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Abstract

We propose Metric Automata Theory, an elegant generalisation of classic Automata
Theory to continuous dynamical systems, that constitutes a unifying theory of all
kinds of Recurrent Neural Networks (RNNs), including widely-adopted architec-
tures such as xLSTM and State Space Models (SSMs). The theory allows one
to analyse RNNs both in the finite and unbounded precision settings seamlessly,
while utilising fundamental results of Automata Theory. It also provides a novel
notion of robustness that guarantees numerical stability and contributes to stability
of learning. We employ the theory to prove a comprehensive set of expressivity
results for widely-adopted RNNs, with a focus on robustness and finite-precision.
Notably, we contrast the capabilities of xLSTM and SSMs for robustly modelling
all star-free regular languages—xLSTM can do so, while SSMs cannot robustly
recognize the FLIP-FLOP language. Thus we give a novel perspective on the im-
portance of non-linear recurrences, giving insight for why xLSTM shows superior
performance to SSMs on several tasks. We provide an improved understanding
of the capabilities of Mamba, a popular SSM model. We show that Mamba is
not generally capable of recognising the star-free languages under finite-precision,
which is seemingly in contrast with the existing theoretical and empirical results for
SSMs. We clarify the picture, by showing that Mamba admits a piecewise-linearly
separable state space that allows it to approximate star-free languages, with some
length-generalisation abilities. At the same time, Mamba does not admit such state
spaces for languages like Parity. This explains why empirically Mamba performs
well on star-free languages, and fails on Parity.

1 Introduction

Recurrent Neural Networks (RNNs) encompass all the neural networks that process sequences by
maintaining a state though some form of recurrence. Notable RNNs are Vanilla RNNs such as
Elman-RNNs [Elman, 1990], LSTM [Hochreiter and Schmidhuber, 1997], GRU [Cho et al., 2014],
and the more recent and now widely-adopted xLSTM [Beck et al., 2024] and the family of State
Space Models (SSMs) including S4 [Gu et al., 2022], Mamba [Gu and Dao, 2023], HiPPO [Gu
et al., 2020], and DeltaNet [Yang et al., 2024]. The more recent RNNs achieve state-of-the-art
performance, comparable to other notable neural networks such as Transformers [Vaswani et al.,
2017], by leveraging new design principles that overcome the limitations of previous RNNs, enabling
key properties such as parallel training to take full advantage of modern computer architectures.

Recently, there has been an increasing interested in developing a systematic understanding of the
capabilities of sequence models, including RNNs and Transformers, beyond empirical evidence.
As of now, there is a rich literature of formal results regarding the expressivity of both RNN (cf.
[Knorozova and Ronca, 2024a,b, Weiss et al., 2018, Merrill et al., 2020]) and Transformers (cf.
[Strobl et al., 2024, Merrill and Sabharwal, 2024, Hahn, 2020]), with some studies directly comparing
the two, e.g., [Bhattamishra et al., 2024]. We focus on modelling RNN expressivity in terms of formal
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languages—an active area, with big impact on the new directions of research for novel architectures.
For instance, Sarrof et al. [2024] showed that a family of SSM models, including Mamba [Gu and Dao,
2023], has expressivity restricted to star-free regular languages in the finite precision setting, due to
restricting the eigenvalues of the state-update gates to be non-negative. Soon after, Grazzi et al. [2025]
extended the capabilities of SSMs beyond star-free languages, by modifying the implementation of
Mamba and DeltaNet models to allow negative eigenvalues—narrowing the gap between SSMs and
LSTM models.

The main limitation of this recent literature is that it lacks a principled, commonly-accepted theory
or framework providing the a established setting for investigations. For instance, both Sarrof et al.
[2024] and Grazzi et al. [2025] provide similar arguments proving that under finite-precision, SSMs
with gates with non-negative eigenvalues are restricted to star-free languages (with Sarrof et al. [2024]
proving a special case). However, the details of the finite-precision frameworks used by the two
are completely different, and result in different assumptions. This means that the results are hard to
compare without carefully assessing the assumptions and inspecting the proofs.

We propose Metric Automata Theory (MAT) as an elegant and principled theory that generalises
Automata Theory to continuous dynamical systems, with RNNs being a special case of particular
interest. It has the ambition of being a unifying theory for the study of all kinds of RNNs, providing
a common framework that allows for analysing the expressivity of RNN architectures in a uniform
way, in order to guarantee solid progress in the field. First of all, MAT generalises the notion of
finiteness to a general metric notion of η-finiteness (Definition 2), which captures the intuitive idea of
the finite-precision setup, while retaining generality. Second, we develop a correspondence between
η-finite systems and finite automata, thus allowing us to apply powerful algebraic results and notions
of Automata Theory. Third, the theory introduces a notion of robustness (Definition 4) that guarantees
numerical stability, contributes to stability learning, and notably allows one to prove results for
real-world finite-precision implementations while abstracting away the difficulties introduced by
finite-precision arithmetic. Fourth, we develop the notion of geometrically-constrained systems
(Definition 8). This notion goes beyond the setting of finite-precision, allowing for modelling of
languages beyond regular. It captures the empirical properties of systems approximating languages
with length-generalization properties, which are observed in practice. Finally, we showcase the
effectiveness of Metric Automata Theory by proving a comprehensive set of expressivity results for
widely-adopted RNN architectures, with a focus on robustness and finite-precision. We argue that our
results provide an improved understanding of the actual capabilities of RNNs as observed in practice.

2 Preliminaries

We present the most central and possibly lesser-known preliminary notions here, and we defer
notation, additional background on metric spaces, background on Recurrent Neural Networks, and
additional background on the topics presented below to Appendix A.

Path-connectedness in metric spaces. A path in X from a to b is a continuous map γ : [0, 1] → X
such that γ(0) = a and γ(1) = b. We can define a relation ∼X , where a ∼X b when there is a path
in X from a to b. This relation is an equivalence, partitioning X into disjoint equivalence classes,
called (path-connected) components. For space X , we denote the set of its equivalence classes by X .
Path-connectedness is preserved by continuous functions, which is a crucial property to our theory.
Notably, a continuous function X → Y , with finite codomain Y , has to map all points within a
component of X to the same element of Y .

Dynamical systems. Following [Knorozova and Ronca, 2024a,b], we adopt dynamical systems
as our general formalism. A (dynamical) system is a tuple S = ⟨X,U, f, x0, Y, h⟩, where X is the
state space, U is the input space, f : X × U → X is the dynamics function, x0 ∈ X is the initial
state, Y is the output space and h : X × U → Y is the output function. We have that X,U, Y are
metric spaces, and f, h are continuous. We call the tuple D = ⟨X,U, f⟩ the dynamics of S. Given
x0 ∈ X and N ∈ N, dynamics D define a map from sequences u[1..N ] of inputs to sequences x[1..N ]

of states with each state given by xn = f(xn−1, un). Hence, we say that D defines the function
D : X × U∗ → X with D(x0, ε) = x0 on the empty sequence ε, and D(x, u[1..n]) = xn on any
input string u[1..n]. We refer to the function defined by D as state-sequence function. System S
defines a map from input sequences u[1..N ] to output sequences y[1..N ] where yn = h(xn, un) for
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all n. Hence, we say that S defines the function S : U+ → Y with S(u[1..n]) = yn. When h is
independent of U , we additionally define S(ε) = h(x0), extending the definition to S : U∗ → Y .

Cascades. The formalism of cascades provides a flexible way to describe dynamical systems
consisting of subsystems forming an acyclic network. Their flexibility allows us, e.g., to consider
not only feed-forward layers of SSMs as in [Grazzi et al., 2025, Sarrof et al., 2024], but also more
complex architectures with, e.g., mixes of different types of neurons (see Figure 6 in Appendix A.6).

A feed-forward cascade C is a form of dynamics ⟨X,U, f⟩ with X = X1 × · · · × Xn, and f
with a particular factorisation. We may see C as consisting of dynamics D1, . . . , Dn where Di =
⟨Xi, U ×X[1..i−1]⟩. State updates in a cascade proceed in a feed-forward fashion, with component
Di having access to the updated states of the previous componentsD1, . . . , Di−1. Details of cascades
in relation to Automata Theory are deferred to Appendices B.5 and G.2.

Finite Automata and Formal Languages. A (finite) alphabet is a finite set Σ of elements called
letters or symbols. A (formal) language L over Σ is a subset of Σ∗. It is often convenient to charac-
terise L in terms of its indicator function IL. A (finite) automaton is a tuple A = ⟨Q,Σ, δ, q0,Γ, θ⟩,
where Q is a finite set of elements called states, Σ is the finite input alphabet, δ : Q × Σ → Q is
called transition function, Γ is an alphabet called output alphabet, and θ : Q × Σ → Γ is called
output function. The tuple A′ = ⟨Q,Σ, δ⟩ is called a semiautomaton, and in particular A′ is the
semiautomaton of A.

An automaton A with output alphabet Γ = {0, 1} is called a language recogniser, and it recognises
the language L whose indicator function is the one defined by A. The languages recognised by finite
automata are the regular languages.

Algebraic Automata Theory (AAT). It studies finite automata through the lens of algebraic notions
such as semigroups and groups, c.f. [Hartmanis and Stearns, 1966, Ginzburg, 1968, Arbib, 1969,
Dömösi and Nehaniv, 2005]. The Prime Decomposition Theorem by Krohn and Rhodes [1965] shows
how every semiautomaton can be decomposed into a cascade of prime semiautomata. One prime
semiautomaton is the flip-flop, that describes the elementary system with the ability to store and
manipulate one bit of information. Formally, FLIP-FLOP := ⟨{high, low}, {set, reset, id}, δ⟩
with transitions give by δ(q, id) = q, δ(q, set) = high, and δ(q, reset) = low for every state q.

Automata that admit a cascade decomposition into flip-flops are called group-free, and they are central
since group-free automata recognise the star-free languages, cf. [Ginzburg, 1968]. To relate different
automata, we adopt the notion of realisation for Mealy machines, cf. Definitions 1.14 and 1.15 of
[Hartmanis and Stearns, 1966] and appendix B.4. Realisation describes how a machine can imitate
another machine after a renaming of inputs and outputs.

Recurrent Neural Network Architectures An Elman-RNN has dynamics D = ⟨X,U, f⟩ where
f(x, u) = tanh

(
AX · x+AU · u+ b

)
. State Space Models (SSMs) are based on linear recurrence

with particular parametrisations such as Mamba [Gu and Dao, 2023]. To model linear recurrence
in general, we introduce Linear Recurrent Dynamics (LRD), defined as dynamics ⟨X,U, f⟩, where
f(x, u) = A(u) · x + B(u), with states X ⊆ Kdstate , inputs U = Kdinput for K ∈ {R,C}, We
call A(u) ∈ Kdstate×dstate the state-transition gate and B(u) ∈ Kdstate the input gate. The recently
introduced model xLSTM [Beck et al., 2024] makes use of both non-linear and linear recurrences.
xLSTM introduces two types of blocks: sLSTM and mLSTM. We provide the parametrization of
mLSTM blocks in Appendix G.3.

3 Metric Automata Theory

We present Metric Automata Theory (MAT), a generalisation of Automata Theory to dynamical
systems. Next we present preliminary considerations on automata and the preliminary notion of
language recognition for dynamical systems. Then we present the central notions of the theory.

Automata as dynamical systems. We start by observing that finite automata are a special case
of dynamical systems. Our goal is to establish a framework to analyse Recurrent Neural Networks
(RNNs), with a focus on the study of their expressivity in terms of the ability to recognise formal
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η-finite Dynamics D

X1

X2

X3x0

x1

x2x3

u transitions

Semiautomaton C(D)

[x0]

[x1]

[x2] = [x3]

[u] transitions

Figure 1: System dynamics and corresponding canonical semiautomaton, given in Definition 3.

languages. Every automaton A = ⟨Q,Σ, δ, q0,Γ, θ⟩ is a dynamical system if we endow Q,Σ,Γ with
the discrete metric, giving them a discrete topology. In particular, this implies that the functions δ and
θ are trivially continuous, and hence it shows that automata are continuous systems. The connection
to dynamical systems makes it clear that a semiautomaton is a special case of dynamics, and clarifies
how automata define functions F : Σ+ → Γ.

Definition 1. Given alphabets Σ and Γ, and continuous functions enc : Σ → U and dec : Y → Γ,
we say that a system S implements a function F : Σ+ → Γ, with encoder enc and decoder dec,
if F (w) = dec ◦S(enc(w)), for every w ∈ Σ+, where enc(w) ∈ U+ applies enc element-wise.
We also say that S can-implement F if it implements F for some choice of enc and dec. When
Γ = {0, 1}, we say that S recognises a language L if it implements its indicator function IL, and that
S can-recognise L if it can-implement IL.

3.1 The Notion of η-Finiteness for Dynamical Systems

We show that the metric setting allows for a general notion of finiteness of a given space, capturing
the fact that it is essentially finite even if its cardinality is not—details in Appendix B.

Definition 2. For X a set with X ⊆ Rd or X ⊆ Cd, we say that X is η-finite if it is a finite union of
compact, path-connected components. Then, we say that dynamics ⟨X,U, f⟩ are η-finite if both X
and U are η-finite. Finally, a system S is η-finite if its dynamics are η-finite.

We refer to the components of the definition as η-components of the space. For example, finite
alphabets are η-finite, with each element being its own η-component. As path-connectedness and
compactness are preserved by continuous mappings, the notions of η-finiteness and η-component
have very favourable theoretical properties. Any continuous mapping f : X → Y , with X and Y
η-finite, is guaranteed to map any η-component of X entirely into a single η-component of Y .

As a result, all points within the same state η-component will be interpreted as equivalent states,
yielding equivalent behaviours of the system; and all points within the same input or output η-
component will correspond to the same inputs and outputs modulo encoding and decoding.

All automata are η-finite systems since they are discrete. Conversely, every η-finite system admits
a canonical automaton, which fully captures its dynamics and capabilities. It gives us a way
to employ the powerful characterisations and results of AAT to any η-finite system dynamics.
Figure 1 visualizes the way in which the canonical (semi)automaton is a discrete interpretation of the
continuous dynamics.

Definition 3. Any η-finite dynamical system S = ⟨X,U, f, x0, Y, h⟩ admits a unique canonical
automaton, and any η-finite dynamics D = ⟨Z, V, g⟩ admits a unique canonical semiautomaton,
which are respectively given by C(S) := ⟨X,U, f, [x0]∼X

, Imh, h⟩, and C(D) := ⟨Z, V , g⟩.

Theorem 1. An η-finite system S can-implement the same functions as its canonical automaton,
which are necessarily regular.

Canonical automata are a core tool we use to develop an algebraic theory of continuous systems.
Generally, it allows us to abstract away the local details of continuous behaviour that do not affect
the global expressive capacity of the system. We use it to, e.g., apply the decomposition theorems of
AAT to RNNs, and to create the appropriate analogue of realisation of a continuous system.
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Strongly robust system + ϵ-covering approximation

X1

X2

X3

u
û

ΩX

ϵ-ball

||û − u|| ≤ ϵ

D
ε-robust : B

(
f(x, u), ε

)
∈ X u

ε

"Transitions have
ε margin of error"

Figure 2: Given sufficient precision, the transitions of strongly ϵ-robust dynamics can be realized
with approximate dynamics on a finite datatype, whenever the datatype gives a ϵ-covering for the
state-space.

MAT applied to finite-precision. We explain how Metric Automata Theory provides the founda-
tions to study dynamical systems in a principled way, with the study of RNNs as a special case that
is of particular interest for us. First, we note that η-finiteness ensures that the η-components of the
considered space are bounded and separated by some positive non-zero distance. Thus, in all η-finite
systems, sequences of states converging to a limit will eventually lie in a single η-state—we note that
this is the key property of the finite-precision arguments in [Sarrof et al., 2024]. Additionally, in every
finite-precision implementation of a system (e.g., with states represented as tensors of floating-point
numbers), the state space has finite cardinality, and hence it is trivially η-finite. Similar considerations
apply to the input and output spaces. Altogether, Metric Automata Theory equipped with the notion
of η-finiteness allows for studying finite-precision (implementations of) dynamical systems without
restricting the analysis to any specific representation of the relevant spaces. The next section develops
the theory in the case of system implementations based on concrete datatypes.

3.2 Robust Systems

The central notion that allows us to extend Metric Automata Theory to the study of finite-precision
implementations is the notion of ϵ-robustness. Intuitively, it describes stability of the dynamics
under transition perturbations. It provides a way to connect η-finite systems to their floating-
point implementations on real-world computer architectures, without requiring us to commit to any
particular standard of floating-point operations. We let BΩ(x, r) := {y ∈ Ω : ||x− y|| ≤ r}, which
denotes the closed Ω-ball at x of radius r.

Definition 4. For ϵ > 0 andX ⊆ Ω, dynamicsD = ⟨X,U, f⟩ are ϵ-robust (in Ω) if, for every x ∈ X
and every u ∈ U , it holds thatBΩ(f(x, u), ϵ) ⊆ X—i.e., y ∈ X for all y ∈ Ω s.t. ∥f(x, u)−y∥ ≤ ϵ..
We say that dynamics D are strongly ϵ-robust (in Ω) if they are ϵ-robust (in Ω) and each η-component
of X contains an Ω-ball of radius at least ϵ.

We call dynamics robust (resp. strongly robust), if they are ϵ-robust (resp. strongly ϵ-robust) for some
ϵ > 0. Note that the property of robustness is with respect to the ambient space Ω, which contains the
state space X . It is possible that a dynamics is ϵ-robust w.r.t. some ambient space (e.g., R), and not
ϵ-robust w.r.t. another ambient space (e.g., C). Next we discuss how our notion of robustness allows
for drawing conclusions on finite-datatype implementations of a system.

Definition 5. A finite datatype is a set D ⊆ Ω = Rd having finite cardinality. A finite-datatype
implementation of a system S is then a system whose input, state, and output spaces are finite
datatypes, and whose dynamics and output functions are implemented using floating-point operations.

Theorem 2 (Informal version). Every η-finite system with strongly ϵ-robust dynamics, for ϵ > 0, can
be implemented with floating-point operations given sufficient precision.

By sufficient precision we mean that the state space is sufficiently covered by the finite datatype,
and that the floating-point approximation of the dynamics has error at most ϵ. In Appendix C we
show two examples of floating-point parametrisations for which the former condition can always be
achieved using sufficiently-many bits of precision.
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Considerations on training. Training any machine learning model that can be seen as a dynamical
system amounts to optimising a parametric dynamics function fθ, with learnable parameter θ ∈ Θ,
along with optimising the output function. In Section C.2 of Appendix C, we prove that, under some
mild regularity assumptions, when dynamics Dθ = ⟨X,U, fθ⟩ are robust, there is a δ > 0 such
that for all θ′ ∈ Θ with ||θ − θ′|| ≤ δ, the function fθ′ : X × U → X is a well-defined dynamics
function, and the corresponding dynamics Dθ′ = ⟨X,U, fθ′⟩ have the same η-state dynamics as
Dθ–i.e., they both have the same canonical semiautomaton. Thus, replacing fθ with fθ′ in a system
will not change the system behaviour. Given the previous consideration, an argument should be
possible by which models enjoying this form of robust parametrisation are more likely to be produced
by training algorithms, compared to models that do not admit a robust parametrisation. However, a
systematic development of this argument is beyond the scope of our work.

4 Expressivity Results for Vanilla-RNNs, xLSTM, and SSMs

Metric Automata Theory allows us to establish a rich ensemble of expressivity results in the finite-
precision setting and beyond finite-precision. The elegance and generalisability of our setup enables
us to compare capabilities of wildly different models. For example, Theorem 4 applies to SSMs with
both real and complex state spaces.

4.1 Expressivity Results for Robust Language Recognition

We prove that linear recurrences do not admit robust dynamics, whenever they have an identity
transformation on their η-states.
Theorem 3 (Non-robustness of LRDs). Suppose an η-finite LRD D is such that its canonical
semiautomaton DA has at least two states, and an input inducing an identity transformation. Then D
cannot be ϵ-robust for any ϵ > 0.

In fact, we show that upon iterating any single input the whole state-space of an η-finite ϵ-robust LRD
collapses to a single η-component. We call such dynamics contracting. Furthermore, we show that a
cascade of contracting dynamics is contracting, and that contracting dynamics cannot implement a
FLIP-FLOP. We defer the technical details to Section D.3.
Theorem 4 (LRDs cannot do FLIP-FLOP robustly). FLIP-FLOP cannot be implemented by a cascade
of η-finite ϵ-robust LRDs for any ϵ > 0.

xLSTM. We provide constructions for strongly robust realisations of the FLIP-FLOP dynamics
for Elman-RNNs and for an sLSTM block—see Appendix G.3 for the details. The Elman-RNN
construction is similar to one provided in [Knorozova and Ronca, 2024a], with the high and
low η-states located around the attracting fixed-points of tanh. For xLSTM, fixing a particular
parametrisation of a sLSTM block allows us to use a very similar construction, with a sigmoid
non-linearity. By Fact 1, this proves that all star-free languages can be implemented cascade of
strongly-robust xLSTM blocks. Such a cascade is strongly-robust.
Theorem 5 (xLSTM does start-free robustly). All star-free languages can be recognised by xLSTM
cascades, as well as by floating-point implementations of xLSTM cascades given sufficient precision.

4.2 SSM Expressivity in Finite-Precision

We prove that η-finite SSMs with state-transition gates having non-negative eigenvalues are restricted
to group-free dynamics, and hence can only implement star-free languages, in line with the theoretical
results by Sarrof et al. [2024] and Grazzi et al. [2025], in their respective finite-precision setups.

SSMs with non-negative eigenvalue gates are star-free. To transfer the group-free notion into the
continuous η-finite dynamics setting we introduce a notion of aperiodic dynamics. We say that an
infinite sequence in a η-finite space X is η-convergent in X if all terms of the sequence are eventually
in the same η-component of X .
Definition 6. We say that η-finite dynamics D = ⟨X,U, f⟩ are aperiodic if, for every x0 ∈ X
and every input sequence (un)n≥1 that is η-convergent in U , we have that the corresponding state
sequence (xn)n≥1 is η-convergent in X .
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State sequence of aperiodic D

. . .
un

un+1

xn

xn+1

x∗
∀n : un ∈ [u]

η-state sequence of C(D)

[xn] [xn+1] = [x∗]

[u] [u] [u]
[u]

Figure 3: Definition of aperiodicity means that the state sequence of aperiodic dynamics under
iterated input from the same η-component always η-converges. In particular, if the state sequence
always converges to some limit under iterated inputs, then the dynamics are aperiodic. This is the
case e.g., for LRDs with diagonal gates with entries in (−1, 1).

In Section D.2 of Appendix D, we show that cascades of aperiodic dynamics are aperiodic. Moreover,
we show, that η-finite dynamics are aperiodic iff their canonical semiautomaton is group-free. Thus,
aperiodic η-finite systems can implement only star-free regular languages.
Theorem 6. Let D be η-finite Linear Recurrent Dynamics, with its state-transition gates having all
non-negative eigenvalues. Then D is aperiodic.

The proof structure is similar to the proof of Theorem 1 in [Grazzi et al., 2025], with significant
simplifications afforded by our theory. We show that, iterating a fixed input, the state converges, by
considering the Jordan Normal Form of the state-transition gate. We also show that finite context
length convolutions are aperiodic. Thus, SSMs like Mamba, which are cascades of convolutions and
LRDs with non-negative eigenvalue gates, can only recognise star-free languages as they are η-finite.

Mamba cannot implement FlipFlop in finite-precision. The FlipFlop dynamics construction
presented in [Sarrof et al., 2024] makes use of the identity state-transition gate. Parametrisation of
Mamba prevents it from making use of such gate.In fact, we prove that in the η-finiteness framework,
Mamba blocks are contracting dynamics, and thus cannot implement a FLIP-FLOP.
Theorem 7. SSMs with Mamba parametrisation cannot recognise FLIP-FLOP.

4.3 Geometrically Constrained Systems

The case of Mamba successfully length-generalising on star-free tasks, despite being unable to model
the dynamics for unbounded length inputs, motivates us to expand our theory beyond η-finite systems.
The intuition behind the following setup is to allow only for output functions that are sufficiently
regular to expect them to be learnable from short input sequences, with length-generalisation.
Ultimately, this section provides an example of how Metric Automata Theory can be used to develop
theories alternative to η-finiteness, motivated by phenomena observed empirically and defined by
geometric properties of the dynamical systems.
Definition 7. Let Ω = Rd or Ω = Cd. We call C ⊆ Ω a convex-covering if it is a finite union of
open, convex sets in Ω. Then, we say that X ⊆ Ω is convex-covered by C if X ⊆ C.

