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ABSTRACT

Multimodal Large Language Models (MLLMs) suffer from hallucinations. Ex-
isting hallucination evaluation benchmarks are often limited by over-simplified
tasks leading to saturated metrics, or insufficient diversity that fails to adequately
assess the hallucination extent in state-of-the-art multimodal models. To address
this gap, we propose FREAK(Fine-gRained Evaluation Against Knowledge), a
comprehensive multimodal benchmark designed for fine-grained hallucination as-
sessment in MLLMs. Through high-quality photorealistic images featuring fine-
grained counter-commonsense edits, FREAK innovatively evaluates hallucination
phenomena in detailed visual perception of MLLMs. Extensive experiments on
FREAK show severe hallucination issues in SOTA models regarding detailed vi-
sual perception. To enable deeper investigation, we curate a controlled subset
to indirectly evaluate the model’s ability to perceive target detailed information.
Through systematic evaluation of prevailing Chain-of-Thought (CoT) prompting
techniques within this task, we reveal critical insights regarding hallucination pat-
terns and model reasoning processes.

1 INTRODUCTION

Multimodal hallucination typically manifests as generated content that, while logically plausible
and commonsensical, includes information absent from the visual input and is factually inconsistent
with the provided image evidence (Bai et al., 2025; Liu et al., 2024b). Among various forms, one
challenging subtype is fine-grained hallucination, where models misperceive or fabricate localized
details within an image, often defaulting to commonsense knowledge over visual facts (Wu et al.,
2025). Despite significant progress in image comprehension and depth reasoning (OpenAI, 2025;
Zheng et al., 2025; Shen et al., 2025), existing MLLMs persistently suffer from multimodal hal-
lucination (Bai et al., 2025), posing a critical gap for stable industrial deployment and everyday
use (Magesh et al., 2024). To scientifically quantify the extent of hallucination, prior studies have
established dedicated evaluation benchmarks, providing a robust foundation for evaluation.

As the capabilities of MLLMs rapidly advance, their performance on existing hallucination bench-
marks such as POPE (Li et al., 2023b), AMBER (Wang et al., 2024a) has nearly saturated, thereby
diminishing the discriminative power of these benchmarks. This saturation arises from inherent
limitations in both difficulty and evaluation methods (Tu et al., 2025; Wu et al., 2025), and thus
these benchmarks fail to accurately capture the hallucination levels of current SOTA models. As
MLLMs are typically trained on large-scale image-text corpora, they are susceptible to data leak-
age and memorization bias toward specific images. To address this, recent studies have utilized
AI-generated counter-commonsense (CCS) images, which provides a clear path to test whether a
model truly ”sees” an image or relies on memorized priors. For example, Guan et al. (2024) created
HallusionBench, and Liu et al. (2025) proposed PhD. However, these benchmarks are still limited
by insufficient sample diversity, suboptimal image quality, and oversimplified task design.

To address the limitations, we introduce FREAK (Fine-gRained Evaluation Against Knowledge),
which aims to quantify the fine-grained hallucination severity of MLLMs. FREAK consists of 1,799
questions divided into 6 categories, including Detection, Counting, Attribute, Analysis, Position and
OCR tasks, providing a comprehensive suite for MLLMs’ fine-grained hallucination evaluation.
FREAK features its fine-grained CCS questions, high-quality generated images, diversity the of
image content, and an objective evaluation methodology.
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The construction of FREAK follows a systematic and novel pipeline. First, we instruct LLMs for
extensive high-quality CCS description generation. Then, we design a novel “generate-then-edit”
process that synthesizes a commonsense-compliant image before using a powerful editing model
to introduce a localized, counter-commonsense detail. Next, we leverage LLMs to automatically
generate a corresponding question for each image. Finally, this automated data creation is comple-
mented by a crucial human verification and refinement stage. During this step, our team meticu-
lously reviewed each instance and carefully constructed the questions with answers, ensuring free-
form questions and multiple-choice questions can directly probe MLLMs’ capability for identifying
image details and resisting model hallucination.

Extensive experiments on FREAK reveal that even the most advanced models achieve only 45% ac-
curacy, with the performance of mainstream models clustered within the 30%-43% range. This per-
formance falls significantly short of the human baseline (86.71%), highlighting severe fine-grained
perceptual hallucination in current MLLMs.

Inspired by advanced reasoning models, we apply CoT prompting across various models but observe
consistent performance degradation. Reinforcement learning(RL)-tuned reasoning models also do
not show significant improvement over their base versions. By leveraging FREAK, we track model
reasoning dynamics and find that during reasoning process, models exhibit an increasing bias
toward distractors and losing confidence in correct answers, often ending with choices contra-
dicting the initial one. This reveals critical flaws in CoT mechanisms.

In summary, our contributions are as follows.

1. We propose an automated pipeline for generating fine-grained CCS images by integrat-
ing LLMs, image generation models and image editing models to produce highly realistic
images with localized CCS details.

2. Based on the technical pipeline, we propose FREAK, a novel benchmark to evaluate mul-
timodal fine-grained hallucination. Compared to prior AI-generated hallucination bench-
marks, FREAK features an objective evaluation methodology, more diverse CCS descrip-
tions, and more challenging images with questions, revealing critical issues in MLLMs’
detail perception capabilities.

3. Extensive experiments on FREAK highlight severe challenges in fine-grained multimodal
hallucination for MLLMs. In addition, we discuss the degradation of the CoT prompt,
revealing the limitation of CoT reasoning.

2 RELATED WORKS

Multimodal Large Language Models. Building on rapid advances in LLMs, MLLMs integrating
vision and language have also made substantial progress. Current MLLMs achieve visual-linguistic
alignment primarily through pretraining or modular training. Some methods develop end-to-end
models trained holistically on image-text data (Radford et al., 2021; Li et al., 2021; Cho et al.,
2021; Wang et al., 2022). Others preserve frozen LLMs’ linguistic abilities while tuning lightweight
adapters for cross-modal integration (Liu et al., 2023; Zhu et al., 2023; Li et al., 2023a; Chen
et al., 2024d; Bai et al., 2023). This approach avoids costly full-parameter training while leveraging
LLMs’ generative strengths. For example, BLIP-2 (Li et al., 2023a) uses a Q-Former to bridge
visual and textual representations. Competitive alignment can also be achieved via simple linear
projectors (Liu et al., 2023; Zhu et al., 2023; Liu et al., 2024c).

Multimodal Hallucination. Multimodal hallucination typically manifests as generated content that,
while logically plausible and commonsensical, includes information absent from the visual input
and is factually inconsistent with the provided image evidence (Bai et al., 2025; Liu et al., 2024b).
To mitigate multimodal hallucination, existing approaches fall into two categories: 1) Designing
decoding strategies based on heuristic rules to guide models in resisting linguistic priors (Leng
et al., 2023; Huang et al., 2024a; Liu et al., 2024d; Wang et al., 2025; Chen et al., 2024c; Zou et al.,
2025); 2) Implementing refined training procedures, such as curating fine-grained image-text data
or employing RL-based rules for post-training optimization (Chen et al., 2025; Wu et al., 2024; Yin
et al., 2024; Liu et al., 2024a).
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Table 1: Comparison between FREAK and other AI-generated benchmarks. FREAK shows unique-
ness because of the photorealistic images, fine-grained and diverse counter-commonsense(CCS)
content, which strongly challenges SOTA models.

Benchmark ImgNum. Question GPT-4o Eval
Result Typical Sample Explanation

WHOOPS
(Bitton-Guetta

et al., 2023)
500 VQA - Einstein uses

smart phone.

VLind-Bench
(il Lee et al.,

2025)
2576 Y/N 97.0(CB Acc.)

89.4(LP Acc.)
Medieval knight

rides motor.

PhD-ccs
(Liu et al.,

2025)
750 Y/N ∼ 79 Max number on

dice is seven.

HallusionBench
(Guan et al.,

2024)
346 Y/N 62.28(GPT-

4V)

Curves have
different

diameters.
VLMBias
(Vo et al.,

2025)
1392 Only Count 20.25(o4-

mini)
The dog has 5

legs.

FREAK 1786 Free-Form /
MCQ

42.01(GPT-
4.1)

The projector is
not facing the

screen.

Multimodal Hallucination Benchmark. Objectively assessing the severity of multimodal hallu-
cination remains a challenging issue. Existing mainstream benchmarks,including POPE (Li et al.,
2023b), AMBER (Wang et al., 2024a), MHaluBench (Chen et al., 2024a) and others (Qiu et al.,
2024; Wang et al., 2024b; Li et al., 2025) exhibit three critical limitations: 1) Unreliable Data
Provenance: Benchmarks like POPE derive images from open-source datasets that may overlap
with training data of evaluated models. Such data contamination risks inflating performance metrics
due to model memorization rather than genuine reasoning ability (Chen et al., 2024a; Jiang et al.,
2024). 2) Narrow Evaluation Scope: Traditional large-scale benchmarks predominantly target ob-
ject hallucination (Chen et al., 2024b; Lovenia et al., 2024), neglecting diverse hallucination types
such as OCR, reasoning and object attributes. As a result, SOTA models achieve near-saturation
performance, making these benchmarks inadequate for contemporary evaluation. 3) Oversimpli-
fied Assessment Paradigm: Prior evaluations rely heavily on binary true/false judgments (Guan
et al., 2024; Huang et al., 2024b), introducing significant randomness. Recent efforts leverage AI-
generated CCS images to evaluate the robustness of the models. For example, il Lee et al. (2025);
Liu et al. (2025); Guan et al. (2024); Huang et al. (2024b) create such benchmarks with CCS im-
ages. However, these benchmarks still suffer from metric saturation, limited hallucination diversity,
and synthetic artifacts compromising visual realism (Bitton-Guetta et al., 2023). To address these
gaps, we propose FREAK, a hallucination evaluation framework designed for fine-grained halluci-
nation assessment of modern SOTA MLLMs. Unlike recent works like MIRAGEDong et al. (2025),
LongHalQAQiu et al. (2024) that evaluate the long-form outputs of MLLMs, FREAK focuses on
specifically targeting MLLMs with fine-grained CCS visual challenges. Table 1 shows the compar-
ison between FREAK and other AI-generated CCS benchmark.

