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Abstract
Code search can accelerate the efficiency of001
software development by finding code snip-002
pets for the given query. The dominant code003
search paradigm is to learn the semantic match-004
ing between code snippets and queries by neu-005
ral networks. However, this search paradigm006
causes the gap transferring and expansion be-007
tween code snippets and queries because re-008
searchers utilize pairs of code snippets and009
code descriptions (e.g., comments and docu-010
mentation) to train their models and evaluate011
the trained models on the query which is differ-012
ent from the code description in writing style013
and application scenario. To remedy the issue,014
we propose a new simple but effective search015
paradigm, Query2Desc, which entirely de-016
pends on natural language and conducts code017
search by performing the semantic matching018
between code descriptions and queries. Exper-019
imental results on dataset CoSQA show that020
the state-of-the-art model CodeBERT gets im-021
provement of 17.48% in terms of the average022
MRR when applying it on Query2Desc. More-023
over, baseline models on Query2Desc can re-024
turn the right results in top-10 search results025
for at least 95% of queries in the test set of026
CoSQA.027

1 Introduction028

Natural language code search, a task that can re-029

turn relevant code snippets when the user inputs a030

natural language query, is widely executed in vari-031

ous communities with programming requirements,032

e.g., software engineering, natural language pro-033

cessing (NLP), and computer vision (Allamanis034

et al., 2018; Liu et al., 2022a). To enable users035

to get satisfactory search results, a superior neu-036

ral code search method is required to effectively037

measure the semantic similarity between a natural038

language query (henceforth referred to as query)039

and code snippets.040

The current mainstream neural code search041

models are designed on the search paradigm042

Eample 1:
Query: 1d array in char datatype in python.
Comment: Convert Matrix attributes which are array-like or
buffer to array.
Code:

def convert_to_array(array_like, dtype):
if isinstance(array_like, bytes):
return np.frombuffer(array_like,
dtype=dtype)

return np.asarray(array_like, dtype)

Eample 2:
Query: accessing a column from a matrix in python.
Comment: Return a column of the given matrix.
Code:

def get_column(self, X, column):
if isinstance(X, pd.DataFrame):
return X[column].values

return X[:, column]

Figure 1: Two examples for the comment and the query
of a code snippet, both of which are from CoSQA
(Huang et al., 2021).

Query2Code (Query to Code) (Gu et al., 2018; 043

Wan et al., 2019; Shuai et al., 2020; Feng et al., 044

2020; Fang et al., 2021), which first embeds code 045

snippets and queries into a unified vector space, 046

then performs semantic matching for them in this 047

vector space. In the training phase, however, these 048

models are trained and verified on large-scale sim- 049

ulation datasets in which code descriptions (e.g., 050

code comments or documentation (Gu et al., 2018; 051

Husain et al., 2019)) are regarded as the query of 052

a code snippet, which makes the gap transferring 053

and expansion between code snippets and queries. 054

There inherently is the gap between code snippets 055

and code descriptions because of the variance of 056

code and natural language1 (Allamanis et al., 2015). 057

When applying the trained models to the real-world 058

scenario, the gap between code snippets and code 059

descriptions is transferred to code snippets and 060

queries. Besides, from Figure 1 we can observe that 061

1Neural networks can bridge the gap but cannot eliminate
the gap
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there is not always a semantic consistency between062