A convex-covering C consists of finitely-many path-connected components, which are open. The
path-connected components of C can be arbitrarily classified by an output function with piecewise-
linear decision boundaries, with finitely many vertices. Such output functions include all feed-forward
networks with ReLU activations, see Proposition 6.1 in [Zhang et al., 2018].
Definition 8. Let Ω = Rd or Ω = Cd, and let C ⊆ Ω. We say that dynamics D = ⟨X,U, f⟩ are
convex-covered by C if X is convex-covered by C. We call a system SC = ⟨X,U, f, C, x0, Y, h⟩
geometrically-constrained by C if its dynamics DC = ⟨X,U, f⟩ are convex-covered by C.

Geometrically-constrained systems (GCS) are a generalisation of η-finite systems, as any η-finite can
be extended to a geometrically-constrained system with equal capabilities. GCSs can in fact express
dynamics beyond finite-state, e.g., Construction 1. The GCS framework is presented in Appendix E.
Construction 1. Consider Linear Recurrent Dynamics with state-space X = Z, input space U =
{a, b} and dynamics function f(n, a) = n+ 1; f(n, b) = n− 1. The space C = (−∞,−0.5) ∪
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Separating hyperplanes
x0 x1

x2

x3

· · ·x∗

C1

C2

C3

[x0] [x1] [x2]
· · ·

[x∗]

[C1] [C2] [C3] [C1]

xn+1 = Au · xn +Bu : Au with e-values ≥ 0

X ⊆ C1 ∪ C2 ∪ C3

Figure 4: SSMs with state transition gates without negative eigenvalues are not capable of alternating
around any separating hyperplane under iterated input. Thus, eventually the state must be mapped to
a constant output. This makes such SSMs unable to e.g., implement Parity as GCSs.

(−0.5, 0.5) ∪ (0.5,∞) is a convex-covering for this dynamics. We may define the output function
h : C → {0, 1} to map points in (−∞,−0.5)∪ (0.5,∞) to 0 and points in (−0.5, 0.5) to 1. Picking
initial state x0 = 0 , we have that this GCS outputs 0 precisely when the input has the same number
of as and bs.

Connection to automata. In the case of dynamics ⟨X,U, f⟩ constrained by X , we recover the
correspondence to Automata Theory via canonical semiautomata, and hence we can use the theorems
of AAT—details in Section E.2. The next construction shows that, as a GCS, Linear Recurrent
Dynamics with Mamba parametrisation realise FLIP-FLOP, unlike in the robust η-finite setting.
Construction 2. FLIP-FLOP dynamics can be realised by constrained Linear Recurrent Dynamics
with diagonal state-transition gate, with entries in [ 14 ,

3
4 ]. Take D = ⟨X,U, f⟩ with X = Xl ∪Xh,

where Xl = (−1, 0), Xh = (0, 1), U = {i, l, h} and f(x, σ) = Aσ · x + Bσ where ⟨Ai, Bi⟩ =
⟨3/4, 0⟩; ⟨Al, Bl⟩ = ⟨1/4,−1/2⟩; ⟨Ah, Bh⟩ = ⟨1/4, 1/2⟩. With output function Xl 7→ low and
Xh 7→ high (indeed continuous), D realizes FLIP-FLOP, and X is a convex-covering of D.

In particular, given the realisation of FLIP-FLOP in Construction 2, we obtain the following:
Theorem 8. SSMs with Mamba parametrisation can recognise all star-free languages as GCSs.

Modular counting. We extend the notions of cascades to this setup, with restriction on how
components depend on inputs from other components, corresponding to the idea of joining the
cascade with connecting functions. Similarly, we extend the notion of aperiodic dynamics, with
the modification that we require the state-sequence to be η-convergent in C, instead of X in the
usual definition. Appendix E.1 explains how aperiodicity is preserved by constrained cascades in
this setup. In the GCS framework, we can no longer equate aperiodic dynamics with group-free
semiautomata—the GC-system in Construction 1 is aperiodic, but implements a language which is
not even regular. We can still obtain more specialised expressivity results. Aperiodicity prevents a
GC-system from modelling any function for which iterating the same input can alternate between
distinct outputs indefinitely. We call a function F : Σ+ → Γ is alternating if, for some σ ∈ Σ, the
sequence

(
F (σn)

)
n≥1

changes value infinitely many times. All alternating functions are group-like.
As an example, functions that perform modulo-M counting are alternating.
Theorem 9. Let D be an η-finite Linear Recurrent Dynamics, with its state-transition gates having
all non-negative eigenvalues. Let C be a covex-regular covering of D. Then D is aperiodic w.r.t. C.

The proof is similar to that of Theorem 6. By considering the Jordan Normal Form of the state-
transition gate, we show that the state sequence cannot alternate around the separating hyperplanes of
the convex components making up C. Overall, we obtain that SSMs such as Mamba are not able to
implement alternating functions as geometrically-constrained systems.

5 Empirical Validation of Our Results

Mamba performance on star-free tasks. The experiments presented by [Sarrof et al., 2024]
demonstrate that Mamba can effectively learn star-free languages with length-generalisation abilities.
On the benchmark from [Bhattamishra et al., 2023], Mamba performed perfectly on all 11 star-free
tasks, also on out-of-distribution input lengths. This is consistent with its expressivity described by
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Figure 5: FLIP-FLOP task [Liu et al., 2023]. PCA of a trained 1-layer Mamba states for each channel:
red and blue are state sequences under i0 inputs, starting from w1 and w0 respectively. After ≈1000
inputs, both state sequences give the same predictions on the read instruction r, incorrectly.

Theorem 8. We performed additional experiments on the dataset from [Liu et al., 2023]. It introduces
the task of realizing the FLIP-FLOP by predictively modelling a sequence of instructions. We found
that in the case of training 1-layer Mamba, despite achieving accuracy 1 on all validation datasets,
iterating the ignore instruction indeed leads to incorrect outputs, as predicted by our results for η-finite
systems, namely Theorem 7. See Figures 5,10 and Appendix F for details.

Non-star-free tasks. Our negative results for SSMs in the η-finite setup predict that SSMs with non-
negative eigenvalues (non-negative SSMs for short) for the state-transition gate cannot implement non-
star-free tasks. The experiments performed by Sarrof et al. [2024] on Mamba with the datasets from
[Bhattamishra et al., 2023] show that Mamba struggles to model non-star-free tasks. The empirical
evidence presented in [Grazzi et al., 2025] similarly validates our results, with results for non-star-free
languages from the Chomsky Hierarchy benchmark by Deletang et al. [2023]. Remarkably, both
the Chomsky Hierarchy and Bhattamishra’s benchmarks have the worst results for non-negative
SSMs on languages involving modulo counting. Our negative results in the geometrically-constrained
framework suggest that this is caused by the inherent geometry of the state-space for these models.

Significance of robustness. Beck et al. [2024] and Grazzi et al. [2025] evaluate their proposed
architectures on the Chomsky Hierarchy benchmark [Deletang et al., 2023]. Even though, as shown
in [Grazzi et al., 2025], DeltaNet with negative eigenvalues is capable of modelling the Modular
Arithmetic w/o Brackets task, it falls short of perfect accuracy on all sequence lengths. On the other
hand, sLSTM achieves perfect accuracy on this task, as reported by Beck et al. [2024] (although
Grazzi et al. [2025] failed to reproduce these results). Theorem 3 gives a possible explanation for
why linear recurrences may perform worse in practice than non-linear recurrences. This effect can
also be observed for star-free tasks—we defer further discussion to Appendix F.

Beyond regular tasks. Contex-free and context-sensitive tasks remain challenging for the recent
recurrent archtectures, as evident by the performance of xLSTM, DeltaNet and Mamba on the
Chomsky Hierarchy benchmark, reported in [Beck et al., 2024] and [Grazzi et al., 2025]. This
indicates that η-finite systems are largely a good model for the finite-precision setting. Sarrof et al.
[2024] report that Mamba achieves good results for counter languages, but with limited length-
generalisation. We conjecture that counter-like dynamics, which are permitted in the GCS framework,
are not possible for Mamba, as its dynamics are space-contracting.

6 Limitations

The limitations of Metric Automata Theory (MAT) in its current, initial, state of develoment revolve
around three aspects, that we discuss below.

Limitations inherited from AAT. MAT allows one to employ Algebraic Automata Theory (AAT)
for the purpose of analysing RNNs. However, AAT is underdeveloped in many ways, with limitations
on its current ability to describe certain fine-grained expressivity aspects, which clearly transfer to
MAT. A key limitation is that AAT does not focus on the complexity of the functions that connect the
stateful components in a cascade, and specificically it provides no results on how the complexity of
such functions influences the expressive capacity of a model. Now that our MAT makes AAT relevant
for the study of RNNs, there is a new motivation in futher developing AAT.
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Dynamics-dependent state space. Requiring continuity throughout means that the main work of
assigning meaning to states is done in selecting the state space X . Further, the dynamics f need to
have codomain X , which can make verifying constructions complicated. In the context of learning
parameters for f , as the parameters vary, the state space must change accordingly, making it less
straighforward to derive results regarding learning. Nonetheless, MAT already allows for indirect
analysis of learning stability, via the notion of robustness, as discussed in Section 3.2.

Focus on unbounded-length expressivity. Most of our work studies the ability of RNNs to
recognise languages where the length of strings is unbounded. Additional results could be proved
regarding the ability of RNNs to recognise languages where strings have bounded length. Some of
our notions and results—e.g., robustness or GCSs—can still be applied in this context, but otherwise
MAT may require to be extended significantly.

7 Related Work

Our dynamical systems approach follows the framework by Knorozova and Ronca [2024a,b]. This
set of results focuses on RNC+, which are cascades of 1-dimensional Elman-RNN neurons, with
dynamics function f(x, u) = tanh(w · x + u) having w ≥ 0. Expressivity of RNC+ in terms of
regular languages is shown to be exactly the star-free languages. Their setup is not directly relatable
to ours under η-finiteness, but it implicitly assumes that the state-space is compact, and uses similar
convergence arguments as Sarrof et al. [2024] and Grazzi et al. [2025], combined with AAT. The
authors hope to further develop the theoretical foundations of expressivity theory, and to incorporate
further theories, such as the work in [Knorozova and Ronca, 2024a,b], into Metric Automata Theory.

Related expressivity results for SSMs are given in [Sarrof et al., 2024, Grazzi et al., 2025, Merrill
et al., 2024], and for ReLU-activated Elman-RNNs and LSTMs in [Weiss et al., 2018]. We defer the
discussion of such results to Appendix H.

8 Future Work

The framework we set up fills in the gaps in the existing literature in terms of general theoretical
methodology, as well as understanding of empirical phenomena. At the same time, it opens up
new avenues for future research in connection to automata theory, model design, and learning. We
especially see robustness as being of practical interest and as a subject of future research. Next we
discuss a few concrete points that are on our research agenda. First, we plan to devise additional
experiments to fully understand the impact of our results on learning models—e.g., measuring
robustness trade-offs between xLSTM and SSM length-generalisation on star-free tasks. Second,
we plan to study how tokenization affects the models ability to perform state-tracking and realise
automata transitions. For example, Grazzi et al. [2025] (paragraph under Theorem 3, page 7) note that
allowing more input symbols per transition (e.g., “3+ 2+ 4 = 4”) allows simpler gates to implement
automata. Third, we would like to explore the potential of robustness in driving design decisions
behind model architectures and training algorithms. For example, the inherent non-robustness of
linear RNNs suggests that the solutions that may be learned for the model’s parametrisation are very
sensitive, especially when it comes to length-generalisation abilities. Fourth, we plan to employ the
GCS theory for investigating the ability of RNNs to recognise languages beyond regular. A notable
family of languages to consider is the one of counter languages, already mentioned in Construction 1
and in the analysis of the performance of Mamba in Section 5. Finally, we would like to use the GCS
theory to further clarify length-generalisation phenomena.

9 Conclusions

We have presented Metric Automata Theory, an elegant and principled theory that generalises classic
Automata Theory to dynamical systems, and to RNNs in particular. The fundamental notions and
key properties of the theory we have described, as well as the deep understanding of several widely-
adopted RNNs that we were able to provide using the theory, justify the ambition of the theory to
be a unifying theory for the study of RNNs, and also dynamical systems in general. The introduced
notions, e.g. of robustness, leave many exciting avenues for deeper study.
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Appendices
The appendices provide proofs of the theorems stated in the main body, as well as more detailed
exposition of preliminary notions, and illustrative figures. It is structured as a suppleental body of work
which can be read from top to bottom, and which gives a detailed presentation of Metric Automata
Theory and its main results. While the main body gives a big picture overview of the key notions and
results, the appendices aim to serve as a foundational text, showcasing how Metric Automata Theory
can be used to develop new theories and draw novel insights about RNN architectures—in addition to
providing full proofs of all results stated in the main body.

Appendix A provides standard preliminary notions, required for later sections and in particular for
proving our results.

Appendix B presents the foundations of Metric Automata Theory (MAT), which build on several
different fields—metric spaces, dynamical systems, algebraic and classic automata theory. Also
establishing novel and fundamental connections across such fields. We prove Theorem 1 in this
appendix.

Appendix C introduces the novel notion of ϵ-robust dynamics, which allows us to argue about
real-world floating point implementations of models. It also describes numerical and parametrisation
stability properties of systems, thus going beyond the phenomena which can be described by discrete
systems. We provide proofs of Theorem 2 and Theorem 5.

Appendix D employs Metric Automata Theory and its connection to Algebraic Automata Theory to
show a collection of expressivity results in the η-finite setting, including Theorems 3, 4, 6 and 7.

Appendix E explores the setting of Geometrically-Constrained Systems (GCS), in connection to
the empirical length-generalisation capabilities of Mamba, which go beyond its finite-precision
expressivity. We give proofs of Theorem 8 and Theorem 9.

Appendix F gives further details on the visualisation experiments we conducted to showcase the
state-space collapse suffered by Mamba SSMs.

Appendix G contains technical proofs and constructions deferred from other sections, which are not
necessary to fully comprehend the overall argument they are used in.

Appendix H continues the discussion of related work from Section 7, notably contrasting the
frameworks of Sarrof et al. [2024] and Grazzi et al. [2025].

A Additional Preliminaries

In this Appendix, we introduce the preliminary notions for the remainder of this work.

Section A.1 covers basic mathematical notions and notation used throughout.

Section A.2 introduces the necessary background in Metric Spaces and Topology, notably properties
of compactness and path-connectedness.

Section A.3 defines the language of Dynamical Systems, which we use to describe RNNs and to build
our theory.

Section A.4 shows the key Algebraic Automata Theory results and notions which we use in our work.

Finally, Section A.5 and Section A.6 cover MLPs and introduce relevant RNN architectures.

A.1 Basic Concepts and Notation

We introduce basic mathematical concepts and notation required in later sections.

A.1.1 Numeric Domains

We write B = {0, 1} for the Boolean domain, we write N = {0, 1, . . .} for the natural numbers, we
write N>0 = {1, 2, . . .} for the natural numbers excluding zero, we write R for the real numbers, we
write R+ for the positive real numbers including zero, we write R>0 for the positive real numbers
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excluding zero, i.e., R>0 = R+ \ {0}, and we write C = {⟨a, b⟩ | a, b ∈ R} for the complex
numbers—where every pair ⟨a, b⟩ is to be seen as the complex number a+ ib.

For i, j ∈ N with m ≤ n, we define the notation [i..j] := {i, i+1, . . . , j}.

In the rest of the section, let Z be a set.

A.1.2 Powersets

We write P(Z) for the powerset of Z, and we define P+(Z) := P(Z) \ {∅}.

A.1.3 Tuples and Matrices

For n ∈ N, the set of Z-valued n-vectors, or n-tuples over Z, is Zn := {⟨z1, . . . , zn⟩ | zi ∈ Z}.
We typically write an element of Zn as z = ⟨z1, . . . , zn⟩. For m,n ∈ N, the set of Z-valued
(m× n)-vectors, or m× n matrices over Z, is Zm×n := {⟨z1, . . . , zm⟩ | zi ∈ Zn}. We typically
write an element of Zm×n as Z = ⟨z1, . . . , zn⟩.
We use the compact notation Z[i..j] to specify the set Zi × · · · × Zj resulting from the Cartesian
product of the sets Zi, . . . , Zj , meaning that they are contextually introduced by the notation.

A.1.4 Sequences

A sequence over Z with indices I ⊆ N is a function s : I → Z ′ ⊆ Z,which we commonly present as
(zi)i∈I where zi = s(i) for every i ∈ I . A sequence is finite if so is its index set, and it is infinite
otherwise. When s is an infinite sequence with index set of the form I = {m, m+1, . . .}, we adopt a
simplified notation and write the sequence as (zi)i≥m, instead of (zi)i∈I . When s is a finite sequence,
the cardinality of its index set is called the length of s. The empty sequence, denoted by ε, is the
sequence having length zero, i.e., the sequence with indices I = ∅. Any finite sequence s with indices
I = [i..j] can be presented as the list zi, . . . , zj by letting zk = s(k) for every k ∈ [i..j]; in this case,
the sequence can also be written in compact form as z[i..j]. We write Zω for the set of all infinite
sequences on Z, we write Z∗ for the set of all finite sequences on Z, we write Z+ for the set of
all non-empty finite sequences on Z, and we write Zℓ for the set of all sequence of a given length
ℓ ∈ N—noting that this definition of Zℓ clearly corresponds to the definition given above of Zℓ as
the set of all ℓ-tuples over Z.

We often say that a property holds eventually for a sequence (zi)i≥m if there exists m′ ≥ m such
that it holds for the sequence (zi)i≥m′ . That is, the property holds for some tail of the sequence.

A.1.5 Strings

A string over a finite set Σ is a concatenation (juxtaposition) of elements of Σ. Namely, a string is an
expression σ1σ2 · · ·σn with σi ∈ Σ, for every i ∈ [1..n]. In this context, we call Σ an alphabet, and
we call each element σi a letter or symbol of the string s. We can equivalently see a string σ1σ2 · · ·σn
as the finite sequence σ[1..n], following the definition of finite sequence given above, and hence apply
all notions already introduced for finite sequences. In particular, we have that the length of a string
σ1σ2 · · ·σn is n, that ε is the empty string, that Σℓ is the set of all strings of given length ℓ ∈ N over
alphabet Σ, that Σ∗ is the set of all strings over alphabet Σ, and that Σ+ is the set of all non-empty
strings over alphabet Σ.

A.1.6 Functions and Transformations

The image of a function f : X → Y is Im f := {f(x) | x ∈ X} ⊆ Y . We say that f is an identity if
f(x) = x for every x ∈ X , and we say that f is a permutation if it is a bijection. A transformation of
X is a function f : X → X where the codomain coincides with the domain. Note that every identity
transformation is also a permutation, and hence it is sometimes important to distinguish permutations
that are not identities by referring to them as non-identity permutations.

A.1.7 Equivalence

For ∼ an equivalence relation on Z, the equivalence class of z w.r.t. ∼ is the set [z]∼ := {z′ ∈ Z |
z′ ∼ z}. We denote by Z/∼ the set of equivalence classes of Z w.r.t. ∼.
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A.2 Metric Spaces and Topology

We follow [Willard, 2012] as a general reference for this section, revisiting the notation. Let X be a
set fixed for the rest of this section.

A.2.1 Metrics

A metric, or distance function, is a function d : X × X → R>0 that satisfies all the following
properties for every x, y, z ∈ X:

a) d(x, y) = 0 ⇐⇒ x = y

b) d(x, y) ≥ 0 (positivity)
c) d(x, y) = d(y, x) (symmetry)
d) d(x, y) + d(y, z) ≥ d(x, z) (triangle inequality)

Notable metrics, relevant to us, are the following ones.

• The Euclidean distance, or L2-norm distance, is defined as

L2
X(x,y) := ∥x− y∥ :=

√
(x1 − y1)2 + · · ·+ (xn − yn)2.

• The discrete metric is defined as

DX(x,y) :=

{
1 if x ̸= y,

0 if x = y.

We will omit X from a metric when it is clear from the context. For instance, we will write L2 and D
for L2

X and DX, respectively.

A.2.2 Metric spaces

A metric space is a tuple S = ⟨X, d⟩ where d : X ×X → R is a metric. Given metric spaces X =
⟨X, dX⟩ and Y = ⟨Y, dY ⟩, an isometry between X and Y (or distance-preserving function) is a bijec-
tive function f : X → Y such that, for every 1, x2 ∈ X , we have dX(x1, x2) = dY (f(x1), f(x2)).
When an isometry exists, the spaces X and Y are said to be isometric. Intuitively, two isometric
spaces are essentially the same metric space. Notable metric spaces, relevant to us, are the following
ones, for n ∈ N>0.

• The Euclidean n-space ⟨Rn,L2⟩.
• The complex n-space ⟨Cn,L2⟩, seen as isometric to ⟨R2n,L2⟩, by the following isometry:

f(a1 + ib1, . . . , an + ibn) = ⟨⟨a1, b1⟩, . . . , ⟨an, bn⟩⟩ .
In particular, by the isometry above, all our results for Euclidean n-spaces transfer to complex
n-spaces seamlessly.

We omit the metric when referring to metric spaces, since in the following sections we only consider
Euclidean n-spaces ⟨Rn,L2⟩ and complex n-spaces ⟨Cn,L2⟩, that are always equipped with the L2

as described above. Thus we simply refer to them as Rn and Cn, respectively.

A subspace ⟨Y, dY ⟩ of ⟨X, dX⟩ is a metric space with Y ⊆ X and dY given by restriction of dX to
Y × Y .

We define the open ball BX(x, r) and closed ball BX(x, r) at x ∈ X of radius r ≥ 0 in ⟨X, d⟩ as
the set of points in X with distance δ < r and δ ≤ r from x, respectively:

BX(x, r) := {y ∈ X | d(x, y) < r}, BX(x, r) := {y ∈ X | d(x, y) ≤ r}.

A subspace (Y, dY ) of (X, dX) is a metric space with Y ⊆ X and dY given by restriction of dX to
Y × Y . We say that a subspace S ⊆ X is bounded, if there is some x ∈ X and ∞ > M ≥ 0 s.t.
S ⊆ BX(x,M). We call a subspace S ⊆ X is open in X if for all s ∈ S there is some ϵs > 0 s.t.
BX(s, ϵs) ⊆ S. S is closed in X if X \ S is open in X .
Example 1. The open intervals (a, b) and (a,∞) are open in R (with the usual metric). The closed
interval [a, b] is closed in R. The subspace {0, 2−n : n ∈ N} is closed in R, while {2−n : n ∈ N} is
neither closed nor open in R. ■
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A.2.3 Topology

The notion of open subspaces in terms of open balls defines a topology on any metric space, which
determines what functions are continuous. Formally, a topological space is a tuple (S, T ), with S
being the underlying set, and T ⊆ P(S) being the collection of open sets, such that S and ∅, the
union of any collection of open sets is open, and the intersection of any finite collection of open sets
is open. The open sets definition in terms of open balls for a metric space satisfies these properties.
Many aspects of Metric Automata Theory could be easily restated in the language of Topology
Theory, but we choose a more concrete setting, to make it more accessible.

Intuitively, the closed subspaces of X are precisely the ones which contain all their limit points, i.e.
if (xn)n≥1 ⊆ S converges to some limit l ∈ X , then l ∈ S.
Fact A.2.1. For a metric space X , a subset S ⊆ X is closed iff for all sequences (xn)n≥1 ⊆ S
converging to l ∈ X we have that l ∈ S. (see §10, Cor. 10.5 of Willard [2012], as every metric space
is first-countable)

Note that the notion of opennes/closeness is not inherent to the subspace S: it also depends on the
superspace X , since the definition involves balls in X . In fact, any subspace S ⊆ X is by definition
both open and closed as a subspace of itself, regardless of whether is open or closed in X . Any time
we use opennes or open balls, we need to excercise caution and be clear which space the openness is
referring to.
Example 2. Consider M = R2 and X = R× {0} = {(x, 0) ∈ R2 : x ∈ R}. (−1, 1)× {0} ⊆ X is
an open ball at (0, 0) of radius 2 in X , and thus an open set. However, it is not even an open set in
M ! For any ϵ > 0 we have ||(0, 0)− (0, ϵ)|| = ϵ, but (0, ϵ) /∈ S, and so no open X-ball centred at
(0, 0) is wholly contained in S. ■

In fact, any subspace S ⊆ X is by definition both open and closed as a subspace of itself, regardless
of whether is open or closed in X .

A continuous function f : (M,d) → (M ′, d′) is the a set function f : M → M ′ such that for
all sequences (xn)n≥1 ⊆ M converging to some x ∈ M , the mapped sequence

(
f(xn)

)
⊆ M ′

converges to f(x) ∈M ′. The ϵ− δ definition of continuity, as well as the topological definition of
continuity (Y ⊆M ′ open =⇒ f−1(Y ) ⊆M open) are equivalent in the metric space setting.
Example 3. Let S be a subspace of X . Then the inclusion map ι : S → X , given by set-theoretical
inclusion S ⊆ X , is continuous. ■

The topological definition of continuity makes clear the following:
Fact A.2.2. All functions f : (M,d) → (M ′, d′) are continuous for a discrete metric space (M,d).

