagging-based ensemble method with SMOTE to mitigate the impact of imbalanced
data distributions. At the feature level,|Yang et al.|(2021) introduces feature distribution smoothing
(FDS), which transfers feature statistics between nearby target bins to smooth the feature space.
VIR |Wang & Wang| (2024) borrows data with similar regression labels to compute the variational
distribution of the latent representation. Ranksim|Gong et al.| (2022)) employs contrastive learning to
bring the feature representations of samples with similar labels closer while pushing apart those with
dissimilar labels. Similarly, ConR |[Keramati et al.|(2024) designs positive and negative sample pairs



Published as a conference paper at ICLR 2025

Empirical label distribution

Batch sampling

|

T KDE
Expected label frequency
Eabels distribution in a batch

1 ’

—————>  Pseudo-labels
e.g,[1,3,3,4,4,4,6] Labels

"ﬂlmnum

Q)eIOUID)

+ i a |
: ted fi b i !
bt - T . e.g., expected frequencies P H H i
. 2 . m | Significant 1 2 3 1] forthe labels[1, 3, 4, 6] Loss function: I()  _, T2 . owm _ Less
. . o ! discrepancy Optimization e s discrepancy
| eg,[5,2,6,3,2,7,1] _ H H i |
| |
e w ———
=]
S eg,[1,2,2,3,5,6,7] Predictions
Batch sampling —5 Sorted predictions
_ . (Pesudo-predictions)
Model predictions Corresponding model
predictions in a batch
Training set Batching Dist loss calculation Optimization objective

Figure 2: The presence of imbalanced data distributions introduces a noticeable distribution dis-
crepancy between the model’s predictions and labels. Dist Loss mitigates this imbalance by simul-
taneously minimizing this discrepancy and sample-wise prediction errors. Initially, KDE is applied
to estimate the label distribution and compute the expected frequency of each label within a batch,
thereby generating pseudo-labels that incorporate label distribution information. For example, given
the labels [1, 3, 4, 6] and their computed expected frequencies [1, 2, 3, 1], the resulting pseudo-
labels would be [1, 3, 3, 4, 4, 4, 6], where each label appears according to its expected frequency.
Subsequently, the model’s predictions within a batch are sorted to obtain an ordered sequence that
captures the prediction distribution. For instance, if the model’s initial predictions are [5, 2, 6, 3, 2,
7, 1], sorting them yields [1, 2, 2, 3, 5, 6, 7], preserving the distributional characteristics of the pre-
dictions. Measuring the distance between these pseudo-labels and pseudo-predictions, which both
encapsulate distribution information, provides an approximation of the distributional discrepancy.
By optimizing both the distribution distance and sample-level prediction errors during training, the
model effectively alleviates the adverse effects of imbalanced data, significantly enhancing accuracy,
particularly in few-shot regions.

based on label similarity, transferring label space relationships to the feature space in a contrastive
manner. At the model output and label level, regressor retraining (RRT) [Yang et al.| (2021)) decou-
ples the training of the encoder and regressor, retraining the regressor with inverse reweighting after
normal encoder training. DenseLoss [Steininger et al.[(2021]) and label distribution smoothing (LDS)
Yang et al.| (2021) measure label rarity through KDE, assigning higher weights to rare samples to
enhance the model’s focus on minority samples. Balanced MSE [Ren et al.| (2022) leverages the
training label distribution prior to restore balanced predictions.

However, existing research on imbalanced regression often overlooks the significant distribution
discrepancy between model predictions and labels, and distribution information, which has been
proven effective in imbalanced classification, is rarely utilized. In contrast, our approach intro-
duces distribution distance optimization on top of the traditional focus on sample-wise prediction
error. By concurrently aligning the prediction distribution with the label distribution and minimiz-
ing sample-level prediction errors, our method significantly improves accuracy in few-shot regions.
This enhancement is achieved without incurring additional computational costs or requiring metic-
ulous hyperparameter tuning. Extensive experiments demonstrate the superiority of our approach in
handling critical and informative rare samples in few-shot regions, achieving SOTA results.

3 METHOD

3.1 PROBLEM SETTING

Let D be a training dataset consisting of N samples, denoted as D = {(x(;y, ¥(s)) MY |, where X() €
R represents the input and Y(;) € R denotes the corresponding label. To facilitate processing, the
continuous label space ) is discretized into B bins of equal width, such that Y = Ule [Yb, Ybr1)
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where y; is the lower bound of bin b, and y; < y2 < --- < yp. In subsequent discussions,
for convenience, the lower bound y;, of the bin [y, y41) will represent any label value y(;) that
falls within that bin. The set of bins is denoted as B = {1,2,..., B}. In practical scenarios,
the width of each bin, denoted Ay, indicates the minimum resolution of interest when processing
the label space. For example, in age estimation, one might set the bin width to 1, resulting in
Ay = Y41 — Y = 1, Vb € B. Additionally, we define the probability of observing a label
y; as p;, and the probability distribution of labels can be estimated using KDE, which is a non-
parametric statistical method used to estimate the probability density function of a random variable
without assuming a specific distribution form. Notably, the discretization of the label space serves
to facilitate the use of label distribution information while preserving the regression nature of the
problem, rather than transforming it into a classification task. Since continuous probability density
functions are difficult to process directly, we discretize them into bins for practical computation and
estimation. This discretization applies to the entire label space, which includes all possible values,
not just those occurring in the training dataset.

3.2 Dist Loss

One of the optimization objectives of Dist Loss is to minimize the distance between the predic-
tion and label distributions in regression tasks. The core challenge lies in measuring the distance
between these two distributions in a differentiable manner. Traditional metrics for measuring dis-
tribution distance, such as Kullback-Leibler divergence and Jensen-Shannon divergence, cannot be
directly implemented in a differentiable form for regression tasks. Therefore, we have devised an al-
ternative approach in the implementation of Dist Loss to realize a differentiable distribution distance
measurement in regression scenarios. Specifically, we approximate the distance between the label
and prediction distributions by sampling from these distributions and quantifying the differences
between the sampled values to estimate the distance.