the code description and the query of a snippet063

because code descriptions are written by develop-064

ers for explaining the code function and queries065

are written by users for searching query-related066

code snippets. As the result, the above gap is also067

expanded in the real-world scenario. Therefore,068

previous neural models cannot perform as well as069

the validation stage in the real-world scenario.070

To address the aforementioned issues, we pro-071

pose Query2Desc (Query to Description), a new072

search paradigm that conducts code search by mea-073

suring the semantic similarity between code de-074

scriptions and queries. In this situation, we can075

regard code descriptions as the index of its cor-076

responding code snippets. Code search models077

on Query2Desc only need to search similar code078

descriptions for a given query. We therefore trans-079

form the problem that learns the semantic matching080

between natural language and code into another081

problem, that is, to measure the semantic similarity082

of two natural language sentences, which is a sim-083

pler problem and solves the gap transferring and084

expansion.085

We perform experiments on CodeSearchNet086

Challenge (Husain et al., 2019), Python_Q col-087

lected by us, and CoSQA (Huang et al., 2021).088

The experimental results show that the state-of-the-089

art model, CodeBERT, gets the improvement of090

17.48% in terms of the average MRR when apply-091

ing it on Query2Desc. We also find that simply092

combining Query2Desc with pre-trained models in093

NLP, e.g., BERT and RoBERTa, can also obtain094

the close performance with CodeBERT. Moreover,095

pre-trianed models on Query2Desc can return right096

results in top-10 search results for at least 95% of097

queries in the test data of CoSQA.098

To sum up, we make the following contributions:099

• We propose a new search paradigm100

Query2Desc for code search, which is101

entirely based on natural language. By using102

Query2Desc, we effectively eliminate the103

gap transferring and expansion between code104

snippets and queries.105

• We conduct extensive experiments to explore106

the usefulness of Query2Desc and the evalua-107

tion results show that Query2Desc performs108

well on the code search task.109
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Figure 2: The relations between code snippets, code
descriptions, and queries.

2 Background 110

In this section, we introduce the existing code 111

search models and our motivation. 112

2.1 Code Search Models 113

Before considering deep learning technologies, 114

most code search methods are based on informa- 115

tion retrieval (IR) (Bajracharya et al., 2006; Lv 116

et al., 2015; Lu et al., 2015; Nie et al., 2016; Rah- 117

man et al., 2019; Rahman, 2019; Liu et al., 2022b). 118

These methods mainly depend on matching key- 119

words in the query with code snippets to implement 120

code search. Especially, some of them design meth- 121

ods to expand or reformulate the query for more 122

accurate matching. Different from IR based mod- 123

els, deep learning based models learn contextual 124

representations for code snippets and queries, rep- 125

resenting them as low-dimensional dense vectors, 126

then calculate their semantic similarity (e.g., cosine 127

similarity) and return code snippets with the high- 128

est similarity scores (Gu et al., 2018; Shuai et al., 129

2020; Fang et al., 2021). Except for using text in- 130

formation to learn contextual representations for 131

code snippets, some studies utilize the structural 132

information of code snippets to learn their repre- 133

sentation (Wan et al., 2019; Haldar et al., 2020; 134

Guo et al., 2020). Although IR and deep learning 135

are technically different, the above-mentioned code 136

search models use the same search paradigm, that 137

is, Query2Code. 138

There is another type of code search task, code- 139

to-code search (Kim et al., 2018; Zhou et al., 2019). 140

Since it focuses on semantic matching of program- 141

ming languages, which is different with query- 142

based code search while the former is generally 143

towards the experienced developers and the latter 144

is usually towards the novice developers. 145
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2.2 Motivation146