Next, we introduce two elementary notions in Topology and Metric Space Theory: compactness and
path-connectedness.

A.2.4 Compactness

Definition 9. A space X is called compact if all coverings of X by open subsets of X admit a finite
subcover. For metric spaces, equivalently X is (sequentially) compact, if all sequences in X have a
subsequence converging to a limit in X (see 17G.3 of Willard [2012]). ■

The following is a characterization of compact subspaces of Rd.
Fact A.2.3. (Heine-Borel) X ⊆ Ω is a compact subspace iff. X is a bounded, closed subset of Rd

(see 17.9 of Willard [2012]).
Example 4. Subspaces [a, b], {a}, {0, 2−n : n ∈ N} are compact in R. (a, b), {2−n : n ∈ N} are not
closed, and so they are not compact. R is not bounded, and so it is not compact. ■

Turns out that compactness, unlike openness, is inherent to the subspace, as demonstrated by the
following theorem:
Fact A.2.4. A continuous image of a compact space is compact (see 17.7 of Willard [2012])

Finally, Tychonoff Theorem tells us that compactness is a property which is preserved by cartesian
products.
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Fact A.2.5. (Tychonoff) The cartesian product of two compact spaces is compact (see 17.8 of Willard
[2012])

A.2.5 Path-connectedness

Definition 10. A path in X from a to b is a continuous function γ : [0, 1] → X such that γ(0) = a
and γ(1) = b. A space X is called path-connected if for all a, b ∈ X there is a path from a to b. ■

Path-connectedness partitions the space into components, which we will later think of as atomic parts
of the state-space for a dynamical system. - any continuous decoder assigning discrete symbols to the
state-space must be constant on a path-connected component, see Lemma 22.

See Section 27D of Willard [2012] for the following:
Fact A.2.6. The relation ∼ on X given by a ∼ b ⇐⇒ there is a path from a to b in X is an
equivalence. The equivalence classes of ∼ are the maximal path-connected subspaces of X .
Example 5. Any convex subspace of Rd is path-connected, in particular open and closed Rd-balls
are path-connected. (−1, 0) ∪ (0, 1) has 2 path-connected components: (−1, 0) and (0, 1). ■

Just like compactness, path-connectedness is an inherent property of the subspace, and is preserved
by Cartesian products (see 27B of Willard [2012]):
Fact A.2.7. A continuous image of a path-connected space is path-connected.
Fact A.2.8. The cartesian product of two path-connected spaces is path-connected.

A.3 Dynamical Systems

Following Knorozova and Ronca [2024a], we adopt dynamical systems as an general formalism to
describe all systems that operate by maintaining a state recurrently. This allows for treating such
systems in a uniform way despite their differences. In this work specifically, we will use dynamical
systems to formalise Finite Automata and several RNN architectures in Section A.6.
Definition 11. A (dynamical) system is a tuple S = ⟨X,U, f, x0, Y, h⟩, where X is the state space,
U is the input space, f : X × U → X is the dynamics function, x0 ∈ X is the initial state, Y is the
output space and h : X × U → Y is the output function. We have that X,U, Y are metric spaces,
and f, h are continuous. In our analysis it will be useful to refer to the tuple D = ⟨X,U, f⟩ as the
dynamics of S, allowing us to focus on just the state transitions.

Given x0 ∈ X , D defines a map from sequences of inputs (un)n≥1 ⊆ U to sequences of states
(xn)n≥0 ⊆ X , given by

xn+1 = f(xn, un+1) for n ≥ 0

With this, we can define the state-sequence function D : X × U∗ → X as

D(x0, ε) = x0; D(x, u1..n) = xn

S defines a map from sequences of inputs (un)n≥1 ⊆ U to sequcences of states (xn)n≥1 ⊆ X and
sequences of outputs (yn)n≥1 ⊆ Y , given by

yn = h(xn, un) = h
(
D(x0, u[1..n]), un

)
Hence we say that S defines the function U+ → Y , with S(u[1..n]) = yn. In the special case that h
is independent of U , we may define S(ϵ) = h(x0), extending the definition to S : U∗ → Y . ■

Lemma 10 (State continuity). Let S = ⟨X,U, f⟩ be a dynamics, and for input sequence (un)Nn≥1 ⊆
U and x0 ∈ X let (xn)Nn≥1 ⊆ X be the sequence of states

xn = f(xn−1, un)

Then xn is a continuous function of x0, u1, . . . , un for all n ∈ 1..N . Consequently yn = h(xn, un)
is also a continuous function of x0, u1, . . . , un, for any continuous h.

Proof. By induction. Writing xn(u1, . . . , un) we have that

xn+1 = f(xn(x0, u1, . . . , un), un+1)

is also a continuous function of x0, u1, . . . , un+1.
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The formalism of cascades provides a flexible way to describe dynamical systems consisting of
subsystems forming an acyclic network. Their flexibility will allows us, e.g., to consider not only
feed-forward layers of SSMs as in Grazzi et al. [2025], Sarrof et al. [2024], but also more complex
architectures with, e.g., blocks in parallel, and mixes of different types of neurons.
Definition 12. A feed-forward cascade C is a form of dynamics ⟨X,U, f⟩ with X = X1 × · · ·×Xn,
and dynamics function of the form

f(⟨x1, . . . , xn⟩, u) = ⟨x′1, . . . , x′n⟩
where x′i = f(xi, ⟨u, x′1, . . . , x′i−1⟩)

We may see C as consisting of dynamics D1, . . . , Dn where

Di = ⟨Xi, U ×X[1,i−1], fi⟩

and write C = D1 ⇝ · · ·⇝ Dn. ■

Thus, the cascade is evaluated in a feedforward fashion: on input u, first the state of D1 is updated,
then for all subsequent components Di, the state of Di is updated based on u and the updated states
of D1, . . . , Di−1. This differs from some recurrent neural network literature, where Di is updated
based on u and the initial states of D1, . . . , Di−1, i.e. the update happens at the same time for all
components. We refer to such cascades as serial cascades.
Definition 13. A serial cascade C is a form of dynamics ⟨X,U, f⟩ where states are of the form
X = X1 × · · · ×Xn, and the dynamics function is of the form

f(⟨x1, . . . , xn⟩, u) = ⟨f1(x1, u1), . . . , fn(xn, un)⟩, with ui = ⟨u, x1, . . . , xi−1⟩.

We may see C as consisting of dynamics D1, . . . , Dn where

Di = ⟨Xi, U ×X[1,i−1], fi⟩

and write C = D1 ⋉ · · ·⋉Dn. ■

Serial cascading can be achieved with feed-forward cascades, and the distinction between the two is
irrelevant for our purposes. For details, see Appendix G.2.

In further sections, it will be useful to allow connection functions in a cascade, transforming the
inputs between components. It will not alter the expressivity results, but it allows us to e.g. define one
canonical FLIP-FLOP dynamics, rather than a family of FLIP-FLOP-like dynamics for every possible
input and output set.
Definition 14. For dynamics D1, D2 with Di = ⟨Xi, Ui, fi⟩ for all i ∈ [1..2], and for continuous
i : U → U1 and g : U ×X1 → U2, we define the feed-forward cascade with input i and connection

g, written i
⇝ D1

g
⇝ D2, and the serial cascade with input i and connection g, written

i
⋉D1

g
⋉D2 as

the dynamics ⟨X1 ×X2, U, f⟩, ⟨X1 ×X2, U, f
′⟩ respectively, where f and f ′ are given by

f(⟨x1, x2⟩, u) =
〈
x′1, x

′
2

〉
, where

x′1 = f1(x1, i(u))

x′2 = f2
(
x2, g(u, x

′
1)
)
,

and f ′(⟨x1, x2⟩, u) =
〈
f1(x1, i(u)), f2(x2, g(u, x1)

〉
. Note that for U2 = U1 ×X2 and g = id, we

recover the usual notion of feed-forward cascade and serial cascade/. ■

For dynamics D = ⟨X,U, f⟩ and continuous function g : Z → U , we define the dynamics with
input function Dg =

〈
X,Z, (x, z) 7→ f

(
x, g(z)

)〉
. With the notation from the previous definition,

note that D1,i ⇝ D2,g ≡ i
⇝ D1

g
⇝ D2, and D1,i ⋉ D2,g ≡

i
⋉D1

g
⋉ D2. In our expressivity

results we will not care about how the dynamics of a neuron interpret the input function, only about
the induced transformations of the state-space. Thus, in further sections in proofs we will only
consider feed-forward cascading without connection functions, without loss of generality, in order to
simplify notation. Further discussion about serial cascades and connecting functions is deferred to
Appendix B.5. The next lemma shows the intuitive fact, that it does not matter in which order we
"connect" the components of the cascade. In the following propositions, it will be useful to view a
cascade D1 ⇝ · · ·⇝ Dn as (D1 ⇝ · · ·⇝ Dn−1)⇝ Dn for inductive proofs.
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Definition 15. For dynamics D1, D2, where Di = ⟨Xi, Ui, fi⟩ for all i ∈ [1..2], write D1 ≡ D2 if
X1 = X2, U1 = U2 and f1 = f2.
Lemma 11. The cascading operation is associative, i.e. we have

D1 ⇝ (D2 ⇝ D3) ≡ (D1 ⇝ D2)⇝ D3,

where ‘≡’ is as introduced in Definition 15

Proof. Say we have Di = ⟨Xi, U ×X[1,i], fi⟩ for i ∈ 1..3. Both the LHS and RHS dynamics have
state space X1 ×X2 ×X3 and input space U . Consider a state ⟨x1, x2, x3⟩ ∈ X1 ×X2 ×X3 and
input u ∈ U .

Write x′1 = f1(x1, u), x
′
2 = f2

(
x2, ⟨u, x′1⟩

)
, x′3 = f3

(
x3, ⟨u, x′1, x′2⟩

)
. Also write f23 for the

dynamics function of D2 ⇝ D3 and f12 for the dynamics function of D1 ⇝ D2. Then the state
update of the LHS system is as follows:

fLHS(⟨x1, x2, x3⟩, u) =
〈
x′1, f23

(
⟨x2, x3⟩, ⟨u, x′1⟩

)〉
=
〈
x′1,
〈
x′2, f3

(
x3, ⟨u, x′1, x′2⟩

)〉〉
=
〈
x′1, x

′
2, x

′
3

〉
.

where the second line follows from the definition of cascade dynamics for D2 ⇝ D3, and the third
line follows from associativity of the cartesian product. Analogously,

fRHS(⟨x1, x2, x3⟩, u) =
〈
x′12, f3

(
x3, ⟨u, x′12⟩

)〉
, where x′12 = f12(⟨x1, x2⟩, u).

Now, we have x′12 = f12(⟨x1, x2⟩, u) =
〈
x′1, f2

(
x2, ⟨u, x′1⟩

)〉
= ⟨x′1, x′2⟩, and so

fRHS(⟨x1, x2, x3⟩, u) =
〈
x′12, f3

(
x3, ⟨u, x′12⟩

)〉
=
〈
⟨x′1, x′2⟩, f3

(
x3, ⟨u, x′1, x′2⟩

)〉
= ⟨x′1, x′2, x′3⟩.

Thus both ways of composing the dynamics D1, D2, D3 results in the same dynamics function.

A.4 Algebraic Automata Theory (AAT)

We present an extended version of the background on Algebraic Automata Theory given in the
preliminaries of the main body.

Algebraic Automata Theory (AAT) allows for studying finite automata through the lens of algebraic
notions such as semigroups and groups, c.f. [Hartmanis and Stearns, 1966, Ginzburg, 1968, Arbib,
1969, Dömösi and Nehaniv, 2005]. Its fundamental theorem is the seminal Prime Decomposition
Theorem by Krohn and Rhodes [1965], that shows how every semiautomaton can be decomposed
into a cascade of elementary prime semiautomata. One prime semiautomaton is the flip-flop, that
describes the elementary system with the ability to store and manipulate one bit of information.
Definition 16. The flip-flop is the two-state semiautomaton defined as

FLIP-FLOP :=
〈
{high, low}, {set, reset, id}, δ

〉
where

δ(q, id) = q, δ(q, set) = high, δ(q, reset) = low.

AAT often focuses on state transformations rather than on the transition function δ of an automaton.
State transformations are the functions δσ(q) := δ(q, σ) obtained by fixing an input σ. They allow us
to characterise semiautomata in terms of semigroups and groups. In particular, the transitive closure
of the state transformations of an automaton forms a semigroup, and a monoid or group in special
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cases. From this algebraic point of view, the flip-flop is characterised by the flip-flop semigroup,
which is in fact given by the set of state transformations of FLIP-FLOP. All the other primes are
characterised by finite simple groups, and for this reason they are called group-like. Specifically, their
state transformations form a finite simple group.

Automata whose semiautomaton can be decomposed purely into flip-flops are called group-free, and
they play a central role in our theory and in general, due to the following theorem whose proof also
involves the celebrated theorem by Schützenberger [1965]) on aperiodic semiautomata, cf. [Ginzburg,
1968].
Theorem 12. The star-free languages is the class of languages recognised by groupfree automata.

All other automata, that do not admit the above decomposition, are called non-group-free, since
their prime decompositions always include group-like semiautomata. They admit the following
characterisation in terms of state transformations, relevant to our results.
Theorem 13. (Lemma 9 of [Knorozova and Ronca, 2024a]1) If a semiautomaton ⟨Q,Σ, δ⟩ is not
group-free, then there exist Q′ ⊆ Q and σ ∈ Σ such that the state transformation δσ : Q→ Q is a
non-identity permutation on Q′.

Our theory will extend the applicability of AAT to the study of general dynamical systems. And
in particular to analyse the structure of such systems using algebraic means like group theory. A
notion from AAT that is key to our results is the notion of realisation for Mealy machines (cf.
Definitions 1.14 and 1.15 of [Hartmanis and Stearns, 1966]).

Realisation describes how a machine can imitate another machine after a renaming of inputs and
outputs—noting that actual names of inputs and outputs are not important in order to characterise
what functionalities a machine is fundamentally able to implement.

We recall that a Mealy machine is a tuple ⟨Q,Σ, δ,Γ, θ⟩ where ⟨Q,Σ, δ⟩ is a semiautomaton, Γ is an
output alphabet, and θ : Q× Σ → Γ is an output function.

A Mealy machine defines the mapping Q× Σ+ → Γ given by
M(q, w) = θ

(
DM (q, w), w−1

)
,

where DM is the semiautomaton of M .

Given a (finite) automaton A = ⟨Q,Σ, δ, q0,Γ, θ⟩, the associate Mealy machine MA =
⟨Q,Σ, δ,Γ, θ⟩ is obtained by dropping the initial state from automaton A.

Given a semiautomaton DA = ⟨Q,Σ, δ⟩ we define its canonical Mealy machine as
M(D) := ⟨Q,Σ, δ,Γ, θ⟩, where Γ = Q× Σ, and θ = id.

Definition 17 (Definitions 1.14 and 1.15 of [Hartmanis and Stearns, 1966]). If M = ⟨Q,Σ, δ,Γ, θ⟩
and M ′ = ⟨Q′,Σ′, δ′,Γ′, θ′⟩ are Mealy machines, then the triple (α, ι, ζ) is called an assignment of
M into M ′ when the functions

α : Q→ P+(Q
′), ι : Σ → Σ′, ζ : Γ′ → Γ,

satisfy the two conditions below for every q ∈ Q, every q′ ∈ α(q), and every σ ∈ Σ.

I) δ′
(
q′, ι(σ)

)
∈ α

(
δ(q, σ)

)
II) ζ ◦ θ′

(
q′, ι(σ)

)
= θ
(
q, σ
)

If an assignment of M into M ′ exists, then M ′ is said to be a realisation of M . ■

The following results tells us how a machine M ′ that is a realisation of another machine M actually
implements its behaviour. Any trajectory through M factors through M ′, with ι and ζ acting as the
encoder and decoder, respectively, and with α providing an initial state to start from.
Theorem 14. (Theorem 1.5 in §1.3 of [Hartmanis and Stearns, 1966]) If M ′ = ⟨Q′,Σ′, δ′,Γ′, θ′⟩ is
a realisation of M = ⟨Q,Σ, δ,Γ, θ⟩ through an assignment (α, ι, ζ), then for all x0 ∈ Q, w ∈ Σ+,
and x′0 ∈ α(x0)

θ
(
D(x0, w), w−1) = ζ ◦ θ′

(
D′(x′0, ι(w)), ι(w−1)

)
i.e., M(x0, w) = ζ ◦M ′(q′0, ι(w)).

1Lemma 9 of [Knorozova and Ronca, 2024a] can be found in the appendix of its extended version [Knorozova
and Ronca, 2023].
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We will use the following version of the Krohn-Rhodes decomposition theorem, presented in [Hart-
manis and Stearns, 1966], which uses the notion of realisability.
Theorem 15. (Theorem 7.8, §8, Hartmanis and Stearns [1966]) Let M be a Mealy machine, with
group-free semiautomaton. Then M can be realised by a machine with serial cascade dynamics,
consisting of FLIP-FLOP components.

A.5 Multilayer Perceptrons

A Multilayer Perceptron (MLP) is a tuple

N = ⟨d,n, U, Y, α, β,W,b⟩,

where d ∈ N>0 is called the depth or number of layers, n = ⟨n, n2, n3, . . . , nd,m⟩ is called
architecture, U ⊆ Rn is the input domain, Y ⊆ Rm is the output domain (or codomain), α : R → R
is called activation function, β : R → R is called activation function of the last layer, W =
⟨W1, . . . ,Wd⟩ with Wi ∈ Rni×ni+1 called weight matrices, and b = ⟨b1, . . . , bd⟩ with bi ∈ Rmi

called bias vectors. Then, N defines the function f : U ⊆ Rn → U ⊆ Rm given by the composition
f1 ◦ · · · ◦ fd of the functions fi : Rni → Rni+1 defined as

fi(x) = α(WT
i x+ bi) ∀i ∈ [1..d− 1],

fd(x) = β(WT
d x+ bd).

We often identify N with the function f , and hence see the network as a function N : U → Y .
The functions fi are called layers, with the first layer f1 called the input layer, the last layer fd
called the output layer, and the other layers called hidden layers. The (maximum) width of N is
max{n2, . . . , nd}. Typical choices for the activation function α are sigmoid(x) := 1

1+exp(−x) and
the Rectified Linear Unit ReLU(x) := max{0, x}. The same choices are valid for the last-layer
activation function β; however, as it computes the output of the network, it is often specialised
by choosing β to be: the identity function (e.g., for regression tasks), sigmoid (e.g., for binary
classification), softmax (e.g., for modelling distributions).

MLPs are universal approximators as long as their activation function α is non-polynomial, as
established by several well-known Universal Approximation Theorems for feedforward neural
networks, cf. [Cybenko, 1992, Hornik et al., 1989].
Theorem 16 (Universal Approximation). Let α be any non-polynomial activation function. Addition-
ally, let X ⊆ Rn be compact, and let f : X ⊆ Rn → Y ⊆ Rm be continuous. For every ϵ > 0, there
exists a 2-layer MLP N with activation function α, and identity as its last-layer activation function,
such that the following inequality holds:

sup
x∈X

∥f(x)−N(x)∥ < ϵ.

Note that ReLU and sigmoid are non-polynomial activation functions.

In light of the above theorem, in the rest we will focus on MLPs having non-polynomial activation
function α, as well as identity as their last-layer activation function β. This will be relevant in all
expressivity results for RNNs whose architecture includes MLPs—as also discussed in Section A.6.

A.6 Recurrent Neural Network Architectures

We present the Recurrent Neural Network (RNN) architectures studied in the following sections.

Classical RNNs are networks of neurons with hidden state h ∈ Rdstate and update rule of the form

ht = ϕ(ht−1, xt) for x ∈ Rdinput

where ϕ is commonly a linear transformation composed with a non-linearity, like sigmoid or tanh.
We model such neurons as dynamical systems, with hidden state taking values in X , and inputs taking
values in U . The hidden state of the neuron at step t may be available to other neurons in the network
as part of their input at time t+ 1.

In modern Machine Learning applications, notably NLP, the networks are in the form of feed-forward
connections, with learnable transformations between the neurons. Also some neurons may appear in

9



parallel, and some neurons might additionally include residual connections. Most generally, we can
model such RNNs as acyclic networks, and for nodes N1, . . . , NL consider the connection functions
ψi,j , describing the transformation which is applied to the value going from neuron Ni to neuron
Nj . The network input also may be given to Ni, after going through some transformation ιi. As the
network is acyclic, we may assume that there are no connection functions ψi,j for i > j. Finally,
the inputs to Ni are accumulated by some αi. Now, we may express the network as a feed-forward
cascade D1 ⇝ · · ·⇝ DL, with Di = ⟨Xi, U ×X[1..n], fi⟩, where Xi is the state-space of neuron
Ni, U is the input space of the network, and fi is given by

fi
(
x, x[1..n]

)
= ϕ

(
h, αi

(〈
ιi(u), ψ1,i(x1), . . . , ψi−1,i(xi−1)

〉))
This is how our framework allows to pull the details about the state-less transformations of the input
or state-space into the dynamics function.

Classical (Vanilla) RNNs. Vanilla RNNs are networks where the state is updated through a linear
combination of the previous state and current input, followed by the application of a non-linear
activation function. A prominent example of a vanilla RNN architecture is the Elman RNN, which
is given by dynamics D = ⟨X,U, f⟩ with state space X ⊆ Rstate, input space U ⊆ Rinput, and
dynamics function

f(x, u) = tanh
(
AX · x+AU · u+ b

)
,

where AX ∈ Rstate×state is a matrix defining a linear transformation of the state, AU ∈ Rstate×input

is a matrix defining a linear transformation of the input, and b ∈ Rstate is the bias vector.

State Space Models. State Space Models (SSMs) are a family of models based on linear recurrence
with particular parametrisation. Notable ones are Mamba [Gu and Dao, 2023] and S4 [Gu et al.,
2020].

To model linear recurrence in general, we introduce Linear Recurrent Dynamics, defined as dynamics
D = ⟨X,U, f⟩, with state space X ⊆ Kdstate , input space U = Kdinput , where K = R or K = C,
and with dynamics function

f(x, u) = A(u) · x+B(u),

where A(u) ∈ Kdstate×dstate is the state-transition gate and B(u) ∈ Kdstate is the input gate.

SSM architectures often combine linear recurrence blocks with linear projections, non-linearities,
residual connections and convolutions. Our theory can easily model such setups with cascade
compositions—introduced in Section 2. Consider the Mamba block:

z[1..n] = SSM ◦σ ◦Conv ◦ linear1(u[1..n])
y[1..n] = σ ◦ linear2(u[1..n])
o[1..n] = linear3(z[1..n] × y[1..n])

where the input sequence u[1..n] ∈ U+ and output sequence o[1..n] ∈ Y + are processed sequentially,
each lineari is a linear projection, σ is a non-linearity, SSM is an SSM block, Conv is a causal
convolution, and × is element-wise multiplication. Only Conv and SSM are stateful transformations
here. In Figure 6, we present it in the form of a system with cascade dynamics.

We introduce a general class of dynamics as an abstraction for convolution blocks.
Definition 18. Finite Context Dynamics (FCDs) with context length ℓ are dynamics D = ⟨X,U, f⟩
such that their state depends only on the most recent ℓ inputs. That is, in view of Lemma 10, there is
a continuous function C : U ℓ → X such that

D(x,w) = C(w−u, . . . , w−1)

for all x ∈ X and w ∈ U∗ with |w| ≥ ℓ, where w−i is the i-th-to-last element of w.

xLSTM. The recently introduced model xLSTM [Beck et al., 2024] is a successor of the LSTM
architecture [Hochreiter and Schmidhuber, 1997], and it achieves performance competitive with
transformer architectures. It makes use of both non-linear and linear recurrences. xLSTM introduces
two types of blocks: sLSTM and mLSTM. In this work we will focus on the sLSTM block.
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u[1..n]

linear1 linear2

σ σ

Conv

SSM

⊗

linear3

Mamba block

U

Conv

SSM

h

Conv⇝ SSM

Figure 6: The feedforward cascade structure of a Mamba block. Only Conv and SSM are stateful, so
the cascade has 2 components. Structure on the left as it is presented in [Gu and Dao, 2023].

The state space of a sLSTM is R3, and the input space is Rd for some d ≥ 1. The dynamics function
of the form (⟨c, n, h⟩, u) 7→

〈
fc(⟨c, n, h⟩, u), fn(⟨c, n, h⟩, u), fh(⟨c, n, h⟩, u)

〉
, where

fc(⟨c, n, h⟩, u) = ψ(lf (h, u)) · c+ exp(li(h, u)) · φ(lz(h, u))
fn(⟨c, n, h⟩, u) = ψ(lf (h, u)) · n+ exp(li(h, u))

fh(⟨c, n, h⟩, u) = σ(lo(h, u)) ·
fc(⟨c, n, h⟩, x)
fn(⟨c, n, h⟩, x)

where each ls : s ∈ o, i, z, f is a function of the form wt
s · u+ rs · h+ bs, for ws ∈ Rd, rs, bs ∈ R,

ψ is either exp or σ, and φ is tanh.
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B Foundations of Metric Automata Theory

In this appendix, we develop the key notions of Metric Automata Theory within the η-finiteness
framework.