3.2.1 CALCULATION OF DIST LoOSS

As illustrated in Figure 2| we sample from the label and prediction distributions to generate pseudo-
labels and pseudo-predictions, which encapsulate the distribution information of the labels and pre-
dictions. Taking the generation of pseudo-labels as an example, we will now detail the process.

To generate pseudo-labels that contain label distribution information, we first randomly sample
M points from the label distribution, where M corresponds to the batch size during model train-
ing. The expected frequencies of the label y; can be estimated by multiplying the number of
sampling points M by the probability of that label p;. Based on this, we construct a sequence
Np = (n1,n2,--- ,np) to represent these expected frequencies, where n; = M - p;. Each el-
ement in the obtained N, represents the expected frequencies of the corresponding label. Since
these frequencies may be fractional, we need to convert them to integers while ensuring that
the sum after conversion still equals M. Here, we denote the converted integer sequence by
N = (n},nh, - ,n’z). To acquire Nz, we first take the floor of each element in N7, to obtain
the sequence Nz, = ([n1], [n2],---, [np]). Then we calculate the difference a, which represents
the difference between the sum of the original expected frequencies (/) and the sum after applying

the floor function, following a = M — Zil |n;]. Using the difference a, we construct an auxiliary
sequence A, which determines how to distribute the difference to the elements of N7, ; to ensure the
sum is M:

; (D

s a+1 - a

= 17 1f2§ LTJ OI‘Z>B—L§J
! 0, otherwise

Each n is determined by adding a; to the corresponding element in Ny, ., where nj = |n; | +a;, and

i € B. Finally, we generate the corresponding pseudo-labels Sy, based on the expected frequencies,

here each element S L; is represented as:

S forj=1,..., M, 2)

;= yarg IIliIlieB(z;;:l n 2])7
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Figure 3: To illustrate the core concept behind Dist Loss, the figure simplifies its computation by
assuming that the batch size equals the total number of training samples.

where 7 = 1, ..., M indexes the position in the sequence. To illustrate with a concrete example, con-
sider a label sequence (y1,y2,y3) = (4,5, 6) and an obtained frequency sequence N7, = (1,2, 3).
In this case, the generated pseudo-labels Sy, would be (y1,y2, Y2, ys, s, Y3 ), corresponding to the
sequence (4,5,5,6,6,6).

Similarly, we can perform M -point sampling on the prediction distribution and apply the same
procedure to obtain the pseudo-predictions Sp, which capture the characteristics of the prediction
distribution. However, in practice, this process can be simplified by sorting the model predictions
within a batch. It is worth noting that although pseudo-labels can also be generated by sorting the
labels within a batch, we choose not to adopt this approach here. Instead, we aim to better leverage
the full label distribution, as the batch serves merely as a sample. To explain why sorted sequences
capture distribution information, the pseudo-labels S, and pseudo-predictions Sp can be viewed as
one-dimensional representations of the label and prediction distributions, respectively (Figure [3).

By measuring the distance between the pseudo-predictions and pseudo-labels, we can approximate
the distance between their respective distributions. Let L(-) be a function that measures the distance
between two sequences; then, the distribution distance can be expressed as L(Sp, Sy,). Furthermore,
using the function L(-), we can simultaneously evaluate the sample-wise prediction errors, which
measure the discrepancy between individual predicted values and their corresponding ground truth
labels. Specifically, let Ypuen and }A/Lawh denote the sets of ground truth labels and model predictions
in a batch, respectively. The sample-wise prediction error can then be formulated as L (Yiach, Ybatch).
Ultimately, by jointly optimizing both the distributional distance and the sample-level prediction
errors during training, we can mitigate the issue of distribution mismatch without compromising
overall accuracy, thus addressing the challenges posed by imbalanced data distributions.

3.2.2 FAST DIFFERENTIABLE SORTING

As previously mentioned, the obtained pseudo-predictions are in ascending order, whereas the order
of the model’s actual predictions is random in practical scenarios. Therefore, it is necessary to
sort the model’s predictions to obtain the pseudo-predictions. Since the sorting operation is non-
differentiable, we employ a fast differentiable sorting algorithm Blondel et al.| (2020) to ensure the
differentiability of the entire computation process.

This method achieves the sorting operation by defining it as projections on permutation polytopes.
Specifically, for any given vector w € R™, we construct the permutation polytope P(w), which
represents the convex hull of all possible permutations of w, i.e.,

P(w) :=conv({w, : 0 € L}), 3)

where ¥ denotes all permutations of [n]. The sorting operation s(6) is defined as the solution to the
linear programming problem that maximizes the dot product with p (a strictly decreasing vector) on
P(0),ie.,

0) = . 4
s(0) argyrenlgug;)<y,p> “4)
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Figure 4: Overview of label distributions in the training sets for the IMDB-WIKI-DIR, AgeDB-DIR,
and ECG-K-DIR datasets. The classification of shot types for IMDB-WIKI-DIR and AgeDB-DIR

follows the definitions provided in (2021).

To ensure the differentiability of the sorting operation, a regularization term V¥ is introduced, trans-
forming the sorting operation into tractable projection problems:

. 1
Poew) =arg in, {5l ol + w0} ®

peP(w) | 2
where U is a strongly convex function, ensuring the differentiability of the problem. This approach
enables forward propagation with O(n log n) time complexity and backward propagation with O(n)
time complexity.