Generation of Gap To conduct code search on147

the previous search paradigm, Query2Code, neural148

models need to learn the semantic similarity be-149

tween the code snippet and its corresponding query.150

Since source code is highly structured data (Hu151

et al., 2018; Shiv and Quirk, 2019), however, neural152

models cannot learn the representation for source153

code as effectively as the learned representation of154

natural language. The reason is that regarding the155

source code as the sequence may loss its structural156

information (Alon et al., 2018, 2019). To the best157

of our knowledge, a good model essentially makes158

a code snippet and its corresponding query have159

the highest semantic similarity, but the fact is that160

CodeBERT cannot perform as well as SimCSE-161

(BERT/RoBERTa) which achieves the state-of-the-162

art result on semantic textual similarity task. This163

fact shows that there still exists the gap between164

code snippets and queries in previous models.165

Gap Transferring and Expansion To train an166

effective neural model on Query2Code, researchers167

need to collect enough code-query pairs. Due to168

the difficulty of collecting real-world queries, how-169

ever, in CoSQA collected by MSRA with help of170

more than 100 participants, it only contains about171

20K effective pairs of queries and code snippets.172

To obtain sufficient data, researchers generally use173

code descriptions to simulate queries (Gu et al.,174

2018; Husain et al., 2019) because there are enough175

high-quality code projects with complete documen-176

tation and code comments. As shown in Figure 2,177

when finishing training on pairs of code snippets178

and code descriptions, researchers use real-world179

queries to evaluate the effectiveness of their trained180

models. The gap between code snippets and code181

descriptions is transferred to code snippets and182

queries. Moreover, this gap is further expanded183

since code descriptions and queries have different184

writing style and application scenario. Although185

Huang et al. (2021) proposed to fine-tune Code-186

BERT on pairs of code snippets and queries, it only187

can alleviate the gap rather than eliminate it.188

Inspiration Inspired by the success of the pre-189

trianed model on semantic textual similarity task,190

we make an interesting assumption: if we can trans-191

form Query2Code into a simpler search paradigm192

that relies purely on natural language, the above193

problems may be well solved. Since we only model194

natural language on this paradigm, the gap between195

code snippets and natural language is eliminated. 196

We just need to make the code description and its 197

corresponding query have the highest semantic sim- 198

ilarity, which requires us to find a model that can 199

learn effective contextual representation for natu- 200

ral language. Actually, any pre-trained language 201

model trained on large-scale corpus can well rep- 202

resent natural language. The remaining problem is 203

whether there is such a search paradigm that only 204

relies on natural language data to conduct code 205

search, which motivates us to find it. 206

3 Approach 207

In this section, we first introduce Query2Desc, a 208

new search paradigm that conducts natural lan- 209

guage code search by measuring the semantic 210

similarity between queries and code descriptions. 211

Afterward, we build an example model, Qude- 212

BERT (Query2Desc BERT), to describe how to 213

use Query2Desc to code search. 214

3.1 Query2Desc 215

As previous studies (Gu et al., 2018; Husain et al., 216

2019) can use code descriptions to simulate queries 217

for obtaining sufficient data, it demonstrates that 218

the mapping between code snippets and code de- 219

scriptions is reliable. Then we can step out of the 220

previous mindset and use code descriptions for an- 221

other purpose, for example, the index of a code 222

snippet. By building this index, we can regard 223

code descriptions as the unique label of code snip- 224

pets. In this situation, we can implement the code 225

search by searching code descriptions according to 226

the query. The complete code search process we 227

conceive is shown in Figure 3. Instead of directly 228

searching code snippets according to the query, we 229

search their descriptions. When a user inputs a 230

query to the neural search engine, e.g., QudeBERT, 231

it first searches for a group of code descriptions 232

which have the highest semantic similarities with 233

the inputted query, then transforms them to code 234

snippets by the one-to-one mapping. By conduct- 235

ing the above process, we conduct code search 236

without using source code, successfully transform- 237

ing Query2Code to a new search paradigm that 238

relies purely on natural language data, i.e., code 239

descriptions and queries. We call the above search 240

paradigm Query2Desc. 241
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Figure 3: Query to Description Code Search Paradigm

