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Abstract

Code search can accelerate the efficiency of
software development by finding code snip-
pets for the given query. The dominant code
search paradigm is to learn the semantic match-
ing between code snippets and queries by neu-
ral networks. However, this search paradigm
causes the gap transferring and expansion be-
tween code snippets and queries because re-
searchers utilize pairs of code snippets and
code descriptions (e.g., comments and docu-
mentation) to train their models and evaluate
the trained models on the query which is differ-
ent from the code description in writing style
and application scenario. To remedy the issue,
we propose a new simple but effective search
paradigm, Query2Desc, which entirely de-
pends on natural language and conducts code
search by performing the semantic matching
between code descriptions and queries. Exper-
imental results on dataset CoSQA show that
the state-of-the-art model CodeBERT gets im-
provement of 17.48% in terms of the average
MRR when applying it on Query2Desc. More-
over, baseline models on Query2Desc can re-
turn the right results in top-10 search results
for at least 95% of queries in the test set of
CoSQA.

1 Introduction

Natural language code search, a task that can re-
turn relevant code snippets when the user inputs a
natural language query, is widely executed in vari-
ous communities with programming requirements,
e.g., software engineering, natural language pro-
cessing (NLP), and computer vision (Allamanis
et al., 2018; Liu et al., 2022a). To enable users
to get satisfactory search results, a superior neu-
ral code search method is required to effectively
measure the semantic similarity between a natural
language query (henceforth referred to as query)
and code snippets.

The current mainstream neural code search
models are designed on the search paradigm

Eample 1:

Query: 1d array in char datatype in python.

Comment: Convert Matrix attributes which are array-like or
buffer to array.

Code:

def convert_to_array(array_like, dtype):
if isinstance(array_like, bytes):
return np.frombuffer (array_like,
dtype=dtype)

return np.asarray (array_like, dtype)

Eample 2:

Query: accessing a column from a matrix in python.
Comment: Return a column of the given matrix.
Code:

def get_column(self, X, column):
if isinstance (X, pd.DataFrame) :
return X[column] .values
return X[:, column]

Figure 1: Two examples for the comment and the query
of a code snippet, both of which are from CoSQA
(Huang et al., 2021).

Query2Code (Query to Code) (Gu et al., 2018;
Wan et al., 2019; Shuai et al., 2020; Feng et al.,
2020; Fang et al., 2021), which first embeds code
snippets and queries into a unified vector space,
then performs semantic matching for them in this
vector space. In the training phase, however, these
models are trained and verified on large-scale sim-
ulation datasets in which code descriptions (e.g.,
code comments or documentation (Gu et al., 2018;
Husain et al., 2019)) are regarded as the query of
a code snippet, which makes the gap transferring
and expansion between code snippets and queries.
There inherently is the gap between code snippets
and code descriptions because of the variance of
code and natural language' (Allamanis et al., 2015).
When applying the trained models to the real-world
scenario, the gap between code snippets and code
descriptions is transferred to code snippets and
queries. Besides, from Figure 1 we can observe that

"Neural networks can bridge the gap but cannot eliminate
the gap



there is not always a semantic consistency between
the code description and the query of a snippet
because code descriptions are written by develop-
ers for explaining the code function and queries
are written by users for searching query-related
code snippets. As the result, the above gap is also
expanded in the real-world scenario. Therefore,
previous neural models cannot perform as well as
the validation stage in the real-world scenario.

To address the aforementioned issues, we pro-
pose Query2Desc (Query to Description), a new
search paradigm that conducts code search by mea-
suring the semantic similarity between code de-
scriptions and queries. In this situation, we can
regard code descriptions as the index of its cor-
responding code snippets. Code search models
on Query2Desc only need to search similar code
descriptions for a given query. We therefore trans-
form the problem that learns the semantic matching
between natural language and code into another
problem, that is, to measure the semantic similarity
of two natural language sentences, which is a sim-
pler problem and solves the gap transferring and
expansion.