In Sections B.1 and B.2 we introduce the basic properties of η-finite spaces and dynamics.

In Section B.3 we develop the correspondence between η-finite systems and finite automata, which is
crucial to unlocking the powerful theorems of AAT. We provide the proof for Theorem 1.

In Sections B.4 and B.5 we import the notion realizability to continuous systems, via the correspon-
dence with automata, and use it to translate algebraic decomposition theorems into the setting of
η-finiteness.

B.1 The Notion of η-Finiteness

We begin by introducing η-finiteness, which is a central notion of Metric Automata Theory and our
novel finite-precision framework.
Definition 19. Let X ⊆ Ω for some d ≥ 1. Call X η-finite if it is a finite union of compact,
path-connected sets.

Immediately from the definition we have that an η-finite space is necessarily compact—in the case of
metric spaces, finite union of bounded, closed sets is bounded and closed. The next result resolves
the technicality, that the defining sets in the union of a η-finite X need not be disjoint.
Lemma 17. LetX be η-finite. ThenX has finitely many path connected components, sayX1, . . . , Xn,
and each of Xi is compact. We shall refer to them as the η-components of X .

Proof. By def, X =
⋃N

i=1 Yi for some compact and path-connected subsets. By induction on N :
If N = 1, then the claim is immediate. Now, consider the inductive hypothesis for N ≥ 2, that
X ′ =

⋃N−1
i=1 Yi has finitely many path connected components X1, . . . , Xn, each compact. The path

connected components of X are then unions of elements from {X1, . . . , Xn, YN}. Each of these sets
is compact, and so each such finite union is compact: clearly it is still bounded, and a finite union of
closed sets is still closed.

Example 6. Any finite alphabet is η-finite, with each symbol in a separate η-component. The subspace
[−2, 1]∪ {2} ⊆ R is η-finite. The subspace (−2, 1)∪ {2} is not η-finite, since it is not compact. The
subspace {0, 2−n : n ∈ N} is compact but not η-finite, since it is not a finite union of path-connected
sets. ■

Both compactness and path-connectedness are preserved by continuous mappings and (finite) Carte-
sian products, see Facts A.2.4, A.2.5, A.2.7, and A.2.8. This gives us the corresponding results for
η-finite spaces.
Lemma 18. Continuous image of an η-finite space is η-finite.

Proof. Write X =
⋃N

i=1Xi for path-connected, compact sets Xi. Let f : X → Y be continuous.
We have:

f(X) =

N⋃
i=1

f(Xi)

By Facts A.2.4 and A.2.7, each f(Xi) is compact and path-connected. Thus by definition f(X) is
η-finite.

Lemma 19. The Cartesian product X × Y space of η-finite spaces is η-finite. The η-components of
X × Y are the products of η-components of X and η-components of Y .

Proof. Let X1, . . . , Xn and Y1, . . . , Y, be the C-components of X,Y respectively. We have X =⋃n
i=1Xi, Y =

⋃m
j=1 Yj and so

X × Y =
( n⋃
i=1

Xi

)
×
( m⋃
j=1

Yj
)
=

n⋃
i=1

m⋃
j=1

Xi × Yj
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By Facts A.2.8 and A.2.5 each Xi × Yj is path-connected. Therefore by def. X × Y is η-finite.
Moreover, the η-components of X × Y are unions of the products Xi × Yj . Now, fix i ∈ [1..n], j ∈
[1..j]. Let Z be the η-componentof X × Y containing Xi × Yj . consider the projection map
πX : X × Y → X . As the projection is continuous, the image, πX(Z) is path-connected in X by
Fact A.2.7. Moreover, Xi ∈ πX(Z). Thus, as Xi is a maximal path-connected subspace of X , we
have Xi = πX(Z). Similarly, considering the projection πY : X × Y → X , we have Yj = πX(Z).
Since Xi × Yj ⊆ Z, we therefore must have Xi × Yj = Z. Therefore X × Y has finitely many
η-components, and they are the products of η-components of X and η-components of Y .

Lemma 20. Let X be η-finite, with η-component X1, . . . , Xn. For some δ > 0 we have

inf
x∈Xi,y∈Xj

∥x− y∥ ≥ δ for all i ̸= j.

Proof. It is sufficient to show this in the case that X has two η-components, say X1, X2. Define
f : X1 ×X2 → R≥0 by f(x1, x2) = ∥x1 − x2∥. This is continuous, and so Im f is compact, as
X1 ×X2 is compact. Since X1, X2 are disjoint, 0 /∈ Im f . Thus 0 is not a limit point of Im f , and
so for some δ > 0 we have that [0, δ) ⊈ Im f .

Corollary 21. Let X ⊆ Ω be η-finite and (xn)n≥1 ⊆ X converge in Ω. Then (xn)n≥1 is eventually
contained in a single η-component of X .

Lemma 22. Let X be an η-finite space and Σ a finite alphabet. Then a function f : X → Σ is
continuous if and only if it is constant on the η-components of X

Proof. (⇐) Suppose f : X → Σ is constant on η-components of X . Let (xn)n≥1 ⊆ X converge to
x ∈ X . Then by Lemma 20, (xn)n≥1 is eventually contained in the same η-component as x. Thus
f(xn) = f(x) eventually, in particular f(xn) → f(x) as n→ ∞. Hence f is continuous.

(⇒) If f is continuous, then it maps η-component of X to path-connected subspaces of Σ. Therefore
f must be constant on η-components.

B.2 Dynamical Systems and η-Finiteness

Definition 20. We say that dynamics ⟨X,U, f⟩ are η-finite if both X and U are η-finite. A system S
is η-finite if its dynamics are η-finite.

Example 7. Take X = [−1,−1/2] ∪ [1/2, 1] and U = {−1, 0, 1}. The both X and U are η-finite.
Define f : X × U → X by:

f(x, u) =

{
x if u = 0

u if u = 1,−1

Thus under input u = 0 the dynamics function performs the identity transformation on X , and under
inputs u = 1,−1, X is mapped to 1,−1 respectively. The dynamics D = ⟨X,U, f⟩ is η-finite. ■

Note, that by Lemma 19, a cascade of η-finite components is itself η-finite.

Lemma 23. Let D = ⟨X,U, f⟩ be a η-finite dynamics, and h : X × U → Y be continuous. Then
the image of h, Imh ⊆ Y , is η-finite.

Proof. Immediately follows from Lemma 18.

Lemma 24 (Path-connected ⇒ same state). Let D = ⟨X,U, f⟩ be a dynamics, and consider
x0, x

′
0 ∈ X , and input sequences (un)n≥1, (u

′
n)n≥1 ⊆ U , and the corresponding state sequences

(xn)n≥1, (x
′
n)n≥1 ⊆ X . Suppose that for all n ≥ 1, un ∼U u′n, and x0 ∼X x′0. Then for all n ≥ 1

we have that xn ∼X x′n, i.e.,

D(x0, u[1..n]) ∼X D(x′0, u
′
[1..n])

Proof. Let n ≥ 1. By 10, we have that there is for each n a continuous function xn(x0, u1, ..un)
determining the n-th state. Now, since each pair ui, u′i for i ∈ 1..n is path-connected in U , we have
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that ⟨u1..n⟩ and ⟨u′1..n⟩ are path-connected inUn - the path connecting them applies the corresponding
1-d paths pointwise. Thus by continuity of xn,

xn = xn(x0, ⟨u1..n⟩) , x′n = xn(x0, ⟨u′1..n⟩)

are path-connected in X .

Corollary 25. Let S = ⟨X,U, f, x0, Y, h⟩ be a η-finite system, and let us consider input sequences
(un)n≥1, (u

′
n)n≥1 ⊆ U such that for all n un and u′n are in the same path-connected component.

Then the corresponding state sequences (xn)n≥1, (x
′
n)n≥1 ⊆ X , and the corresponding output

sequences (yn)n≥1, (y
′
n)n≥1 ⊆ Y are such that for all n xn and x′n are in the same path-connected

component of X and yn and y′n are in the same path-connected component of Imh

In light of the above results, we introduce the notion of equivalent sequences, for convenience in later
proofs.

Definition 21. Let X be a η-finite space. Call sequences (xn)n≥1, (x
′
n)n≥1 ⊆ X equivalent, if for

each n we have that xn and x′n are in the same component of X . Call these sequences eventually
equivalent, if they have equivalent tail sequences.

Overall, the notions of η-finiteness and η-component have very favourable theoretical properties.
Any continuous mapping f : X → Y , with X and Y η-finite, is guaranteed to map every element of
an η-component of X into a single η-component of Y .

In the case of η-finite systems, this means that the dynamics function acts on the η-components
of the state-space (referred to as η-states) in the same way for each input within an η-component
of the input-space (referred to as η-input). Moreover, every point within an η-component of the
output function image (which is always η-finite), must be decoded as the same alphabet symbol. We
formalize these properties in the following section.

B.3 Representing η-Finite Systems as Automata and Proof of Theorem 1

For set A and equivalence ∼ on A, write A⧸∼ for the set of its equivalence classes. For a ∈ A write
[a]A for the ∼-equivalence class containing a.

For η-finite spaces A, we will write A for the set A⧸∼A, with ∼A being the path-connectedness
equivalence. For X,Y being η-finite spaces, we have by Lemma 19 that X × Y = X × Y .

Definition 22. Any η-finite dynamical system S = ⟨X,U, f, x0, Y, h⟩ defines its canonical automa-
ton

AS = ⟨X,U, f, [x0]∼X
, Imh, h⟩

Similarly, any η-finite dynamics D = ⟨X,U, f⟩ defines its canonical semiautomaton DA =
⟨X,U, f⟩. ■

Note that by Lemma 23, Imh is indeed η-finite. f :
(
X
)
×
(
U
)
→
(
X
)

is defined as [x]∼X
, [u]∼U

7→
[f(x, u)]∼X

. h : X × U → Imh is defined as [x]∼X
, [u]∼U

7→ [h(x, u)]∼Imh
. This is well defined

by Lemma 25.

For a η-finite dynamical system S = ⟨X,U, f, x0, Y, h⟩, define the canonical regular function

FS :
(
U
)+

→ Imh to be the function defined by the FSA AS . The following lemma shows that the
dynamics of the canonical automaton determine—up to path-connectedness—the dynamics of the
system.

Lemma 26. Let D = ⟨X,U, f⟩ be a η-finite dynamics, and DA be its canonical semiautomaton.
Then

DA

(
[x0]∼X

, [w]∼U

)
=
[
D
(
x0, w

)]
∼X

∀w ∈ U∗ (1)

where [w]∼U
∈ U∗ denotes the word with each letter of w replaced by its equivalence class.
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Proof. By induction on the length of w. For the base case w = ε, we have DA

(
[x0]∼X

, [ε]∼U

)
=

DA

(
[x0]∼X

, ε
)
= [x0]∼X

and by definition D(x0, ε) = x0, so that
[
D
(
x0, ε

)]
∼X

= [x0]∼X
.

Now, suppose for w ∈ U∗ we have DA

(
[x0]∼X

, [w]∼U

)
=
[
D
(
x0, w

)]
∼X

, and let [u]∼U
∈ U .

Write w[u]∼U
for the word obtained by appending [u]∼U

at the end of w, we have

DA

(
[x0]∼X

, [wu]∼U

)
= f

(
DA([x0]∼X

, [w]∼U
), [u]∼U

)
= f

([
D
(
x0, w

)]
∼X

, [u]∼U

)
by def. of f =

[
f
(
D(x0, w, u

)]
∼X

=
[
D
(
x0, wu

)]
∼X

Thus by induction the statement holds for all w ∈ U∗.

Lemma 27. Let S be a η-finite system and FS be its canonical regular function. Then, FS is
implemented by S with encoder enc : U → U given by [u]∼U

7→ u′ with u′ ∈ [u]∼U chosen
arbitrarily, and with decoder dec : Imh→ Imh, given by y 7→ [y]∼Imh

.

Proof. enc is continuous, since U is a finite alphabet. dec is continuous by Lemma 22. Let DA be
the dynamics of AS , and let DS be the dynamics of S. Then we have

FS(w) = h
(
DA

(
[x0]∼X

, w
)
, w−1

)
∀w ∈ U

+

where w−1 denotes the last symbol in word w. Now consider w ∈
(U⧸∼U

)+
and write [u]∼U

for
w−1. By Lemma 26, we have DA

(
[x0]∼X

, w
)
=
[
DS

(
x0, enc(w)

)]
∼X

, so that

h
(
DA

(
[x0]∼X

, w
)
, w−1

)
= h

([
DS

(
x0, enc(w)

)]
∼X

, [u]∼U

)
as u′ = enc([u]∼U

) ∈ [u]∼U
= h

([
DS

(
x0, enc(w)

)]
∼X

, [u′]∼U

)
by def. of h =

[
h
(
DS

(
x0, enc(w)

)
, u′
)]

Imh

=

[
h
(
DS

(
x0, enc(w)

)
, enc(w−1)

)]
Imh

=

[
S
(
enc(w)

)]
Imh

= dec ◦ S
(
enc(w)

)

This concludes the proof.

Lemma 28. Let η-finite system S = ⟨X,U, f, x0, Y, h⟩ implement function F : Σ+ → Γ with
encoder enc : Σ → U and decoder dec : Imh → Γ. Then there are (continuous) functions
enc′ : Σ → U and dec′ : Imh→ Γ such that

F (w) = dec′ ◦ FS(enc
′(w)) ∀w ∈ Σ+

where FS :
(
U
)+ →

(
Imh

)
is the canonical function for S.

Proof. Define enc′ as σ 7→
[
enc(σ)

]
∼U

for all σ ∈ Σ.

As for dec′, define it as [y]∼Imh
7→ dec(y). This is well-defined: Consider y1, y2 ∈ Imh such that

y1, y2 ∈ [y]∼Imh
. Since y1, y2 are path-connected in Imh, by continuity of dec : Imh→ Γ we have

that h(y1), h(y2) are path-connected in Γ. Therefore necessarily h(y1) = h(y2).
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Let AS be the canonical FSA of S. Denote the dynamics of S as DS and the dynamics of AS as DA.
By Lemma 26, we have

DA

(
[x0]∼X

, enc′(w)
)
=
[
DS

(
x0, enc(w)

)]
∼X

∀w ∈ Σ+

Thus we have for all w ∈ Σ+

dec′ ◦FS

(
enc′(w)

)
= dec′ ◦h

(
DA

(
[x0]∼X

, enc′(w)
)
, enc′(w−1)

)
= dec′ ◦h

([
DS

(
x0, enc(w)

)]
∼X

,
[
enc(w−1)

]
∼U

)
= dec′

[
h
(
DS

(
x0, enc(w)

)
, enc(w−1)

)]
∼Imh

= dec ◦S
(
enc(w)

)
Finally, enc′ and dec′ are continuous, since their domains are finite alphabets.

Theorem 1. An η-finite system S can-implement the same functions as its canonical automaton,
which are necessarily regular.

Proof. Suppose S = ⟨X,U, f, x0, Y, h⟩ implements a function F : Σ → Γ, with encoder enc :
Σ → U and decoder dec : Y → Γ. By Lemma 28, we have that the canonical FSA of S, say
AS = ⟨X,U, f, [x0]∼X

, Imh, h⟩, implements F with encoder enc′ and decoder dec′.

Moreover, consider the FSA A′ = ⟨X,Σ, δ, [x0]∼X
,Γ, θ⟩, where δ : X × Σ → X is given by

δ([x]∼X
, σ) = f([x]∼X

, enc′(σ))

and θ : X × Σ → Γ is given by

θ([x]∼X
, σ) = dec′ ◦ h

(
[x]∼X

, enc′(σ)
)

Then we have that F (w) = A′(w) for all w ∈ Σ+. Thus F is necessarily regular.

Now, suppose that AS implements a function F : Σ → Γ, with encoder enc : Σ → U and decoder
dec : Imh→ Γ. By Lemma 27, S implements FS with encoder enc and decoder dec. Thus we have
the following: for all w ∈ Σ+

F (w) = dec ◦AS

(
enc(w)

)
= dec ◦FS

(
enc(w)

)
= dec ◦ dec ◦

(
enc ◦ enc(w)

)
so that S implements F with encoder enc ◦ enc and decoder dec ◦dec.

B.4 Algebraic Theory of η-Finite Systems

The connection between η-finite systems and canonical automata is extremely useful. It gives us a
way to employ the powerful characterisations and results of AAT to any η-finite system dynamics.
Namely, we can extend the notion of realisability to continuous η-finite systems, via the canonical
automaton.
Definition 23. We say that η-finite dynamics D′ are a realisation of η-finite dynamics D when
M(C(D′)) is a realisation of M(C(D)) of D.

We that automaton A′ is a realisation of system A, if the associated machine MA′ is a realisation of
of the associated machine MA via an assignment (α, ι, ζ), and the respective initial states x′0, x0 are
such that x′0 ∈ α(x0).

Say that η-finite system S′ is a realisation of system S, if AS′ is a realisation of AS , where AS , AS′

are the canonical automata. ■

The notion of realisation for machines is transitive. See §1.3 of Hartmanis and Stearns [1966].
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Fact B.4.1. If M is a realisation of M ′ and M ′ is a realisation of M ′′, then M realies M ′′.

It is easy to see that the notion of realisation for dynamics and systems is also transitive.

Lemma 29. Suppose that semiautomaton D′ is a realisation of semiautomaton D. Then

1) for any machine M with dynamics D, the canonical machine M(D′) of D′ is a realisation of M ,

2) for any automaton A with dynamics D, an initial state can be picked for M(D′) such that the
resulting automaton is a realisation of A.

Proof. Say D = ⟨Q,Σ, δ⟩ and D′ = ⟨Q′,Σ′, δ′⟩. Suppose we have an assignment (α, ι, ζ) from D
to D′. That is, α : Q→ P+(Q

′), ι : Σ → Σ′, ζ : Q′ × Σ′ → Q× Σ

Let M = ⟨Q,Σ, δ,Γ, θ⟩ be a Mealy machine with semiautomaton D. The canonical machine for D′

is

M(D′) = ⟨Q′,Σ′, δ′,Γ′ = Q′ × Σ′, θ′ = id⟩

Define ζ ′ : (Q′ × Σ′) → Γ by ζ ′ = θ ◦ ζ. Want to show: (α, ι, ζ ′) give an assignment of M into
M(D′). We already have that the condition I) is satisfied.

Now, for any q ∈ Q, σ ∈ Σ and q′ ∈ α(Q) we have that ζ ◦ θ′(q′, ι(σ)) = id(q, σ) = (q, σ), since
(α, ι, ζ) give an assignment of D into D′. Thus

ζ ′ ◦ θ′(q′, ι(σ)) = θ ◦ ζ ◦ θ′(q, σ) = θ(q, σ)

So (α, ι, ζ ′) also satisfy condition II). Thus the 1) part of the statement holds.

Now for the part 2): Let A = ⟨Q,Σ, δ, q0,Γ, θ⟩ be a system with dynamics D. By part 1), the
associated machineMA = ⟨Q,Σ, δ, q0,Γ, θ⟩ has some assignment (α, ι, ζ) intoMD′ . α(x0) is a non-
empty set, and so we may arbitrarily pick x′0 ∈ α(x0). Then the automatonA′ = ⟨Q′,Σ′, δ′, q′0, Q

′×
Σ′, id⟩ obtained from setting initial state x′0 for machine MD′ , by definition is a realisation of A.

We have the following proposition to connect our notion of dynamical systems with Algebraic
Automata Theory.

Before proceeding, we remark that Definition 1 must be made fully precise by saying that a decoder
is a function dec : Imh → Γ where h is the output function of system S, (rather than a function
dec : Y → Γ).

Theorem 30. Let S and S′ be η-finite systems, and AS , AS′ their respective canonical automata. If
AS′ is a realisation of AS , then S′ can implement all the functions that S can implement.

Proof. Say we have AS = ⟨X,U, f, x0, Imh, h⟩ and AS′ = ⟨X ′, U ′, f ′, x′0, Imh′, h′⟩.

Say that an assignment of AS into AS′ is given by α : X → P+(X ′), ι : U → U ′ and ζ : Imh′ →
Imh. Let FS : (U)+ → Imh be the canonical regular function for S. By Lemma 28, it suffices to
show that AS′ can implement FS .

Define the encoder enc : U → U ′ as enc = ι and decoder dec : Imh′ → Imh as dec = ζ. Let
D,D′ be the dynamics of AS , AS′ resp. By Theorem 1.4 in §1.3 of [Hartmanis and Stearns, 1966],
we have for all x′ ∈ α(x0) and all w ∈

(
U
)+

, that

h
(
D(x0, w), w−1

)
= ζ ◦ h′

(
D′(x′, ι(w)), ι(w−1)

)
.

Thus, for all w ∈
(
Σ
)+

we have

FS(w) = AS(w) = h
(
D(x0, w), w−1

)
= ζ ◦ h′

(
D′(x′0, ι(w)), ι(w−1)

)
= dec ◦S′( enc(w)).

This concludes the proof.
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Example 8. The reverse implication to Theorem 30 does not hold in general. Consider Σ = Σ′ = {σ},
Q = {a, b}, Q′ = {a} and unary dynamics functions δ : Q × Σ → Q defined as δ(q, σ) = q for
every q ∈ Q, and depicted next.

a b

σ σ

And similarly δ′ : Q′ × Σ → Q′ defined as δ′(q, σ) = q for every q ∈ Q′, and depicted next.

a

σ

Define system S = ⟨Q,Σ, δ, x0 = a,Γ = Q, θ⟩ with θ : (q, σ) 7→ q, and system S′ =
⟨Q′,Σ, δ′, q′0 = a,Γ′ = Q′, θ′⟩ with θ′ : (q, σ) 7→ q.

The only possible state trajectories for either systems are the constant trajectories xn = x0 = a and
x′n = x′0 = a. Thus, a function Σ+ → Γ can be represented by either system if and only if it is
constant. So we have that both systems implement the same functions.

However, there is no assignment (α, ι, ζ) from S to S′. This is because Γ′ is a singleton, and so any
potential ζ : Γ′ → Γ must be constant. At the same time, it must hold that α(a), α(b) are non-empty
and

ζ ◦ θ(q′, ι(σ)) = θ(a, σ) = a ∀q′ ∈ α(a),

ζ ◦ θ(q′, ι(σ)) = θ(b, σ) = b ∀q′ ∈ α(b).

This is a contradiction, as ζ must be constant. ■

Theorem 31. Let D,D′ be η-finite dynamics. Suppose that D′ is a realisation of D. Then any
function implemented by a system with dynamicsD can be implemented by some system with dynamics
D′.

Proof. Let DA = ⟨X,U, f⟩ and DA′ = ⟨X ′
, U

′
, f

′⟩ be the canonical semiautomata of D and D′,
respectively. Then DA′ realises DA.

Let S be a system with dynamics D implementing function F . Its canonical automaton AS has
dynamicsDA, and so by Lemma 29 there is an automatonA′ = ⟨X ′

, U
′
, f

′
, x′0,Γ

′, θ′⟩ with dynamics
DA′ which realises AS .

Consider the system S′ = ⟨X ′, U ′, f ′, x′0, X
′ × U ′, id⟩, where x′0 ∈ X ′ is s.t. [x′0]∼X′ = x′0. Its

canonical automaton is AS′ = ⟨X ′
, U

′
, f

′
, x′0, X

′ × U
′
, id⟩. AS′ realises A′ with the assignment

α : X
′ → P+(X

′
) g.b. x′ 7→ {x′}, ι : U

′ → U
′

g.b. u′ 7→ u′ and finally ζ : X
′ × U

′ → Γ′ g.b
(x′, u′) 7→ θ′(x′, u′). Thus by Theorem 30, S′ can implement all functions that S can implement.

B.5 Cascade Decomposition and η-Finite Systems

In this section we bridge the gap between the AAT decomposition results, which apply to serial
cascading, and our η-finite framework, which focuses on feed-forward connections. We begin by
showing how taking the canonical semiautomaton ‘commutes’ with feed-forward cascading.
Lemma 32. Let D1 ⇝ · · ·⇝ Dn be η-finite feed-forward cascade dynamics. Then we have

C
(
D1 ⇝ · · ·⇝ Dn

)
≡ C(D1)⇝ · · ·⇝ C(Dn),

where ‘≡’ is as per Definition 15.

Proof. By induction, it suffices to show the statement for n = 2.