3 METHODOLOGY

3.1 AUTOMATIC PIPELINE FOR FINE-GRAINED CCS IMAGES

The visual sources for counter-commonsense (CCS) images in prior research mainly stem from two
methodologies: a) Manual Expert Modification(e.g. HallusionBench(Guan et al., 2024)), which
involves human experts altering existing images to introduce contradictions to commonsense knowl-
edge; b) Direct Prompt-to-Image generation (e.g. PhD(Liu et al., 2025) and WHOOPS(Bitton-
Guetta et al., 2023)), where LLMs generate textual descriptions for image generation models. These
approaches exhibit critical limitations: Manual modification suffers from low scalability due to its
labor-intensive nature, which hinders large-scale dataset construction. On the other hand, directly

3
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1. CCS Content Generation

Object Name
{Traffic Light}

Noun. List

What I need now is: originally, the object in a certain
image was real and normal, but now I have made some
modifications to it so that its overall appearance remains
unchanged, but the detailscontradict reality  .......
Create a prompt for the {object} object, which I will use
to generate an image via Stable Diffusion ......

Prompt Instruction

I will consider {Traffic Light}.... 

Conver to .json file

{
    "obj":"Traffic Light",
    "factual": "International convention dictates that in 
        a standard traffic light, the green light is 
        at the bottom and the red light is at the
        top.",
     "ccs": "Keep the overall image unchanged, and 
        swap the positions of the red and green 
        bulbs in the picture.",
    "generation_prompt":"..." 
}

CCS Content Json file

2. CCS Image Generation

Image-
generation

model

Editing
model

Counter-commonsense Image

Generate Detail
editing

Normal Image

3. Question Construction/Filtering

"In the traffic light in the picture,
is the green light or the red light
positioned at the top?"

Prompt instruction

CCS Image

Filtering     Verifying 

FREAK

There are now two descriptions of the
{Traffic Light}. Assuming you are
provided with an image of a {Traffic
Light}, please design a question to ask
whether this attribute of the objectin the
image matches the first description or
the second one. Requirements: ....

Figure 1: Generation pipeline of FREAK, including a three-step generation paradigm. We first
prompt LLMs to generate CCS content for later stages, next we use image genration model and
editing model to generate CCS image. Finally we filter and verify the generated data to form FREAK
benchmark. In this example, we exhibit the generation process of “Traffic Light”. The generated
image shows the positions of the red and green lights swapped, incorrectly with red at the bottom and
green at the top, which violates both commonsense and the traffic regulations of various countries.

prompting LLMs to generate CCS description quickly results in repetitive objects and low-quality
descriptions, hindering the large-scale production of diverse CCS descriptions. Beyond the de-
scription aspect, image generation models show poor adherence to CCS-specific prompts. They
predominantly generate commonsense-compliant images due to the lack of CCS-related training
data, making it difficult to produce realistic CCS images. In short, image generation models can
only reproduce patterns they have already encountered. To address this issue, we deploy the image
generation model and editing model in an iterative pipeline: it first generates normal factual images,
then applies localized modifications through the editing model for fine-grained CCS details.

3.1.1 STEP 1: GENERATION OF CCS DESCRIPTION

To obtain diverse CCS images, it is essential to first generate varied CCS descriptions, such as “a
fox with square ears” or “a sofa facing away from a television”. For scalable and non-repetitive
description creation, we begin by specifying a target object (“fox” and “sofa” in the above exam-
ples respectively), and then prompt LLMs to generate attribute description. Finally, we derive a
tuple (O,A,W ) for subsequent generation stages, where O denotes target object, A denotes correct
description of a specific attribute of O, W denotes the CCS description of the same attribute.

3.1.2 STEP 2: GENERATION OF CCS IMAGES

We employ a two-stage image generation framework. First, we construct a prompt using the target
object O and its correct attribute description A, then feed it to the image generation model F to
produce a normal image: P = F (O,A). Next, we use the image editing model E to modify P
conditioned on the CCS description W , yielding CCS images: CCS = E(P,W ). This framework
ensures that the resulting CCS images remain photorealistic while incorporating localized modifica-
tions that deliberately contradict commonsense expectations.

3.1.3 STEP 3: QUESTION CONSTRUCTION, DATA FILTERING AND HUMAN STUDY

In FREAK benchmark, we adopt both multiple-choice questions and free-form questions as eval-
uation formats. All questions are generated by LLMs based on (O,A,W,CCS). For free-form

4
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Detection
���

Attribute
���

Counting
���

Analysis
���

Position

���

O
C

R
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Multiple-Choice Question
������
��
	

Free-form Question
����
��
	

��������������������������������

FREAK

What is the positional relationship between the spout 
and the handle of the kettle in the picture? Are they  on 
the same side or opposite sides?

Please describe the color of each letter in the Google 
logo shown in  the picture.

A. Same side.
B. Opposite sides.
C. 90-degree angle.
D. ...not listed.

GT: G: Blue, o: Red, 
o: Yellow, g: Red, 
l: Green, e: Red.

Can the duck's beak be seen in the picture? If visible, 
what color is it?

 A. Not visible / Can't see.
 B. Yes, classic orange / yellow beak.
 C. Yes, red beak.
 D. ...not listed.

 How many finger compartments are visible 
on the glove in the picture?

A. 3.
B. 2.
C. 5.
D. ...not listed.

 Is the driver's seat on the left or right side 
of the car in the picture? Please analyse 
briefly.
GT:  With the direction of travel 
visible ahead. The presence of 
the steering wheel and 
instrument cluster on the 
righconfirms that the vehicle is 
right-hand drive.

What number is displayed at the highest 
position on the podium in the image ?

A. "2"
B. "1"
C. "3"
D. ...not listed.

Detection

Attribute

Position Counting

Analysis

OCR

Figure 2: Overview of FREAK. Questions in FREAK can be categorized into six distinct categories,
each comprising tasks that are straightforward for human solvers. The right panel shows representa-
tive examples for each category. Notably, certain questions are assigned to more than one category.

questions, the ground truth corresponds to the CCS description W , while the hallucinated answer
is derived from the commonsense attribute A. For multiple-choice questions, each image is paired
with one question and four answer options: A. Correct Option: Semantically aligned with the
counter-commonsense attribute W ; B. A-based Distractor: Represents the commonsense attribute
A (i.e., the hallucination option); C. AI-generated Distractor: Synthetic option derived from se-
mantic prompts of W and A; D. Fixed Open Option: “The correct answer is not listed”. This
design measures model robustness against commonsense interference via the A-based distractor and
the open option. Note that in a minority of cases where multiple plausible commonsense responses
may exist, FREAK employs only the dominant distractor for simplified assessment.

After obtaining the tuples (O,A,W,CCS) with questions, we filter the data according to the fol-
lowing rules. 1) Image Filtering: The selected images must retain photorealistic characteristics,
while the image content must be strictly aligned with the CCS description W . 2) Deduplication:
We remove duplicate entries with overlapping semantics in W (e.g., “a clock with 4 clock hands” vs.
“a clock with 5 clock hands”). This process ensures data diversity and avoids semantic redundancy.

To validate dataset rationality and detect potential biases, we conduct a blind-test experiment with
100 inexperienced undergraduates. Each participant, unaware of the purpose or context, answers a
random subset of 18 items to avoid experiential learning, thereby simulating the memory-free nature
of LLM. This approach minimizes individual stochasticity, ensuring that results reflect population-
level characteristics. The experiment establishes a baseline for human performance, quantifying the
average performance of untrained humans on the annotated dataset and providing empirical evidence
to detect annotation biases.

4 FREAK: FINE-GRAINED EVALUATION AGAINST KNOWLEDGE

For a better understanding of our benchmark, we here analyze our benchmark including taxonomy,
statistics and evaluation methodology. The overall composition of FREAK and representative ex-
amples for each category are illustrated in Figure 2.

4.1 TAXONOMY AND STATISTICS

The FREAK benchmark comprises 1,786 CCS images and 1,799 questions, with 1,000 multiple-
choice questions and 799 free-form questions respectively.

FREAK comprises six task categories for cognitive evaluation: 1) Detection: Requires models to
identify salient structures of target objects. In FREAK’s CCS images, these structures may be miss-
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ing or replaced with foreign ones; 2) Counting: Evaluates models’ ability to enumerate the target
structures. This task emphasizes hallucination detection rather than numerical proficiency, as more
than 90% of the cases contain fewer than six targets; 3) Attribute: Demands descriptions of geo-
metric attributes (e.g., shape, size, color) for specified structures; 4) Analysis: Tests the models’ in-
ference capabilities based on visual content. The model is required to autonomously locate relevant
visual cues after understanding the question. We exclude math and specialized knowledge because
they are irrelevant for assessing fine-grained multimodal hallucinations; 5) OCR: Challenges models
to extract target text or identify specified characters. In FREAK, all letters are standard English let-
ters, and we specifically focus on hallucinations in textual content; 6) Position: Requires the model
to determine the spatial locations or relationships of specific objects or structures within the image.
Notably, due to their comprehensive nature, some items in FREAK fall into multiple categories.
This overlap enables a more objective evaluation of MLLMs’ performance across subtasks.

4.2 EVALUATION

We evaluate models on both free-form and multiple-choice questions. For free-form questions, we
adopt the LLM-as-judge approach: an LLM determines whether the MLLM’s response incorpo-
rates the CCS content in the image, assigning each response to one of three categories: Correct,
Commonsense Error, or Other Error. For multiple-choice questions, correctness is determined
directly based on the selected option. The primary performance metric is accuracy (Acc), computed
as the proportion of correct responses across all questions. To directly measure the influence of the
model’s parametric knowledge, we define the Hallucination Rate (HalluRate) as the proportion
of cases where the model either outputs a commonsense answer in free-form questions or selects the
commonsense distractor in multiple-choice questions.