We perform experiments on CodeSearchNet
Challenge (Husain et al., 2019), Python_Q col-
lected by us, and CoSQA (Huang et al., 2021).
The experimental results show that the state-of-the-
art model, CodeBERT, gets the improvement of
17.48% in terms of the average MRR when apply-
ing it on Query2Desc. We also find that simply
combining Query2Desc with pre-trained models in
NLP, e.g., BERT and RoBERTa, can also obtain
the close performance with CodeBERT. Moreover,
pre-trianed models on Query2Desc can return right
results in top-10 search results for at least 95% of
queries in the test data of CoSQA.

To sum up, we make the following contributions:

e We propose a new search paradigm
Query2Desc for code search, which is
entirely based on natural language. By using
Query2Desc, we effectively eliminate the
gap transferring and expansion between code
snippets and queries.

* We conduct extensive experiments to explore
the usefulness of Query2Desc and the evalua-
tion results show that Query2Desc performs
well on the code search task.
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Figure 2: The relations between code snippets, code
descriptions, and queries.

2 Background

In this section, we introduce the existing code
search models and our motivation.

2.1 Code Search Models

Before considering deep learning technologies,
most code search methods are based on informa-
tion retrieval (IR) (Bajracharya et al., 2006; Lv
etal., 2015; Lu et al., 2015; Nie et al., 2016; Rah-
man et al., 2019; Rahman, 2019; Liu et al., 2022b).
These methods mainly depend on matching key-
words in the query with code snippets to implement
code search. Especially, some of them design meth-
ods to expand or reformulate the query for more
accurate matching. Different from IR based mod-
els, deep learning based models learn contextual
representations for code snippets and queries, rep-
resenting them as low-dimensional dense vectors,
then calculate their semantic similarity (e.g., cosine
similarity) and return code snippets with the high-
est similarity scores (Gu et al., 2018; Shuai et al.,
2020; Fang et al., 2021). Except for using text in-
formation to learn contextual representations for
code snippets, some studies utilize the structural
information of code snippets to learn their repre-
sentation (Wan et al., 2019; Haldar et al., 2020;
Guo et al., 2020). Although IR and deep learning
are technically different, the above-mentioned code
search models use the same search paradigm, that
is, Query2Code.

There is another type of code search task, code-
to-code search (Kim et al., 2018; Zhou et al., 2019).
Since it focuses on semantic matching of program-
ming languages, which is different with query-
based code search while the former is generally
towards the experienced developers and the latter
is usually towards the novice developers.



2.2 Motivation

Generation of Gap To conduct code search on
the previous search paradigm, Query2Code, neural
models need to learn the semantic similarity be-
tween the code snippet and its corresponding query.
Since source code is highly structured data (Hu
etal., 2018; Shiv and Quirk, 2019), however, neural
models cannot learn the representation for source
code as effectively as the learned representation of
natural language. The reason is that regarding the
source code as the sequence may loss its structural
information (Alon et al., 2018, 2019). To the best
of our knowledge, a good model essentially makes
a code snippet and its corresponding query have
the highest semantic similarity, but the fact is that
CodeBERT cannot perform as well as SimCSE-
(BERT/RoBERTa) which achieves the state-of-the-
art result on semantic textual similarity task. This
fact shows that there still exists the gap between
code snippets and queries in previous models.

Gap Transferring and Expansion To train an
effective neural model on Query2Code, researchers
need to collect enough code-query pairs. Due to
the difficulty of collecting real-world queries, how-
ever, in CoSQA collected by MSRA with help of
more than 100 participants, it only contains about
20K effective pairs of queries and code snippets.
To obtain sufficient data, researchers generally use
code descriptions to simulate queries (Gu et al.,
2018; Husain et al., 2019) because there are enough
high-quality code projects with complete documen-
tation and code comments. As shown in Figure 2,
when finishing training on pairs of code snippets
and code descriptions, researchers use real-world
queries to evaluate the effectiveness of their trained
models. The gap between code snippets and code
descriptions is transferred to code snippets and
queries. Moreover, this gap is further expanded
since code descriptions and queries have different
writing style and application scenario. Although
Huang et al. (2021) proposed to fine-tune Code-
BERT on pairs of code snippets and queries, it only
can alleviate the gap rather than eliminate it.