4 EXPERIMENTS

4.1 BENCHMARKS AND BASELINES

We evaluated our method on three datasets, focusing on tasks of age estimation and potassium
concentration prediction. The IMDI-WIKI-DIR dataset [Yang et al.| (2021)), derived from the IMDB-
WIKI dataset Rothe et al.| (2018), consists of 213,553 facial image pairs annotated with age infor-
mation. This dataset is partitioned into 191,509 samples for training, 11,022 for validation, and
11,022 for testing. The AgeDB-DIR dataset |Yang et al. (2021), derived from the AgeDB dataset
[Moschoglou et al.| (2017), comprises 16,488 facial image pairs with age annotations. It is divided
into 12,208 samples for training, 2,140 for validation, and 2,140 for testing. The ECG-K-DIR
dataset, sourced from the MIMIC-IV dataset|Johnson et al.[(2020), includes 375,745 pairs of single-
lead ECG signals paired with potassium concentration values. This dataset is divided into 365,549
samples for training, 5,098 for validation, and 5,098 for testing. All these datasets are character-
ized by imbalanced training sets and balanced validation and test sets. The label distributions of
these three datasets are shown in Figure[d Please refer to Appendix [A.T] and [A.2]for baseline and
implementation details.

4.2 EVALUATION METRICS

Following the evaluation metrics of [Yang et al.| (2021), we report the results for four shots: all,
many, median, and few, where all represents the entire dataset, and many/median/few correspond to
areas of high/medium/low sample density within the dataset. For the IMDB-WIKI-IR and AgeDB-
DIR datasets, we maintain consistency with previous studies, where few/median/many correspond
to areas with fewer than 20, between 20-100, and more than 100 samples, respectively. For the
ECG-K-DIR dataset, assuming that the maximum number of samples for a single label is ny,x, We
define areas with more than 0.5 nyax, between 0.15-0.5 npax, and fewer than 0.15 np,x samples
as many/median/few shots areas, respectively. For each dataset, we report the mean absolute error
(MAE) and the geometric mean (GM).

4.3 MAIN RESULTS

Table|[T] presents the results of baselines and our method in the few-shot region across three datasets,
along with a comparison of these results. For detailed results on each dataset, please refer to Ap-
pendix [A3] This table is divided into two sections. The first section displays the results of the
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Table 1: Results are presented for the few-shot region on the IMDB-WIKI-DIR, AgeDB-DIR, and
ECG-K-DIR datasets. The first section of the table reports the results of baselines and our method,
with the best results highlighted in bold and red. In the second section, improvements over corre-
sponding baselines are reported in bold and green, while decreases in performance are reported in
bold and blue.

MAE GM
IMDB-WIKI-DIR  AgeDB-DIR ECG-K-DIR IMDB-WIKI-DIR AgeDB-DIR ECG-K-DIR
Vanilla 26.930 12.894 1.771 21.254 9.789 1.578
+LDS 22.753 11.279 1.510 12.803 7.846 1.190
+ FDS 24.908 11.161 1.737 14.361 7.361 1.529
+ Ranksim 25.999 12.569 1.791 19.690 9.495 1.600
+ ConR 25.408 12.623 1.756 17.022 8.787 1.556
+ Balanced MSE 23.542 9.613 1.417 12.603 6.248 1.046
+ Dist Loss (Ours) 22.550 9.122 1.329 14.288 5.453 0.978
Ours vs. Vanilla +4.380 +3.772 +0.442 +6.966 +4.336 +0.600
Ours vs. LDS +0.203 +2.157 +0.181 -1.485 +2.393 +0.212
Ours vs. FDS +2.358 +2.039 + 0.408 +0.073 +1.908 +0.551
Ours vs. Ranksim +3.449 + 3.447 +0.462 +5.402 + 4.042 +0.622
Ours vs. ConR +2.858 +3.501 +0.427 +2.734 +3.334 +0.578
Ours vs. Balanced MSE +0.992 +0.491 +0.088 - 1.685 + 0.795 +0.068

Table 2: Results are presented for the few-shot region on the IMDB-WIKI-DIR, AgeDB-DIR, and
ECG-K-DIR datasets. Each section of the table reports the results of a baseline and the baseline
incorporating our method, with the better results highlighted in bold.

MAE GM
IMDB-WIKI-DIR  AgeDB-DIR ECG-K-DIR IMDB-WIKI-DIR AgeDB-DIR ECG-K-DIR
+LDS 22753 11.279 1.510 12.803 7.846 1.190
+ LDS + Dist Loss 22.331 10.437 1.325 13.021 7.051 0.957
+FDS 24.908 11.161 1.737 14.361 7.361 1.529
+ FDS + Dist Loss 24.112 10.444 1.428 14.929 6.696 1.099
+ Ranksim 25.999 12.569 1.791 19.690 9.495 1.600
+ Ranksim + Dist Loss 23.772 12.102 1.325 15.422 8.515 0.970
+ ConR 25.408 12.623 1.756 17.022 8.787 1.556
+ ConR + Dist Loss 22.700 12.303 1.336 14.713 9.123 0.987
+ Balanced MSE 23.542 9.613 1.417 12.603 6.248 1.046
+ Balanced MSE + Dist Loss 22.597 9.110 1.357 14.238 5.585 0.996

baselines and our method, with the best results highlighted in bold and red. The second section
shows the improvement of our method over each baseline, with green bold indicating superior per-
formance of our method and blue bold indicating otherwise. From the first section of the table, it is
evident that our method achieves the best results in five out of six metrics across the three datasets,
with SOTA performances of 22.550, 9.122, and 1.329 on the IMDB-WIKI-DIR, AgeDB-DIR, and
ECG-K-DIR datasets, respectively. The second section reveals that our method outperforms in 28
out of 30 metrics. Notably, compared to Balanced MSE, which also involves fine-tuning the linear
layers of a pre-trained model and employs data distribution priors, our method demonstrates superior
performance in the few-shot region, highlighting the effectiveness of our approach.

Table 2] further illustrates the complementary nature of our method with existing approaches. This
table is divided into five sections, each showcasing the results of one baseline and the combined
results with our method, with the best results within each section highlighted in bold and black.
From this table, it is shown that our method achieves better results in 26 out of 30 metrics. Taking
the MAE metric as an example, incorporating our method leads to improved performance in the
few-shot region across all three datasets, achieving the best results of 22.331, 9.110, and 1.325 on
the IMDB-WIKI-DIR, AgeDB-DIR, and ECG-K-DIR datasets, respectively. These experimental
results demonstrate a key advantage of our method, namely its ability to effectively complement
existing methods, thereby enhancing model performance in the few-shot region.
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Table 3: Time consumption (in seconds) of one training epoch for the IMDB-WIKI-DIR, AgeDB-
DIR, and ECG-K-DIR datasets, with batch sizes of 64, 64, and 256, respectively.