5 EXPERIMENT

We conduct experiments to evaluate the effectiveness of FREAK in measuring fine-grained hallu-
cinations of advanced MLLMs. We first describe the experimental setups, then present the main
results and key findings. Further in-depth analyses are presented in Section 6.

5.1 EXPERIMENT SETUPS

Model Use During the construction of FREAK, we employ Seedream3.0 and SeedEdit3.0 as gen-
eration and editing model for its powerful generating and editing capabilities(Gao et al., 2025). We
evaluate a diverse set of SOTA models. Proprietary models include Gemini-2.5 series, OpenAI
o3, o4-mini, GPT-4.1 and Claude-4.0-sonnet. Open-source models include Qwen2.5-VL series,
InternVL3 series, Kimi-VL-a3b series, GLM-4.5, Phi-4-multimodal, Skywork-r1v3, MiniCPM-
V4, DeepEyes-7B. This selection covers both general-purpose multimodal models and emerging
reasoning-specialized architectures, ensuring broad coverage of current MLLM capabilities.

Inference Details For multiple-choice questions, we apply cyclic permutation across option orders
to mitigate randomness and position bias, thereby obtaining more reliable assessments of models’
capabilities. We report average results over both multiple-choice questions and free-form questions.
All models adopt identical prompts during inference.

Human Baseline We recruit 100 undergraduates, each completing only 18 randomly assigned ques-
tions in FREAK to prevent experiential bias accumulation during testing. Their aggregated results
establish the human performance baseline.

5.2 MAIN RESULTS

Table 2 shows the detailed performance. Based on these results, the key findings are as follows.

Overall performance gap between humans and MLLMs. On FREAK, SOTA models achieve
only about 45% accuracy, compared to 86% for humans, revealing a gap of roughly 40 percentage
points. This indicates that the tasks in FREAK are relatively straightforward for untrained humans,
yet remain a major challenge for current MLLMs, reflecting an inconsistency between model intel-
ligence and human reasoning. Furthermore, the HalluRate of most models is close to or even exceed

6
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Table 2: Evaluation results of SOTA MLLMs, which are outperformed by human experts with wide
margins. The highest model performance in each column is highlighted in green, and the second-
highest is highlighted in blue.

Accuracy (↑) HalluRate (↓)

Dete. Count. Analy. Attr. OCR Pos. Overall Dete. Count. Analy. Attr. OCR Pos. Overall

Human Expert 86.93 88.65 83.44 83.92 94.24 88.08 86.71 7.19 6.76 10.94 5.22 4.32 6.22 6.95

o3 48.96 21.14 31.54 49.89 47.30 38.77 43.00 38.34 43.59 49.64 37.36 34.76 52.50 43.67

o4 mini 44.51 21.96 30.43 47.22 46.55 35.87 40.79 40.48 42.09 50.01 38.02 36.96 55.07 44.82

GPT 4.1 50.25 19.45 33.26 48.24 38.82 39.37 42.01 36.62 46.20 49.23 38.41 40.61 49.58 44.54

Gemini2.5 pro 47.85 23.98 35.67 56.12 56.90 43.41 45.49 37.24 41.27 46.40 29.26 24.33 45.75 40.26

Gemini2.5 flash 44.04 20.81 32.10 48.02 48.51 35.46 40.02 40.97 44.47 48.13 36.14 30.29 52.81 44.75

Claude4 sonnet 29.93 17.48 24.96 33.95 36.20 25.45 29.85 53.22 49.49 57.56 51.30 45.17 62.73 55.64

InternVL3-78B 43.03 20.12 29.65 48.49 45.15 38.41 39.32 44.11 47.75 54.91 38.74 38.59 52.65 48.76

InternVL3-38B 40.06 17.84 28.09 46.46 46.81 37.21 37.24 44.99 48.20 57.15 40.36 33.76 46.68 48.79

Qwen2.5-VL-72B 47.23 16.84 28.09 46.58 45.70 38.22 39.39 38.43 51.60 51.77 39.36 35.29 52.76 46.82

Qwen2.5-VL-32B 38.33 16.74 25.80 42.63 40.74 31.77 34.65 46.17 47.37 54.53 40.96 39.16 56.76 49.66

Phi 4-multimodal 39.49 18.89 25.52 36.60 37.34 32.77 33.32 38.13 34.63 51.05 37.64 31.25 47.22 42.13

MiniCPM 4V 46.12 24.91 30.40 48.97 41.88 40.88 41.44 36.49 40.64 48.62 31.09 37.16 37.53 41.08

Kimi VL A3B-Instruct 39.69 20.98 25.69 41.01 35.65 33.76 35.04 45.25 43.17 54.59 42.27 38.55 48.51 48.49

Kimi VL A3B-Thinking 43.77 20.22 22.86 43.94 39.42 31.82 36.82 42.94 42.51 57.16 39.57 37.83 54.77 47.31

GLM 4.5V 47.85 19.41 26.99 47.89 56.53 37.41 41.19 39.53 47.49 55.95 37.23 27.15 52.77 46.17

Skywork R1V3 43.67 12.31 28.61 39.57 40.87 36.88 35.50 42.04 52.78 54.70 45.82 37.45 52.70 50.28

MiMo-VL-RL2508 42.47 18.30 24.58 48.46 45.61 35.36 37.68 43.23 44.38 54.24 37.99 32.61 56.42 47.15

DeepEyes 25.53 16.21 24.60 34.89 36.80 27.71 28.39 54.11 48.80 54.90 44.35 37.77 53.73 53.40

Table 3: Comparison of accuracy between Nor-
mal Images and CCS Images.

Model Size Normal Img. CCS Img.

InternVL3 14B 91.26 34.69 (↓56.67)
38B 93.63 43.97 (↓49.66)

Qwen2.5VL 7B 86.04 34.28 (↓51.76)
32B 90.31 36.25 (↓54.06)

0 10 20 30 40 50 60 70 80
Model Size(B)

30

32

34

36

38

40

42

44

A
cc

ur
ac

y(
%

)

3B 7B
32B

72B

2B

8B

14B

38B

78B

Qwen2.5-VL
InternVL3

Figure 3: Accuracy evolution across sizes.
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ity enhancement toward correct answers.

their accuracy across different tasks, highlighting severe weaknesses in fine-grained hallucination
control. Figure 3 shows the evaluation results of the full series of Qwen2.5-VL and InternVL3
models. Except for performance degradation at specific sizes, model performance on FREAK gen-
erally increase with model size, consistent with the Scaling Law. Interestingly, small models such as
MiniCPM-V4 and MiMo-VL-RL2508 achieve results comparable to large-scale models, suggesting
that reducing hallucination may require an emphasis on model architecture and training processes.

Uneven performance across tasks. Breaking results down by task type, models perform worst
on Counting tasks, while achieving relatively better results on Attribute and OCR tasks. Although
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Table 4: Performance of different models under two response modes: (1) direct answer generation;
(2) reasoning before final output. For non-reasoning models, we employ CoT prompting, while for
reasoning models, we activate their reasoning mode. For o3, we use ”low” and ”high” respectively
in reasoning effort parameters of OpenAI API.

Model Size Accuracy (↑) HalluRate (↓)
Direct CoT Direct CoT

GPT-4.1 - 42.01 40.66(↑1.45) 45.43 46.30 (↑2.65)
InternVL3-78B 78B 39.32 33.91(↓5.41) 48.76 52.83 (↑4.07)
InternVL3-38B 38B 37.24 36.40(↓0.84) 48.79 49.00(↑0.21)
Qwen2.5-VL-72B 72B 39.39 33.39(↓6.00) 46.82 50.95 (↑4.13)
Qwen2.5-VL-32B 32B 34.65 29.82(↓4.83) 49.66 54.52(↑4.86)
Phi 4 multimodal 6B 33.32 25.09(↓8.23) 42.13 46.83(↑4.70)
Kimi-VL-A3B-Instruct 16B 35.04 30.56(↓4.48) 48.49 52.11(↑3.62)

Gemini 2.5 flash - 38.10 40.02 (↑1.92) 47.93 44.75(↓3.18)
o3 - 45.15 43.00(↓2.15) 41.53 43.67(↑2.14)
MiMo-VL-RL2508 7B 41.86 37.68(↓4.18) 43.10 47.15(↑4.05)
GLM 4.5V 108B 41.62 41.19(↓0.43) 46.54 46.17(↓0.37)

counting appears particularly challenging for MLLMs, most counting questions in FREAK involve
small numbers, revealing severe failures in quantity perception. Attribute tasks in FREAK primarily
comprise shape, color, texture, and other low-level visual tasks. In contrast, Analysis, Position,
and Detection questions are predominantly high-level comprehension tasks. Models show better
performance on low-level problems, whereas hallucination becomes more severe on high-level tasks.
This trend may be explained by the stronger reliance of high-level reasoning on linguistic priors,
which causes models to overrely on their parametric knowledge rather than visual evidence.

Reasoning shows no clear advantage. Reasoning models do not demonstrate significant advan-
tages except for Gemini 2.5 pro. For instance, among the OpenAI models, o3 improved accuracy by
only 1% compared to the non-reasoning model GPT-4.1. Notably, the small non-reasoning model
MiniCPM-4V surpassed all open-source reasoning models. Moreover, Table 4 shows the perfor-
mance differences of various models when reasoning before answering versus outputting answers
directly. Most models exhibit varying degrees of metric degradation after activating thinking.