We have D1 = ⟨X1, U1, f1⟩ and D2 = ⟨X2, U1 × X1, f2⟩. Now, C(D1) = ⟨X1, U1, f1⟩ and
C(D2) = ⟨X2, U1 ×X1, f2⟩. Note, that here we use that, by Lemma 19, (U1 ×X1) = U1 ×X1.
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Thus, we may write the cascade

C(D1)⇝ C(D2) = ⟨X1 ×X2, U1, f ⟩
where f is the dynamics function of the feed-forward cascade C(D1)⇝ C(D2).

At the same time, writing D1 ×D2 = ⟨X1 ×X2, U1, f
′⟩, we have

C(D1 ⇝ D2) = ⟨X1 ×X2, U1, f ′⟩,

where again we use Lemma 19 to get (X1 ×X2) = X1 ×X2. It remains to show that f = f ′. For
[x1]∼X1

∈ X1, [x2]∼X2
, [u]∼U1

we have

f
(
⟨[x1]∼X1

, [x2]∼X2
⟩, [u]∼U1

)
=
〈
f1
(
[x1]∼X1

, [u]∼U1

)
,

f2
(
[x2]∼X2

,
〈
[u]∼U1

, f1([x1]∼X1
, [u]∼U1

)
〉)〉

=
〈[
f1(x1, u1)

]
∼X1

,
[
f2
(
x2,
〈
u, f1(x1, u)

〉)]
∼X2

〉
=
[〈
f1(x1, u1), f2

(
x2, ⟨u, f1(x1, u)

〉)]
∼X1×X2

=
[
f ′
(
⟨x1, x2⟩, u

)]
∼X1×X2

= f
′([⟨x1, x2⟩]∼X1×X2

, [u]∼U1

))
= f

′(〈
[x1]∼X1

, [x2]∼X2

〉
, [u]∼U1

))
This concludes the proof.

Note: we treat objects such as X1 ×X2 and (X1 ×X2) as identical, even though one is a product of
equivalence classes, and the other is an equivalence class of a product. However, from Lemma 19,
we can identify the two in a natural way, that is in a way that is consistent with applying functions
component-wise.

Next, we show that cascading interacts well with realisability, up to introducing a connection function.

Lemma 33. Suppose Di = ⟨Xi, Ui, fi⟩, D′
i = ⟨X ′

i, U
′
i , f

′
i⟩ are such that D′

i is a realisation for Di,

for each i ∈ [1..2]. Then, for any feed-forward cascade i
⇝ D1

h
⇝ D2 with input i and connection h,

there is a continuous function g : U ′
1 ×X ′

1 → U ′
2 such that D′

1
g
⇝ D′

2 realises i
⇝ D1

h
⇝ D2.

Proof. Let (αi, ιi, ζi) be the assignment of M(C(Di)) = ⟨Xi, U i, f i, Xi × U i, id⟩ into
M(C(D′

i)) = ⟨X ′
i, U

′
i, f

′
i, X

′
i × U

′
i, id⟩, for each i ∈ [1..2]. We assume w.l.o.g. that h = id

and i = id, i.e., we can consider the usual feed-forward cascade D1 ⇝ D2, by replacing D1 with
D1,i and D2 with D2,h. In that case, we have U2 = U1 ×X1.

Define g : U
′
1 × X

′
1 → U

′
2 given by g(u′, x′) = ι2(u, x) ∈ U ′

2 where (x, u) = ζ1(x
′, u′) ∈

X1 × U1 = U2.

Define
α :
(
X1 ×X2

)
→ P+

(
X

′
1 ×X

′
2

)
as α(x1, x2) = α1(x1)× α2(x2)

ι :U1 → U
′
1 as ι = ι1

ζ :X
′
1 ×X

′
2 × U

′
1 → X1 ×X2 × U1 as ζ

(
⟨x′1, x′2⟩, u′1

)
= (a, b, c)

where (b, c, a) = ζ2(x
′
2, g⟨u′1, x′1⟩)

Let (x1, x2) ∈ X1 × X2, u1 ∈ U1 and (x′1, x
′
2) ∈ α

(
(x1, x2)

)
. Let f and f

′
g be the

dynamics functions of C(D1) ⇝ C(D2) and C(D′
1) ⇝ C(D′

2)g respectively. We have that
f
′
g

(
⟨x′1, x′2

〉
, ι(u1)

)
=
〈
x′1,new, x

′
2,new

〉
, where

x′1,new = f
′
1(x

′
1, ι1(u1)) ∈ α1

(
f1(x1, u1)

)
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by Property I) of assignment, and

x′2,new = f
′
2

(
x′2, g(ι(u), x

′
1,new)

)
Now, by Property II) of assignment we have ζ1(x′1,new, ι(u)) =

(
f1(x1, u1), u1

)
, since x1,new ∈

α1

(
f1(x1, u1)

)
. Thus

x′2,new = f
′
2

(
x′2, ι2

(
u1, f1(x1, u1)

))
∈ α2

(
f2
(
x2, ⟨u1, f1(x1, u1)⟩

))
So, altogether

〈
x′1,new, x

′
2,new

〉
∈ α

(
f
(
⟨x1, x2⟩, u1

))
, so Property I) of assignment is satisfied.

Now

ζ
(〈
x′1,new, x

′
2,new

〉
, ι(u1)

)
= (a, b, c)

where (b, c, a) = ζ2

(
x′2,new, g

〈
ι(u1), x

′
1,new

〉)
= ζ2

(
x′2,new, ι2

(
u1, f1(x1, u1)

))
. Thus

ζ
(〈
x′1,new, x

′
2,new

〉
, ι(u1)

)
= f(⟨x1, x2⟩, u1)

and so Property II) is satisfied. We may now choose a continuous g′ : U ′
1 × X ′

1 → U ′
2 such that

g′ = g by Lemma 22. Then we have that C(D′
2,g′) = C(D′

2)g. Overall, the cascade D′
1 ⇝ D′

2,g′

realises D1 ⇝ D2.

The decomposition theorems of AAT are stated for serial cascades, while RNNs in practice usually
work with feed-forward cascades. In Appendix G.2, we show how D1 ⋉ D2 can be realised by
D1

g1⇝ RX
g2⇝ D2 for some continuous functions g1, g2, and the repeat dynamicsRX over state-space

X of D1.

Definition 24. The repeat dynamics on state space X are the dynamics RX = ⟨X2, X, rX⟩, where
rX
(
⟨xold, xnew⟩, x

)
= ⟨xnew, x⟩. ■

Thus we have that with initial state ⟨a, b⟩ ∈ X2 and input sequence (un)n≥1 ∈ Xω, the state
sequence is

(
sn = ⟨xn−1, xn⟩

)
n≥0

∈ (X2)ω with x−1 = a, x0 = b. Note that a repeat dynamics is
a Finite Context Dynamics.

For η-finite spaces, RX can be decomposed in terms of 2-state repead dynamics.

Theorem 34. Let X be an η-finite space. Then the repeat dynamics on X , RX , are realised by a
feed-forward cascade of the repeat dynamics R2 on {0, 1}.

Proof. Let X1, . . . , Xn be the η-components of X . We can think of the canonical automaton as the
repeat dynamics on X , RX = {X2

, X, rX⟩.

Consider Cn =
f1⇝ D1

f2⇝ D2 . . .
fn⇝ Dn = ⟨{0, 1}2×n, X, fC⟩, with Di ≡ R2 for all i ∈ [1..n],

and with fi : X × {0, 1}2×i−1 → {0, 1} given by

fi(xj) =

{
0 if i ̸= j

1 if i = j

Thus, each Di works in parallel, treating inputs xi as 1, and others as 0. Then we can retrieve the
state of RX by checking which Di has 1 at the old position, and which Dj has 1 at new position.
This corresponds to state ⟨xi, xj⟩.

The assignment this corresponds to is the following: define α : X
2 → P+({0, 1}2n) by

α(⟨xi, xj⟩) = {Ei,j}, where Ei,j ∈ {0, 1}2×n is s.t. [Ei,j ]1,i = 1, [Ei,j ]2,j = 1 and remain-
ing entries are all 0. We also define ι : X → X as the identity, and ζ : {0, 1}2×n ×X → X

2 ×X
as mapping (Ei,j , x) 7→ (⟨xi, xj⟩, x), with other inputs mapped arbitrarily.
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Altogether, we have a recipe for proving positive results. It is sufficient to show that an architecture
can realise FLIP-FLOP, to show that it can implement all group-free functions with serial cascades. If
it further can realize R2, then it can implement all group-free functions with feed-forward cascades.
Theorem 35. Suppose that η-finite dynamics D is a realisation of FLIP-FLOP, and η-finite dynamics
E a realization of R2. Then feed-forward cascades of D and E components can implement all group
free functions.

Proof. Let F be a group-free function. By Theorem 12, F is implemented by a serial cascade
of FLIP-FLOP’s, say C. By the construction in Appendix G.2, we have that C is realised by
a feed-forward cascade of FLIP-FLOP’s and repeat semiautomata, say C ′. By Lemma 34, each
repeat semiautomaton is a feed-forward cascade of R2 components. Therefore C ′ is realised by
a feed-forward cascade of FLIP-FLOP’s components and R2 components, say C ′′. By Lemma 33,
a feed-forward cascade of D and E components realises C ′′, say C ′′′. Thus, by transitivity of
realisability, C ′′′ realises C, and thus by Theorem 31, C ′′ can implement F .
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Figure 7: The image of an η-component under an ϵ-robust transition lies inside the target η-component,
within ϵ-distance of its boundary.

C Robust Systems

In this appendix we introduce a central notion of robustness that allows us to extend Metric Automata
Theory to the study of concrete finite-precision implementations.

Arithmetic operations with floating point numbers are difficult to analyse, since addition and multipli-
cation are not exactly commutative, associative and distributive. Thus, for example, the recurrent
form and the convolutional form of the SSM update are not exactly equivalent (also noted by Merrill
et al. [2024]—see footnote 3 in Definition 2.1). A theoretical framework which specifies an explicit
datatype either is hard to analyse, or introduces additional simplifying assumptions.

The central notion that allows us to extend Metric Automata Theory to the study of finite-precision
implementations is the notion of ϵ-robustness. Intuitively, it describes stability of the dynamics under
transition perturbations.

In Section C.1 we prove Theorem 2, thus showing that robustness provides a way to connect η-
finite systems to their floating-point implementations on real-world computer architectures, without
requiring us to commit to any particular standard of floating-point operations.

In Section C.2 we show that robustness provides stability under perturbing the parametrs of a model
which describes the dynamics. We will later present a strongly robust dynamics based on the sLSTM
model, which uses a particular choice of parameters. Our results show, that in such cases the
parameters may be perturbed by some amount and the robust system will retain its behaviour.

Lastly, in Section C.3 we prove Theorem 5 and further describe what kind of connecting functions
are required for strongly robust η-finite cascades, by showing that 2-layer MLPs suffice.

Robustness marks the departure of Metric Automata Theory from Classical Automata and Formal
Languages Theory, allowing us to study phenomena that do not occur with discrete state-spaces.

For completeness, we restate Definition 2 paying closer attention to the role of inputs in the notion of
strong ϵ-robustness.

Definition 2. For ϵ > 0 and X ⊆ ΩX , U ⊆ ΩU , dynamics D = ⟨X,U, f⟩ are ϵ-robust (in ΩX ) if,
for every x ∈ X and every u ∈ U , it holds that BΩX

(f(x, u), ϵ) ⊆ X—i.e., y ∈ X for all y ∈ ΩX

s.t. ∥f(x, u)− y∥ ≤ ϵ. Furthermore, we say that dynamics D are strongly ϵ-robust (in ΩX and ΩU )
if they are ϵ-robust (in ΩX ), each η-component of X contains an ΩX -ball of radius at least ϵ and
each η-component of U contains an ΩU -ball of radius at least ϵ.

Note that the property of robustness is with respect to the ambient space ΩX , which contains the state
space X . Thus, it is possible that a dynamics is ϵ-robust w.r.t. some ambient space (e.g., R), and not
ϵ-robust w.r.t. another ambient space (e.g., C). This captures the property, that for a η-finite dynamics,
a function approximating f within ϵ, and taking values in Ω, will implement the same transitions.

Lemma 36. Let C = D1 ⇝ · · · ⇝ Dn be a cascade, with Di = ⟨Xi, U × X[1,i−1], fi⟩ and
Xi ⊆ Ωi, U ⊆ ΩU . Then C is (strongly) ϵ-robust w.r.t. Ω1 × · · · × Ωn if Di is (strongly) ϵ-robust
w.r.t. Ωi for all i ∈ 1..n.
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Proof. By induction, it suffices to show the statement for n = 2. First, suppose that Di is ϵ-robust
for i ∈ 1, 2. Let ⟨x1, x2⟩ ∈ X1 ×X2, u ∈ U and take ⟨y1, y2⟩ ∈ Ω1 × Ω2 s.t. ||f

(
⟨x1, x2⟩, u

)
−

⟨y1, y2⟩||2 ≤ ϵ. We have, by def of cascading

f(⟨x1, x2⟩, u) =
〈
x′1, x

′
2

〉
where x′1 = f1(x1, u), x

′
2 = f2

(
x2,
〈
x′1, u

〉)
By definition of the L2 norm, since ||⟨x′1, x′2⟩ − ⟨y1, y2⟩|| ≤ ϵ, we also have

||x′1 − y1|| ≤ ϵ and ||x′2 − y2|| ≤ ϵ

Thus, by ϵ-robustness, we have that yi ∈ Xi for i ∈ 1, 2, and hence ⟨y1, y2⟩ ∈ X1×X2. All together,
C is ϵ-robust w.r.t. Ω1 × Ω2.

Suppose further that D1, D2 are strongly ϵ-robust. Let Z be a η-component of X1 ×X2. Then Z
is of the form Z1 × Z2 for Zi η-component of Xi, see proof of Lemma 19. We have by strongly-
robustness that BΩi(zi, ϵ) ⊆ Zi for some zi ∈ Zi. By triangle inequality: BΩ1×Ω2

(
(z1, z2), ϵ

)
⊆

BΩ1
(z1, ϵ) × BΩ2

(z2, ϵ) ⊆ Z1 × Z2. Finally, the input space of D1 ⇝ D2 is the same as the
input space of D1, so by strongly-robustness we have that each η-component of U contains a closed
ΩU -ball with radius ϵ.

C.1 Finite Datatypes and Proof of Theorem 2

We now consider approximations of dynamical systems using a finite datatype D ⊆ Ω. D can for
example represent the Python float type. We simply consider D as a discrete subset of Ω, abstracting
away the details regarding arithmetic properties of such a datatype.

Definition 25. A finite datatype is a set D ⊆ Ω = Rd having finite cardinality. A finite-datatype
implementation of a system S is then a system whose input, state, and output spaces are finite
datatypes, and whose dynamics and output functions are implemented using floating-point operations.

Definition 26. Call a set S an ϵ-covering ofX ⊆ Ω, if for all x ∈ X there is a s ∈ S s.t. ||x−s|| ≤ ϵ.

Definition 27. Define int+p = {0, . . . , 2p−1 − 1} to be the p-bit unsigned integers. Define intp =

{2p−1, . . . , 0, . . . , 2p−1 − 1} to be the p-bit signed integers. Define Dp to be floating point numbers
with 2p-bit significand and p-bit exponent:

Dp =
{ s

22p−1
· 2e : s ∈ int2p, e ∈ intp

}
Similarly, define D′

p to be floating point numbers with p bits of integer precision and p bits of
fractional precision:

D′
p =

{
a+

b

2p
: a ∈ intp, b ∈ int+P

}
Lemma 37. Let X ⊆ Ω = Rd be compact. Then, for p sufficiently large, i.e. with sufficient precision,
D′d

p is an ϵ-covering of X .

Proof. X is a compact subspace of Ω, and therefore bounded. So, there is some integer k ≥ 1 s.t.
X ⊆ [−2k, 2k − 1]d. There is also some integer l ≥ 1 s.t. ϵ/

√
d ≥ 2−l. Take p ≥ max(k, l). The

set D′
p is an 2−p-cover of [2−p, 2p − 1]. Now for any x ∈ X ⊆ [−2p, 2p − 1]d, we have that for

each i ∈ 1 . . . d there is yi ∈ D′
p s.t. |[x]i − yi| ≤ 2−p. Therefore, writing y ∈ [−2p, 2p − 1]d for

(y1, . . . , yd)

∥x− y∥ =
( d∑
i=1

∣∣[x]i − [y]i
∣∣2) ≤ ϵ

Therefore (D′
p)

d an ϵ-cover of X .

Lemma 38. Let X ⊆ Ω = Rd be compact. Then, for p sufficiently large, i.e. with sufficient precision,
Dd

p is an ϵ-covering of X .
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Proof. By the previous Lemma, for some p we have that D′
p is an ϵ-cover of X . We have for each

a ∈ intp, b ∈ int+p :

a+
b

2p
=

2p · a+ b

22p+1
· 2p+1

Now, 2pa+ b ≥ 2p(−2p)− 2p > −22p+1 and 2pa+ b ≤ 2p · 2p + 2p < 22p+1, so that 2pa+ b ∈
int2p+2. Since p+1 < 2p+1, we have p+1 ∈ intp+1. So, D′

p ⊆ Dp+1, and therefore Dp+1 is also
an ϵ-cover for X , for sufficiently large p.

Definition 28. LetX , U be η-finite spaces having componentsX[1..r], U[1..s] and subspacesX ′ ⊆ X ,
U ′ ⊆ U , respectively. Let us consider dynamics

D = ⟨X,U, f⟩ and D̂ = ⟨X ′, U ′, f̂⟩.

We say that dynamics D are simulated by dynamics D̂, with error at most ϵ, if we have that the
disjointness condition (C1) holds for every i ∈ [1..r], the disjointness condition (C2) holds for every
j ∈ [1..s], and the approximation condition (C3) holds.

(C1) X ′ ∩Xi ̸= ∅, (C2) U ′ ∩ Uj ̸= ∅, (C3) sup
x∈X′, u∈U ′

∥f(x, u)− f̂(x, u)∥ ≤ ϵ.

Lemma 39. Suppose η-finite dynamics D = ⟨X,U, f⟩ are ϵ-robust, and are simulated by η-finite
dynamics D̂ = ⟨X ′, U ′, f̂⟩ with error ϵ. Then D̂ is a realisation of D.

Proof. Consider the canonical semiautomata DA = ⟨X,U, f⟩ and D̂A = ⟨X ′
, U

′
, f

′⟩

Define α : X → P+(X
′
) as

α
(
[x]∼X

)
=
{
[x′]∼X′ ∈ X

′
: x′ ∈ [x]∼X

}
which is indeed non-empty by definition of simulation, and well-defined as X ′ ⊆ X , and so if
x′1 ∼X′ x′2 then also x′1 ∼X x′2. Also define ι : U → U

′
by

ι
(
[u]∼U

)
= [u′]∼′

U
where u′ ∈ U ′ ∩ [u]∼U

is arbitrary,

and ζ :
(
X

′ × U
′)→ (

X × U
)

by

ζ
(
⟨[x′]∼X′ , [u

′]∼U′ ⟩
)
= ⟨[x′]∼X

, [u′]∼U
⟩

ζ is indeed well-defined: suppose x′1, x
′
2 ∈ [x′]∼X′ and u′1, u

′
2 ∈ [u′]∼U′ . Then since X ′ ⊆ X and

U ′ ⊆ U we also have x′1, x
′
2 ∈ [x′]∼X

, since x′1 ∼X x′2 and u′1, u
′
2 ∈ [u′]∼U

, since u′1 ∼U u′2.

Now, (α, ι, ζ) is an assignment of M(DA) into M(D̂A): for all [x]∼X
∈ X and [u]∼U

∈ U , and for
all [x′]∼X′ ∈ α([x]∼X

) we have

f
′(
[x′]∼X′ , ι([u]∼U

)
)
=
[
f ′(x′, u′)

]
∼X′

where [u′]∼U′ = ι([u]∼U
)

On the other hand, we have

α
(
f([x]∼X

, [u]∼U
)
)
= α

([
f(x, u)

]
∼X

)
We have that x′ ∈ [x]∼X

, since [x′] ∈ α([x]∼X
). We have by simulation with error at most ϵ

∥f ′(x′, u′)− f(x′, u′)∥ ≤ ϵ

and so f ′(x′, u′) ∈ [f(x, u)]∼X
, since D is ϵ-robust. Hence f

′(
[x′]∼X′ , ι([u]∼U

)
)

∈
α
(
f([x]∼X

, [u]∼U
)
)
. Thus Part I) of definition of assignment is satisfied.

Moreover, we have

ζ
(
[x′]∼X′ , ι([u]∼U′ )

)
=
(
[x′]∼X

, [u′]∼U
) =

(
[x]∼X

, [u]∼U

)
so that Part II) of the definition is satisfied.
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X2

X3

u
û

ΩX
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||û − u|| ≤ ϵ

D

Figure 8: Given sufficient precision, the transitions of strongly ϵ-robust dynamics can be realized
with approximate dynamics on a finite datatype, which gives a ϵ-covering for the state-space.

Lemma 40. Consider η-finite dynamics D = ⟨X,U, f⟩, s.t. each component of X and U contains a
closed ball of radius ϵ (in ΩX ,ΩU resp.)

Then given datatypes DX ⊆ X,DU ⊆ U with sufficient precision, there is a function f̂ : DX×DU →
DX s.t. ⟨DX ,DU , f̂⟩ simulates ⟨X,U, f⟩ with error ϵ.

Proof. Suppose DX is an ϵ-covering of X , and D is an ϵ-covering of U . Let X1, .., Xr, r ≥ 1 be the
connected components of X . Let i ∈ 1..r, we have by assumption, that for some xi ∈ Xi

B(xi, ϵ) ⊆ Xi

Since DX is an ϵ-covering of X , there is some di ∈ DX s.t. ∥xi − di∥ ≤ ϵ, and therefore
di ∈ B(xi, ϵ) ⊆ Xi.

Similarly, there is an element of DU in each component of U . Now, we may construct f̂ as follows:
for x ∈ DX and u ∈ DU

f̂(x, u) = arg min
y∈DX

∥y − f(x, u)∥

with ties broken arbitrarily. Then, as DX is an ϵ-covering of X , ∥f̂(x, u) − f(x, u)∥ ≤ ϵ as
desired.

We now have the setup, and necessary results for Theorem 2.

Theorem 2. Every η-finite system with strongly robust dynamics can be implemented with floating-
point operations, given sufficient precision.

Proof. Apply Lemma 39 and Lemma 40 to obtain a realisation of S using a finite datatype, e.g. using
Dp or D′

p for sufficiently large p.

C.2 Parametrised Systems

The stability of robust dynamics can also be a desirable property in the context of learning. Consider
a parametrised model describing the trained model. If the system described by the model is ϵ-robust
and it is sufficiently smooth with respect to its parameters, then perturbing the model parameters will
not change the behaviour of the system. Thus a robust system is intuitively more likely to be attained
by a learning algorithm.
Definition 29. Let f : Θ× ΩX × ΩU → Ω be continuous. Write fθ for the function f(θ,−,−). A
dynamics parametrised by Θ is of the form Dθ = ⟨X,U, fθ⟩.
Theorem 41. (Corollary 36.20 of [Willard, 2012]) A continuous functions on a compact metric
space X is uniformly continuous, that is for all ϵ > 0 there exists δ > 0 such that for all x, y ∈ X
||x− y|| ≤ δ =⇒ ||f(x)− f(y)|| ≤ ϵ.
Theorem 42. Let η-finite dynamics Dθ = ⟨X,U, fθ⟩ be parametrised by Θ, and let Θ be compact.
Suppose Dθ is ϵ-robust (w.r.t ΩX ). Then for some δ > 0, we have that for ρ ∈ Θ s.t. ||θ − ρ|| ≤ δ
the dynamics Dρ = ⟨X,U, fρ⟩ is well-defined. Moreover, for any system Sθ with dynamics Dθ, the
system Sρ obtained by switching out Dθ for Dρ has the same canonical automaton.
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Proof. Since Dθ is η-finite, we have that X and U are compact. Thus the Cartesian product
Θ ×X × U is compact. Thus, by Theorem 41 for all ϵ > 0 we have some δ > 0 such that for all
(θ, x, u), (θ, x, u) ∈ Θ×X × U

||(θ, x, u)− (ρ, x′, u′)|| ≤ δ =⇒ ||f(θ, x, u)− f(ρ, x′, u′)|| ≤ ϵ

Now, take ρ ∈ BΘ(θ, δ). We have for all x ∈ X and u ∈ U that

||(θ, x, u)− (ρ, x, u)|| = ||θ − ρ|| ≤ δ

∴ ||f(θ, x, u)− f(ρ, x, u)|| ≤ ϵ

Thus f(ρ, x, u) ∈ B(f(θ, x, u), ϵ) ⊆ X , since Dθ is ϵ-robust. Moreover, letting X1, .., Xr be the
components of X and U1, .., Us be the components of U , we have that X ∩Xi ̸= ∅ for i ∈ 1..r and
U ∩ Ui for i ∈ 1..s. Thus Dρ simulates Dθ with error ϵ.