IMDB-WIKI-DIR  AgeDB-DIR ECG-K-DIR

Vanilla 399.8 31.8 94.6
+ LDS 401.2 314 104.0
+ FDS 567.5 43.6 155.1
+ Ranksim 512.6 40.2 135.1
+ ConR 1168.7 91.6 192.1
+ Balanced MSE 152.6 14.2 51.8
+ Dist Loss (Ours) 154.0 15.1 58.7

Table 4: Ablation study on loss functions measuring sequence difference. L; represents MAE Loss,
Ly represents MSE Loss, I NV — denotes the the version of these loss functions that are inverse
probability weighted. Results on the few-shot region are reported, with the best results in each
section are in bold.

MAE GM
IMDB-WIKI-DIR  AgeDB-DIR ECG-K-DIR IMDB-WIKI-DIR AgeDB-DIR ECG-K-DIR
Vanilla 26.930 12.894 1.771 21.254 9.789 1.578
+ Dist Loss {NV — Ly) 23.334 9.802 1.467 15.437 6.298 1.044
+ Dist Loss (INV — Ly) 22.516 9.122 1.329 13.752 5.453 0.978
+LDS 22.753 11.279 1.510 12.803 7.846 1.190
+ Dist Loss /NV — L) 22.178 9.872 1.413 11.334 6.109 0.984
+ Dist Loss (/NV — L») 22.331 10.437 1.325 13.021 7.051 0.957
+ FDS 24.908 11.161 1.737 14.361 7.361 1.529
+ Dist Loss /NV — L) 23.692 9.969 1.515 14.399 6.026 1.122
+ Dist Loss /NV — L») 24.112 10.444 1.428 14.929 6.696 1.099
+ Ranksim 25.999 12.569 1.791 19.690 9.495 1.600
+ Dist Loss {NV — L) 23.894 11.877 1.577 16.036 8.164 1.330
+ Dist Loss /NV — Ly) 23.772 12.102 1.325 15.422 8.515 0.970
+ ConR 25.408 12.623 1.756 17.022 8.787 1.556
+ Dist Loss /NV — L) 23.281 11.948 1.452 15.586 8.605 1.044
+ Dist Loss /NV — Ly) 22.700 12.303 1.336 14.713 9.123 0.987
+ Balanced MSE 23.542 9.613 1.417 12.603 6.248 1.046
+ Dist Loss /NV — Ly) 23.539 9.762 1.474 15.000 6.198 1.051
+ Dist Loss /NV — Ly) 22.597 9.110 1.357 14.238 5.585 0.996

4.4 TIME CONSUMPTION ANALYSIS

Table [3| presents the time required to train each method for one epoch on the IMDB-WIKI-DIR,
AgeDB-DIR, and ECG-K-DIR datasets, with all times reported in seconds. It can be observed
that Balanced MSE and Dist Loss have the shortest training times, attributed to their approach of
fine-tuning the model’s linear layers. The time consumption of LDS and the vanilla model are
largely consistent, as these methods only weight the loss function without significantly increasing
computational load. For methods operating at the feature level, including FDS, Ranksim, and ConR,
a notable increase in model training time is evident, due to the computational intensity associated
with feature-level operations.

4.5 ABLATIONS AND ANALYSIS
4.5.1 DIFFERENT LOSS FUNCTIONS FOR SEQUENCE DIFFERENCE MEASUREMENT

Dist Loss employs the loss function L(-) to measure the difference between two sequences. In
this ablation study, we demonstrate the effects of using different functions, including the inverse
probability weighted MAE and MSE losses. The experimental results are shown in Table @] with
detailed results on each dataset provided in Appendix [A.4.2] The table illustrates that Dist Loss
reliably improves model accuracy in the few-shot region.
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Table 5: Ablation study on batch sizes for Dist Loss. Results on the few-shot region are reported.

MAE GM
IMDB-WIKI-DIR  AgeDB-DIR

256  22.323 9.013 13.787 5.632
512 22516  9.122 13.752  5.453
768 22550  9.148 14.288 5.223

4.5.2 DIFFERENT BATCH SIZES FOR DISTRIBUTION DISTANCE APPROXIMATION

Dist Loss estimates the overall distribution distance between predictions and labels by measuring
batch-wise distances during training. This ablation study evaluates the sensitivity of model accuracy
to batch size, as detailed in Table E} We examined batch sizes of 256, 512, and 768, adopting
256 as a standard based on prior research [Yang et al.[(2021); |Gong et al.| (2022). The findings
show negligible variations in performance with different batch sizes. This could be attributed to the
fact that accurately reflecting the distribution information during sampling is more important than
requiring each value in the generated pseudo-sequence to be perfectly accurate, which in turn allows
for a smaller batch size.

4.5.3 DIST LOSS SURPASSES EXISTING METHODS IN THE MEDIAN-SHOT REGION

As depicted in the supplementary Tables[6] [7] and [§] within Appendix [A.3] Dist Loss delivers SOTA
results, excelling not only in few-shot regions but also in median-shot regions. In our compari-
son with current methods, Dist Loss achieved the lowest MAE and the second-lowest GM on the
IMDB-WIKI-DIR and AgeDB-DIR datasets, with scores of 12.614/7.686 and 7.315/4.563, respec-
tively. Similarly, on the ECG-K-DIR dataset, it secured the highest GM and the second-lowest MAE,
recording 0.445 and 0.674, respectively. Moreover, our experiments show that integrating Dist Loss
with existing methods consistently improved performance in median-shot regions when measured
by both MAE and GM, surpassing the results of using those methods alone on IMDB-WIKI-DIR
and AgeDB-DIR datasets. On the ECG-K-DIR dataset, this integration notably increased the GM.
In conclusion, these findings validate Dist Loss’s efficacy in enhancing model accuracy in both few-
shot and median-shot regions.