6 ANALYSIS

6.1 TEST MLLMS WITH NORMAL / CCS IMAGE PAIR

Can MLLMs truly perceive fine-grained modifications? This is the core question of fine-grained
multimodal hallucination. To investigate, we construct a subset of multiple-choice questions where
the original data tuple (O,A,W,CCS) is preserved, but the CCS image is replaced with its corre-
sponding normal image I . This yields two distinct tuples: (O,A,W,CCS) and (O,A,W, I). We
evaluate Qwen2.5-VL and InternVL3 with both types of data, with results summarized in Table 3.
Results show that the accuracy drops sharply to around 50% for both models when switching from
normal images to CCS images. We further analyze the probability shifts across the four options in
error cases. Compared to using normal images, Figure 4 shows that the average selection probability
of the distractors decreases by 11% when switching to CCS images. For the remaining three options,
the probability distribution exhibits targeted shifts: the correct option receives a substantially larger
probability increase than the other two. This may suggest that even in error cases, the models can
still extract and comprehend critical information about fine-grained modifications from CCS images.

6.2 EMPERIMENT ON COT REASONING

Table 4 shows that enabling CoT reasoning leads to varying drops in accuracy on FREAK, accom-
panied by an increase in HalluRate. To further investigate the performance degradation of CoT, we
track the evolution of option probabilities during the reasoning process for InternVL3, Qwen2.5-VL,
and Kimi-VL-A3B-thinking models. Specifically, we record the probability of the correct option at
the end of each reasoning step within the CoT process when the model solves multiple-choice ques-
tions. We then apply time-series K-means clustering to group reasoning trajectories across questions
to intuitively understand model reasoning patterns. The resulting clusters in Figure 5 reveal two typ-
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Figure 5: Clustering results showing the evolution of ground-truth probabilities during the reasoning
processes. The legend indicates the representative count for each clustered curve. The green curve
demonstrates a thought process distinct from conventional MLLMs. Evaluation is conducted on
multiple-choice questions with cyclic permutation, where each question is repeated six times.

ical failure modes: (1) The model favors an incorrect option from the start and reinforces it through-
out reasoning, driving the ground-truth probability close to zero, accounting for over 70% of cases;
(2) In the remaining cases, the model initially favors the correct answer but abruptly switches to the
incorrect one after generating hallucinated content at later stages. Sampling shows that this late-
stage hallucination causes correct initial judgments to reverse, finally degrading the performance.

The reasoning trajectories of Kimi-VL-A3B-Thinking, while broadly similar to traditional MLLMs,
exhibit more complex patterns (green curves in Figure 5). We suggest that the RL-trained reason-
ing model enhance its capability to perform genuine iterative analysis regarding specific problems
through reasoning outputs. However, approximately 77% of Kimi-VL’s errors stem from initially
incorrect choices whose probability remains unchanged during reasoning. This indicates that only
textual reasoning fails to correct text outputs with vision information, resulting in no significant
performance gain on FREAK.

Based on the subset analysis and the visualization of reasoning processes across models, we con-
clude that while MLLMs can perceive the modified CCS information in FREAK, they still tend to
rely on internal knowledge and favor distractors. Particularly during the textual reasoning phase,
this bias often manifests as late-stage hallucinated content that reinforces incorrect choices. This
rigid pattern sharply reduces the probability of selecting correct options and highlights the negative
effects of CoT reasoning. We argue that the key to addressing this issue lies in enhancing the model’s
visual information perception capabilities and adjusting the balance between visual information and
MLLMs’ parametric knowledge.

7 CONCLUSION

We propose FREAK, a novel benchmark designed for fine-grained multimodal hallucination eval-
uation. FREAK features images that violate commonsense only in details, posing significant chal-
lenges to current SOTA models and revealing the gap between humans and MLLMs in understand-
ing image details. We further investigated the models’ performance on the subset of FREAK and
experimentally revealed the limitations of CoT in hallucination evaluation. Like any benchmark,
FREAK has limitations such as a relatively small dataset, which we aim to improve in the future.
Nonetheless, FREAK provides new insights for future research and establishes a new standard for
hallucination evaluation of MLLMs.
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ETHICS STATEMENT

This paper proposes a benchmark for fine-grained hallucination evaluation in MLLMs. All data
generated during the research are produced by human-aligned LLMs, image generation models and
editing models to prevent the biases from human intervention. Note that some data may involve
aspects of human culture and commonsense, such as modifying structural details of landmark build-
ings. To prevent potential discrimination, we have reviewed all data scheduled for public release.
The evaluation process of FREAK strives to be transparent and reproducible, adhering to high stan-
dards of research integrity and ethical conduct. No personally identifiable information was collected
or processed.

REPRODUCIBILITY STATEMENT

To facilitate reproducibility, we provide all necessary details and materials. Specifically, the dataset
generation process and the prompts used are described in Appendix B, while inference setups and
experimental implementations are presented in Appendix C. In addition, we include the source code
and evaluation outputs of each MLLM in the supplementary materials.
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A OVERVIEW OF THE APPENDIX

This appendix is organized as follows: Section B discusses about the uniqueness of FREAK and
data generation details of FREAK. Section C contains experiment details and provides additional
experiment results. Section D contains a ablation study about the used prompt. Section E contains
additional error cases of different tasks. Section F contains the details about the use of LLMs in this
paper.

B FREAK DETAILS

B.1 UNIQUENESS OF FREAK

FREAK is characterized by its fine-grained CCS content, which poses significant challenges to ex-
isting multimodal models. We compare different benchmarks in Table 1. The uniqueness of FREAK
lies mainly in the following aspects: 1) Fine-grained editing in realistic images: As shown in Ta-
ble 1, images in FREAK appear realistic overall but contain anomalous details. Unlike other bench-
marks that often use artistic or illustrative images, images of FREAK are out-of-domain for existing
MLLMs, making them particularly challenging. 2) Advanced question design: Currently, main-
stream hallucination benchmarks used in the industry, such as POPE, primarily employ true/false
questions as the core evaluation methodology, which involve a high degree of randomness. FREAK
uses multiple-choice questions and free-form questions to ensure a flexible and objective evaluation
method. 3) Diverse CCS content FREAK includes six subtasks, with various objects exhibit-
ing different CCS content in different images, enabling a comprehensive evaluation of fine-grained
hallucinations in MLLMs. 4) Revealing the gap between humans and models The questions in
FREAK are relatively easy for humans but highly challenging for existing models, highlighting
the limitations of current systems while providing an effective benchmark for future academic and
industrial research. Unlike other benchmarks that expose model hallucinations through specially
designed tasks, FREAK focuses on assessing MLLMs’ comprehension of CCS visual information,
revealing severe persistent hallucination phenomena. In future work, we will explore more types of
CCS modifications, such as temporal CCS phenomena in multi-image sequences.

B.2 DATA GENERATION DETAILS

The images in FREAK are characterized by their photorealism and localized CCS details, posing
significant challenges to model capabilities. The first step involves preparing a noun list to serve
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as target entities for subsequent CCS image generation. These nouns must correspond to tangible
entities. During the construction of FREAK, we utilized the 1,000 labels from ImageNet-1K and
prompted LLM to generate objects containing iconic and detailed (i.e., occupying small areas in
images) structures, with complex morphological features. By modifying the detailed characteristics
of such objects, fine-grained data that contradict commonsense are constructed. While ImageNet-
1K includes some fine-grained categories (e.g., Golden Retriever, Labrador, German Shepherd),
FREAK is designed to be answerable without requiring domain-specific expertise. It intentionally
avoids subtle inter-class distinctions (e.g., that a frilled shark has six gill slits, while a great white
shark has five). Therefore, we filtered out overly fine-grained categories, retaining only commonly
recognized entities.

For a given entity, we first generate CCS content by using prompts to guide an LLM in producing
details related to that entity that contradict common knowledge. The prompt template can be found
in Figure 8. Briefly, we instruct the LLM to modify distinctive attributes of the object in a way
that deviates from reality, ensuring the alterations are both adversarial and semantically relevant to
the original entity, rather than arbitrary or unrelated. To better control the quality of the generated
CCS content, we guide the model to perform edits in several aspects:(1) quantity modification,
(2) color and shape alteration, (3) deletion or addition of key structures, (4) replacement of critical
components, and (5) logical or physical manipulation that violates real-world constraints or everyday
experience. For each type of modification, we provide several examples to help the model correctly
understand the desired editing approach and avoid generating “artistic” or surrealistic imaginations.
We also require the model to provide step-by-step reasoning during output generation and finally
output with JSON format and get tuple (O,A,W ), encouraging it to ground its edits in realistic
attributes of the object and produce adversarial, high-quality CCS content.

It should be noted that directly instructing models to randomly generate CCS content leads to quickly
exhibited repetitive patterns. Furthermore, we observed that the characteristics of CCS content vary
significantly across different models.

Subsequently, based on the object O and a correct description A of one of its attributes, we instruct
the LLM to generate a prompt for image generation. To ensure scene diversity, the LLM is required
to autonomously select appropriate contexts and enrich details of both the scene and the object
within it. Since the generated images must be realistic and ordinary, we enforce the inclusion of
supplemental terms such as “photorealistic” in the output prompt. The prompt is listed in Figure 9.

Utilizing this image generation prompt, we can synthesize images with normal content. We em-
ployed Seedream 3.0 as the image generation and SeedEdit 3.0 as editing model due to its powerful
capabilities in generation and modification. We believe that more advanced image generation and
editing models can yield better CCS image generation results. Subsequently, we used the generated
normal images as input and, combined with the prepared CCS content, performed detailed editing
on the original images. Limited by the current capabilities of image generation models, even when
using image editing models to introduce CCS modifications rather than directly generating CCS
images, the resulting pictures may still fail to incorporate the required CCS content. Therefore,
after obtaining CCS images, manual screening is necessary. The screening criteria primarily focus
on three aspects: (1) The CCS content must be valid and reasonable. Since the quality of LLM-
generated CCS content varies, we require that the CCS aspects in the images must correspond to
detailed visual features. (2) The CCS modifications should not be highly repetitive; for example,
not all animals should have their leg counts altered. (3) The images must be realistic and the errors
clearly identifiable, avoiding ambiguity or misleading appearances. Finally, the screened images,
along with the originally generated content from the LLM, are used to instruct the LLM to generate
distracting options, thereby forming a complete instance.