3.2 QudeBERT242

Model Architecture We follow BERT (Devlin243

et al., 2018), RoBERTa (Liu et al., 2019) and Code-244

BERT (Feng et al., 2020), and use multi-layer bidi-245

rectional Transformer (Vaswani et al., 2017) as the246

model architecture of QudeBERT. We construct247

QudeBERT by using exactly the same model archi-248

tecture as BERT but we only use masked language249

model objective in the pre-training phase, which is250

the same with RoBERTa (Liu et al., 2019). We first251

initialize parameters of QudeBERT from BERT252

which was pre-trained on English Wikispedia and253

BooksCorpus. Then, we pre-trian QudeBERT on254

domain corpora composed of code descriptions. Fi-255

nally, we conduct a two-stage fine-tuning for Qude-256

BERT.257

Input/Output Representations In the pre-258

training phase, we set the text sentence as a259

sequence of tokens with two special tokens,260

[CLS] and [EOS], thus the whole sentence can261

be expressed as {[CLS], w1, ..., wn, [EOS]}. In262

the fine-tuning phase, we concatenate paris of263

sentence A and sentence B and insert [CLS]264

and [SEP ] tokens to each sentence, namely265

{[CLS], a1, ..., [SEP ]; [CLS], b1, ..., [SEP ]}.266

The output of QudeBert contains: 1) the rep-267

resentation of [CLS], which is the aggregated268

representation for the whole sentence and can269

be used for some NLP tasks, such as sentiment270

analysis (Naseem et al., 2020) and semantic textual271

similarity (Gao et al., 2021); 2) the contextual 272

representation of each token in the sentence. 273

3.3 Pre-Training 274

Pre-Training Data Different from CodeBERT 275

that needs to be pre-trained with pairs of code snip- 276

pets and code descriptions, we only use code de- 277

scriptions to pre-train QudeBERT. 278

Masked Language Model (MLM) Objective 279

In the inputting sentence, we randomly select a 280

sample of tokens and replace them with a special 281

token [MASK]. In the MLM task, the represen- 282

tations of [MASK] tokens from the last hidden 283

layer are fed to a softmax function and MLM ob- 284

jective is a cross-entropy loss on predicting the 285

masked tokens. Following Devlin et al. (2018), we 286

select 15% of inputting tokens for three replace- 287

ment ways: 1) 80% of selected tokens are replaced 288

with [MASK]; 2) 10% of selected tokens are left 289

unchanged; 3) the remaining tokens are replaced 290

with a token randomly selected from the vocabu- 291

lary. 292

3.4 Two-Stage Fine-Tuning 293

CoSQA (Huang et al., 2021) only contains about 294

20K pairs of queries and code descriptions. In- 295

tuitively, it is difficult to fine-tune QudeBERT on 296

CoSQA because it is too small (our experimental 297

results on CoSQA support our conjecturation). We 298

follow Huang et al.’s study (Huang et al., 2021) that 299

first utilized CodeSearchNet Python Corpus to fine- 300

tune CodeBERT before fine-tuning it on CoSQA, 301

we design a two-state fine-tuning strategy: we first 302

fine-tune QudeBERT with a matching task of ques- 303

tion title and its description2 on Python_Q (we 304

introduce it in Section 4), a large-scale dataset col- 305

lected by us. After finishing first-state fine-tuning, 306

we further fine-tune QudeBERT on CoSQA. 307

The Matching of Question Title and Title De- 308

scription We formulate the matching of question 309

title and title description as a binary classification 310

task. For each question title qi and title description 311

di, we insert [CLS] in front of the sentence and 312

[SEP ] at the end. We input qi and di to Qude- 313

BERT and use the representation of [CLS] for the 314

following classification task. 315

2Query2Desc cannot use CSN Python corpus because
it only consists of pairs of code snippets and code descrip-
tions, but Query2Desc requires pairs of code descriptions and
queries. Since it is difficult to collect millions of pairs of
code descriptions and queries, we use a similar task that has
large-scale dataset to perform the fine-tuning in first state.
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Title:

Body:

Title:

Body:

Example 2

Example 1

Determine the type of an object?

Is there a simple way to determine
if a variable is a list, dictionary, or
something else? I am getting an
object back that may be either type
and I need to be able to tell the
difference.

How do you append to a file?

How do you append to the file
instead of overwriting it? Is there a
special function that appends to
the file?

Figure 4: Examples of Question Title and Body in
StackOverflow. Body denotes the title description.