5 CONCLUSION

In this study, we address the significant escalation of prediction errors in few-shot regions, a preva-
lent challenge in imbalanced regression. By leveraging distribution priors, we introduce a novel
loss function, Dist Loss, designed to align the model’s prediction distribution with the label dis-
tribution throughout the training process. Our extensive experimental evaluation demonstrates that
Dist Loss effectively enhances prediction accuracy in few-shot regions, achieving state-of-the-art
performance. Furthermore, our results indicate that Dist Loss can be seamlessly integrated with
existing methods to further augment their efficacy. We hope our work underscores the critical role
of integrating distribution information in tackling deep imbalanced regression tasks.
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A APPENDIX

A.1 BASELINES

To ensure a fair comparison, we followed the experimental setup of |Yang et al.|(2021)) on the IMDB-
WIKI-DIR and AgeDB-DIR datasets, i.e., using ResNet-50 as the network architecture and train-
ing for 90 epochs. For the ECG-K-DIR dataset, we employed the ResNet variant Net1D |Hong
et al.| (2020) as the network architecture. Given that previous work |Yang et al.| (2021); Ren et al.
(2022); |Gong et al.| (2022); [Keramati et al.| (2024) has demonstrated superior performance over loss
reweighting and RRT in deep imbalanced regression tasks, we do not include these methods as
baselines in this paper. Instead, we focused on widely recognized approaches in the field: LDS,
FDS [Yang et al.| (2021)), Ranksim |Gong et al.| (2022), ConR [Keramati et al.[ (2024}, and Balanced
MSE Ren et al.|(2022)). LDS and FDS encourage local similarities in label and feature space, while
Ranksim and ConR leverage contrastive learning to translate label similarities into the feature space.
Balanced MSE, based on label distribution priors, restores a balanced distribution from an imbal-
anced dataset. Our experimental findings indicate that not only does our method achieve SOTA
performance in few-shot regions, but it also enhances existing methods, offering a complementary
strategy to boost their efficacy.

A.2 IMPLEMENTATION DETAILS

We trained all models on the IMDB-WIKI-DIR and AgeDB-DIR datasets using a single NVIDIA
GeForce RTX 3090 GPU and on the ECG-K-DIR dataset using a single NVIDIA GeForce RTX
4090 GPU. To ensure a fair comparison, we followed the training, validation, and test set divisions
from [Yang et al.| (2021) for the IMDB-WIKI-DIR and AgeDB datasets. During training with Dist
Loss, we used the same strategy as Balanced MSE, fine-tuning the linear layer based on pre-trained
model (vanilla model) parameters. This approach integrates our method with existing methods,
using their model parameters as the starting point for fine-tuning. Additionally, we used inverse
probability weighted MSE to measure sequence difference in Dist Loss for all datasets, setting the
distribution loss component weight to 1.

A.2.1 IMDB-WIKI-DIR

On the IMDB-WIKI-DIR dataset, we selected ResNet-50 as the network architecture. During train-
ing, the training epochs were set to 90, with an initial learning rate of 0.001, which was reduced to
1/10 of its value at the 60th and 80th epochs. We employed the Adam optimizer with a momentum
of 0.9 and a weight decay of 0.0001. For our method and Balanced MSE, we used a batch size
of 512. For the other baselines, we followed the experimental setups from their original papers. It
should be noted that the original training epochs for ConR was 120, which we adjusted to 90 in our
experiments to ensure a fair comparison.

A.2.2 AGEDB-DIR

On the AgeDB dataset, we employed ResNet-50 architecture for our model. The training consisted
of 90 epochs with an initial learning rate of 0.001, which was reduced to 1/10 of its original value
at the 60th and 80th epochs. We utilized the Adam optimizer with a momentum of 0.9 and a weight
decay of 0.0001. For our method and Balanced MSE, we used a batch size of 512. For the other
baselines, we followed the experimental configurations outlined in their respective original papers.
To ensure a fair comparison, we also set the training epochs for Ranksim and ConR to 90.

A.2.3 ECG-K-DIR

On the ECG-K-DIR dataset, we utilized the ResNet variant, Net1D Hong et al.| (2020), as our net-
work architecture. The training was set for 10 epochs with an initial learning rate of 0.001, which
was reduced to 1/10 of its initial value at the 5th and 8th epochs. We employed the Adam optimizer
with a momentum of 0.9 and a weight decay of 0.00001. A batch size of 512 was used for all meth-
ods. Additionally, for ConR, we constructed positive and negative sample pairs by adding Gaussian
noise.
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Table 6: Comprehensive results on the IMDB-WIKI-DIR dataset are presented. The table highlights
the best results in each section using bold font. Additionally, the best result in each column is
indicated in bold and red.

MAE GM
All Many Median Few All Many Median  Few
Vanilla 8.143 7.260 15.758 26930 4.642 4.211 11522 21.254
+ Dist Loss 8.028 7.461 12.614 22516 4.593 4335 7.686 13.752
+LDS 8.036 7.445 12.869 22.753 4.570 4.322 7528 12.803
+ Dist Loss 8.017 7.479 12304 22331 4593 4369 7.078  13.021
+FDS 7954 7.272 13523 24908 4.499 4192 8.633 14.361
+ Dist Loss 8.712 8.163 12979 24.112 5222 4995 7.575 14.929
+ Ranksim 7764 6956 14.606 25999 4371 3996 9.964 19.690
+ Dist Loss 7721 7.129 12401 23.772 4422 4183  7.091 15422
+ ConR 7.842 7.033 14772 25408 4.329 3951 10.250 17.022

+ Dist Loss 7.957 7355 12906 22.700 4529 4244 8.131 14.713

Balanced MSE  8.033 7.441 12.768 23.542 4716 4.450 8.035  12.603
+ Dist Loss 8.075 7.511 12.625 22.597 4.616 4.354 7.754 14.238

Table 7: Comprehensive results on the AgeDB-DIR dataset are presented. The table highlights the
best results in each section using bold font. Additionally, the best result in each column is indicated
in bold and red.