Inspiration Inspired by the success of the pre-
trianed model on semantic textual similarity task,
we make an interesting assumption: if we can trans-
form Query2Code into a simpler search paradigm
that relies purely on natural language, the above
problems may be well solved. Since we only model
natural language on this paradigm, the gap between

code snippets and natural language is eliminated.
We just need to make the code description and its
corresponding query have the highest semantic sim-
ilarity, which requires us to find a model that can
learn effective contextual representation for natu-
ral language. Actually, any pre-trained language
model trained on large-scale corpus can well rep-
resent natural language. The remaining problem is
whether there is such a search paradigm that only
relies on natural language data to conduct code
search, which motivates us to find it.

3 Approach

In this section, we first introduce Query2Desc, a
new search paradigm that conducts natural lan-
guage code search by measuring the semantic
similarity between queries and code descriptions.
Afterward, we build an example model, Qude-
BERT (Query2Desc BERT), to describe how to
use Query2Desc to code search.

3.1 Query2Desc

As previous studies (Gu et al., 2018; Husain et al.,
2019) can use code descriptions to simulate queries
for obtaining sufficient data, it demonstrates that
the mapping between code snippets and code de-
scriptions is reliable. Then we can step out of the
previous mindset and use code descriptions for an-
other purpose, for example, the index of a code
snippet. By building this index, we can regard
code descriptions as the unique label of code snip-
pets. In this situation, we can implement the code
search by searching code descriptions according to
the query. The complete code search process we
conceive is shown in Figure 3. Instead of directly
searching code snippets according to the query, we
search their descriptions. When a user inputs a
query to the neural search engine, e.g., QudeBERT,
it first searches for a group of code descriptions
which have the highest semantic similarities with
the inputted query, then transforms them to code
snippets by the one-to-one mapping. By conduct-
ing the above process, we conduct code search
without using source code, successfully transform-
ing Query2Code to a new search paradigm that
relies purely on natural language data, i.e., code
descriptions and queries. We call the above search
paradigm Query2Desc.
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Figure 3: Query to Description Code Search Paradigm

3.2 QudeBERT

Model Architecture We follow BERT (Devlin
et al., 2018), RoBERTa (Liu et al., 2019) and Code-
BERT (Feng et al., 2020), and use multi-layer bidi-
rectional Transformer (Vaswani et al., 2017) as the
model architecture of QudeBERT. We construct
QudeBERT by using exactly the same model archi-
tecture as BERT but we only use masked language
model objective in the pre-training phase, which is
the same with RoOBERTa (Liu et al., 2019). We first
initialize parameters of QudeBERT from BERT
which was pre-trained on English Wikispedia and
BooksCorpus. Then, we pre-trian QudeBERT on
domain corpora composed of code descriptions. Fi-
nally, we conduct a two-stage fine-tuning for Qude-
BERT.

Input/Output Representations In the pre-
training phase, we set the text sentence as a
sequence of tokens with two special tokens,
[CLS] and [EOS], thus the whole sentence can
be expressed as {[CLS], wi, ..., wy, [EOS]}. In
the fine-tuning phase, we concatenate paris of
sentence A and sentence B and insert [C'LS|
and [SEP] tokens to each sentence, namely
{[CLS],au,...,[SEP];[CLS], by, ...,[SEP]}.

The output of QudeBert contains: 1) the rep-
resentation of [C'LS], which is the aggregated
representation for the whole sentence and can
be used for some NLP tasks, such as sentiment
analysis (Naseem et al., 2020) and semantic textual

similarity (Gao et al., 2021); 2) the contextual
representation of each token in the sentence.

3.3 Pre-Training

Pre-Training Data Different from CodeBERT
that needs to be pre-trained with pairs of code snip-
pets and code descriptions, we only use code de-
scriptions to pre-train QudeBERT.