Now, the canonical semiautomaton for Dθ is ⟨X,U, fθ⟩ and the canonical semiautomaton for Dρ

is ⟨X,U, fρ⟩. By Lemma 39, we have that fθ and fρ give the same transitions. Therefore the two
semiautomata are the exact same. Taking Sθ, Sρ as in the statement, we see that they indeed must
have the same canonical automaton.

C.3 Robust Cascade Decomposition and Proof of Theorem 5

Coming back to connecting functions discussed in Appendix B.5, we have the following refinement
of the result.

Theorem 43. Let D be a strongly robust η-finite dynamics, which are a realisation of FLIP-FLOP.
Then all group-free functions can be implemented by some strongly robust serial cascade of D
components. Moreover, the connection functions in such cascade can be given by depth-2 MLPs.

Proof. Say D = ⟨X,U, f⟩ is strongly ϵ-robust. By Theorem 35, for any group-free function F ,
there is a serial cascade C of D-components which can implement it. By Lemma 36, C is also
strongly robust. Say, C =

g1⇝ D1 · · ·
gL⇝ DL = ⟨XL, U ′, fC⟩, with U ′ an η-finite space, Di ≡ D

and gi : U ′ ×Xi−1 → U .

Let U1, . . . , Un be the η-components of U . By strong robustness, for each i ∈ [1..n], there is ui ∈ Ui

s.t. BΩU
(ui, ϵ) ⊆ Ui By Lemma 22, we can w.l.o.g. assume that gi has its image in {u1, . . . , un},

while still inducing the same mapping U
′ ×X

i−1 → U .

By Theorem 16, there is a MLPNi : ΩU ′×Ωi−1
X → ΩU which ϵ-approximates gi, since U ′×Xi−1 is

compact and gi continuous. For ⟨u′, x1, . . . , xi−1⟩ ∈ U ′ ×Xi−1 we have fi
(
⟨u′, x1, . . . , xi−1⟩

)
=

uj for some j ∈ [1..n], so

N
(
⟨u′, x1, . . . , xi−1⟩

)
∈ BΩU

(uj , ϵ) ⊆ Uj

Thus Ni sends elements of U ′ × Xi−1 to the same η-components of U as gi. Moreover, Ni is
continuous.

Overall, the canonical automaton for
g1⇝ D1

g2⇝ · · · gL⇝ DL is the same as the canonical automaton for
N1⇝ D1

N2⇝ · · · NL⇝ DL. Thus the strongly robust cascade with D components and MLP connections
can implement F .

Appendix G.3 shows constructions for strongly robust η-finite xLSTM FLIP-FLOP and R2 dynamics.
All together, we obtain Theorem 5:

Theorem 5 (xLSTM does start-free robustly). All star-free languages can be recognised by xLSTM
cascades, as well as by floating-point implementations of xLSTM cascades given sufficient precision.

Proof. We have that there are strongly robust xLSTM dynamics that realise FLIP-FLOP and R2.
Thus by Theorem 43, every group-free function can be implemented by a cascade of strongly robust
xLSTM dynamics. Any such cascade is itself strongly robust, by Lemma 36, and thus can be realized
by floating-point operations, given sufficient precision, by Theorem 2
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Moreover, by Theorem 43 we know that for these cascades, it suffices to use MLP connecting
functions. By Theorem 42 we also have that the parametrizations of sLSTM blocks which yields
FLIP-FLOP and R2 can also be changed, within some δ, retaining the behaviour of the dynamics.
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D Expressivity Results for State Space Models

In this Appendix we reap rewards of establishing the preliminary framework of Metric Automata
Theory for η-finite dynamics. We can now prove expressivity results by establishing structural
properties of dynamics, which are preserved by feed-forward cascades, and which are generally
applicable.

In Section D.1 we introduce the notion of contracting dynamics, which describes dynamics that are
not able to keep track of a state over unbounded input lengths. We use this notion to prove Theorems
3 and 4.

In Section D.2 we introduce another structural property, called aperiodicity. It is the η-finiteness
corresponding notion to group-freeness in Finite Automata. We use aperiodicity to prove Theorem 6.

Finally, in Section D.3 we focus on the SSM parametrisation of Mamba, and prove Theorem 7.

D.1 Contracting Dynamics and Proofs of Theorems 3 and 4

Definition 30. Call η-finite dynamics ⟨X,U, f⟩ a contracting dynamics, if for any initial points
x0, x

′
0 ∈ X and eventually equivalent input sequences (un)n≥1, (u

′
n)n≥1 ⊆ U , we have that the

corresponding state sequences (xn)n≥1, (x
′
n)n≥1 ⊆ U are eventually equivalent.

Thus, a for a contracting dynamics, it does not matter what state the evaluation of the inputs starts
from—eventually all initial states lead to the same behaviour under a fixed input sequence. The
intuition behind the name is the following—eventually all possible states that the dynamics could be
in under the input sequence collapse to a single η-component.
Example 9. Clearly, all Finite Context Dynamics (Definition 18) are contracting. ■

Lemma 44. Let C = D1 ⇝ · · ·⇝ Dn be a cascade of η-finite contracting dynamics. Then C is a
contracting dynamics.

Proof. By induction, it is sufficient to show the statement for n = 2.

Let us consider C = D1 ⇝ D2 with D1 = ⟨X,U, f1⟩ and D2 = ⟨Z,U ×X, f2⟩. The dynamics
function of the cascade is:

f(⟨x, z⟩, u) =
〈
f1(x, u), f2(z, u

′)
〉

where u′ = ⟨u, f1(x, u)⟩

Consider arbitrary ⟨x0, z0⟩, ⟨x′0, z′0⟩ ∈ X × Z and (ut)t≥1, (u
′
t)t≥1 ∈ Uω, eventually equivalent in

U . Take

⟨xn, zn⟩ = (D1 ⇝ D2)
(
⟨x0, z0⟩, u[1..n]

)
; ⟨x′n, z′n⟩ = (D1 ⇝ D2)

(
⟨x′0, z′0⟩, u′[1..n]

)
By inductive hypothesis, D1 is contracting, and so since we have

xn = D(x0, u[1..n]); x′n = D(x′0, u
′
[1..n])

we have that (xn)n≥1, (x
′
n)n≥1 ∈ Xω are eventually equivalent. Thus also

(⟨un, xn+1⟩)n≥1, (⟨u′n, n′n+1⟩)n≥1 ∈
(
U ×X

)ω
are eventually equivalent.

Note that we have zn+1 = f2(zn, ⟨un, xn+1⟩) and z′n+1 = f2(z
′
n, ⟨u′n, x′n+1⟩). Since D2 is by

assumption contracting, and the two input sequence are eventually equivalent by continuity of fn, we
get that (zn)n≥1, (z

′
n)n≥1 ∈ Zω are eventually equivalent.

So, overall
(
⟨xn, zn⟩

)
,
(
⟨x′n, z′n⟩

)
∈
(
X × Z

)ω
are eventually equivalent.

Lemma 45. Suppose a η-finite Linear Recurrent Dynamics D is ϵ-robust. Then D is contracting.

Proof. Suppose that D = ⟨X,U, f⟩ is ϵ-robust.

Let x0, x′0 ∈ X and (un)n≥1, (u
′
n)n≥1 ⊆ U which are eventually equivalent—say for n ≥ N .

For each component of U , say U1, . . . , Uk, define a representative element r1, . . . , rk. Define
(ũn)n≥1 ⊆ U to be such that ũn = rc where Uc is the component containing un+N . Thus (ũn)n≥1

is equivalent to (un+N )n≥1 and (u′n+N )n≥1.
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Write An = A(ũn) and Bn = B(ũn) and fn(x) = f(x, ũn). For S ⊆ Ω, define

∆S = {α · (x− y) : α ∈ [0, 1], x, y ∈ S}

For β ∈ R≥0, write β · S = {β · s : s ∈ S}. Take M = supx,y∈X ||x− y||. We have that M is
finite, since X is compact, and hence bounded. Also, denote X(0) = X , X(n+1) = {f(x, ũn) : x ∈
X(n)} = {D(x}.

We have, by induction that ∆(X(n)) ⊆
(

M
M+2nϵ

)
·∆(X): for n = 0 this is immediate.

For n ≥ 1, by inductive hypothesis we have ∆(X(n−1)) ⊆
(

M
M+2(n−1)ϵ

)
·∆(X). Consider u ̸= 0,

u ∈ ∆(X(n)). Take v = u
||u|| . We have that

u = β · (fn(x)− fn(y)) = β ·An(x− y)

for some x, y ∈ X(n−1) and β ∈ [0, 1]. We have that x− y ∈ ∆(X(n−1)) ⊆
(

M
M+2(n−1)ϵ

)
·∆(X),

so for some x′, y′ ∈ X we have

x′ − y′ =
( M

M + 2(n− 1)ϵ

)−1

· (x− y)

Now: ∣∣∣∣fn(x′)− (fn(x
′) + ϵ · v)

∣∣∣∣ = ϵ and
∣∣∣∣fn(y′)− (fn(y

′) + ϵ · v)
∣∣∣∣ = ϵ

so by robustness, fn(x′) + ϵ · v ∈ X and fn(y′)− ϵ · v. Thus

∆X ∋ (fn(x
′) + ϵ · v)− (fn(y

′)− ϵ · v)
= fn(x

′)− fn(y
′) + 2ϵ · v

= An(x
′ − y′) + 2ϵ · v

=
( M

M + 2(n− 1)ϵ

)−1

·An(x− y) + 2ϵ · v

=

(( M

M + 2(n− 1)ϵ

)−1

· β−1 +
2ϵ

||u||

)
· u

So, we have u = γ · l for some l ∈ ∆X and

γ−1 =
( M

M + 2(n− 1)ϵ

)−1

· β−1 +
2ϵ

||u||

=
M + 2(n− 1)ϵ

M
· β−1 +

2ϵ

||u||

as β−1 ≥ 1 and ||u|| ≤M ≥ M + 2(n− 1)ϵ

M
+

2ϵ

M

=
M + 2nϵ

M

So u ∈
(
M+2nϵ

M

)
· ∆(X), and thus indeed ∆(X(n)) ⊆

(
M

M+2nϵ

)
· ∆(X). Therefore

supx,x′∈X(n) ||x− x′|| → 0 as n→ ∞.

Now, consider the state-sequences
(
D(x0, u[1..n])

)
n≥1

,
(
D(x′0, u

′
[1..n])

)
n≥1

. We have by Lemma 24

D(x0, u[1..(n+N)]) =D(xN , u[(N+1)..(n+N)])

∼XD(xN , ũ[1..n])

and similarly D(x′0, u
′
[(1+N)..(n+N)]) ∼X D(x′N , ũ[1..n]). Now, D(x′N , ũ[1..n]), D(xN , ũ[1..n]) ∈

X(n). Thus we have∣∣∣∣D(x′N , ũ[1..n])−D(xN , ũ[1..n]) ∈ X(n)
∣∣∣∣→ 0 as n→ ∞

Therefore, eventually D(x′N , ũ[1..n]) and D(xN , ũ[1..n]) ∈ X(n) are in the same η-component of
X .
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State sequence of aperiodic D

. . .
un

un+1

xn

xn+1

x∗
∀n : un ∈ [u]

η-state sequence of C(D)

[xn] [xn+1] = [x∗]

[u] [u] [u]
[u]

Figure 9: State sequence of aperiodic dynamics under iterated input always η-converges.

Theorem 3 (Non-robustness of LRDs). Suppose an η-finite LRD D is such that its canonical
semiautomaton DA has at least two states, and an input inducing an identity transformation. Then D
cannot be ϵ-robust for any ϵ > 0.

Proof. LetD = ⟨X,U, f⟩ be an η-finite LRD, such that its canonical semiautomatonD = ⟨X,U, f⟩
has at least two distinct η-states, say x, x′, and an input u inducing identity transformation on X .

For contradiction suppose that D is robust. Then by Lemma 45, D is contracting. Thus for x0 ∈
x, x′0 ∈ x′ and u ∈ u we have that the sequences

(
xn = D(x0, u

n)
)
n≥1

,
(
x′n = D(x′0, u

n)
)
n≥1

∈
Xω are eventually equivalent. Since [u]∼U

= u induces the identity transformation of X , we
have that the corresponding sequences ([xn]∼X

)n≥1, ([x
′
n]∼X

)n≥1 ∈ X
ω

are constant, equal x, x′
respectively. Thus necessarily x = x′. This is a contradiction.

Lemma 46. Contracting dynamics cannot implement the state-sequence function of FLIP-FLOP.

Proof. Consider a system S with some encoder enc : {set, reset, id} → U and decoder dec :
Y → {low, high}. Suppose that the dynamics D = ⟨X,U, f⟩ of S are contracting. Consider
x0 ∈ X and input sequences (un)n≥1, (u

′
n)n≥1 ⊆ U , given by

u1 = h; u′1 = l; un = u′n = i for n > 1

They are eventually equivalent, and so the corresponding state sequences xn = D(x0, ⟨u1..n⟩) and
x′n = D(x0, ⟨u′1..n⟩) are also eventually equivalent. Thus

dec ◦S
(
enc(u1...n)

)
= dec ◦S

(
enc(u′1...n)

)
∈ {high, low}

for large enough n, since {high, low} is a discrete space.

However, the two sequences of inputs correspond to different flip flop states - thus D cannot be a
dynamics for a system that implements a flip flop.

Theorem 4 (LRDs cannot do FLIP-FLOP robustly). FLIP-FLOP cannot be implemented by a cascade
of η-finite ϵ-robust LRDs for any ϵ > 0.

Proof. A cascade of such LRDs is contracting by Lemmas 45 and 44. Thus, by Lemma 46, it cannot
implement FLIP-FLOP.

D.2 Aperiodic Dynamics and Proof of Theorem 6

Definition 31. For a η-finite space X , we say a sequence (xn)n≥1 ⊆ X η-converges in X , if
eventually all its terms lie in the same η-component of X .

If the sequence of states of a system η-converges, it means that the behaviour of that system is
eventually the same.

Definition 32. Call a η-finite dynamics D = ⟨X,U, f⟩ aperiodic, if for all x0 ∈ X and in-
put sequences (un)n≥1 ⊆ U η-convergent in U , we have that the corresponding state sequence
(xn)n≥1 ⊆ X is η-convergent in X .
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An example of a aperiodic dynamics is given by the FLIP-FLOP dynamics. An input sequence that
η-converges must eventually be constantly set or reset. In that case, the state is eventually high,
low respectively.

Lemma 47. Let D be a η-finite Linear Recurrent Dynamics, with A(u) having all its eigenvalues
being non-negative. Then D is aperiodic.

Proof. This is a similar argument as for Theorem 1 in Grazzi et al. [2025], with some simplifications
stemming from the fact that we can use associativity of linear operations freely.

Let D = ⟨X,U, f⟩ be an η-finite Linear Recurrent Dynamics, with X ⊆ Rd, s.t. A(u) has all its
eigenvalues being real, for all u ∈ U . Say f(x, u) = A(u) · x+B(u).

Consider a sequence (un)n≥1 ∈ Uω, η-convergent in U , and x0 ∈ X . Let
(
xn =

D(x0, u1...n)
)
n≥1

∈ Xω be the corresponding state sequence. We have some N s.t. for n ≥ N all
un are contained in the same component of U , we may pick a representative r ∈ U of that component.

Write A = A(r), B = B(r). By Lemma 25, we have for n ≥ N that

xn+N ∼X x′n = D(xN , r
n−N )

We consider the state sequence in the diagonalized space of A. Write A = P−1JP for the Jordan
normal form of A. Here J is block diagonal, with say blocks J1, ..., Js, Jb ∈ Rmb×mb being a
Jordan Block with λb on the diagonal being an eigenvalue of A, and 1 on the right off-diagonal. Also
P ∈ Rd×d, since all eigenvalues of A are real.

Take x̄n = Px′n, then we have

x̄n+1 = P (Ax′n +B) = P (AP−1x̄n +B)

= P (P−1JPP−1x̄n +B) = Jx̄n + PB

We will consider the difference zn = x̄n+1 − x̄n. Unrolling the recurrence we get

zn = Jn(Jx̄0 − x̄0) = Jnz0

The i-th entry of this difference, where i is in say the b-th block of J , is

[zn]i =

mb∑
j=i

λn+i−j
b

(
n

j − 1

)
[z0]j

This is of the form considered in Lemma 64. Thus, [zn]i ∈ R is eventually monotone, and so it either
converges in R or is unbounded as n→ ∞.

Now, if zn → 0, that is [zn]i for all i ∈ [1..d], then we have that also, by continuity of linear maps,
x′n+1 − x′n = P−1zn → 0, so that x′n must eventually be in the same component of X by Lemma
20. Therefore also (xn)n≥1 is η-convergent in X .

Otherwise, one of the entries of zn either is unbounded, or converges to a non-zero limit. In both
cases, the corresponding entry of xn is unbounded as n→ ∞, and so this is impossible in a η-finite
space X .

Overall, this shows that D must be aperiodic.

Lemma 48. Let D = ⟨X,U, f⟩ be a η-finite Finite Context Dynamics. Then D is aperiodic.

Proof. Let l be the context length of D. Let x0 ∈ X and (un)n≥1 ∈ Uω be η-convergent in U . Let
ū ∈ U lie in the component of U which contains the tail of (un)n≥1, say for n ≥ N . For n ≥ N + l
we have that un−l+1, ..., un ∼ ū, and so

xn = C(⟨un−l−1...n⟩) ∼ C(ūl)

Thus xn is in the component of X containing C(ūl).
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Lemma 49. Let C = D1 ⇝ · · · ⇝ Dk be a cascade of η-finite aperiodic dynamics D1, . . . , Dk.
Then C is aperiodic.

Proof. By induction, is is sufficient to show the statement for n = 2.

Let us consider C = D1 ⇝ D2 with D1 = ⟨X,U, f1⟩ and D2 = ⟨Z,U ×X, f2⟩. The dynamics
function of the cascade is:

f(⟨x, z⟩, u) =
〈
f1(x, u), f2(z, u

′)
〉

where u′ = ⟨u, f1(x, u)⟩

Consider a sequence (ut)t≥1 ∈ Uω η-convergent in U , and ⟨x′0, x0⟩ ∈ X ′ ×X .

As D1 is aperiodic, the corresponding sequence (xn)n≥1 ⊆ Xω is η-convergent in X . Equivalently,
(xt+1)t≥1 is η-convergent inX . Moreover, then the sequence (u′n = ⟨un, xn+1⟩)n≥1 is η-convergent
in U ×X . Since D2 is aperiodic, the sequence (zn)n≥1 ∈ Z is therefore η-convergent in Z.

All together, (⟨xn, zn⟩)n≥1 is η-convergent in X × Z. ♢

Theorem 50. η-finite dynamics are aperiodic if and only if their canonical semiautomaton is group-
free

Proof. Let D = ⟨X,U, f⟩ have canonical semiautomaton DA = ⟨X,U, f⟩

(⇒) First, suppose that DA is not group-free. By Theorem 13, there exist some S ⊆ X and u ∈ U
s.t. f(−, u) induces a non-trivial permutation on S. That is, since S is a finite set, we have s ∈ X
s.t. DA(s, u

n) ̸= DA(s, u
n+1) for all n ≥ 1. Here un denotes the word of length n consisting of

repeated symbol u.

Take u ∈ U s.t. [u]∼U
= u and x ∈ X s.t. [x]∼X

= s. Then, we have that for all n ≥ 1 that[
D(x, un)

]
∼X

̸=
[
D(x, un+1)

]
∼X

The input sequence (un)n≥1 is η-convergent in U , but the corresponding state sequence
(D(s, un))n≥1is not. Thus, D is not aperiodic.

(⇐) Now, suppose that DA is group free. By Theorem 12, DA can be realized by a serial cascade
of FLIP-FLOPs, say C. We also have, that C can be realized by a feed-forward cascade C ′ of
FLIP-FLOPs and repeat semiautomata, all of which are aperiodic (as repeat semiautomata are FCDs).
Thus by Lemma 49, C ′ is aperiodic. It remains to show that dynamics realised by aperiodic dynamics
are also aperiodic.

Let (α, ι, ζ) be an assignment ofDA intoC ′. Consider an η-convergent input sequence (un)n≥1 ⊆ U

and x0 ∈ X , with the corresponding state sequence
(
xn = DA(x0, u[1..n])

)
n≥0

⊆ X . Since

(un) ⊆ U is η-convergent, it is in fact eventually constant, since U is a discrete space.

Since C ′ realizes DA, by Theorem 14, we have, for x′0 ∈ α(x0)

M(DA)
(
x0, u[1..n]

)
= ζ ◦M(C)(x′0, ι(u[1..n])

)
where M(DA),M(C) are the canonical machines for DA, C, respectively. Now, (un) is even-
tually constant and so also

(
ι(un)

)
is eventually constant. C is aperiodic, and so the sequence

C(x′0, ι(u[1..n])
)

is η-convergent (and thus eventually constant, as C is a semiautomaton). All
together

M(DA)
(
x0, u[1..n]

)
= ζ ◦M(C)(x′0, ι(u[1..n])

)
= ζ
(
C(x′0, ι(u[1..n])

)
, ι(un)

)
by def. of canonical machines, and therefore this sequence is also eventually constant.

Thus the state sequence DA

(
x0, u[1..n]

)
itself is eventually constant.

Equivalently, by Lemma 26, for any sη-convergent sequence (un) ⊆ U and x0 ∈ X the state
sequence

(
D(x0, u[1..n])

)
⊆ X is η-convergent, and so D is indeed aperiodic.
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D.3 Parametrisation of Mamba and Proof of Theorem 7

Sarrof et al. [2024] show that any star-free language can be recognized by an SSM like Mamba (Gu
et al. [2022]), using the Krohn and Rhodes Theorem from Algebraic Automata Theory. However, in
their construction, they assume that gates of the form A(u) = 0 can be used, which is not the case
for architectures utilizing strictly positive parametrization, like Mamba.

We show in Construction 3 a modified η-finite system construction, which only requires gates with
diagonal entries in the range [ϵ, 1], for a suitable ϵ > 0. As it turns out, further restricting diagonal
entries to lie in (−1, 1) makes it impossible to implement a flip flop.

Mamba ([Gu et al., 2022]) parametrization is of the form

A(u) = Diag
(
exp (−∆u ⊙ exp(zu))

)
where zu ∈ Rd,∆u ∈ (0,∞)d

and ⊙ is the element-wise product Rd×Rd → Rd. This gives −
[
∆u⊙exp(zu)

]
i
< 0 for i ∈ 1 . . . d,

and thus A(u)i ∈ (0, 1) for i ∈ 1 . . . d. We will show in this section that an SSM using Mamba
blocks cannot implement a flip flop for unbounded .

However, experimental results in [Sarrof et al., 2024] show that this architecture does well in
experimental evaluations and demonstrates length generalization for star-free modelling tasks. For
tasks involving periodic modelling, the model fails to length generalize. This motivates us to
investigate the geometric complexity of the state space when evaluated on sequences of bounded
length in Appendix E.

Construction 3. There is a η-finite system with Linear Recurrent Dynamics with diagonal entries in
[ϵ, 1], for some ϵ > 0, which realize FLIP-FLOP dynamics.

Take ϵ = 1/4. Consider X = Xl ∪Xh ⊆ R, where

Xl = B̄(1, ϵ); Xh = B̄(2, ϵ)

Then Xq0 , Xl, Xh are the components of X , and X is η-finite. Take U , e : {s, r, i} → U and
f : X × U → X to be such that

f(x, e(σ)) = Aσ · x+Bσ where (Aσ, Bσ) =


(1, 0) if σ = i

(ϵ/4, 1) if σ = r

(ϵ/4, 2) if σ = s

We have X ⊆ B̄(0, 2 + ϵ), and so (ϵ/4 · −)(X) ⊆ B̄(0, ϵ/4 · (2 + ϵ)) ⊆ B̄(0, ϵ). Thus we see
that f maps X to Xl under input r and to Xh under input s. Under input i, f acts as identity.
Thus these dynamics indeed realize FLIP-FLOP, through assignment that identifies with α mapping
high 7→ Xh, low 7→ Xl, ι mapping set 7→ s, reset 7→ r, id 7→ i and ζ mapping Xl to low and
Xh to high.

Lemma 51. Let D = ⟨X,U, f⟩ be an η-finite Linear Recurrent dynamics with A(u) diagonal, with
entries in (−1, 1) for all u ∈ U . Then D is contracting.

Proof. Let x0, x′0 ∈ X and (un)n≥1 ⊆ U . For each component of U , say U1, . . . , Uk, define a
representative element r1, . . . , rk. Define (u′n)n≥1 ⊆ U to be such that u′n = rc where Uc is the
component containing un. Thus (u′n)n≥1 is equivalent to (un)n≥1, and (u′n)n≥1 takes finitely many
values r1, . . . , rk.

