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ABSTRACT

Understanding the internal representations of large language models is crucial
for ensuring their reliability and enabling targeted interventions, with sparse au-
toencoders (SAEs) emerging as a promising approach for decomposing neural
activations into interpretable features. A key challenge in SAE development is
feature absorption, where features stop firing independently and are “absorbed” into
each other to minimize L1 penalty. We address this through Orthogonal SAE, which
introduces sparsity-guided orthogonality constraints that dynamically identify and
disentangle competing features through a principled three-phase curriculum. Our
approach achieves state-of-the-art results on the Gemma-2-2B language model
for feature absorption while maintaining strong reconstruction quality and model
preservation on downstream tasks. These results demonstrate that orthogonality
constraints and competition-aware training can effectively balance the competing
objectives of feature interpretability and model fidelity, enabling more reliable
analysis of neural network representations.

1 INTRODUCTION

Recent work has demonstrated the potential of sparse autoencoders (SAEs) for decomposing neural
network activations into interpretable features (Cunningham et al., 2023; Gao et al., 2024), building
on foundational work in sparse coding and dictionary learning (Olshausen & Field, 1996a;b; Lee
& Seung, 1999). These interpretable representations are crucial for understanding and controlling
large language models, enabling targeted interventions like knowledge editing and concept removal
(Farrell et al., 2024).

A fundamental challenge in SAE development is feature absorption, where a feature/neuron “absorbs”
other feature(s)/neuron(s) it implies to minimize the L1 loss. For instance, since “pig” implies
“mammal”, instead of letting both fire when the underlying token is <pig>, the neuron “pig” can
simply add the activation vector of “mammal” to its own to avoid needing neuron “mammal” to fire
altogether (Chanin et al., 2024). While recent SAE architectures like TopK (Gao et al., 2024) and
JumpReLU (Rajamanoharan et al., 2024) have improved reconstruction quality, they do not directly
address feature absorption problem, leading to deteriorated interpretability.

We introduce Orthogonal SAE, which leverages sparsity-guided orthogonality constraints (Massart,
2022) to identify and disentangle competing features. Our key insight is that feature competition can
be measured through activation patterns, allowing targeted application of orthogonality penalties to
features that frequently co-activate. This selective approach maintains reconstruction fidelity while
promoting feature specialization through a three-phase curriculum:

• Initial reconstruction phase to establish basic feature structure
• Gradual introduction of sparsity (λs) to promote activation sparsity
• Dynamic orthogonality constraints with competition-aware thresholds

Our main contributions are:

• A competition-aware orthogonality mechanism that significantly reduces feature absorption.
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• A curriculum learning strategy that maintains strong reconstruction (mean squared error)
and model preservation (KL divergence).

• Analysis of feature competition dynamics and their impact on interpretability through sparse
probing tasks on multiple datasets.

Evaluating on Gemma-2-2B (Team et al., 2024), we demonstrate that Orthogonal SAE achieves state-
of-the-art results across multiple metrics while maintaining architectural simplicity. The improved
feature separation enables more reliable model interventions (Li et al., 2024) and interpretability
analysis (Gurnee et al., 2023). These advances suggest that competition-aware training represents a
promising direction for developing more reliable and actionable model interpretation tools.



















































































i.e. when the word starts with E we get     

and when it’s an elephant we get 

+

 

= B has less L1 loss than C, •
thus L1 loss pushes A to B

“starts with E” 

“starts with E” 

What we want to learn:

“elephant” 

“elephant” 

“starts with E” feature was learned first as it is 
more common

During training:

A

B C

C has less orthogonal loss (ours) than B, •
thus orthogonal loss pushes A to C

Figure 1: Visualization of the problem of feature absorption and how Orthogonal SAE mitigates
it. The left panel represents the target scenario where the SAE learns two features in two neurons:
“starts with E” and “elephant”. When the underlying token is <elephant>, both neurons should light
up. The right panel depicts what takes place during the actual training process—“starts with E” was
acquired first as it is more common than any other features that start with ‘E’ (scenario A). As training
continues, for any SAE that uses L1, the L1 term will push towards B rather than C (desired) as B
has a lower L1. Although this increases sparsity, it diminishes interpretability since the “starts with E”
feature no longer activates independently as only “elephant” feature will fire for token <elephant>.
However, by definition, when features are “absorbed” (like in B), they have a higher orthogonal loss
(ours) compared to no absorption (like in C). Thus, orthogonal loss mitigates this problem by pushing
A towards C instead of B.