Masked Language Model (MLM) Objective
In the inputting sentence, we randomly select a
sample of tokens and replace them with a special
token [M ASK]. In the MLM task, the represen-
tations of [M ASK] tokens from the last hidden
layer are fed to a softmax function and MLM ob-
jective is a cross-entropy loss on predicting the
masked tokens. Following Devlin et al. (2018), we
select 15% of inputting tokens for three replace-
ment ways: 1) 80% of selected tokens are replaced
with [M ASK]; 2) 10% of selected tokens are left
unchanged; 3) the remaining tokens are replaced
with a token randomly selected from the vocabu-
lary.

3.4 Two-Stage Fine-Tuning

CoSQA (Huang et al., 2021) only contains about
20K pairs of queries and code descriptions. In-
tuitively, it is difficult to fine-tune QudeBERT on
CoSQA because it is too small (our experimental
results on CoSQA support our conjecturation). We
follow Huang et al.’s study (Huang et al., 2021) that
first utilized CodeSearchNet Python Corpus to fine-
tune CodeBERT before fine-tuning it on CoSQA,
we design a two-state fine-tuning strategy: we first
fine-tune QudeBERT with a matching task of ques-
tion title and its description’ on Python_Q (we
introduce it in Section 4), a large-scale dataset col-
lected by us. After finishing first-state fine-tuning,
we further fine-tune QudeBERT on CoSQA.

The Matching of Question Title and Title De-
scription We formulate the matching of question
title and title description as a binary classification
task. For each question title g; and title description
d;, we insert [C'LS] in front of the sentence and
[SEP] at the end. We input ¢; and d; to Qude-
BERT and use the representation of [C'LS] for the
following classification task.

2Query2Desc cannot use CSN Python corpus because
it only consists of pairs of code snippets and code descrip-
tions, but Query2Desc requires pairs of code descriptions and
queries. Since it is difficult to collect millions of pairs of

code descriptions and queries, we use a similar task that has
large-scale dataset to perform the fine-tuning in first state.



Example 1
Title: Determine the type of an object?
Is there a simple way to determine
if a variable is a list, dictionary, or
Body: something else? | am getting an
y: object back that may be either type
and | need to be able to tell the
difference.
Example 2
Title: How do you append to a file?
How do you append to the file
Body: instead of overwriting it? Is there a
y: special function that appends to
the file?

Figure 4: Examples of Question Title and Body in
StackOverflow. Body denotes the title description.

¢c = QudeBERT(g;), d. = QudeBERT(d;). (1)

We build a simple classification layer to perform
@; — d; matching through a MLP. We concatenate ¢;
and d; and feed it to a feed-forward neural network,
to get a fusion embedding:

fq—a = tanh (Lineary ([g;; d;])). (2)

We next put the fusion embedding f,_q into a per-
ceptron classifier with sigmoid fucntion:

5(9-4i) — sigmoid(Linear; (fg—d)) 3)

s(@:4) can be regarded as the semantic similarity
of q; and dz

Finally, we train this binary classification model
with binary cross-entropy loss function:

£b — _[yz . log S(Qi7di) + (1 _ yl) log 1 _ S(qivdi)]’
“4)
where y; is label of (g;, d;).

Fine-tuning for Code Search The fine-tuning
for code search is similar to the fine-tuning of the
first state. We only need to change the input to the
pairs of code descriptions and queries. Then we ini-
tialize the weight of QudeBERT from QudeBERT
fine-tuned in the first stage and fine-tine it on the
corresponding code search dataset.

4 Experimental Settings

Datasets In our experiments, we keep the bal-
ance of positive and negative samples and use the
following datasets:

* CodeSearchNet It is widely used in the code
search task and contains about 6M functions
from open-source projects in six different pro-
gramming languages (Go, Java, JavaScript,
PHP, Python, and Ruby). About 2M func-
tions are paired with code descriptions ob-
tained from their documentation, which are
utilized to simulate queries. We use code de-
scriptions in the corpus to pre-training models
on Query2Desc.