qc = QudeBERT(qi), dc = QudeBERT(di). (1)316

We build a simple classification layer to perform317

qi−di matching through a MLP. We concatenate qi318

and di and feed it to a feed-forward neural network,319

to get a fusion embedding:320

fq−d = tanh (Linear1([qi; di])). (2)321

We next put the fusion embedding fq−d into a per-322

ceptron classifier with sigmoid fucntion:323

s(qi,di) = sigmoid(Linear2(fq−d)) (3)324

s(qi,di) can be regarded as the semantic similarity325

of qi and di.326

Finally, we train this binary classification model327

with binary cross-entropy loss function:328

Lb = −[yi · log s(qi,di) + (1− yi) log 1− s(qi,di)],
(4)329

where yi is label of (qi, di).330

Fine-tuning for Code Search The fine-tuning331

for code search is similar to the fine-tuning of the332

first state. We only need to change the input to the333

pairs of code descriptions and queries. Then we ini-334

tialize the weight of QudeBERT from QudeBERT335

fine-tuned in the first stage and fine-tine it on the336

corresponding code search dataset.337

4 Experimental Settings338

Datasets In our experiments, we keep the bal-339

ance of positive and negative samples and use the340

following datasets:341

• CodeSearchNet It is widely used in the code 342

search task and contains about 6M functions 343

from open-source projects in six different pro- 344

gramming languages (Go, Java, JavaScript, 345

PHP, Python, and Ruby). About 2M func- 346

tions are paired with code descriptions ob- 347

tained from their documentation, which are 348

utilized to simulate queries. We use code de- 349

scriptions in the corpus to pre-training models 350

on Query2Desc. 351

• Python_Q We collect pairs of question title 352

and title description from StackOverflow3 be- 353

cause it is one of the largest online platform 354

for coding questions & answers. Addition- 355

ally, it also collects and releases posts with 356

specific tags on StackExchange4. Therefore, 357

we download the posts with Python tag from 358

it and obtain 1,752,776 python questions. For 359

each python question, we divide it into a ques- 360

tion title and its corresponding description, 361

as shown in Figure 4. Generally, the ques- 362

tion title is usually the summarization of title 363

description, thus having high semantic consis- 364

tency with it. Then, we pair each question title 365

with its description and another description 366

randomly selected from other python ques- 367

tions. Next, we label pairs of question title and 368

its corresponding description as positive sam- 369

ples and label other pairs as negative samples. 370

Finally, we get 3,505,552 pairs of python ques- 371

tion title and title description, half of which 372

are negative samples. We use this dataset to 373

perform the matching task of question title 374

and title description as the fine-tuning of the 375

first state. 376

• CoSQA It contains more than 20K pairs of 377

queries and code snippets, it is also the biggest 378

real-world dataset for the code search task. It 379

is randomly divided into training, validation, 380

and test sets in the numbe of 19,604:500:500. 381

We use training and validation sets to fine- 382

tune all the models, and use test set to evaluate 383

them. 384

Baseline Methods We simply choose BERT- 385

base (Devlin et al., 2018), RoBERTa-base (Liu 386

et al., 2019), and CodeBERT (Feng et al., 2020) as 387

the baseline models, to compare their performance 388

3https://stackoverflow.com/
4https://data.stackexchange.com/
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Search Paradigm Model Data MRR@1 MRR@5 MRR

Query2Code

BERT CSN+CoSQA 13.80 19.87 22.37
RoBERTa CSN+CoSQA 21.60 29.73 32.48
CodeBERT♣ CSN+CoSQA 51.87 52.28 54.41

Query2Desc

BERT CoSQA 3.20 6.66 9.17
BERT Python_Q+CoSQA 55.00 64.97 66.38
RoBERTa CoSQA 0.20 0.25 1.01
RoBERTa Python_Q+CoSQA 47.80 56.76 58.60
CodeBERT CoSQA 0.00 0.42 1.39
CodeBERT Python_Q+CoSQA 53.00 62.94 64.57

Table 1: Models performance on the code search task. CSN denotes CodeSearchNet Python corpus. For models
with Query2Code search paradigm, we highlight the highest number among models. For models with Query2Desc
search paradigm, we highlight the highest number among models with the same encoder. ♣ : MRR results from
Huang et al. (2021) and we re-run their public source code to get other results. Data denotes the dataset used
in the fine-tuning phase. On Query2Desc, using CoSQA means that pre-trianed model is not apllied two-state
fine-tuning.

Search Paradigm Model Data MRR@1 MRR@5 MRR

Query2Code CodeBERT + CoCLR♣ CSN+CoSQA 61.38 62.34 64.66

Query2Desc

BERT + CoCLR CoSQA 69.60 77.83 78.58
BERT + CoCLR Python_Q+CoSQA 69.60 78.76 79.58
RoBERTa + CoCLR CoSQA 59.00 70.62 71.59
RoBERTa + CoCLR Python_Q+CoSQA 73.60 81.13 81.83
CodeBERT + CoCLR CoSQA 68.00 77.50 78.24
CodeBERT + CoCLR Python_Q+CoSQA 75.40 82.32 83.09

Table 2: Model performance when combining Query2Desc with CoCLR.

on Query2Code and Query2Desc. Besides baseline389

methods, we also find that CoCLR (Huang et al.,390

2021), as a contrastive learning method, can im-391

prove the performance of CodeBERT. Hence, we392

also explore whether it can improve model perfor-393

mance on Query2Desc. To apply CoCLR, Huang394

et al. (2021) built a new training objective:395

L = Lb + Lib + Lqr, (5)396

where Lb is a binary cross-entropy loss function,397

Lib is the loss function of sample with in-batch398

data (for a sample in a batch, the other samples in399

the batch can be regarded as negative sample):400

Lib = −
1

n− 1

n∑
j=1
j 6=i

log(1− s(qi,dj)), (6)401

where n is batch size. Lqr is the loss function of 402

the example with query-written augmentation: 403

Lqr = L′b + L′ib, (7) 404

L′b and L′ib are similar to Lb and Lib by only 405

changing qi to q′i. The latter is a re-written query 406

by randomly switching the position of two words 407

in query qi. 408

Evaluation Metric Following the prior studies, 409

we use Mean Reciprocal Rank (MRR) as the evalu- 410

ation metric on the code search task. Specially, we 411

calculate MRR of top-1 search result (MRR@1), 412

top-5 search results (MRR@5), and all search re- 413

sults (MRR), respectively. 414

5 Experimental Results and Analysis 415

5.1 Effectiveness of Query2Desc 416

We compare the performance of BERT (Devlin 417

et al., 2018), RoBERTa (Liu et al., 2019), and 418
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Search Paradigm Model Data Top-1 Top-5 Top-10