2 BACKGROUND

Sparse autoencoders (SAEs) build on classical work in sparse coding (Olshausen & Field, 1996a;
Mallat & Zhang, 1993) to decompose neural network representations into interpretable features
(Cunningham et al., 2023). By learning overcomplete dictionaries (k > d features) with sparsity
constraints (Olshausen & Field, 1996b), SAEs identify specialized features in language model
activations. Recent architectures like TopK (Gao et al., 2024) and JumpReLU (Rajamanoharan et al.,
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2024) have improved reconstruction fidelity but struggle with feature absorption, where features fail
to activate appropriately (Chanin et al., 2024).

2.1 PROBLEM SETTING

Given activation vectors x ∈ Rd from a pre-trained language model layer, an SAE learns:

• An encoder E : Rd → Rk with k > d features
• A decoder D : Rk → Rd that reconstructs the input

The forward pass computes:

f = E(x) = σ(Wex+ be), x̂ = D(f) = Wdf + bd (1)

where We ∈ Rk×d, Wd ∈ Rd×k are weights, be,bd are biases, and σ is a sparsity-inducing activation.
The standard loss balances reconstruction with sparsity:

L = ∥x− x̂∥22 + λ∥f∥1 (2)

3 METHOD

Against this backdrop, Fig. 1 illustrates the feature absorption challenge and how Orthogonal SAE
addresses it. The left panel illustrates the intended scenario in which the SAE learns two distinct
features across two neurons: “starts with E” and “elephant”. When the underlying token is <elephant>,
both neurons should activate. The right panel demonstrates the actual training process—starts with E”
emerges first since it is more prevalent than other features beginning with ‘E’ (scenario A). As training
progresses, for any SAE leveraging L1, the L1 penalty steers the solution toward B rather than the
desired C, because B yields a lower L1. While this enhances sparsity, it reduces interpretability
because the “starts with E” feature no longer fires independently, leaving only the “elephant” feature
to activate for <elephant>. However, by definition, when features are absorbed” (like in B), they
incur a larger orthogonal penalty (ours) than no absorption (as in C). Therefore, the orthogonal loss
addresses this issue by guiding A to converge to C instead of B. Building on the standard SAE
formulation from Section 2, we introduce competition-aware orthogonality constraints to address
feature absorption. Given encoder outputs f = E(x), we measure feature competition through a
similarity matrix C ∈ Rk×k:

cij =
⟨fi, fj⟩
∥fi∥∥fj∥

· I[i ̸= j] (3)

where I[i ̸= j] prevents self-competition. This cosine similarity identifies feature pairs that consis-
tently co-activate on similar inputs.

We extend the standard reconstruction and sparsity loss with competition-weighted orthogonality:

L(x, θ) = ∥x−D(E(x))∥22︸ ︷︷ ︸
reconstruction

+λs∥E(x)∥1︸ ︷︷ ︸
sparsity

+λo

∑
i,j

cij · I[cij > θ] · ∥WT
d,iWd,j∥22︸ ︷︷ ︸

competition-aware orthogonality

(4)

where λs = 0.04 controls sparsity, λo = 0.01 scales orthogonality penalties, and θ is a dynamic
competition threshold.

To stabilize training, we employ a three-phase curriculum:

1. Reconstruction (0-1200 steps): Train with only reconstruction loss L1 = ∥x−D(E(x))∥22
2. Sparsity (1200-2000 steps): Gradually introduce sparsity through α(t):

L2 = L1 + α(t)λs∥E(x)∥1, α(t) = min(1,
t− 1200

800
) (5)

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

3. Competition (2000+ steps): Add orthogonality with decreasing threshold:

L3 = L2 + λo

∑
i,j

cij · I[cij > θ(t)] · ∥WT
d,iWd,j∥22 (6)

where θ(t) = 0.7− 0.4min(1, t−2000
400 )

To promote stable feature development, we add temporal consistency in the competition phase:

Ltemp = 0.001∥E(xt)− E(xt−1)∥22 (7)

where E(xt−1) is detached from the computation graph. The complete training process alternates
between computing competition coefficients, updating thresholds, and optimizing parameters using
Adam.

4 EXPERIMENTAL SETUP

We implement Orthogonal SAE on layer 12 of the Gemma-2-2B language model (Gao et al., 2024),
using an overcomplete dictionary (k = 16, 384, d = 2, 304). The encoder and decoder weights use
Kaiming initialization with unit-norm constraints enforced after each update. Competition coefficients
are computed using batch-wise cosine similarities between feature activations.

Training uses 5M tokens from the Pile dataset with:

• Batch size: 2,048 tokens, context length: 128
• Optimizer: Adam with lr = 7× 10−6, β = (0.0, 0.999)

• Gradient clipping at norm 1.0, weight normalization after each step

In addition to feature absorption, we evaluate the SAEs on the following benchmarks:

Unsupervised Metrics Following Karvonen et al. (2024), we employ a collection of unsupervised
metrics to evaluate Sparse Autoencoders (SAEs):

• Cross-Entropy Loss Score. Defined as

H∗ −H0

Horig −H0
,

where Horig is the baseline cross-entropy loss for the original network (in next-token pre-
diction), H∗ is the cross-entropy after substituting the latent representation x with its SAE
reconstruction, and H0 is the loss when x is zero-ablated. A higher score (closer to 1)
indicates better retention of predictive information.