* Python_Q We collect pairs of question title
and title description from StackOverflow? be-
cause it is one of the largest online platform
for coding questions & answers. Addition-
ally, it also collects and releases posts with
specific tags on StackExchange®. Therefore,
we download the posts with Python tag from
it and obtain 1,752,776 python questions. For
each python question, we divide it into a ques-
tion title and its corresponding description,
as shown in Figure 4. Generally, the ques-
tion title is usually the summarization of title
description, thus having high semantic consis-
tency with it. Then, we pair each question title
with its description and another description
randomly selected from other python ques-
tions. Next, we label pairs of question title and
its corresponding description as positive sam-
ples and label other pairs as negative samples.
Finally, we get 3,505,552 pairs of python ques-
tion title and title description, half of which
are negative samples. We use this dataset to
perform the matching task of question title
and title description as the fine-tuning of the
first state.

* CoSQA It contains more than 20K pairs of
queries and code snippets, it is also the biggest
real-world dataset for the code search task. It
is randomly divided into training, validation,
and test sets in the numbe of 19,604:500:500.
We use training and validation sets to fine-
tune all the models, and use test set to evaluate
them.

Baseline Methods We simply choose BERT-
base (Devlin et al., 2018), RoBERTa-base (Liu
et al., 2019), and CodeBERT (Feng et al., 2020) as
the baseline models, to compare their performance

3https://stackoverflow.com/
*https://data.stackexchange.com/



Search Paradigm Model Data MRR@1 MRR@5 MRR
BERT CSN+CoSQA 13.80 19.87 2237
Query2Code RoBERTa CSN+CoSQA 21.60 29.73 3248
CodeBERT*  CSN+CoSQA 51.87 5228  54.41

BERT CoSQA 3.20 6.66 9.17
BERT Python_Q+CoSQA  55.00 64.97  66.38

Query2Desc RoBERTa CoSQA 0.20 0.25 1.01
RoBERTa Python_Q+CoSQA  47.80 56.76  58.60

CodeBERT  CoSQA 0.00 0.42 1.39
CodeBERT  Python_Q+CoSQA  53.00 62.94  64.57

Table 1: Models performance on the code search task. CSN denotes CodeSearchNet Python corpus. For models
with Query2Code search paradigm, we highlight the highest number among models. For models with Query2Desc
search paradigm, we highlight the highest number among models with the same encoder. & : MRR results from
Huang et al. (2021) and we re-run their public source code to get other results. Data denotes the dataset used
in the fine-tuning phase. On Query2Desc, using CoSQA means that pre-trianed model is not apllied two-state

fine-tuning.

Search Paradigm Model Data MRR@1 MRR@5 MRR
Query2Code CodeBERT + CoCLR* CSN+CoSQA 61.38 62.34 64.66
BERT + CoCLR CoSQA 69.60 77.83 78.58

BERT + CoCLR Python_Q+CoSQA 69.60 78.76 79.58

Query2Desc RoBERTa + CoCLR CoSQA 59.00 70.62 71.59

y ROBERTa + CoCLR ~ Python_Q+CoSQA  73.60  81.13  81.83
CodeBERT + CoCLR CoSQA 68.00 77.50 78.24

CodeBERT + CoCLR Python_Q+CoSQA 75.40 82.32 83.09

Table 2: Model performance when combining Query2Desc with CoCLR.

on Query2Code and Query2Desc. Besides baseline
methods, we also find that CoCLR (Huang et al.,
2021), as a contrastive learning method, can im-
prove the performance of CodeBERT. Hence, we
also explore whether it can improve model perfor-
mance on Query2Desc. To apply CoCLR, Huang
et al. (2021) built a new training objective:

L= Eb + Eib + Eqry (5)

where L is a binary cross-entropy loss function,
L;p is the loss function of sample with in-batch
data (for a sample in a batch, the other samples in
the batch can be regarded as negative sample):

1 n
o= — (ifd')
'Czb = n—1 E - log(l s\ )7 (6)
j:
J#i

where n is batch size. L, is the loss function of
the example with query-written augmentation:

»qu - ;Cg + ‘C;b’ (7)

L and L, are similar to £, and L; by only
changing ¢; to ¢.. The latter is a re-written query
by randomly switching the position of two words
in query g;.

Evaluation Metric Following the prior studies,
we use Mean Reciprocal Rank (MRR) as the evalu-
ation metric on the code search task. Specially, we
calculate MRR of top-1 search result (MRR@1),
top-5 search results (MRR @5), and all search re-
sults (MRR), respectively.