Now, consider A1, . . . , Ak, where Ac = A(rc). For each c ∈ [1..r], let λc be the largest size
eigenvalue of Ac. Then we have |λc| < 1, and

∥Ac · x∥2 ≤ |λc| · ∥x∥2 ∀x ∈ X

Let λ ∈ argmaxc∈1..r |λc|, then we have |λ| < 1 and

∥A(rc) · x∥2 ≤ |λ| · ∥x∥2 ∀x ∈ X, c ∈ 1..k
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Now, we have that for the state sequences (xn)n≥1, (x
′
n)n≥1 corresponding to initial states x0, x′0

resp., and the input sequence (u′n)n≥1, the following holds:

∥xn − x′n∥2 =
∥∥∥(A(u′n) · xn−1 +B(u′n)

)
−
(
A(u′n) · x′n−1 +B(u′n)

)∥∥∥
2

=
∥∥∥A(rc) · (xn−1 − x′n−1)

∥∥∥
2

for some c ∈ [1..k]

≤ |λ| ·
∥∥∥xn−1 − x′n−1

∥∥∥
2

≤ ...

≤ |λ|n ·
∥∥∥x0 − x′0

∥∥∥
2
→ 0 as n→ ∞

Thus eventually xn and x′n must be in the same component of X .

Altogether, we arrive at the following result (for η-finite dynamics), restated here more precisely than
in the main body.

Theorem 7. SSMs with Mamba parametrisation cannot recognise FLIP-FLOP as η-finite systems.

Proof. Mamba blocks are feed-forward cascades of LRDs of the type considered in Lemma 51 and
convolution blocks (FCDs)—see Figure 6. Thus η-finite feed-forward cascades of Mamba blocks are
contracting, and so by Lemma 46, cannot implement FLIP-FLOP.
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E Geometrically Constrained Systems

In this appendix, we depart the setting of η-finiteness, and explore geometrically-constrained systems
(GCSs). This setting allows for systems implementing functions beyond regular, but shares many
properties with the η-finite setting. We develop the theory of GCS to explain empirical capabilities of
Mamba, and to showcase the flexibility and generalizability of Metric Automata Theory.

In Section E.1 we develop a notion analogous to aperiodicity from Section D.2. We then prove
Theorem 9.

In Section E.2 we introduce a generalisation of η-finiteness, called weak η-finiteness. We use it
to argue that the cascade decomposition results for η-finite dynamics still apply to dynamics with
convex-covering state-spaces.

In Section E.3 we show that η-finite dynamics are a special case of convex-constrained dynamics.
Finally, we show a construction of a FLIP-FLOP using a Mamba convex-constrained SSM, and argue
using weakly η-finiteness that Theorem 8 holds.
Definition 33. For Ω = Rd or Cd, we call C ⊆ Ω a convex-covering if C is a finite union of open,
convex sets in Ω. We say that X ⊆ Ω is convex-covered by C if X ⊆ C.

We say X is convex-separated by C if (i) it is convex-covered by C and (ii) each path-connected
component of C contains at most one path-connected component of X . ■

Note: any convex set in Ω = Rd or Cd is path-connected. Thus any convex-covering C has finitely
many path-connected components.
Definition 34. Let Ω = Rd or Ω = Cd, and let C ⊆ Ω. We say that dynamics D = ⟨X,U, f⟩ are
convex-covered by C if X is convex-covered by C. We define a system geometrically-constrained by
C as a tuple SC = ⟨X,U, f, C, x0, Y, h⟩, where its dynamics ⟨X,U, f⟩ is a dynamics convex-covered
by C, x0 ∈ X is the initial state, and h : C × U → Y is the continuous output function. ■

The difference between a shortcut system and a system is that the dynamics function is defined only
on X , while the output function is define on the convex-covering C.

We extend the definition of implementing a function to shortcut systems: SC implements F : Σ+ → Γ
with encoder enc : Σ → U and decoder dec : Imh → Γ if enc, dec are continuous and F (w) =
dec ◦S

(
enc(w)

)
.

Construction 4. Consider Linear Recurrent Dynamics with state-space X = Z, input space U =
{a, b} and dynamics function f(n, a) = n+ 1; f(n, b) = n− 1. The space C = (−∞,−0.5) ∪
(−0.5, 0.5) ∪ (0.5,∞) is a convex-covering for this dynamics. We may define the output function
h : C → {0, 1} to map points in (−∞,−0.5)∪ (0.5,∞) to 0 and points in (−0.5, 0.5) to 1. Picking
initial state x0 = 0 , we have that this GCS outputs 0 precisely when the input has the same number
of as and bs. This recognizes the language

{w ∈ {a, b}+ : w has as many as as bs.},

whose dynamics can be interpreted as a counter, with a corresponding to +1 and b corresponding to
−1.
Lemma 52. For a cascade D = D1 ⇝ · · ·⇝ Dn with Di convex-covered/convex-separated by Ci

we have that C is convex-covered/convex-separated by C = C1 × · · · × Cn

Proof. Suppose Di is convex-covered by Ci for i ∈ [1..n]. First, C1 × · · · × Cn is indeed a convex-
covering. A product of convex sets is convex, and so a product of finite unions of convex sets is also
a finite union of convex sets (by commutativity of set product and union, see proof of Lemma 19).
Thus, X1 × · · · ×Xn ⊆ C and D is convex-covered by C.

Now, suppose further that Di is convex-separated by Ci for i ∈ [1..n]. The path-connected com-
ponents of C are of the form

∏n
i=1Gi, where Gi is a path-connected component of Ci. Similarly,

path-connected components of X = X1 × · · · ×Xn are of the form
∏n

i=1 Zi where Zi is a path-
connected component of Xi.

We have that
∏n

i=1 Zi intersects
∏n

i=1Gi precisely when Zi intersects Gi for each i ∈ [1..n]. Hence,
there is exactly one component of C intersecting

∏n
i=1 Zi, i.e., C convex-separates D.
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We begin by defining a restricted type of cascade. This model corresponds more to the idea of joining
the cascade components by their respective output function. Thus, we require that the connection
between sequential blocks respects convex-coverings.

Definition 35. A constrained cascadeD1
C1⇝ · · · Cn−1

⇝ Dn w.r.t. coveringC1×· · ·×Cn is a dynamics
D1 ⇝ · · ·⇝ Dn, where Di = ⟨Xi, U × C[1..(i−1)], fi⟩ and Di is convex-covered by Ci.

We can think of a constrained cascade as a feed-forward cascade with connectionsD1
g1⇝ · · · gn−1

⇝ Dn

where each gi is continuous on U × C[1..i−1].

E.1 Aperiodic Convex-covered Dynamics and Proof of Theorem 9

We define an analogous notion of aperiodicity for convex-covered dynamics. First we extend the
notion of η-convergence to convex-coverings.

Definition 36. For a space X , we say a sequence (xn)n≥1 ∈ Xω PC-converges in X , if eventually
all its terms lie in the same path-connected component of X . ■

This is an identical notion to η-convergence, but we give it a different name, since it applies to
non-η-finite spaces.

Definition 37. Call dynamics D = ⟨X,U, f⟩ aperiodic w.r.t. convex-covering C, if D is convex-
covered by C and if for every sequence (un)n≥1 ∈ Uω PC-convergent in U and x0 ∈ X , the state
sequence

(
D(x0, u1...n)

)
n≥1

∈ Xω ⊆ Cω is PC-convergent in C.

Note the difference in definition: we require that the state sequence is eventually in the same
component of C, instead of the same component of X!

Lemma 53. Let D = D1 ⇝ · · ·⇝ Dn be a cascade s.t. Di is aperiodic w.r.t. convex-covering Ci

for i ∈ [1..n]. Then D is aperiodic w.r.t. convex-covering C = C1 × · · · × Cn.

Proof. Analogous to proof of Lemma 49, applied to the cascade D′
1 ⇝ · · · ⇝ D′

n, where D′
i =

⟨Ci, U × C[1,...i−1], fi⟩.

Definition 38. We call a function F : Σ+ → Γ alternating if, for some σ ∈ Σ, the sequence(
F (σn)

)
n≥1

∈ Γω changes value infinitely many times. ■

Theorem 54. Let D be a dynamics aperiodic w.r.t. convex-covering C. Let SC be a shortcut system
constrained by C with dynamics D. Then SC can not implement any alternating function.

Proof. Say D = ⟨X,U, f⟩ and SC = ⟨X,U, f, x0, C, Y, h⟩. Suppose for contradiction that SC with
encoder enc : Σ → U and decoder dec : Imh→ Γ implements an alternating function F : Σ+ → Γ.

Let σ ∈ Σ be a symbol such that
(
F (σn)

)
n≥1

changes value infinitely many times. Since D
is aperiodic w.r.t. C we have that

(
D(x0, enc(σ)

n)
)
n≥1

⊆ X ⊆ C is eventually in the same
path-connected component of C. As dec ◦h : C × U → Γ is continuous we thus have that

F (σn) = dec ◦h
(
D
(
x0, enc(σ

n)
)
, enc(σ)

)
is eventually in the same path-connected component of Γ, i.e. eventually constant. This is a
contradiction.

We now introduce an elementary theorem about convex sets in Rd (or Cd).

Theorem 55 (Minkowski’s Hyperplane Separation Theorem). Let A,B ⊆ Rd be two disjoint, non-
empty convex sets. If both are open, then there exists a non-zero vector v ⊆ Rd and constant c ∈ R
s.t.

⟨a, v⟩ > c and ⟨b, v⟩ < c ∀a ∈ A, b ∈ B

with ⟨·, ·⟩ being the dot product.
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Proof. By Section 2.5.1 of [Boyd and Vandenberghe, 2006 - 2004], we have that there exists a
non-zero vector v ⊆ Rd and constant c ∈ R s.t.

⟨a, v⟩ ≥ c and ⟨b, v⟩ ≤ c ∀a ∈ A, b ∈ B

Now, these inequalities in fact must be strict. For contradiction suppose that ⟨a, v⟩ = c for some
a ∈ A. Since A is open, we have that for some ϵ > 0 BRd(a, ϵ) ⊆ A. Thus a + ϵ · v

||v||22
∈ A

(||v||2 ̸= 0 as v is a non-zero vector). But then
〈
a+ ϵ · v

||v||22
, v
〉
= a+ ϵ > a by linearity of the dot

product. Similarly for B.

Theorem 9. Let D be an η-finite Linear Recurrent Dynamics, with its state-transition gates having
all non-negative eigenvalues. Let C be a covex-regular covering of D. Then D is aperiodic w.r.t. C.

Proof. Let D = ⟨X,U, f⟩ be a Linear Recurrent Dynamics, with X ⊆ Rd, convex-covered by C, s.t.
A(u) has all its eigenvalues being real, for all u ∈ U . Say f(x, u) = A(u) · x+B(u).

Consider a sequence (un)n≥1 ∈ U , state-convergent in U , and x0 ∈ X . Let
(
xn = D(x0, u1...n)

)
⊆

X be the corresponding state sequence. We have some N s.t. for n ≥ N all un are contained in the
same component of U , we may pick a representative r ∈ U of that component.

Write A = A(r), B = B(r). By Lemma 25, we have for n ≥ N that

xn+N ∼X x′n = D(xN , r
n−N )

Like in proof of Theorem 47, we consider the state sequence in the diagonalized space of A. Write
A = P−1JP for the Jordan normal form of A. Here J is block diagonal, with say blocks J1, ..., Js,
Jb ∈ Rmb×mb being a Jordan Block with λb—eigenvalue of A—on the diagonal, and 1 on the right
off-diagonal.

Define yn = xn+1 − xn and y′n = P (x′n+1 − x′n), then

y′n+1 = P · (x′n+2 − x′n+1)

= P · (Ax′n+1 +B −Ax′n −B)

= PA · (x′n+1 − x′n) = Jy′n

Thus, unrolling the recurrence we get

y′n = Jny′0

The i-th component of y′n, where i is in say the b-th block of J , is

[y′n]i =

mb∑
j=i

λn+i−j
b

(
n

j − 1

)
[y′0]j

The binomial coefficients are polynomial in n. Thus we may write [y′n]i =
∑
vj · nbj · anj , where

bj ∈ Z≥0 and aj = λb ≥ 0, which is of the form in Lemma 64. Since yn = Py′n, we have

[yn]i =

d∑
j=1

[P ]i,j · [y′n]j

which again is of the form in Lemma 64.

Now, for contradiction suppose that x′n is not state-convergent in C. Then, since C has finitely many
components, there are two distinct components of C, say C1, C2 such that x′n is in both C1 and in C2

infinitely often. Furthermore, since C1, C2 are finite unions of open convex sets, there are convex,
open sets S1, S2 which are disjoint, non-empty, and x′n is in both S1 and S2 infinitely often (*).

By Theorem 55, there is a non-zero vector v ∈ Rd and constant c ∈ R s.t. ⟨s1, v⟩ > c ∀s1 ∈ S1

and ⟨s2, v⟩ > c ∀s2 ∈ S2.

Thus, ⟨x′n, v⟩ > c infinitely often, and ⟨x′n, v⟩ < c infinitely often.
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We have

⟨yn, v⟩ =
d∑

i=1

vi · [yn]i

is again in the form from Lemma 64. Thus it is eventually monotone. Therefore eventually ⟨yn, v⟩ ≤
0, in or ⟨yn, v⟩ ≥ 0. By linearity of the inner product

⟨yn, v⟩ = ⟨xn+1, v⟩ − ⟨xn, v⟩

Thus, eventually also ⟨xn, v⟩ is monotone—contradiction with (*).

E.2 Weakly η-finite Dynamics

In this section we introduce the topological notion of connectedness, as well as the necessary results to
establish the finite state properties of GCSs where the state-space coincides with the convex-covering.

Definition 39. A topological space X is called disconnected, if there are disjoint non-empty sets
H,K in X such that X = H ∪K. Then X is called connected if it is not disconnected.

Connectedness is, as it turns out, a generalization of path-connectedness.

Fact E.2.1. (Theorem 27.2, [Willard, 2012]) Every path-connected space is connected.

Similarly to compactness and path-connectedness, connectedness is preserved by continuous map-
pings and products.

Fact E.2.2. (Theorem 26.2, [Willard, 2012]) The continuous image of a connected space is connected.

Fact E.2.3. (Theorem 26.10, [Willard, 2012]) A nonempty product space is connected iff each factor
space is connected.

Similarly to path-connectedness, connectedness induces an equivalence on the space.

Definition 40. For x ∈ X , define Cx as the union of connected subspaces of X containing x. We
call it the C-component at x. We write x ≈X y when y ∈ Cx.

Note, that in [Willard, 2012] C-components are simply referred to as components.

Fact E.2.4. ≈X is an equivalence relation, partitioning X into maximal (with respect to inclusion)
connected subspaces of X . Cx is the equivalence class of ≈X containing x. See Theorem 26.7 and
Definition 26.11 of [Willard, 2012] for details.

Fact E.2.5. (Theorem 26.12, [Willard, 2012]) The C-components of X are closed in X .

Thus, we think of C-components as a partition of the space that is a coarsening of the path-connected
components. For an example of a space that has one C-connected component and 2 path-connected
components, see the topologist’s sine curve (Example 27.3, [Willard, 2012]).

Definition 41. We call a space X weakly η-finite, if it has finitely many C-components.

Example 10. Any finite alphabet is weakly η-finite, with each symbol being in a separate C-
component. ■

Our goal now is to show that weakly η-finiteness enjoys the same favourable theoretical properties as
η-finiteness.

Lemma 56. A continuous image of a weakly η-finite space is weakly η-finite.

Proof. Let C1, . . . , Cn be the C-components of X , and let f : X → Y be continuous. Each f(Ci)
is connected, and so Im f is a union of finiely many connected spaces f(C1), . . . , f(Cn). Thus, the
equivalence classes of ≈Im f must be unions of these images. Thus ≈Im f must have finitely many
equivalence classes.

Lemma 57. The Cartesian product X × Y space of weakly η-finite spaces is weakly η-finite. The
C-components of X × Y are the products of C-components of X and C-components of Y .

38



Proof. Let C1, . . . , Cn and E1, . . . , E, be the C-components of X,Y respectively. We have X =⋃n
i=1 Ci, Y =

⋃m
j=1 and so

X × Y =
( n⋃
i=1

Ci

)
×
( m⋃
j=1

Ej

)
=

n⋃
i=1

m⋃
j=1

Ci × Ej

By Fact E.2.2 each Ci × Ej is connected. Thus, the C-components of X × Y are unions of the
products Ci ×Ej . Now, fix i ∈ [1..n], j ∈ [1..j]. Let Z be the C-component of X × Y containing
Ci ×Ej . consider the projection map πX : X × Y → X . As the projection is continuous, the image,
πX(Z) is connected in X . Moreover, Ci ∈ πX(Z). Thus, as Ci is a maximal connected subspace
of X , we have Ci = πX(Z). Similarly, considering the projection πY : X × Y → X , we have
Ej = πX(Z). Since Ci × Ej ⊆ Z, we therefore must have Ci × Ej = Z. Therefore X × Y has
finitely many C-components, and they are the products of C-components of X and C-components of
Y .

Lemma 58. Let X be weakly η-finite and Σ be a finite alphabet. Then f : X → Σ is continuous if
and only if it is constant on the C-components of X .

Proof. (⇒) Let f : X → Σ be continuous. Let C be a C-component of X . By Fact E.2.2, f(C) ⊆ Σ
is connected, and so f(C) = {σ} for some σ ∈ Σ. I.e., f is constant on the C-components of X .

(⇐) Let f : X → Σ be constant on the C-components. Let Y ⊆ Σ be closed. Then f−1(Y ) ⊆ X
must be a union of finitely many C-components, since X is weakly η-finite. By Fact E.2.5, we have
that each C-component is closed, and therefore also f−1(Y ) is closed, as a finite union of closed sets.
Thus f is continuous.

Now, we have all the properties needed to carry out the arguments in Appendix B.3.

Definition 42. We call dynamics D = ⟨X,U, f⟩ weakly η-finite if X and U are weakly η-finite. We
call a system S weakly η-finite if its dynamics are weakly η-finite.

By Lemma 57, we immediatly have that cascades of weakly η-finite dynamics are weakly η-finite.

Example 11. η-finite dynamics are weakly η-finite. ■

Theorem 59. A convex-covering C is weakly η-finite, with its C-components coinciding with its
path-connected components.

Proof. Let C1, . . . , Cn be path-connected components of C. Each Ci is a union of finitely many
open (in Rd) convex sets, and so is also open. Let Z be a C-component of C. Then Z is a union of
the path-connected components, and so Z is also open. An open, connected subspace of Rd is path-
connected, see Corollary 27.6 of [Willard, 2012]. Thus Z must actually be one of the path-connected
components.

Lemma 60. Let D = ⟨X,U, f⟩ be a geometrically-contrained system, convex-covered by C, with
X = C. Then D is weakly η-finite, and the C-components of X are the path-connected components.

Proof. C has finitely many path-connected components, and so it is weakly η-finite, since path-
connectedness implies connectedness. Now, each C-component of C is a union of the path-connected
components, all of which are open in Ω = Rd. Hence each C-component of C is open in Ω. By
Corollary 27.6 of [Willard, 2012], C-components of C are therefore path-connected. Thus the
path-connected components and C-connected components of C coincide.

Since a C-component has to be mapped by a continuous function into a single C-component, we
have that a version of Lemma 24 also holds for weakly η-finite dynamics. For a weakly η-finite
system S = ⟨X,U, f, x0, Y, h⟩ and weakly η-finite dynamics D = ⟨X,U, f⟩, we can thus define the
analogous canonical automata

Cweakly(S) = ⟨X⧸≈X
, U⧸≈U

, f̃ , [x0]≈X
, Imh⧸≈Imh

, h̃⟩

Cweakly(D) = ⟨X⧸≈X
, U⧸≈U

, f̃⟩

39



with f̃ :
(
[x]≈X

, [u]≈U

)
7→ [f(x, u)]≈X

and h̃ :
(
[x]≈X

, [u]≈U

)
7→ [h(x, u)]≈Imh

.

Similarly, replacing path-equivalence ∼ with C-component-equivalence ≈ in Lemmas 26, 27, 28 and
Theorem 1, we get that the canonical automata of weakly η-finite systems have the same capability in
terms of implementing functions.

Likewise, the realization results of Appendix B.4 and Appendix B.5 carry over to the setting of
weakly η-finiteness. Thus we may apply the structural theorems of Algebraic Automata Theory in
the case of weakly η-finite dynamics. We defer exploring the properties of weakly η-finite dynamics
in detail to future work.

E.3 η-finite Systems as GCSs and Proof of Theorem 8

We start by showing that η-finite dynamics that are convex-separated by C can implement exactly the
same functions in a η-finite system as in a GCS constrained by C.
Lemma 61. Suppose η-finite dynamics D are convex-separated by C. The following are equivalent:

• There is a system with dynamics D that can implement F : Σ+ → Γ.

• There is a shortcut system SC constrained by C with dynamics D that can implement F : Σ+ → Γ.

Proof. (⇒) Let S = ⟨X,U, f, x0, Y, h⟩ be a system with dynamics D that implements F with some
encoder enc : Σ → U and decoder dec : Y → Γ.

Let C1, ..., Cs be the path-connected components of C. Fix γ ∈ Γ and define h′ : C × U → Γ
as follows: for i ∈ 1 . . . s, if Ci ∩ X = ∅, take h′(c, u) = γ, where γ ∈ Γ. If Ci ∩ X ̸= ∅,
take h′(c, u) = dec ◦h(x, u) for (c, u) ∈ Ci × U , where x ∈ Xi. This is well-defined: For
all x, x′ ∈ Ci ∩ X , since C is a convex-separator of X , we have that x and x′ are in the same
path-connected component of X . Therefore necessarily dec ◦h(x, u) = dec ◦h(x′, u).

Want to show: h′ is continuous. Let
(
(cn, un)

)
n≥1

⊆ C × U be a sequence converging to (c, u) ∈
C × U . Then (cn)n≥1 converges to c in C and (un)n≥1 converges to u in U .

Let Ci be the component that contains c. Since Ci is open, there is some ϵ > 0 s.t. BΩ(c, ϵ) ⊆ Ci.
Since cn → c, we must have that eventually (cn) lies in BΩ(c, ϵ) ⊆ Ci.Similarly, let Uj be the
η-component of U that contains u. Then, by Lemma 20, as un → u, we must have that eventually
(un) lies in Uj . Thus eventually

(
⟨cn, un⟩

)
n≥1

lies in Ci × Uj . By definition of h′, it is constant on
Ci × Uj . Thus

(
h′(un, cn)

)
n≥1

is eventually equal h′(c, u).

Now, define Sc = ⟨X,U, f, x0, C, Y, h′⟩. As h′ : C × U → Y is continuous, this is a well-def.
shortcut system constrained by C. Moreover, since h′ constrained to X × U is equal to dec ◦h, we
have that SC with encoder enc and decoder id : Γ → Γ implement F .

(⇐) Let Sc = ⟨X,U, f, x0, C, Y, h⟩ be a shortcut constrained by C. Suppose that SC implements
F with some encoder enc : Σ → U and dec : Y → Γ. Then taking h : X × U → Y to be the
restriction of h, we get that the system S = ⟨X,U, f, x0, Y, h′⟩ with encoder enc and decoder dec
implements F .

Lemma 62. Let X be a η-finite space. Then X is convex-separated by some convex-covering C.

Proof. Let X1, . . . , Xk be the components of X . Take

δ = min
1≤i<j≤n

inf
xi∈Xi,xj∈Xj

d(xi, xj)

Then we have δ > 0 by Lemma 20. Define

Cδ
i = {B(xi, δ/2) | xi ∈ Xi}

Then Cδ
i is an open cover of Xi. Since Xi is compact, by definition of compactness there is a

finite subcover C̄δ
i ⊆ Cδ

i which also covers Xi. Moreover, by definition of δ, this subcover does
not intersect other components of X . Taking Ci =

⋃
C̄δ

i we have that C = C1 ∪ · · · ∪ Ck is a
convex-covering that convex-separates X .
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Construction 5. FLIP-FLOP dynamics can be implemented by a Linear Recurrent Dynamics with
entries in [δ, 1− δ], for some δ > 0.

Let ϵ < 1. Take D = ⟨X,U, f⟩ with X = Xl ∪ Xh, where Xl = (−1, 0), Xh = (0, 1) and U, f
such that:

f(x, e(σ)) = Aσ · x+Bσ where ⟨Aσ, Bσ⟩ =


⟨1− ϵ, 0⟩ if σ = i

⟨ϵ/4,−1/2⟩ if σ = l

⟨ϵ/4, 1/2⟩ if σ = h

With output function Xl 7→ low and Xh 7→ high, this implements FLIP-FLOP. The set C = X is a
convex-covering of this dynamics.