Query2Code
CodeBERT CSN+CoSQA 301 379 422
CodeBERT+CoCLR CSN+CoSQA 321 398 415

Query2Desc
BERT+CoCLR Python_Q+CoSQA 348 456 477
RoBERTa+CoCLR Python_Q+CoSQA 368 461 478
CodeBERT+CoCLR Python_Q+CoSQA 377 460 485

Table 3: Searching results on the test set of CoSQA. Top-k expresses whether the right search result in the Top-k
resutls returned by models.

Query Code descriptions

how to prevent a file from modifying python Make file user readable if it is not a link

how to cehck if somethign is a constant python
A static value does not change at runtime
at compile time

object is not callable range funtion python Return possible range for min function
python function get all objects of certain type Get object if child already been read or get child
how to load data from url with python Recieving the JSON file from uulm
clear an numpy array from python Free the underlying C array

get largest date from a list python
Given a QuerySet and the name of field
containing datetimes return the latest
most recent date

python update docstring while inheretance Set of method to of method in its parent class

how to change to days in python
Converts time strings to integer seconds param
time string return integer seconds

how do functions in python know the parametr type Return true if the string is a mathematical symbol

python get text of response
Turns response into a properly formatted json
or text object

remove a value from all keys in a dictionary python Returns a copy of dct without keys keys

python function compare length of 2 strings
Return the number of characters in two strings
that don t exactly match

Table 4: Some queries that the state-of-the-art model on Query2Desc cannot search the right result.

Dataset Size Code Avg. Len Desc Avg. Len Query Avg. Len

CSN 2,070,536 117.3 17.0 -
CSN-Python 457,461 117.3 16.4 -
Python_Q 1,752,776 - 9.5 214.0
CoSQA 20,604 39.8 11.6 6.6

Table 5: The statistics of datasets we use in the experiments. CSN-Python is the Python corpus in CSN dataset.
Code Avg. Len, Desc Avg. Len, and Query Avg. Len are the average length of code snippets, code descriptions,
and queries. Especially, for Python_Q dataset, Desc Avg. Len and Query Avg. Len are the average length of
Python question title and title description.

CodeBERT (Feng et al., 2020) on Query2Code and419

Query2Desc. The detailed experimental results can420

be seen in Table 1. On Query2Code, CodeBERT421

with two-state fine-tuning on CSN and CoSQA422

achieve the state-of-the-art result, which shows its423

effectiveness. On Query2Desc, we find that when424

we directly fine-tune baseline models on CoSQA, 425

the experimental results are significantly terrible, 426

which supports our conjecture that CoSQA is too 427

small to fine-tune baseline models. We also find 428

that when we apply the two-state fine-tuning strat- 429

egy to baseline models, they all get significant per- 430
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formance improvement and outperform CodeBERT431