To ensure alignment with human preferences and mitigate potential biases introduced during the
annotation process, we employed a human baseline approach to evaluate the validity of the data. We
recruited 100 ordinary university students, each assigned only 18 randomly selected questions to
prevent experience accumulation during the task. Without prior contextual hints, these participants
achieved an accuracy rate of 86.71%, which empirically validates that the benchmark data aligns
well with human reasoning preferences and effectively avoids potential biases.

Our generation pipeline demonstrates high scalability: given only object names, it synthesizes di-
verse CCS images for each target objects. During FREAK’s construction, we directly leverage the
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ImageNet-1K label set as the object source, and prompt LLMs to generate approximately 1,500 en-
tities to compensate for objects absent in ImageNet such as landmarks, famous branded products,
and various foods. By substituting other noun collections (e.g., domain-specific lexicons or larger
label list), the pipeline achieves zero-shot generalization to new object categories for CCS image
generation. This implies that FREAK’s data generation approach can be extended to a wider vari-
ety of entity types, ensuring scalability of the data. Moreover, this method allows room for further
design of more fine-grained hallucinations. For instance, by creating subtle morphological differ-
ences among different species within the same biological category to generate more challenging data
samples.

C EXPERIMENT DETAILS

In this section, we will detail the implementation, especially the implementation details of experi-
ments in Section 6.

C.1 MAIN EXPERIMENT DETAILS

For open-source models, we use vLLM-0.10.1 for inference, for closed-source models, we use of-
ficial API. When making requests to the model, we consistently use the parameters temperature=0
and seed=42 to ensure reproducibility. For the main experiment, we use the prompt in Figure 10.
For CoT reasoning, we use the prompt in Figure 11

C.1.1 MORE EXPERIMENT RESULTS OF MULTIPLE-CHOICE QUESTIONS

We use Cyclic Permutation for evaluation of multiple-choice question. We repeated each question
six times, each time altering the permutation order of the options. Since we have three options
besides option D, we generated all possible permutations of these three options, resulting in six rep-
etitions for each original question. Note that for each repetition, the labels preceding the options
strictly adhere to the sequence A, B, C, D, with only the content of the options being swapped. For
model outputs, we use regular expressions to extract the model’s selections. For instances where
certain models deviate from the specified output format, given that FREAK aims to evaluate the de-
gree of hallucination rather than instruction-following capability, we employ GPT-4o-mini to assist
in judging and selecting the correct answer based on the unformatted content, thereby avoiding mis-
judgments caused by formatting errors. The prompt used for this auxiliary evaluation is provided in
Figure 15.

Moreover, the precision, recall and F1 score of multiple-choice questions are measured in Table 5 for
reference. From the results in the table, it can be observed that compared to the Average Accuracy,
the Consistency Accuracy metric shows a significant decrease across all models, indicating that the
models are considerably affected by the permutation of answer options and exhibit notable positional
non-robustness. This indirectly reflects the challenging nature of FREAK for the models, as well
as their low certainty in answering the questions. The InternVL3-78B model achieved the highest
Consistency Accuracy of 35.90, and within the same model series, Consistency Accuracy increases
with model size, demonstrating a clear positive correlation and reflecting the effectiveness of Scaling
Laws. In contrast, smaller parameter models experienced a more substantial decline in Consistency
Accuracy, such as MiniCPM-V4 and Phi-4 Multimodal, implying that limited parameter size leads
to weaker stability and robustness.

For Precision, Recall, and F1 metrics, we additionally present the Precision, Recall, and F1 scores
corresponding to options A, B, and C in Table 6. It is evident that some models exhibit significant
differences in Precision and Recall across different options. Despite the use of Cyclic Permutation,
model performance still varies under different option orders. This issue persists even in state-of-the-
art models like GPT-4.1.

C.1.2 LLM-AS-JUDGE DETAILS

We use LLMs to evaluate MLLMs’ performance on free-form question. Specifically, we employ
GPT-5-mini as the judge model for the evaluation of FREAK, as the tasks in FREAK do not involve
complex reasoning or computations. We instructed GPT-5-mini to categorize the outputs of VLMs
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Table 5: More evaluation results on FREAK, including Accuracy, Consistency Accuracy,
Weighted-Precision, Weighted-Recall, and Weighted-F1. It should be noted that due to the use
of cyclic permutation, the support for options A, B, and C is 2000 each, whereas the support for
option D is 0. After excluding option D, the weighted metrics are equivalent to the macro-averaged
metrics.

Model Size Accuracy Consist. Acc. Precision Recall F1

o3 - 43.98 32.40 45.08 43.98 44.52
Gemini2.5 flash - 41.00 25.10 42.84 41.00 41.88
Gemini2.5 pro - 42.73 33.00 45.24 42.73 43.95
o4-mini - 41.58 27.60 42.92 41.58 42.24
GPT 4.1 - 43.78 31.50 45.51 43.78 44.45
Claude4 sonnet - 30.30 18.50 30.60 30.30 30.42

InternVL3-78B 78B 43.63 35.90 43.65 43.63 43.63
InternVL3-38B 38B 42.60 35.00 42.69 42.60 42.62
InternVL3-14B 14B 36.03 25.30 36.10 36.03 36.01
InternVL3-8B 8B 41.23 24.80 41.64 41.23 40.86
InternVL3-2B 2B 39.58 26.20 41.86 39.58 40.61
Qwen2.5-VL-72B 72B 36.97 30.40 37.82 36.97 37.37
Qwen2.5-VL-32B 32B 36.03 28.30 36.23 36.03 36.13
Qwen2.5-VL-7B 7B 36.08 26.00 36.67 36.08 36.34
Qwen2.5-VL-3B 3B 36.20 25.90 36.65 36.20 36.39
Phi 4 multimodal 6B 37.56 19.20 39.10 37.56 38.07
Kimi-VL-A3B-Instruct 16B 39.23 24.70 39.29 39.23 39.20
MiniCPM 4V 4B 46.06 34.50 46.29 46.05 46.13

Kimi-VL-A3B-Thin 16B 40.23 24.60 41.32 40.23 40.49
MiMo-VL-RL 7B 42.50 29.80 42.79 42.50 42.42
GLM 4.5V 108B 42.78 34.30 42.84 42.78 42.79
Skywork R1V3 38B 36.57 22.20 37.07 36.57 36.82
DeepEyes 7B 28.67 18.60 28.78 28.67 28.72

into exactly three classes based on the provided image, question, correct answer, and commonsense
answer: 1) Correct: The model’s output aligns with the image and the corresponding question.
2) Commonsense Error: The model produced a commonsense answer, which in the context of
FREAK contradicts the correct answer. 3) Other Error: The model generated other types of
incorrect content, which often occur during counting tasks. This approach does not require the
LLM to output complex scores, aiming to maintain the objectivity of the LLM evaluation through a
simplified method.

To further investigate the consistency between LLM-as-a-judge and human assessments, we ran-
domly sample 100-110 questions for tested models and compared the human evaluation results with
the LLM evaluation results. Table 7 shows the calculated consistency between humans and the
LLM across different models. From the table, the consistency rate between LLMs and humans ex-
ceeds 90% across different models, including both open-source and closed-source models, general
MLLMs, and reasoning models, demonstrating a relatively strong alignment. Additionally, the stan-
dard deviation of consistency rates is relatively small, with confidence intervals distributed at the
high end, further indicating the reliability of LLM-as-judge in the FREAK evaluation. This demon-
strates the effectiveness and rationality of using LLM-as-judge for evaluating free-form questions in
the FREAK framework.

It should be noted that GPT-5-mini’s understanding of the images in FREAK is also not entirely
accurate. Although we provided the images to the LLMs during the evaluation process, we instructed
the models to derive only a coarse-grained understanding from the images. The LLMs were strictly
required to make judgments based solely on the provided text.

C.2 SUBSET EXPERIMENT DETAILS

In Section 6, we collect a subset that contains both normal images and CCS images. The subset
has contains pieces of data. We conduct a controlled experiment on the subset. Figure 6 shows an
example of the subset.

We first query the model using normal images, then repeat the same questions with CCS Images
to compare changes in the model’s responses. As shown in Section 6, for cases where the model
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Table 6: The Precision, Recall, and F1 scores evaluation results of various models across the three
categories of options A, B, and C. Some models exhibit noticeable variations in performance across
different options, indicating the presence of certain option order biases under our task design.