5 Experimental Results and Analysis

5.1 Effectiveness of Query2Desc

We compare the performance of BERT (Devlin
et al., 2018), RoBERTa (Liu et al., 2019), and



Search Paradigm Model Data Top-1 Top-5 Top-10
Query2Code CodeBERT CSN+CoSQA 301 379 422
Hery CodeBERT+CoCLR  CSN+CoSQA 321 398 415
BERT+CoCLR Python_Q+CoSQA 348 456 477
Query2Desc RoBERTa+CoCLR  Python_Q+CoSQA 368 461 478
CodeBERT+CoCLR Python_Q+CoSQA 377 460 485

Table 3: Searching results on the test set of CoSQA. Top-k expresses whether the right search result in the Top-k

resutls returned by models.

Query

Code descriptions

how to prevent a file from modifying python
how to cehck if somethign is a constant python

object is not callable range funtion python
python function get all objects of certain type
how to load data from url with python

clear an numpy array from python

get largest date from a list python

python update docstring while inheretance

how to change to days in python

how do functions in python know the parametr type
python get text of response

remove a value from all keys in a dictionary python

python function compare length of 2 strings

Make file user readable if it is not a link

A static value does not change at runtime

at compile time

Return possible range for min function

Get object if child already been read or get child
Recieving the JSON file from uulm

Free the underlying C array

Given a QuerySet and the name of field
containing datetimes return the latest

most recent date

Set of method to of method in its parent class
Converts time strings to integer seconds param
time string return integer seconds

Return true if the string is a mathematical symbol
Turns response into a properly formatted json

or text object

Returns a copy of dct without keys keys

Return the number of characters in two strings
that don t exactly match

Table 4: Some queries that the state-of-the-art model on Query2Desc cannot search the right result.

Dataset Size Code Avg. Len Desc Avg. Len Query Avg. Len
CSN 2,070,536 117.3 17.0 -
CSN-Python 457,461 117.3 16.4 -
Python_Q 1,752,776 - 9.5 214.0
CoSQA 20,604 39.8 11.6 6.6

Table 5: The statistics of datasets we use in the experiments. CSN-Python is the Python corpus in CSN dataset.
Code Avg. Len, Desc Avg. Len, and Query Avg. Len are the average length of code snippets, code descriptions,
and queries. Especially, for Python_Q dataset, Desc Avg. Len and Query Avg. Len are the average length of

Python question title and title description.

CodeBERT (Feng et al., 2020) on Query2Code and
Query2Desc. The detailed experimental results can
be seen in Table 1. On Query2Code, CodeBERT
with two-state fine-tuning on CSN and CoSQA
achieve the state-of-the-art result, which shows its
effectiveness. On Query2Desc, we find that when

we directly fine-tune baseline models on CoSQA,
the experimental results are significantly terrible,
which supports our conjecture that CoSQA is too
small to fine-tune baseline models. We also find
that when we apply the two-state fine-tuning strat-
egy to baseline models, they all get significant per-



formance improvement and outperform CodeBERT
on Query2Code. From the results, Query2Desc is
an effective search paradigm for code search.

Query2Desc with CoCLR As shown in Table 2,
CodeBERT on Query2Code can further gets im-
provement of 9.94% in terms of averaged MRR
when applying CoCLR to it, which is the state-
of-the-art result on Query2Code. We thus com-
bine Query2Desc with CoCLR, to explore whether
CoCLR is also effective on our proposed search
paradigm. The experimental results are good and
baseline models outperforms the state-of-the-art re-
sult on Query2Code by 4.28% to 17.48% in terms
of averaged MRR, which shows the universal of
Query2Desc. Moreover, we also observe that us-
ing CoCLR on Query2Desc enables baseline mod-
els to obtain competitive results by directly fine-
tuning them on CoSQA. The reason is that con-
trastive learning is accompanied by data augmenta-
tion, which enables us to directly fine-tune baseline
models on enlarged CoSQA. To sum up, combining
Query2Desc with CoCLR makes baseline models
get the state-of-the-art results on code search.