on Query2Code. From the results, Query2Desc is432

an effective search paradigm for code search.433

Query2Desc with CoCLR As shown in Table 2,434

CodeBERT on Query2Code can further gets im-435

provement of 9.94% in terms of averaged MRR436

when applying CoCLR to it, which is the state-437

of-the-art result on Query2Code. We thus com-438

bine Query2Desc with CoCLR, to explore whether439

CoCLR is also effective on our proposed search440

paradigm. The experimental results are good and441

baseline models outperforms the state-of-the-art re-442

sult on Query2Code by 4.28% to 17.48% in terms443

of averaged MRR, which shows the universal of444

Query2Desc. Moreover, we also observe that us-445

ing CoCLR on Query2Desc enables baseline mod-446

els to obtain competitive results by directly fine-447

tuning them on CoSQA. The reason is that con-448

trastive learning is accompanied by data augmenta-449

tion, which enables us to directly fine-tune baseline450

models on enlarged CoSQA. To sum up, combining451

Query2Desc with CoCLR makes baseline models452

get the state-of-the-art results on code search.453

Statistics of Code Search Results Except for454

calculating MRR scores for models, we also count455

the search results of models for 500 queries in the456

test set. As shown in Table 3, CodeBERT with Co-457

CLR on Query2Desc returns the most right results458

in top-1 and top-10 search results, and RoBERTa459

with CoCLR on Query2Desc return the most right460

results in top-5 search results which means at most461

97% of queries can get the right result in top-10462

search results when performing code search on463

Query2Desc. The remaining bad search results mo-464

tivate us to observe the remaining 15 pairs of code465

descriptions and queries, to find the reason why our466

models cannot return the right results for them.467

We carefully read the 15 pairs of queries and468

code descriptions and find that most of them are469

not in direct semantic similarity (Table 4). For in-470

stance, by watching the query “how to prevent a file471

from modifying python” and its corresponding code472

descriptions “Make file user readable if it is not a473

link”, it is hard for us to find the slight semantic474

relation between these two sentences although we475

are familiar with Python. Considering that similar476

pairs are less in the dataset, it makes the model477

hard to learn the effective semantic matching for478

the above obscure pair of queries and code descrip-479

tions. We think that this problem may be caused480

by the inconsistent viewpoint between users and 481

experienced developers. The former tends to use 482

simple words to express their search purpose and 483

the latter is accustomed to using more professional 484

words to describe the function of code snippets. 485

5.2 Analysis: Data Size used in Query2Code 486

and Query2Desc 487

We think that it is necessary to compare the scale 488

of datasets used on Query2Code and Query2Desc. 489

The reason is that if models on Query2Desc are 490

trained with more data and get better results, it is 491

unfair to models on Query2Code. We count the 492

scale of each dataset (Table 5). In the pre-training 493

phase, models on Query2Code are trained with 494

2,070,536 pairs of code snippets and code descrip- 495

tions in the CSN dataset. By contrast, models on 496

QueryDesc only need part of code descriptions 497

in the CSN dataset. In the fine-tuning phase, al- 498

though models on Query2Code and Query2Desc 499

all perform two-stage fine-tuning, Python_Q is a 500

larger dataset than CSN-Python. By comprehen- 501

sively comparing datasets used on Query2Desc 502

and Query2Code, we think that they use almost 503

equal amounts of data. We thus get our conclusion: 504

Query2Desc is more useful than Query2Code be- 505

cause it eliminates the problem of gap transferring 506

and expansion between code snippets and queries. 507

Besides, Query2Desc enables superior pre-trained 508

models in NLP to be easily transferred to the code 509

search task. 510

6 Conclusion 511

In this paper, we focus on the problem of gap 512

transferring and expansion between code snippets 513

and queries. We propose a new search paradigm, 514

Query2Desc, for the code search task, by which 515

we transform the semantic matching of queries 516

and code snippets into the semantic matching of 517

queries and code descriptions. We conduct a se- 518

ries of experiments to demonstrate that models on 519

Query2Desc effectively eliminate the potential gap 520

transferring and expansion in Query2Code. We 521

also provide a specific analysis to show that models 522

on Query2Desc perform badly if code descriptions 523

and queries do not have obvious semantic similar- 524

ity while existing the obscure semantic relation. 525

In the future, we believe that Query2Desc can be 526

useful for other types of code search task, such as 527

code-to-code search, which refers to description- 528

to-description search in our paradigm. 529
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A Implementation Details684

We initialize all baseline models with their cor-685

responding pre-trained models. For BERT and686

RoBERTa, we intialize them with bert-base-687

uncased5 and roberta-base6. For CodeBERT, we688

5https://huggingface.co/bert-base-uncased
6https://huggingface.co/roberta-base

intialize it with microsoft/codebert-base7. We use 689

transformers (Wolf et al., 2020) package to 690

perform all the experiments on an NVIDIA Tesla 691

V100 GPU with 32GB memory. We set batch size 692

to 256 and use the AdamW (Loshchilov and Hut- 693

ter, 2017) optimizer with learning rate 1e-5. We 694

train each model for 10 epochs and evaluate it ev- 695

ery epoch on the validation set of CoSQA (Huang 696

et al., 2021). We keep the best epoch for the final 697

evaluation on the test set. 698

B Testing Details 699

To effectively evaluate the performance of mod- 700

els, we collect all positive pairs in CoSQA and 701

build a codebase with 6,267 different pairs of 702

code descriptions and code snippets. For mod- 703

els on Query2Code, we directly search code snip- 704

pets according to the given query. For models on 705

Query2Desc, we search code descriptions accord- 706

ing to the given query. 707

7https://huggingface.co/microsoft/codebert-base
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