Model Precision Recall F1

Op. A Op. B Op. C Op. A Op. B Op. C Op. A Op. B Op. C

o3 44.47 45.28 45.49 43.20 44.35 44.40 43.82 44.81 44.94
o4-mini 42.58 43.35 42.82 41.45 41.70 41.60 42.01 42.51 42.20
GPT 4.1 44.69 46.15 45.68 50.95 40.45 39.95 47.62 43.11 42.62
Gemini2.5 pro 44.46 45.85 45.42 42.50 42.55 43.15 43.46 44.14 44.26
Gemini2.5 flash 42.96 43.19 42.36 43.50 39.00 40.50 43.23 40.99 41.41
Claude4 sonnet 29.98 30.66 31.15 27.10 31.20 32.60 28.47 30.93 31.86

InternVL3-78B 44.34 43.88 42.74 43.30 43.00 44.60 43.81 43.43 43.65
InternVL3-38B 42.96 42.69 42.43 40.00 44.10 43.70 41.43 43.38 43.05
InternVL3-14B 35.89 36.27 36.13 32.25 39.30 36.55 33.97 37.72 36.34
InternVL3-8B 39.47 43.38 42.08 49.55 30.45 43.70 43.94 35.78 42.87
InternVL3-2B 42.20 40.98 42.41 38.40 43.50 36.85 40.21 42.20 39.43
Qwen2.5-VL-72B 37.95 38.04 37.47 35.10 37.15 38.65 36.47 37.59 38.05
Qwen2.5-VL-32B 36.31 36.24 36.13 36.80 34.95 36.35 36.55 35.58 36.24
Qwen2.5-VL-7B 36.74 36.36 36.91 35.25 38.40 34.60 35.98 37.35 35.72
Qwen2.5-VL-3B 36.48 36.56 36.90 34.05 39.05 35.50 35.22 37.77 36.19
Phi 4V 37.87 38.27 41.16 39.90 41.45 31.30 38.86 39.80 35.56
MiniCPM 4V 46.52 46.72 45.62 43.50 45.90 48.75 44.96 46.31 47.14
Kimi VL A3B(instruct) 39.23 39.11 39.54 43.00 38.80 35.90 41.03 38.96 37.63

Kimi VL A3B(thinking) 40.76 41.51 41.68 49.20 37.05 34.45 44.59 39.15 37.72
GLM 4.5V 43.27 42.26 42.98 41.65 44.90 41.80 42.45 43.54 42.38
Skywork R1V3 37.08 36.56 37.58 36.45 36.25 37.00 36.76 36.40 37.29
MiMo-VL-RL2508 41.72 42.93 43.73 49.35 42.05 36.10 45.21 42.49 39.55
DeepEyes 28.40 29.02 28.92 28.00 29.15 28.85 28.20 29.08 28.89

errs after switching to CCS Images, we analyze the probability shifts among the four options,which
reveals a directional pattern: even when the model still selects distractor, the probability of the
correct option increases, and does so more significantly than other options. This suggests that the
model can perceive CCS clues in CCS Images, yet structural or inherent limitations still lead it to
choose incorrect options, reflecting severe hallucination. Fig. 7 illustrates the proportional changes
of different sample types before and after image substitution: TP: Correct before (with Normal
Image) and after substitution; TN: Correct before, but incorrect after; FP: Incorrect before, but
correct after; FN: Incorrect both before and after. Combined with the results of Table 3, only 1

3 to 1
2

of the cases receive the correct responses from the model after switching to the CCS images, while
1
2 to 2

3 of the cases remain incorrect.

C.3 PROBE EXPERIMENT DETAILS

In Section 6, we analyze the probability of ground truth in multiple-choice questions during the
reasoning process. To track changes in model preferences during the reasoning process, we first
modified the input prompt by removing the few-shot examples (as shown in Figure 12) to avoid
constraining or interfering with the model’s thinking patterns. By probing the output probabilities
of each option during the reasoning process, we can directly analyze the causes of performance
degradation in CoT reasoning. This is a key advantage of multiple-choice or closed-ended questions.

We begin by using the prompt to guide the model to output both the entire reasoning process and
the final answer. The reasoning process is then split at the sentence level and reassembled using
a “prefix-sum” style algorithm, forming a cumulative sequence of reasoning steps. At the end of
each intermediate step, we append the phrase “So I will choose <answer>” to simulate the model’s
concluded thought. This approach mimics the model’s own output and allows us to capture its
evolving preference at various intermediate stages. Crucially, it ensures that the subsequent output
strictly corresponds to the model’s choice rather than other content.
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Table 7: The statistical results of sampling for consistency between the LLM and human evaluators.
Consistency Rate refers to the proportion of instances where the LLM’s evaluation results align
with those of human assessors. The P/N Consistency Rate consolidates Commonsense Error and
Other Error into a single category, considering only two types of judgments before calculating the
consistency proportion. We use GPT-5-mini(2025-08-07) as the judge model in this study.

Model Consistency Rate P/N Consistency Rate Sample Size

Gemini2.5 pro 87.74 87.74 106
Gemini2.5 flash 91.00 95.00 100
o3 86.54 94.23 104
GPT 4.1 94.12 95.10 102

InternVL3-78B 88.24 92.16 102
InternVL3-38B 92.00 96.00 100
Qwen2.5-VL-72B 95.05 95.05 101
Qwen2.5-VL-32B 90.00 94.00 100
Phi 4-multimodal 89.11 98.02 101
MiniCPM-V4 95.00 97.00 100

MiMo-VL-RL2508 93.00 96.00 100
GLM 4.5V 92.11 99.12 114
Kimi-VL-A3B-Thinking 90.10 95.05 101

Mean 91.08 94.96
Std. dev. 2.66 2.70
95% CI (89.40, 92.75) (93.26, 96.65)

In practice, this method is model-agnostic: the original input prompt (without simulated model
output) is first wrapped in its chat template, and the simulated output is appended directly to the
prompt wrapped in the chat template. Note that simply making the simulated output as the ’assistant’
role prompt is ineffective, which will be regarded as an entire sentence in fact, and model will not
continue to generate output based on the simulated content.

This approach is equally applicable to reasoning models. By modifying the appended content to
include a termination token for reasoning, we can simulate the model’s self-termination of the rea-
soning process. For example, in the Kimi-VL-A3B-Thinking model, the tokens ◁ think▷ and ◁
/think▷ are used to demarcate the thinking process.

Figure 25 shows the full result of the experiment, the analysis is similar to the part in Section 6.

D PROMPT ABLATION STUDY

During the evaluation process, we employ two types of prompts: one requires the model to di-
rectly output the selected answer to the question, and another requires the model to reason about
the question before generating the answer. All models consistently used the same prompt content.
For certain models with specific prompt formatting requirements, we only adjusted the format while
keeping the content essentially unchanged.

To eliminate the potential impact of our self-designed CoT prompt, we additionally employ the CoT
prompt from Figure 13, which has been validated by previous work to enhance model’s performance.
The evaluation results of each model on FREAK’s multiple-choice question seta are presented in
Table 8.

The data in the table show that the model’s accuracy decreased to varying degrees under the two
CoT prompts. Combined with the results from Table 4, conventional MLLMs were more adversely
affected by CoT prompting. We have analyzed the reasons for this performance degradation with
CoT prompts in Section 6.
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CCS ImageNormal Image

Question: Is the blade in the picture approximately standing upright on the
table or lying flat against it? 

A. Standing upright (near vertical).  B. Lying flat (parallel to table).
C. Angled (partially raised).             D. The correct answer is not listed.

Example of Subset

Figure 6: Prompt used for LLM-assisted option selection. For models that generated reasoning
but failed to output the final choice in the required format, we used advanced LLMs to make the
selection based on their reasoning traces.
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Figure 7: Proportion of different type of instances in subset. TP: Correct before (with normal image)
and after substitution; TN: Correct before, but incorrect after; FP: Incorrect before, but correct after;
FN: Incorrect both before and after.

E ERROR CASES

We now present additional case studies showcasing erroneous responses from InternVL3-38B and
the reasoning model Kimi-VL-A3B-Thinking. We provide the original questions, corresponding im-
ages, options, correct answers, and the models’ incorrect outputs. These cases include the models’
reasoning processes, revealing that errors in describing target objects in the images led to incor-
rect choices. For Kimi-VL-A3B-Thinking, a self-reflective reasoning pattern emerged: the model
engaged in repeated deliberation, exhibited hesitation during reasoning, and even negated its own
intermediate conclusions. We posit that this pattern arises because the model perceives CCS details
in the image, which conflict with its internal knowledge acquired during training, thereby inducing
self-doubt.
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Table 8: Result of CoT prompt ablation experiment. Acc(D): Accuracy using direct prompt
(Fig. 10); Acc(v1): Accuracy using CoT prompt v1 (Fig. 11); Acc(v2): Accuracy using CoT prompt
v2 (Fig. 13).

Model Size Acc(D) Acc(v1) Acc(v2)

InternVL3-38B 38B 42.60 40.28 36.74
InternVL3-14B 14B 36.03 35.13 28.42
Qwen2.5-VL-32B 32B 36.03 29.95 29.50
Qwen2.5-VL-7B 7B 36.08 32.98 33.32
Phi4 multimodal 6B 37.55 29.13 25.08

The self-reflect mode observed in the Kimi model provides further evidence of its ability to perceive
CCS visual details: when such visual information conflicts with its parametric knowledge, the model
exhibits self-reflective reasoning. However, after deliberating for a certain length, it still generates
hallucinated content and ultimately selects incorrect answers. This suggests that mitigating halluci-
nations requires enhancing the model’s understanding and trust in the visual information it captures,
preventing internal knowledge from overriding genuine visual cues. We argue that the key lies in
improving the alignment between the visual encoder and the LLM. Simply enhancing reasoning ca-
pacity without strengthening visual understanding, as seen in Kimi-VL-A3B-Thinking, allows the
model to detect inconsistencies but not to arrive at correct answers.

F THE USE OF LLMS

We employ LLMs in our data generation pipeline for FREAK to produce high-quality CCS content,
for which we have provided the relevant prompts. Beyond this specific application, LLMs are used
only for reference in the writing of individual words and sentences in the paper. We further assure
that the methodological ideas are independently conceived by the authors, and all experiments are
conducted independently without the use of LLMs for research assistance.
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The content I require is as follows: An object in an original image is realistic and normal, but I have modified it in a way that
preserves its overall structure while introducing detail-levelinconsistencies with reality, making it implausible. Below, I will first
introduce several common modification methods.
########################################
1. Quantity Modification​​: Add or remove a key structural element of the object so that the result contradicts reality. Note:
Modifications must be based on the distinctive features of the specific object, not applied generically (e.g., not just arbitrarily
changing the number of legs on an animal).