MAE GM
All Many Median  Few All Many Median Few
Vanilla 7506 6.558 8.794 12.894 4798 4.176 5957 9.789
+ Dist Loss 7.637 7574 7315  9.122 4756 4.745 4563  5.453
+LDS 7.783 7.070 8957 11.279 5.088 4.599 6.142 7.846
+ Dist Loss 7.810 7.341 8.464 10437 5.043 4752 5474 17.051
+ FDS 7.818 7.103  9.051 11.161 4961 4.487 6.064 7.361
+ Dist Loss 7799 7351 8374 10444 4.863 4.615 5181  6.696
+ Ranksim 7272 6.363 8458 12569 4.617 3.939 6.120 9.495
+ Dist Loss 7.234 6506  7.960 12.102 4.629 4.097 5.637 8.515
+ ConR 7.322 6429 8456 12.623 4.646 4.052 5.890 8.787

+ Dist Loss 7383 6572 8373 12303 4.657 4.112 5591 9.123

Balanced MSE  7.663 7.540  7.353 9.613 4.658 4.558 4511 6.248
+ Dist Loss 7.633 7.578  7.288 9.110 4718 4.698 4505 5.585

Table 8: Comprehensive results on the ECG-K-DIR dataset are presented. The table highlights the
best results in each section using bold font. Additionally, the best result in each column is indicated
in bold and red.

MAE GM

All' Many Median  Few All Many Median Few
Vanilla 1235 0.274  0.685 1771 0.835 0193 0.622 1578
+ Dist Loss 1.044 0.606  0.674 1.329 0.692 0403 0.445 0.978
+LDS 1.092  0.368  0.638 1.510 0.708 0.236  0.500  1.190
+ Dist Loss 1.031 0557 0.671 1.325 0.671 0.363 0455  0.957
+FDS 1.223 0317 0.681 1.737 0.828 0.201 0.588  1.529
+ Dist Loss 1.095 0.557 0.688 1.428 0.744 0375 0490 1.099
+ Ranksim 1.249 0.275  0.696 1.791  0.841 0.190 0.629  1.600
+ Dist Loss 1.040 0.587  0.683 1.325 0.692 0381 0.487 0.970
+ ConR 1.227 0277  0.690 1.756  0.824 0.189  0.620  1.556

+ Dist Loss 1.045 0581 0.684 11.336 0.696 0.376 0.480  0.987

Balanced MSE  1.106  0.606  0.727 1417 0.722 0383 0475 1.046
+ Dist Loss 1.046 0.553  0.658 1357 0.685 0.358 0.454 0.996
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Table 9: Ablation study examining the impact of batch size on model performance across the IMDB-
WIKI-DIR and AgeDB-DIR datasets.

MAE GM
All' Many Median  Few All Many Median  Few

256 8.072 7514 12591 22323 4.603 4340 7.808  13.787
IMDB-WIKI-DIR 512 8.028 7.461 12.614 22516 4.593 4335 7.686 13.752
768 7989 7413 12.663 22550 4.572 4308 7.763  14.288

256 7.668 7.638  7.281 9.013 4741 4768  4.370 5.632
AgeDB-DIR 512 7.637 7.574 7315 9.122 4756 4745  4.563 5.453
768 7.545 7.607  7.260 9.148 4723 4746 4483 5.223

Dataset Batch size

A.3 COMPREHENSIVE EXPERIMENTAL RESULTS

Tables [6] [7] and [8] present a comprehensive overview of our experimental results on the IMDB-
WIKI-DIR, AgeDB-DIR, and ECG-K-DIR datasets. The results indicate that our method achieves
improvements in model performance on median-shot and few-shot regions without compromising
overall error rates. This further demonstrates the effectiveness of our method in sparse data regions.

A.4 ABLATIONS AND ANALYSIS

A.4.1 DIFFERENT BATCH SIZES FOR DISTRIBUTION DISTANCE APPROXIMATION

Table [9]illustrates the impact of varying batch sizes on the final performance across IMDB-WIKI-
DIR and AgeDB-DIR datasets. The results indicate that there is no significant difference in perfor-
mance among different batch sizes. This observation suggests that the generation of pseudo-labels
primarily requires an approximation of the distribution information, rather than the precise accuracy
of every individual label value.

A.4.2 DIFFERENT LOSS FUNCTIONS FOR SEQUENCE DIFFERENCE MEASUREMENT.

Tables [I0] [TT] and [I2] present the comprehensive results of using different loss functions on IMDB-
WIKI-DIR, AgeDB-DIR, and ECG-K-DIR, respectively. It is evident that existing methods, when
augmented with Dist Loss, demonstrate superior performance on samples within few-shot regions.

A.4.3 PERFORMANCE OF DIST LOSS ACROSS DIFFERENT IMBALANCED RATIOS

We validated the effectiveness of Dist Loss by varying the imbalance ratios of the ECG-K-DIR
dataset. The data distribution diagrams are shown in Figure[5] and the corresponding results in the
few-shot regions are presented in Table[I3] Across eight datasets with different imbalance ratios, our
method achieved the best performance in six cases and the second-best performance in the remaining
two. These results collectively demonstrate the robustness of our approach across varying levels of
data imbalance.

A.5 PERFORMANCE OF DIST LOSS ON THE GM METRIC

We observed that on the IMDB-WIKI-DIR dataset, the performance of Dist Loss in the few-shot
region, as measured by the GM metric, is inferior to that of Balanced MSE. To provide a more
intuitive analysis of this phenomenon, we plotted the sorted error distribution curves for both
Dist Loss and Balanced MSE in the few-shot region, as shown in Figure [6] Specifically, for each
method, the error values were first sorted in ascending order. The x-axis represents the rank of
these sorted errors, while the y-axis denotes the corresponding error magnitudes. This visualization
facilitates a direct comparison of the error distributions between the two methods.