Statistics of Code Search Results Except for
calculating MRR scores for models, we also count
the search results of models for 500 queries in the
test set. As shown in Table 3, CodeBERT with Co-
CLR on Query2Desc returns the most right results
in top-1 and top-10 search results, and RoBERTa
with CoCLR on Query2Desc return the most right
results in top-5 search results which means at most
97% of queries can get the right result in top-10
search results when performing code search on
Query2Desc. The remaining bad search results mo-
tivate us to observe the remaining 15 pairs of code
descriptions and queries, to find the reason why our
models cannot return the right results for them.
We carefully read the 15 pairs of queries and
code descriptions and find that most of them are
not in direct semantic similarity (Table 4). For in-
stance, by watching the query “how to prevent a file
from modifying python” and its corresponding code
descriptions “Make file user readable if it is not a
link”, it is hard for us to find the slight semantic
relation between these two sentences although we
are familiar with Python. Considering that similar
pairs are less in the dataset, it makes the model
hard to learn the effective semantic matching for
the above obscure pair of queries and code descrip-
tions. We think that this problem may be caused

by the inconsistent viewpoint between users and
experienced developers. The former tends to use
simple words to express their search purpose and
the latter is accustomed to using more professional
words to describe the function of code snippets.

5.2 Analysis: Data Size used in Query2Code
and Query2Desc

We think that it is necessary to compare the scale
of datasets used on Query2Code and Query2Desc.
The reason is that if models on Query2Desc are
trained with more data and get better results, it is
unfair to models on Query2Code. We count the
scale of each dataset (Table 5). In the pre-training
phase, models on Query2Code are trained with
2,070,536 pairs of code snippets and code descrip-
tions in the CSN dataset. By contrast, models on
QueryDesc only need part of code descriptions
in the CSN dataset. In the fine-tuning phase, al-
though models on Query2Code and Query2Desc
all perform two-stage fine-tuning, Python_Q is a
larger dataset than CSN-Python. By comprehen-
sively comparing datasets used on Query2Desc
and Query2Code, we think that they use almost
equal amounts of data. We thus get our conclusion:
Query2Desc is more useful than Query2Code be-
cause it eliminates the problem of gap transferring
and expansion between code snippets and queries.
Besides, Query2Desc enables superior pre-trained
models in NLP to be easily transferred to the code
search task.

6 Conclusion

In this paper, we focus on the problem of gap
transferring and expansion between code snippets
and queries. We propose a new search paradigm,
Query2Desc, for the code search task, by which
we transform the semantic matching of queries
and code snippets into the semantic matching of
queries and code descriptions. We conduct a se-
ries of experiments to demonstrate that models on
Query2Desc effectively eliminate the potential gap
transferring and expansion in Query2Code. We
also provide a specific analysis to show that models
on Query2Desc perform badly if code descriptions
and queries do not have obvious semantic similar-
ity while existing the obscure semantic relation.
In the future, we believe that Query2Desc can be
useful for other types of code search task, such as
code-to-code search, which refers to description-
to-description search in our paradigm.
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A Implementation Details

We initialize all baseline models with their cor-
responding pre-trained models. For BERT and
RoBERTa, we intialize them with bert-base-
uncased’ and roberta-base®. For CodeBERT, we

>https://huggingface.co/bert-base-uncased
®https://huggingface.co/roberta-base
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intialize it with microsoft/codebert-base’. We use
transformers (Wolf et al., 2020) package to
perform all the experiments on an NVIDIA Tesla
V100 GPU with 32GB memory. We set batch size
to 256 and use the AdamW (Loshchilov and Hut-
ter, 2017) optimizer with learning rate le-5. We
train each model for 10 epochs and evaluate it ev-
ery epoch on the validation set of CoSQA (Huang
et al., 2021). We keep the best epoch for the final
evaluation on the test set.

B Testing Details

To effectively evaluate the performance of mod-
els, we collect all positive pairs in CoSQA and
build a codebase with 6,267 different pairs of
code descriptions and code snippets. For mod-
els on Query2Code, we directly search code snip-
pets according to the given query. For models on
Query2Desc, we search code descriptions accord-
ing to the given query.
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