Example: ① For a ​​starfish​​: Add an arm, creating a six-armed starfish. (Explanation: Real-world starfish have five arms; this
modification is subtle regarding the image and object.) ② For a ​​western dining fork​​: Change the fork from four tines to five.
(Explanation: Standard western forks have four tines; five is implausible and a detail-level change.) ③ For a ​​clock​​: Change the
clock's hands to four pointers. (Explanation: Clocks with four pointers do not exist in reality.) ④ For a ​​snowflake​​: Change the
snowflake from six branches to eight. (Explanation: Due to water molecule structure, real snowflakes always have six branches;
this modification focuses on branch count detail.) ⑤ For a ​​guitar​​: Change the guitar from six strings to five. (Explanation:
Standard guitars have six strings; changing the string count is a detail modification.)
########################################
2. Color Modification​​: Alter the color of a small partof the object, creating a detail that contradicts the real world. Note: The
color change must focus on a very small area; large-area changes (e.g., turning all a zebra's stripes black) are not allowed, as this
makes it a different ordinary object (a horse) and violates the requirement that the modified object remains implausible. Note:
The color change must result in an object that defies common sense.

Example: ① For a ​​rainbow​​: Change the innermost color to red. (Explanation: Real rainbows strictly follow the order red-
orange-yellow-green-blue-indigo-violet from the outside in; the innermost cannot be red, and this change affects only one layer.)
② For a ​​traffic light​​: Change the bottom bulb to blue. (Explanation: Traffic lights are red, yellow, green from top to bottom;
changing the bottom green to blue contradicts reality.)
(For simplicity, We omit other categories)

The above only lists six types, but other modifications violating common sense exist (e.g., a playing card printed with several
suits, a compass with nine directional markers). You need to think carefully and cleverly based on the object's characteristics to
devise suitable modifications.

Here, the object you need to consider is: ​​{object}​​. You should first analyze its characteristics, including color, shape, key
structures, and their quantities. Indicate which one or severalmodification strategies are possible. After careful and meticulous
thought, list the feasible modification methods for this object. Your response must follow this format:

[object]: [Describe the object in one sentence, including the various features mentioned above]. Analysis: [In-depth analysis of
which aspects can be modified].
Format: <answer><condition>[The required state of the object in the image, determined by the modification rule. E.g., to delete
a piano's black keys, write: Overhead view of a piano, black keys clearly visible.]</condition> <rule>[Modification rule: delete,
add, or modify a specific feature of the object in the image]</rule><description>[A reasonable explanation for this modification]
</description><name>[Filename to save]</name></answer>

​​Requirements​​:

1.
Modifications cannot be too difficult or far-fetched. They must allow a normal person to notice the issue in the modified image.
Provide only 2-4 of the best, most clever modifications (refer to the examples). If the current object has no worthwhile subtle
modifications, skip it directly!

2.
Your modifications cannot be too specialized or academic!! For a specific object (creature, tool), you should choose to modify
its characteristics as a member of a broader category. For example, for a ​​tiger shark​​, modify its characteristics as a shark, or even
as a fish(e.g., number of dorsal/ventral fins)! Do notmodify features specific to its very niche category, as this will make it
impossible for humans to judge! The criterion is: Can an average person (without professional taxonomic training) recognize
this anomaly? In the previous example, oridinary people cannot distinguish tiger sharks, so you cannot modify features specific
to tiger sharks (e.g., tiger sharks have five gill slits).

....(For simplicity, we omit other rules)...

Now, please analyze the ​​{object}​​object according to the guidance above and the examples. Suggest what modifications are
possible. Respond strictly in the required format. Do not add any extra text.

Prompt: CCS Content Generation

Figure 8: Prompt used for CCS content generation

21



1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

Create a prompt for the {object} object. I will use this prompt to generate an image via Stable Diffusion.

Note: Do not deliberately emphasize the characteristics of the {object}. The generated scene must meet the
requirements in parentheses while ensuring a photorealistic effect. Additionally: Do not use depth-of-field-related
terms in the prompt. Also, require that the {object} is at a certain distance from the cameraand occupies only a
small part of the image(you must explicitly state this in the prompt!). Determine this distance appropriately based
on the object. Furthermore, you need to specify a suitable scene for this object, where the object is only one part
of the scene.

Note: Generate only the prompt itself, without any additional explanation. If this is a logo, generate the prompt for
the corresponding product/object!

Example: Hyper-realistic acoustic guitar (six strings clearly visible), positioned on the left side of the image, tilted
on a wooden desk in a sunlit study, warm ambient lighting, placed at a distance from the camera, with a small
speaker next to the guitar.

Prompt: CCS Content Generation

Figure 9: Prompt used for image generation.

system:
"You are a helpful agent.Here is an image with a multiple choice question about the image content. You should
reply the question according to the image faithfully. Please note that the question maybe confusing or the image
content might be uncommon, you should answer the question ONLY with the correct choice letter.
Here is an example:
#########
[IMAGE]
Question:Does the Teapot in the picture have a handle? If so, where is it located?
Choices:
A. Not visible / Can't see.
B. Yes, on the side.
C. Yes, arched over the top.
D. The correct answer is not listed.

Your answer: A
#########
Now please answer the question following the above format STRICTLY."

user:
<image>
"Question:{sample['question']}
Choices:
A. {Option1}
B. {Option2}
C. {Option3}
D. {Option4}
Your answer:"

Prompt:directly require choice (main experiment)

Figure 10: Prompt used evaluation.
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system:
"You are a helpful agent.Here is an image with a multiple choice question about the image content.
You should reply the question according to the image faithfully. Please note that the question maybe
confusing or the image content might be uncommon, You should thinking briefly first and you
**MUST give your final choose with <answer></answer>**.
You should follow the format below STRICTLY
format:  Think first, give your discussion about the question and the image BRIEFLY. Then
summarize: The final answer is <answer>[A/B/C/D]</answer>.
Here is an example:
#########
[IMAGE]
Question:Does the Teapot in the picture have a handle? If so, where is it located?
Choices:
A. Not visible / Can't see.
B. Yes, on the side.
C. Yes, arched over the top.
D. The correct answer is not listed.

Your answer: 
From the image I can see the handle on the side clearly, so the answer is <answer>C</answer>.
#########
Now please answer the question following the above format STRICTLY.

user:
<image>
"Question:{sample['question']}
Choices:
A. {Option1}
B. {Option2}
C. {Option3}
D. {Option4}
Your answer:"

Prompt: think before answer (CoT experiment)

Figure 11: Prompt used for CoT evaluation. Results are listed in Table 4

23



1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

system:
"You are a helpful agent. Here is an image with a multiple choice question. The image content might
be uncommon or the question might be confusing, so you should analyze the image systematically and
provide step-by-step reasoning. Moreover, take time to examine details carefully. Finally, you
**MUST** give your final choose with <answer></answer>.
Remember that you should think step by step. Take time to examine details carefully. But when you
come to the final answer, please provide your choose with the character(A/B/C/D) in <answer>
</answer>!
Most IMPORTANTLY: finally provide your choice in <answer></answer>! For example:
<answer>A</answer> <answer>B</answer> <answer>C</answer> <answer>D</answer>. 

user:
<image>
"Question:{sample['question']}
Choices:
A. {Option1}
B. {Option2}
C. {Option3}
D. {Option4}
Your answer:"

Prompt: Probe Experiment

Figure 12: Prompt used for Figure 5, This prompt delete the example to avoid fixed thinking pattern.
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system:
"You are a helpful agent.Here is an image with a multiple choice question about the image content.
You should reply the question according to the image faithfully. Please note that the question maybe
confusing or the image content might be uncommon, you should think first and finally answer the
question with the correct choice letter.
Here is an example:
#########
[IMAGE]
Question:Does the Teapot in the picture have a handle? If so, where is it located?
Choices:
A. Not visible / Can't see.
B. Yes, on the side.
C. Yes, arched over the top.
D. The correct answer is not listed.

Your answer: 
Let's think step by step. First, I'll look at the overall structure - I can see it's a white/ceramic teapot.
Next, I need to locate the handle. Looking at the left side of the teapot, I don't see a handle there.
Checking the right side... I can see what appears to be a curved handle attached to the side. Based on
this systematic examination, the handle is located on the side of the teapot. <answer>B</answer>."

user:
"Question:{sample['question']}
Choices:
A. {Option1}
B. {Option2}
C. {Option3}
D. {Option4}
Your answer:"

assistant:
"Let's think step by step. \n"

Prompt: CoT prompt v2 (Ablation study)

Figure 13: Another CoT prompt that used in previous work (Kojima et al., 2023). We use this
prompt to eliminate potential performance degradation caused by the prompt in Figure 11itself.
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system:
"You are a helpful agent.Here is a multiple-choice question and its correct answer. Additionally, I will
provide you with a fill-in-the-blank response for this question. Now, based on the response, please
select the option that matches the response best (In other words, the response is the same with the
chosen options in meanings). Requirements are as follows:

Here are two examples:
#########
Question:What is the shape of the spare tire on the Jeep in the picture?
Choices:
-----------
A.Square, rectangle.
B.Circle.
C.Not visible.
D.The correct answer is not listed.
-----------
Given response: The spare tire is not visible, but its cover is square. So the final answer is
<answer>C</answer>
Your answer: C.
#########
Question:What is the shape of the kick drum (bass drum) in the drum kit shown in the picture?
Choices:
-----------
A. Square(Cube).
B. Perfect Round(Cylinder).
C. A circle, but the bottom is straight. So the shape is not a perfect round!
D. The correct answer is not listed.
-----------
Given response: Circular. Therefore the answer is B. Perfect Round(Cylinder)
Your answer: B.
#########
Now please answer the question following the instruction, you don't need to output the explanation. 

user:
"Question:{sample['question']}
Choices:
A. {Option1}
B. {Option2}
C. {Option3}
D. {Option4}
Your answer:"