Hence, Mamba can implement FLIP-FLOP as a constrained system, and so constrained cascades of
Mamba blocks can implement any star-free language.
Corollary 63. η-finite dynamics are in particular convex-separated dynamics, and implement the
same functions in η-finite systems and in GCSs.

Theorem 8. SSMs with Mamba parametrisation can recognise all star-free languages as GCSs.

Proof. By Construction 5, there is a Mamba block dynamics D, with a convex-covering state space,
and η-finite input space, that realise FLIP-FLOP as weakly η-finite dynamics. A Mamba block
can also have a convolution, and so there is a Mamba block dynamics E, with a convex-covering
state space, and η-finite input space, that realise R2 as weakly η-finite dynamics (details omitted.
Also a sLSTM-like η-finite construction is possible, see Appendix G.3). Thus, by weakly η-finite
analogue of Theorem 14, all group-free functions can be realized by feed-forward cascades of D and
E components. Such cascades are actually constrained cascades of Mamba block GCSs, since the
convex-coverings of D and E coincide with their state-spaces.
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Figure 10: FLIP-FLOP task [Liu et al., 2023]. PCA of a trained 1-layer Mamba states for each
channel: red and blue are state sequences under i0 inputs, starting from w1 and w0 respectively. After
≈1000 inputs, both state sequences give the same predictions on the read instruction r, incorrectly.
The ’doubled’ state trajectories are due to each transition consisting of 2 input tokens.

F Details of The Experiments

We have created visualizations based on the [Liu et al., 2023] FLIP-FLOP task. The dataset is
available at https://huggingface.co/datasets/synthseq/flipflop/. The objective of the
task is to predictively model a sequence of instructions of the form sx, where s ∈ w,r,i, x ∈ 0,1. w
indicates that the next symbol is to be stored, r indicates that the next symbol should be the retrieved
value and i indicates no action. The specific task we trained on corresponds to the "clean" prediction
mode, where only prediction following an r instruction need to be predicted. We note that the aim
of our experiments was to obtain empirical evidence of Mamba having contracting dynamics, and a
comprehensive experimental study is beyond the scope of our paper.

We trained 1-layer Mamba on sequence lengths 32, 64, and 512, observing similar state-collapse
phenomena, as predicted by our results. Additionally [Sarrof et al., 2024] note that in their experiments
Mamba needed more training steps to converge than reported by Liu et al. [2023] for an LSTM. This
is another evidence towards the influence of robustness on stability of training.

The code used to perform the experiments is based on the repository shared in Grazzi et al. [2025],
with some environment modifications to make it work on the 2025-04-09 Google Colab release. The
forked repository is available at https://github.com/adankow/unlocking_state_tracking,
with a Google Colab notebook file containing the set-up, simple training loop, and hidden state
visualisation code.
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G Additional Proofs and Constructions

G.1 Monotone Sequence Lemma

Lemma 64. Let d ≥ 1, a1, ..., ad ≥ 0, b1, .., bd ∈ Z≥0 and v1, ..., vd ∈ R . The sequence

xn =

d∑
i=1

vi · nbi · ani

is eventually monotone.

Proof. If all vi = 0, then xn = 0 for all n, in particular the sequence is monotone. Otherwise, we
may assume that vi ̸= 0 for all i, and that

ai > ai+1 or ai = ai+1 and bi > bi+1

If a1 = 0, then again xn = 0, and it is monotone. Otherwise, we can take d1 : 1 ≤ d1 ≤ d such that

ai = a1 for 1 ≤ i ≤ d1 and ai < a1 for i ≥ d1 + 1

We may write

xn = an1 · P (n) +
d∑

i=d1+1

vi · nbi · ani

where P (n) is the polynomial
∑d1

i=1 vi · nbi .

Case 1: a1 ̸= 1. We have a1 > 0 and

xn
an1

= P (n) +

d∑
i=d1+1

vi · nbi · (ai/a1)n

We have that (ai/a1) → 0 as n→ ∞, since a1 > ai for d1 + 1 ≤ i ≤ d. On the other hand, P (n) is
a non-zero polynomial, since its leading term is v1 · nb1 and v1 ̸= 0, and so P (n) → ±∞ as n→ ∞.
Thus, xn ̸= 0 for sufficiently large n. Moreover,

xn+1

xn
=
an+1
1

an1
· (n+ 1)b1

nb1
·
P (n+ 1)/(n+ 1)b1 +

∑d
i=d1+1 vi(n+ 1)bi−b1(ai/a1)

n+1

P (n)/nb1 +
∑d

i=d1+1 vi · nbi−b1(ai/a1)n

We have P (n)/nb1 → v1 as n→ ∞, since v1 · nb1 is the leading term of P (n). Also nbi−b1 grows
at most polynomially, while (ai/a1)

n goes to 0 exponentially, since ai < a1 for d1 + 1 ≤ i ≤ d.
Therefore

∑d
i=d1+1 vi · nbi−b1(ai/a1)

n −→ 0 as n→ ∞. Lastly we have (n+1)b1

nb1
→ 1 as n→ ∞.

All together

lim
n→∞

xn+1

xn
= a1 · 1 ·

v1 + 0

v1 + 0
= a1

In particular, eventually xn is positive, or eventually it is negative. There are 4 cases:

• If a1 ∈ (0, 1) and xn is positive eventually, then xn is decreasing eventually.

• If a1 ∈ (1,∞) and xn is positive eventually, then xn is increasing eventually.

• If a1 ∈ (0, 1) and xn is negative eventually, then xn is increasing eventually.

• If a1 ∈ (1,∞) and xn is negative eventually, then xn is decreasing eventually.

Case 2: a1 = 1. We proceed by induction on b1. If b1 = 0, then necessarily d1 = 1, and P (n) = v1.
Then we have by Case 1 that xn − P (n) = xn − v1 is eventually monotone, and so also xn is
eventually monotone.
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For the inductive step, consider

yn = xn+1 − xn

= P (n+ 1)− P (n) +

d∑
i=d1+1

vi · ani ·
(
ai(n+ 1)bi − nbi

)
We can again write

∑d
i=d1+1 vi · ani ·

(
ai(n+1)bi −nbi

)
as
∑d′

i=1 v
′
i ·nb′i · (a′i)n, with a′i < a1 = 1.

On the other hand Q(n) = P (n+1)−P (n) is a polynomial with leading coefficient of degree < b1.
Thus we may apply inductive hypothesis to

yn = Q(n) +

d′∑
i=1

v′i · nb′i · (a′i)n

to conclude that yn is eventually monotone. Thus, either xn+1 − xn = yn ≤ 0 eventually, or
xn+1 − xn = yn ≥ 0 eventually. Hence xn is eventually monotone.

G.2 Sequential Cascade Construction

The serial cascade can be realised in terms of the feedforward cascade⇝. Consider i ∈ 1, 2 and
Di = ⟨Xi, Ui, fi⟩. Define the repeat dynamics on X1 to be the system RX1 = ⟨X2

1 , U × X1, r⟩,
with r given by

r
(
⟨x1, x2⟩, ⟨u, x3⟩) = ⟨x2, x3⟩ ∀x1, x2, x3 ∈ X1, u ∈ U

Thus RX1
can delay the propagation of the state of D1 by one time step. Also, define the modified

dynamics D′
2 = ⟨X2, U ×X3

1 , f
′
2⟩, with f ′2 given by

f ′2
(
x2, ⟨u, x1, x1,old, x1,new⟩

)
= f2

(
x2, ⟨u, x1,old⟩

)
Note that RX1

is equivalent to the usual repeat dynamics over X1, ⟨X2
1 , X1, rX⟩, but with input

function (u, x) 7→ x.

Now, the feed-forward cascade D1 ⇝ RX1 ⇝ D′
2 is well-defined, and has the following transitions:

f ′
(
⟨x1, x1,old, x1,new, x2⟩, u

)
= ⟨x′1, x′1,old, x′1,new, x′2⟩ where

x′1 = f1(x1, u); x′1,old = x1,new; x′1,new = x′1;

x′2 = f ′2
(
x2, ⟨u, x′1, x′1,old, x′1,new⟩

)
= f2

(
x2, ⟨u, x1,new⟩

)
Now, suppose we have system S = ⟨X1 × X2, U, f, (x1,0, x2,0), Y, h⟩ with dynamics D1 ⋉
D2. Then there is a system S′ with dynamics D1 ⇝ RX1

⇝ D2 which realises S: take
S′ = ⟨X3

1 × X2, U, f
′, x′0, Y, h

′⟩ with x′0 = (x1,0, x1,0, x1,0, x2,0), h′(⟨x1,1, x1,2, x1,3, x2⟩, u) =
h(⟨x1,1, x2⟩, u) and take

α : X1 ×X2 → P+(X
3
1 ×X2)

α(x1, x2) 7→ {(x1, xold, x1, x2) : xold ∈ X1}
Take ι : U → U and ζ : Y → Y to be the identities. We then have for all (x1, x2) ∈ X1 × X2,
u ∈ U and x′ ∈ α((x1, x2)):

f ′(x′, ι(u)) = f ′(⟨x1, xold, x1, x2⟩, u)
= ⟨x′1, x1, x′1, x′2⟩ ∈ α((x′1, x

′
2))

where x′1 = f1(x1, u) and x′2 = f2
(
x2⟨u, x1⟩

)
, so that (x′1, x

′
2) = f

(
(x1, x2), u

)
. Moreover

x′0 ∈ α(x0).

Finally, we have

ζ ◦ h′(x′, ι(u)) = h′(x′, u) = h′(⟨x1, xold, x1, x2⟩, u) = h(⟨x1, x2⟩, u) = h(x, u)

so that indeed S′ is a realisation of S. Note, that we did not need to introduce any new transitions
on X1 or X2 in order to carry out this construction. In particular, if D1 and D2 are linear recurrent
dynamics, then D1, D

′
2 are linear recurrent dynamics. Also RX1

is a Finite Context Dynamics.
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G.3 Robust Flip-Flop realisations

Recall the sLSTM parametrisation: the state space of a sLSTM is R3, and the input
space is Rd for some d ≥ 1. The dynamics function of the form (⟨c, n, h⟩, u) 7→〈
fc(⟨c, n, h⟩, u), fn(⟨c, n, h⟩, u), fh(⟨c, n, h⟩, u)

〉
, where

fc(⟨c, n, h⟩, u) = ψ(lf (h, u)) · c+ exp(li(h, u)) · φ(lz(h, u))
fn(⟨c, n, h⟩, u) = ψ(lf (h, u)) · n+ exp(li(h, u))

fh(⟨c, n, h⟩, u) = σ(lo(h, u)) ·
fc(⟨c, n, h⟩, x)
fn(⟨c, n, h⟩, x)

where each ls : s ∈ o, i, z, f is a function of the form wt
s · u+ rs · h+ bs, for ws ∈ Rd, rs, bs ∈ R,

ψ is either exp or σ, and φ is tanh.

G.3.1 Strongly robust sLTSM FLIP-FLOP realization

We present a construction for a one layer sLSTM FLIP-FLOP, which is strongly robust. The key idea
is to only use the h state to implement the dynamics. Then, we can use Theorem 42, and similar
arguments involving uniform continuity, to extend the construction to be strongly robust in the states
h, c, n and the input space u. We shall present the arguments in more detail here, to demonstrate
how robustness can be used to prove properties of systems, in particular how to extend robustness to
strong robustness.

Let ψ = σ. Set ws = 0 and rs = 0 for s = f, i, z. Set bf = −3, bz = 2, bi = 0. Then we have
lf ≡ −3, li ≡ 0, lz ≡ 2. Thus the updates simplify as

fc(⟨c, n, h⟩, u) = σ(−3) · c+ exp(0) · tanh(2) = σ(−3) · c+ tanh(2)

fn(⟨c, n, h⟩, u) = σ(−3) · n+ exp(0) = σ(−3) · n+ 1

fh(⟨c, n, h⟩, u) = σ(lo(h, u)) ·
fc(⟨c, n, h⟩, x)
fn(⟨c, n, h⟩, x)

= σ(lo(h, u)) · tanh(2) ∈ [0, 1]

Finally, take d = 1 and lo(h, u) = u+ 10h− 5.

For now, let us fix c as c∗ = tanh (2)
1−σ(−3) ≈ 1.01202 and n as n∗ = 1

1−σ(−3) ≈ 1.049787, i.e. the fix
points of the linear recurrences given by fc and fn. Then we have that

σ(−3) · c∗ + tanh(2) = c∗ and σ(−3) · n∗ + 1 = n∗

Moreover, fc(⟨c∗,n∗,h⟩,x)
fn(⟨c∗,n∗,h⟩,x) =

c∗

n∗ = tanh 2, so that the update for h simplifies as

f(h, u) := fh(⟨c∗, n∗, h⟩, u) = σ(u+ 10h− 5) · tanh(2)
We can set U = {uset, ureset, uid}, with uset = 8, ureset = −8 and uid = 0, and Hlow =
[−0.05, 0.2], Hhigh = [0.8, 1.05]

Now, for h ∈ [0, 1] we have

f(⟨c, n, h⟩, uset) = σ(8 + 10h− 5) · tanh(2)
≥ σ(3) · tanh(2) ≈ 0.9183

Therefore f(⟨c, n, h⟩, uset) ∈ [0.85, 1]. Similarly

f(⟨c, n, h⟩, ureset) = σ(−8 + 10h− 5) · tanh(2)
≤ σ(−3) · tanh(2) ≈ 0.04572

Therefore f(⟨c, n, h⟩, ureset) ∈ [0, 0.05]. Now, for h ≤ 0.2

σ(10h− 5)· ≤ σ(2− 5) ≈ 0.047426 < 0.05

and so f(⟨c, n, h⟩, uid) ∈ [0, 0.05]. Also for h ≥ 0.8

σ(10h− 5) · tanh(2) > 0.95 · 0.9 = 0.855
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and so f(⟨c, n, h⟩, uid) ∈ [0.8, 1]. Thus we see that the dynamics〈
H = Hlow ∪Hhigh, U, f = (h, u) 7→ fh

(
⟨c∗, n∗, h⟩, u

)〉
realise the FLIP-FLOP dynamics, and is η-finite and ϵ-robust, for ϵ = 0.05. Furthermore, we can
modify the input space U , to make it strongly ϵ-robust.

Consider U ′ = [0, 10]. H × U ′ is compact, and f is continuous on H × U ′, so by Theorem 41 it is
uniformly continuous on H × U ′. In particular, for ϵ′ = ϵ/2, there exists δ > 0 such that

||(h, u)− (h′, u′)|| ≤ δ =⇒
∣∣∣∣f(h, u)− f(h′, u′)

∣∣∣∣ ≤ ϵ′

for all (x, u), (x′, u′) ∈ X ′×U ′. Thus, we may take δ′ = min(δ, 1) and U ′′ = [uset±δ′]∪ [ureset±
δ′] ∪ [uid ± δ′]. Now, consider h ∈ H , u ∈ U ′′ and h′ ∈ R such that ||h′ − f(h, u)|| ≤ ϵ′. We have
||u− u′|| ≤ δ′ for some u′ ∈ {uset, ureset, uid}, and so∣∣∣∣f(h, u)− fh(h, u

′)
∣∣∣∣ ≤ ϵ′

All together

ϵ = ϵ′ + ϵ′ ≥
∣∣∣∣h′ − f(h, u)

∣∣∣∣+ ∣∣∣∣f(h, u)− f(h, u′)
∣∣∣∣

≥
∣∣∣∣(h′ − f(h, u)

)
+
(
f(h, u)− f(h, u′)

)∣∣∣∣
=
∣∣∣∣h′ − f(h, u′)

∣∣∣∣
Since (h, u′) ∈ H × U and ⟨H,U, f⟩ is ϵ-robust, we get that h′ ∈ H . Hence f also gives a well
defined dynamics function H × U ′′ → H , which moreover is ϵ′-robust. Thus, we have ⟨H,U ′′, f⟩
is η-finite and strongly min(ϵ′, δ′)-robust. It also realizes FLIP-FLOP, since the input components
induce the same η-transitions as {uset, ureset, uid} by path-connectedness.

Finally, we extend the dynamics to c and n. We can see f as parametrized by θ ∈ [c∗ ± 0.5], ρ ∈
[n∗ ± 0.5], given by

fθ,ρ = σ(u+ 10h− 5) · θ
ρ

So, f = fc∗,n∗ . We see that fθ,ρ is continuous in θ and ρ, and [c∗ ± 0.5] × [n∗ ± 0.5] is compact.
Thus by Theorem 42, there is some γ > 0 such that fθ,ρ induces the same function H × U ′′ → H
as fc∗,n∗ . Also, similarly to how we extended U to U ′′, we can choose γ such that the resulting
dynamics are always ϵ/4-robust

Lets take X = H × C × N where C = [c∗ ± γ] and N = [n∗ ± γ]. We have that the sLSTM
dynamics gives a well-defined, robust dynamics function X × U → X: we already have that
the restriction of the dynamics to the h component is robust. For the c and n components, since
σ(−3) < 1, the state updates given by fc and fn (which are independent of u) are contractions
towards c∗ and n∗ respectively, with rate σ(−3). Thus fc sends C = [c∗ ± γ] to [c∗ ± γ · σ(−3)]
and fn sends N = [n∗ ± γ] to [n∗ ± γ · σ(−3)]. All together, the sLSTM dynamics are strongly
min(ϵ/4, δ′, γ(1− σ(3)))-robust, and realize FLIP-FLOP.

G.3.2 Strongly robust sLSTM repeat dynamics

To realize any repeat semiautomata, as defined in Appendix G.2, it is sufficient to realize the two
state repeat semiautomaton R2 = ⟨{0, 1}2, {0, 1}, r⟩, with r(⟨xold, xnew⟩, x) = ⟨xnew, x⟩.
Here, the construction is extremely similar to the FLIP-FLOP one. We first show a robust dynamics
on just the h cell, using f(h, u) = σ(u+ 10h− 5) · tanh(2) which realize R2. Then we can use the
same argument as before to extend it to strongly robust dynamics on all 3 cells.

We can use the h cell to represent xnew, by simply reusing the previous strongly robust construction
for setting the high and low state, with dynamics function f(h, u) = fh(⟨c∗, n∗, h⟩, u), state space
H and input space [uset ± δ′] ∪ [u]. We then have that for some γ > 0 for all c ∈ [c∗ ± γ] and
n ∈ [n∗ ± γ] the dynamics function fh(⟨c, n, h⟩, u) still performs

Define X00 = [−0.01, 0.015], X01 = [0.02, 0.05], X10 = [0.95, 0.98], X11 = [0.985, 1, 01] and
u0 = −8.1, u1 = 8.1. Note that X = X00 ∪X01 ∪X10 ∪X11 has 4 η-components. Also, define
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X0 = X01 ∪X10 and X1 = X10 ∪X11. In our construction Xab will correspond to the state of R2

after the last two inputs were ab, a, b ∈ {0, 1}.

We have

f(0.95, u1) = σ(8.1 + 9.5− 5) ≈ 0.999997

f(1.01, u1) = σ(8.1 + 10.1− 5) ≈ 0.999998.

As σ is increasing, we therefore have f(X1, u1) ⊆ [0.99999, 1] ⊂ X11. Similarly, we have

f(−0.01, u1) = σ(8.1− 0.1− 5) ≈ 0.9526

f(0.05, u1) = σ(8.1 + 0.5− 5) ≈ 0.9734.

Therefore f(X0, u1) ⊆ [0.952, 0.974] ⊂ X10. Similarly for u0, we have

f(0.95, u0) = σ(−8.1 + 9.5− 5) ≈ 0.0265

f(1.01, u0) = σ(−8.1 + 10.1− 5) ≈ 0.0474.

Therefore f(X1, u0) ⊆ [0.025, 0.0475] ⊂ X01. Similarly

f(−0.01, u0) = σ(−8.1− 0.1− 5) ≈ 0.000001

f(0.05, u0) = σ(−8.1 + 0.5− 5) ≈ 0.000003.

Therefore f(X0, u0) ⊆ [0, 0.000004] ⊂ X00. Thus ⟨X, {u0, u1}, f⟩ are well-defined dynamics and
the 4 η-components correspond to 4 possible values for the last 2 inputs. Hence clearly they can
realize R2. Moreover, the dynamics are strongly robust. The remainder of the argument is the same
as for the FLIP-FLOP construction.

G.3.3 Strongly robust Elman-RNN FLIP-FLOP construction

The following is a modification of a construction in [Knorozova and Ronca, 2024a]. Consider the
dynamics function

f(x, u) = tanh(2 · x+ u)

for x, u ∈ R. We have that for all x, u, f(x, u) ∈ [−1, 1]. DefineXlow = [−1.1, tanh(−1)], Xhigh =
[tanh(1), 1.1]. Note that tanh(1) ≈ 0.76159, tanh(−1) ≈ −0.76159

We have

f(−1.1, 4) = tanh(−2.2 + 4) ≈ 0.9468

f(1.1, 4) = tanh(2.2 + 4) ≈ 0.999992

As tanh is increasing, we have f([−1.1, 1.1], 4) ⊆ [0.9467, 0.999993] ⊂ Xhigh. Similarly,
f([−1.1, 1.1],−4) ⊆ [−0.999993,−0.9467] ⊂ Xlow. Moreover

f(tanh(1), 0) = tanh(2 · tanh(1)) ≈ 0.909

f(1.1, 0) = tanh(2 · 1.1) ≈ 0.9757

Thus, f(Xhigh, 0) ⊆ [0.908, 0.9757] ⊂ Xhigh. Similarly f(Xlow, 0) ⊆ [−0.9757,−0.909] ⊂ Xlow.
Thus we see that, taking X = Xlow ∪Xhigh, uset = 4, ureset = −4, uid = 0, the η-finite dynamics
⟨X, {uset, ureset, uid}, f⟩ are well-defined, and realize FLIP-FLOP. Also clearly they are robust.
Now, by the same argument as for the sLTSM FLIP-FLOP realisation, we can extend the input space,
using Theorem 16 and Theorem 42, to obtain a strongly robust construction.
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H Further Discussion on Related Work

Sarrof et al. [2024] show that, in the finite-precision setting, regular languages that can be modelled
by diagonal linear-recurrences with non-negative entries—like Mamba—are precisely the star-free
languages. The setting differs from ours, in that it allows finite fractional precision, but unbounded
number of integer bits. With that, a number of positive expressivity results for counter languages is
given. The empirical experiments show that SSMs indeed can model such languages on in-distribution
lengths, but with limited length-generalisation. The finite-precision arguments in this work are not
fully formal, essentially ignoring the error of the linear dynamics carried out in finite precision.
Weiss et al. [2018] use the same finite-precision setup with unbounded integer bits to show that
ReLU-activated Elman-RNN and LSTM can implement counting behaviour, while Elman-RNNs
with squashing activations and GNU [Cho et al., 2014, Chung et al., 2014] cannot.

Grazzi et al. [2025] extend Mamba and DeltaNet parametrisations to allow for gates with negative
eigenvalues. The work proves that linear recurrences, with gates having non-negative eigenvalues, are
restricted to modelling star-free recurrent languages in the finite-precision setting. Their framework
differs from [Sarrof et al., 2024] and ours, assuming that the linear recurrence is computed in
convolutional form in some finite datatype D, with some operations carried out in infinite precision
before casting back into D. This setting is more explicit in its assumptions than [Sarrof et al., 2024],
but not generalisable to other types of recurrence.

Merrill et al. [2024] use the parallelisability aspect of SSMs to obtain an expressivity classification in
terms of Circuit Complexity in the log-precision setting, i.e., precision logarithmic in the input length.
Assuming a particular datatype is used to carry out the operations, it shows that SSMs, including
Mamba, can be simulated in the TC-0 circuit class. Thus Mamba is unable to solve the S5 word
problem, even with log-precision, under the widely-accepted conjecture that TC-0 ̸= NC-1. The
log-precision framework offers a unique perspective on the drawbacks of parallelism of SSMs.

The Turing-completeness capabilities of Elman-RNNs as offline models of computation are studied in
[Siegelmann and Sontag, 1995, Kilian and Siegelmann, 1996, Hobbs and Siegelmann, 2015, Chung
and Siegelmann, 2021]; differently, we study RNNs as online models, reading input elements as they
arrive. A form of asymptotic expressivity of RNNs is studied in [Merrill et al., 2020], when weights
tend to infinity; differently, we consider actual weights. A rich literature surveyed in [Strobl et al.,
2024] focuses on the expressivity of Transformers, that constitute an alternative to RNNs as they also
operate on sequences.

48



NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification:

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification:

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]

49



Justification:

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification:

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification:

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification:

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.

50



• The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]

Justification:

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification:

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

51



• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
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tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification:
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• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
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Answer: [Yes]

Justification:

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification:

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification:

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
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Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification:
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [NA]
Justification:
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification:
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.
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• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification:
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification:
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification:
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.
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• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification:
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [No]
Justification: Not used
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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