From the plot, it is evident that Dist Loss generally exhibits superior performance compared to Bal-
anced MSE, as indicated by its curve lying below or aligning with the curve for Balanced MSE.
However, a localized discrepancy is observed around the x-axis values of approximately 5 and 30,
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Table 10: An ablation study on loss functions on the IMDB-WIKI-DIR dataset. L; represents MAE
Loss, Lo represents MSE Loss, I NV — denotes the probability-based inversely weighted version of
these loss functions. Results on the few-shot region are reported.

MAE GM
All Many Median Few All Many Median Few
Vanilla 8.143 7.260 15.758 26930 4.642 4211 11.522 21.254

+Dist Loss {NV — Ly) 7.807 7.210 12.608 23.334 4458 4.189  7.717  15.437
+Dist Loss {NV — Lg) 8.028 7.461 12.614 22516 4.593 4335 7.686 13.752

+LDS 8.036 7.445 12.869 22753 4570 4322 7528  12.803
+ Dist Loss {NV — L;) 8.054 7.545 12.030 22.178 4.678 4486 6.717 11.334
+ Dist Loss {NV — Ly) 8.017 7.479 12304 22331 4593 4369 7.078 13.021

+ FDS 7954 7272 13.523 24908 4499 4.192 8.633 14.361
+Dist Loss {NV — L;) 7986 7.413 12486 23.692 4.530 4315 6.793 14.399
+Dist Loss {NV — Lg) 8.712 8.163 12979 24.112 5222 4995 7.575 14.929

+ Ranksim 7.764 6956 14.606 25999 4371 3996 9.964 19.690
+ Dist Loss {NV — L;) 7.501 6.888 12372 23.894 4.150 3910 7.035 16.036
+DistLoss UNV — Lg) 7.721 7.129 12401 23.772 4422 4183 7.091 15422

+ ConR 7.842 7.033 14772 25408 4.329 3.951 10.25  17.022
+Dist Loss {NV — L;) 7.538 6.924 12499 23281 4.169 3.893 7.643 15.586
+ Dist Loss {NV — Ly) 7.957 7355 12906 22700 4.529 4244  8.131 14.713

+ Balanced MSE 8.033 7.441 12.768 23542 4716 4450 8.035 12.603
+Dist Loss {NV — Ly) 7.788 7.175 12.732 23.539 4460 4.182 7.900  15.000
+ Dist Loss {NV — Lg) 8.075 7.511 12.625 22.597 4.616 4354 7.754 14.238

Table 11: An ablation study on loss functions on the AgeDB-DIR dataset. L represents MAE Loss,
L, represents MSE Loss, I NV — denotes the probability-based inversely weighted version of these
loss functions. Results on the few-shot region are reported.

MAE GM
All  Many Median  Few All Many Median Few
Vanilla 7.506 6.558  8.794  12.894 4.798 4.176 5957  9.789

+ Dist Loss {NV — Ly) 7.552 7.282  7.660 9.802 4700 4528 4.800 6.298
+ Dist Loss {NV — Ly) 7.637 7574 7.315 9.122 4756 4745 4563 5453

+LDS 7.783 7.070 8957 11.279 5.088 4599 6.142 7.846
+ Dist Loss {NV — L;) 7.885 7.635  8.020 9.872 5.082 4964 5.151 6.109
+ Dist Loss INV — Ly) 7.810 7.341 8.464 10437 5.043 4752 5474 7.051

+ FDS 7.818 7.103  9.051 11.161 4.961 4487 6.064 7.361
+ Dist Loss {NV — Ly) 7911 7.665 8.010 9.969 5.010 4933 4941 6.026
+ Dist Loss {NV — Lg) 7.799 7.351 8374 10444 4863 4.615 5.181 6.696

+ Ranksim 7272 6363 8458 12569 4.617 3939  6.120 9.495
+ Dist Loss {NV — Ly) 7.239 6.605 7.727 11.877 4.635 4.194 5311 8.164
+ Dist Loss INV — L) 7.234 6.506 7.960 12.102 4.629 4.097 5.637 8.515

+ ConR 7322 6.429 8456 12.623 4.646 4.052 5.890 8.787
+DistLoss {NV — Ly) 7398 6.683 8.194 11.948 4709 4208 5560 8.605
+ Dist Loss INV — Lp) 7.383 6.572 8373 12303 4.657 4.112 5591  9.123

+ Balanced MSE 7.663 7.540  7.353 9.613 4.658 4.558 4511  6.248
+ Dist Loss {NV — Ly) 7.537 7.300  7.540 9.762 4751 4.623 4737  6.198
+ Dist Loss {NV — L) 7.633 7.578  7.288 9.110 4718 4.698 4505 5585
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Table 12: An ablation study on loss functions on the ECG-K-DIR dataset. L; represents MAE Loss,
Ly represents MSE Loss, I NV — denotes the probability-based inversely weighted version of these
loss functions. Results on the few-shot region are reported.

MAE GM
All Many Median Few All Many Median Few
Vanilla 1.235 0274 0685 1.771 0.835 0.193 0.622 1.578

+ DistLoss {NV — L;) 1.088 0.458 0.648 1.467 0.680 0.300 0463 1.044
+ Dist Loss {NV — Ly) 1.044 0.606 0.674 1329 0.692 0.403 0445 0.978

+ LDS 1.092 0368 0.638 1510 0.708 0.236 0.500 1.190
+ Dist Loss {NV — L;) 1.059 0463 0655 1413 0.647 0291 0445 0.984
+ Dist Loss /{NV — Lp) 1.031 0557 0.671 1325 0.671 0363 0455 0.957

+ FDS 1223 0317 0.681 1.737 0.828 0.201  0.588  1.529
+ Dist Loss {NV — L;) 1.133 0497 0.692 1515 0.725 0324 0477 1.122
+ Dist Loss {NV — Ly) 1.095 0.557 0.688 1428 0.744 0375 0490 1.099