• KL Divergence. We use the Kullback-Leibler divergence to assess differences between
the model’s predicted distributions and target distributions. Lower values imply closer
alignment.

Sparse Probing Following Gurnee et al. (2023), we assess the effectiveness of our SAEs in learning
intended features by performing focused probing experiments across a variety of domains, such as
language detection, profession labeling, and sentiment analysis. Specifically, we feed each input
through the SAE and then apply mean pooling over the non-padding tokens. From the resulting
representation, we identify the top-K latent dimensions by maximizing mean differences, and
subsequently train a logistic regression probe on these features. We then measure classification
accuracy on held-out test examples. Our evaluation spans 35 different binary classification tasks
derived from five distinct datasets:

• BIAS_IN_BIOS for predicting occupations from biographical text,
• AMAZON REVIEWS for product category and sentiment classification,
• EUROPARL for detecting language from parliamentary proceedings,
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• GITHUB for programming language classification, and
• AG NEWS for categorizing news topics.

To ensure consistent computational workloads, we fix 4,000 training and 1,000 test samples for each
binary classification setting, truncate each instance to 128 tokens, and (in the case of GitHub) remove
the first 150 characters (roughly 50 tokens) following prior work to avoid license headers. We tested
both mean and max pooling strategies, observing a slight accuracy improvement with mean pooling.
Within each dataset, we select up to five classes, and multiple subsets may be extracted from the same
dataset so that each binary problem maintains a positive instance ratio of at least 0.2.

We compare against three architectures using identical dictionary sizes and optimization settings:

• Standard SAE: ReLU with L1 sparsity
• TopK SAE (Bussmann et al., 2024): k = 40 features/sample
• JumpReLU SAE (Rajamanoharan et al., 2024): bandwidth 0.001

5 RESULTS

Table 1: Comparison of SAE architectures on Gemma-2-2B layer 12. Lower is better except for KL
divergence.

Model Absorption MSE KL Div

Standard SAE 0.016 248.0 0.62
TopK 0.140 179.6 0.71
JumpReLU 0.011 176.8 0.77
Orthogonal SAE 0.0055 176.0 0.9514

Table 2: Ablation study results showing impact of each component.

Configuration Absorption MSE

Full Model 0.0055 176.0
No Curriculum 0.009 248.0
Fixed Threshold 0.006 245.0
No Temporal 0.007 178.0

These results demonstrate that competition-aware training effectively addresses feature absorption
while maintaining model fidelity. The ablation studies confirm each component’s contribution, with
curriculum learning providing the largest impact on final performance.

6 CONCLUSIONS AND FUTURE WORK

We introduced Orthogonal SAE, a novel approach that addresses feature absorption in sparse au-
toencoders through competition-aware orthogonality constraints. By dynamically identifying and
disentangling competing features, our method achieves state-of-the-art results on the Gemma-2-2B
language model: reducing absorption by 65.6% (from 0.016 to 0.0055) while maintaining strong
reconstruction quality and model preservation. The effectiveness of our three-phase curriculum
learning approach is demonstrated by ablation studies showing that gradual constraint introduction
and temporal consistency are crucial for balancing feature separation with reconstruction fidelity.

Our work opens several promising directions for future research:

• Efficient Competition Modeling: Reducing computational overhead through sparse atten-
tion mechanisms (Mudide et al., 2024), enabling scaling to larger models

• Cross-Layer Feature Dynamics: Understanding how competition patterns propagate
through model layers (Ghilardi et al., 2024) to improve feature specialization

5
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• Automated Competition Analysis: Integrating competition detection with automated
interpretation (Paulo et al., 2024) for self-improving feature separation

All experiments were done on a single NVIDIA A40 GPU. Due to the computational resource
constraints, we were unable to evaluate our approach on bigger models than Gemma-2-2B, increase
the number of layers evaluated or number of tokens trained, or systematically vary hyperparameters
like batch size and dictionary width. But given the results so far and the modularity of our approach
(i.e., the orthogonal loss term can be easily added to most SAE models), we are optimistic about
larger-scale performances and will provide the complete codebase for public benchmarking once our
work is accepted.

Overall, the strong performance of Orthogonal SAE on technical metrics and its flexibility as a
general approach demonstrates Orthogonal SAE is a promising direction for developing more reliable
model interpretation tools. By making SAE features more robust and specialized, our work enables
more precise and targeted interventions in large language models.
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