Prompt: Probe Experiment

Figure 14: Prompt used for LLM-assisted option selection. For models that generated reasoning
but failed to output the final choice in the required format, we used advanced LLMs to make the
selection based on their reasoning traces.
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You are a helpful agent.Here is an image and a question with the ground_truth. I will provide you with
a response for this question. Now, you should determine whether the model's response aligns with the
ground truth based on the question and the answer. Requirements are as follows:
    1. We provide one ground truth answer and one typical incorrect answer for each question. These
answers, as well as the image itself, may not align with your common sense or prior knowledge. You
must determine whether the model's response is correct solely based on the answers we provide (both
the ground truth and the typical incorrect answer) and the model's own response. You must not use
your own observation of the image or your personal common sense preferences to judge the
correctness of the model's answer.
    2. The ground truth answer or the typical incorrect answer may contain content marked with the '#'
symbol. This means that as long as the model's response covers the content enclosed by the '#'
symbols, it should be considered as belonging to that category. If there are multiple segments marked
with '#' in either the ground truth or the typical incorrect answer, the model's response will be
classified under that category as long as it covers any of the content marked by these symbols.
    3. You should give you judge with the following format: First, provide your judgment within the
tags <judge>correct/wrong/typical</judge>, where 'correct' indicates that the model's response is
accurate, 'wrong' indicates an incorrect response, and 'typical' signifies that the model provided a
typical error. Then, explain the reasoning behind your judgment within the <explanation> Your
explanation here.</explanation> tags.
    4. Remember to analysis the ground truth and the typical error. If the model's response matches the
typical error, you should judge with <judge>typical</judge>! 
    5. Please note that you need to comprehensively evaluate the correctness based on the question
format, the model's response, the correct answer, and the incorrect answers. It is not necessarily
required for the model's response to include all information from the correct answer. For example, if
the correct answer contains additional information that is not required by the question, the model's
response should not be considered incorrect for omitting it. On the other hand, even if the model
reaches the same conclusion as the correct answer, if the model's analysis contradicts the correct
answer, the response should still be considered incorrect.
    6. Your judge must align with human preferences.
NOTE: You must follow the format with <judge></judge> and <explanation></explanation>!

Prompt: LLM-as-judge prompt

Figure 15: Prompt used for LLM’s judgment.

How long is the neck of the violin in the picture?

A. The neck is not visible.
B. Approx. 130-135mm.
C. Less than 125mm.
D. The correct answer is not listed.

From the image, the neck of the violin appears to be visible and can be
estimated in length. The neck of a standard violin typically measures
around 130-135mm. Given the proportions and typical size of a violin, the
neck in the picture seems to fit within this range.

The final answer is <answer>C</answer>.

Model Output

Quesition Image

Error Case InternVL3-38B

Figure 16: An Detection example of error case on InternVL3-38B
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Does the cactus in the picture have spines? If so, what type
of spines are they?

A. There is no visible spines.
B. Yes, the cactus has radial rigid spines.
C. Yes, the catus has microscopic glochids.
D. The correct answer is not listed.

From the image, the cactus clearly has spines. These spines appear to be
radial and rigid, extending outward from the body of the cactus. They are
not microscopic glochids, which are fine, hair-like spines. Therefore, the
correct answer is <answer>B</answer>.

The final answer is <answer>B</answer>.

Model Output

Quesition Image

Error Case InternVL3-38B

Figure 17: An Detection example of error case on InternVL3-38B

What device is used to make the monitor appear to float in
the air in the picture?

A. The monitor is floating. No other devices are attached
to the monitor.
B. Articulating Arm Bracket.
C. Clear Stand.
D. The correct answer is not listed.

From the image, it is clear that the monitor is attached to a wall-mounted
bracket with an extending arm. This type of bracket is commonly known
as an articulating arm bracket, which allows the monitor to be positioned
in a way that it appears to float in the air. The bracket is visible on the left
side of the monitor, extending from the wall to support the monitor.

The final answer is <answer>B</answer>.

Model Output

Quesition Image

Error Case InternVL3-38B

Figure 18: An Analysis example of error case on InternVL3-38B
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What color is the portside navigation light on the ship in
the picture?

A. White / yellow.
B. Green.
C. Red.
D. The correct answer is not listed.

From the image, the navigation light on the portside of the ship is clearly
visible and is green. This is consistent with standard maritime navigation
rules where the portside light is red and the starboard side light is green.
However, in this image, the green light is on the portside.

The final answer is <answer>B</answer>.

Model Output

Quesition Image

Error Case InternVL3-38B

Figure 19: An Attribute example of error case on InternVL3-38B

What letters are written on the car emblem in the picture?

A. BMM.
B. BMW.
C. BWW.
D. The correct answer is not listed.

From the image, the car emblem clearly shows the letters "BMW." The
emblem is centrally located on the car's hood, and the letters are distinctly
visible within the circular logo.

The final answer is <answer>B</answer>.

Model Output

Quesition Image

Error Case InternVL3-38B

Figure 20: An OCR example of error case on InternVL3-38B
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Can the hanging soup ladle in the picture be removed?

A. No, permanently fixed.
B. Yes, designed to be detachable.
C. Unclear (no visible attachment mechanism).
D. The correct answer is not listed.

From the image, the soup ladle is hanging from a hook, which suggests it
is designed to be detachable. The hook and the handle of the ladle indicate
that it can be easily removed.

The final answer is <answer>B</answer>.

Model Output

Quesition Image

Error Case InternVL3-38B

Figure 21: An Analysis example of error case on InternVL3-38B

Are the gloves in the picture a matched pair (one left and
one right)?

A. No, two left gloves.
B. Yes, a complete left-right pair.
C. No, two right gloves.
D. The correct answer is not listed.

◁think▷So, let's look at the image. The gloves: one has a thumb on the
left side (so that's a right glove), and the other also has the thumb on the
left? Wait, no. Wait, a matched pair is one left and one right. Let's check.
The left glove (right hand) and right glove (left hand)? Wait, no. Wait, in
the image, one glove is for the right hand (thumb on the left side of the
image) and the other is for the left hand (thumb on the right side of the
image). Wait, no, wait. Wait, no, let's see. Wait, no, actually, a matched
pair is one left and one right. Let's check. The two gloves: one is a right
glove (thumb on the left when viewed), the other is a left glove (thumb on
the right when viewed). So they are a matched pair. So the answer is
B.◁/think▷B

Model Output

Quesition Image

Error Case Kimi-VL-A3B-thinking

Figure 22: An Analysis example of error case on Kimi-VL-A3B-Thinking. The model merges
self-reflective reasoning pattern. This pattern appears when the model realize the image’s content
conflicts with it’s parametric knowledge.
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Is the handrail continuous between the upstairs and
downstairs in the picture?

A. No, the left upstairs are Segmented with breaks.
B. Fully continuous.
C. Alternate sides.
D. The correct answer is not listed.

◁think▷So, let's look at the image. The handrail is on the right side of
the stairs. Wait, the question is about continuity. The handrail goes from
the lower level up and seems to connect. Wait, no, let's check. The
handrail is a single continuous piece? Wait, in the image, the handrail is a
continuous wooden structure along the stairs. So the answer should be
B.◁/think▷B

Model Output

Quesition Image

Error Case Kimi-VL-A3B-thinking

Figure 23: An Attrirubte example of error case on Kimi-VL-A3B-Thinking. The model merges
self-reflective reasoning pattern. This pattern appears when the model realize the image’s content
conflicts with it’s parametric knowledge.

Error Case Kimi-VL-A3B-thinking

In the image, is one of the canopy panels of that sun umbrella
noticeably different from the other panels?

Question

Model output

Image

◁think▷So, let's look at the sun umbrella in the image. The canopy has multiple panels.
Wait, one of the panels—wait, no, actually, check the structure. Wait, the umbrella's
panels: are any different? Wait, no, wait. Wait, the umbrella's canopy—wait, no, maybe
not. Wait, no, let's check again. Wait, the image shows a beach umbrella. Wait, no, wait,
the question is if one panel is noticeably different. Wait, no, actually, looking at the
umbrella, all panels? Wait, no, wait, no—wait, no, the answer is no. Wait, no, wait, no,
wait. Wait, no, let's check. Wait, the umbrella's canopy: are there any different panels?
Wait, no, actually, no. Wait, no, the correct answer is no. Wait, no, wait, no—wait, no, I
think I made a mistake. Wait, no, let's look again. The umbrella's panels: are they all the
same? Wait, no, wait, no—wait, no, the answer is no. Wait, no, wait, no, the correct
answer is no. Wait, no, I need to be precise. Let's analyze: the sun umbrella in the image
has multiple canopy panels. Are any noticeably different? No, they appear to be the same.
So the answer is no.◁/think▷No, all the canopy panels of the sun umbrella in the image
appear to be similar in color and design; there is no noticeable difference among them.

Figure 24: An Attrirubte example of error case on Kimi-VL-A3B-Thinking. The model merges
self-reflective reasoning pattern. This pattern appears when the model realize the image’s content
conflicts with it’s parametric knowledge.
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Figure 25: The overall experimental results of the probe experiment, where all curves are clustered
from the original samples. The red curve represents the probability evolution in successful cases,
the blue curve corresponds to error cases, and the green curve captures a specific thinking pattern
observed in the reasoning model.

32


	Introduction
	Related Works
	Methodology
	Automatic Pipeline for Fine-grained CCS Images
	Step 1: Generation of CCS description
	Step 2: Generation of CCS Images
	Step 3: Question Construction, Data Filtering and Human Study


	FREAK: Fine-gRained Evaluation Against Knowledge
	Taxonomy and Statistics
	Evaluation

	Experiment
	Experiment Setups
	Main Results

	Analysis
	Test MLLMs with Normal / CCS Image Pair 
	Emperiment on CoT Reasoning

	Conclusion
	Overview of the Appendix
	FREAK Details
	Uniqueness of FREAK
	Data Generation Details

	Experiment Details
	Main Experiment Details
	More Experiment Results of Multiple-choice Questions 
	LLM-as-judge Details

	Subset Experiment Details
	Probe Experiment Details

	Prompt Ablation Study
	Error Cases
	The Use of LLMs