+ Ranksim 1249 0275 069 1.791 0.818 0.215 0.566  1.510
+ DistLoss {NV — L;) 1.139 0394 0649 1577 0.712 0317 0472  1.099
+ Dist Loss {NV — Ly) 1.040 0.587 0.683 1.325 0.723 0400 0479 1.031

+ ConR 1.227 0.277 0.69 1.756  0.841 0.190 0.629  1.600
+ DistLoss {NV — L;) 1.085 0484 0651 1452 0.780 0.272 0.503 1.330
+ DistLoss {NV — Ly) 1.045 0.581 0.684 1.336 0.692 0381 0486 0.970

+ Balanced MSE 1.106 0.606  0.727 1417 0.824 0.189 0.620 1.556
+ Dist Loss {NV — L;) 1.092 0.457 0.65 1474 0.678 0307 0443 1.044
+ Dist Loss {NV — Ly) 1.046 0553  0.658 1357 0.696 0.376 0480  0.987

Table 13: Performance of Dist Loss in the few-shot regions across eight datasets derived from the
ECG-K-DIR dataset with varying imbalance ratios, with the best results highlighted in bold.

MAE

Methods Dataset 0 Dataset 1 Dataset2 Dataset3 Dataset4 Dataset5 Dataset6 Dataset 7
Vanilla 2.701 2.676 2.658 1.979 2.679 2.647 2.624 1.888
LDS 2.684 2.703 2.642 1.962 2.672 2.507 2.644 1.901
FDS 1.865 2.368 2.191 1.790 2.223 2.625 1.908 1.665
Ranksim 2.470 2.327 2.273 1.831 2.314 2.192 2.258 1.725
ConR 2.461 2.343 2.308 1.828 2.193 2.274 2.255 1.742
Balanced MSE 1.997 1.984 1.981 1.831 1.906 1.863 1.815 1.708
Dist Loss 1.955 1.873 1.963 1.822 1.852 1.803 1.730 1.638

Distribution of K* concentration (Dataset 1) Distribution of K* concentration (Dataset 2)  Distribution of K* concentration (Dataset 3. D n of K* (Dataset 4)

Frequency

Frequency
Frequency
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25 35 45 55
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Figure 5: Data distribution diagrams for the eight datasets derived from the ECG-K-DIR dataset
with varying imbalance ratios.
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Figure 6: Sorted error distribution curves for Dist Loss and Balanced MSE in the few-shot region
on the IMDB-WIKI-DIR dataset.

where the errors of Dist Loss slightly exceed those of Balanced MSE. We hypothesize that this lo-
calized discrepancy may contribute to the overall inferior performance of Dist Loss in terms of the
GM metric, owing to the cuamulative multiplicative effect intrinsic to its calculation. Unlike MAE,
which averages error values, the GM metric calculates the geometric mean by multiplying error val-
ues together. This process significantly amplifies the impact of small but frequent errors. For exam-
ple, consider two error distributions: (40,10.1,10.1,10.1,10.1,10.1) and (42, 10, 10, 10, 10, 10).
While the former achieves a lower MAE than the latter, its GM metric value is higher due to the
cumulative effect, as 40 x 1.015 > 42 x 10°. This example underscores how the GM metric can
magnify the influence of small deviations when they occur frequently.

In conclusion, the sorted error distribution curves demonstrate that Dist Loss consistently achieves
better or comparable performance relative to Balanced MSE, except for minor localized discrepan-
cies. These results suggest that the unique characteristics of the GM metric are the primary factors
contributing to the observed differences in performance between the two methods.

A.5.1 PERFORMANCE VISUALIZATION OF DIST LOSS

Figure [/] illustrates the performance comparison of three methods—vanilla model, LDS, and Dist
Loss—on the IMDB-WIKI-DIR, AgeDB-DIR, and ECG-K-DIR datasets. As observed, Dist Loss
achieves predictions that are systematically closer to the diagonal line (y = «, where the predicted
values align with the ground truth values) across all datasets, indicating improved accuracy. The task
on the ECG-K-DIR dataset, which involves estimating blood potassium concentration from single-
lead ECG signals, is particularly challenging due to the inherently limited information provided by
single-lead ECGs. This limitation exacerbates the regression dilution phenomenon, leading to larger
deviations from the diagonal across all methods. Despite this difficulty, Dist Loss demonstrates
superior performance, underscoring its robustness and effectiveness in addressing regression tasks
with imbalanced and noisy data.
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(a) Scatter plots on the IMDB-WIKI-DIR dataset: vanilla (left), LDS (middle), Dist Loss (right).
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(b) Scatter plots on the AgeDB-DIR dataset: vanilla (left), LDS (middle), Dist Loss (right).

100 100
” ---- Identical Line ”
g 80 E 80
© ©
> 60 > 60
° °
2 2
g 40 T 40
3 3
a 20 & 20
0 - 0
0 20 40 60 80 100
Label Values
Vanilla Model
100 100
” ---- Identical Line . ! - ”
g 80 E 80
(] ©
> 60 > 60
k-] k]
Q Q
S 40 S 40
3 3
& 20 & 20
0 - 0
0 20 40 60 80 100
Label Values
Vanilla Model
8 ' ———- Identical Line ,—"/ 8
@ @
(D Q
=2 =
£6 £6
° °
Q Q
i3] 3] 4
g4 £
& &
a ¥
2 2
2 3 4 5 6 7 8
Label Values

LDS
---- Identical Line 0 8
i st g < 6
L 'Imm“ﬁ " ”,vl"i;:;;x %
||||i||||[|jltmu1. () hlvl. W 2.
it SR A £
‘/”/ 2
2 3 4 5 6 7 8
Label Values

Dist Loss

---- Identical Line

Label Values

(c) Scatter plots on the ECG-K-DIR dataset: vanilla (left), LDS (middle), Dist Loss (right).

Figure 7: Performance visualization of vanilla, LDS, and Dist Loss
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