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ABSTRACT

We develop a measure for evaluating the performance of generative networks
given two sets of images. A popular performance measure currently used to do
this is the Fréchet Inception Distance (FID). However, FID assumes that images
featurized using the penultimate layer of Inception-v3 follow a Gaussian distri-
bution. This assumption allows FID to be easily computed, since FID uses the
2-Wasserstein distance of two Gaussian distributions fitted to the featurized im-
ages. However, we show that Inception-v3 features of the ImageNet dataset are
not Gaussian; in particular, each marginal is not Gaussian. To remedy this prob-
lem, we model the featurized images using Gaussian mixture models (GMMs)
and compute the 2-Wasserstein distance restricted to GMMs. We define a perfor-
mance measure, which we call WaM, on two sets of images by using Inception-v3
(or another classifier) to featurize the images, estimate two GMMs, and use the re-
stricted 2-Wasserstein distance to compare the GMMs. We experimentally show
the advantages of WaM over FID, including how FID is more sensitive than WaM
to image perturbations. By modelling the non-Gaussian features obtained from
Inception-v3 as GMMs and using a GMM metric, we can more accurately evalu-
ate generative network performance.

1 INTRODUCTION

Generative networks, such as generative adversarial networks (GANs) (Goodfellow et al., 2014a)
and variational autoencoders (Kingma & Welling, 2013), model distributions implicitly by trying
to learn a map from a simple distribution, such as a Gaussian, to the desired target distribution.
Using generative networks, one can generate new images (Brock et al., 2018; Karras et al., 2019a;b;
2017; Kingma & Welling, 2013), superresolve images (Ledig et al., 2017; Wang et al., 2018), solve
inverse problems (Bora et al., 2017), and perform a host of image-to-image translation tasks (Isola
et al., 2017; Zhu et al., 2017; 2016). However, the high dimensionality of an image distribution
makes it difficult to model explicitly, that is, to estimate the moments of the distribution via some
parameterization. Just estimating the covariance of a distribution requires p(p+1)

2 parameters, where
p is the feature dimension. For this reason, modelling distributions implicitly, using transformations
of simple distributions, can be useful for high dimensional data. Since the generator network is
typically nonlinear, the explicit form of the generated distribution is not known. Nonetheless, these
generative models allow one to sample from the learned distribution.

Because we only have access to samples from these generative networks, instead of explicit prob-
ability density functions, evaluating their performance can be difficult. As such, several ways of
evaluating the quality of the samples drawn from generative networks (Borji, 2019) have been pro-
posed, the most popular of which is the Fréchet Inception distance (FID) (Heusel et al., 2017).
FID fits Gaussian distributions to features extracted from a set of a real images and a set of GAN-
generated images. The features are typically extracted using the Inception-v3 classifier (Szegedy
et al., 2016a). These two distributions are then compared using the 2-Wasserstein (Villani, 2009;
2003) metric. While FID has demonstrated its utility in providing a computationally efficient metric
for assessing the quality of GAN-generated images, closer examination reveals that the fundamental
assumption of the FID method—namely, that the underlying feature distributions are Gaussian—is
invalid. A more accurate model of the underlying features will capture a more comprehensive and
informative assessment of GAN quality.
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In this paper, we first show that the features used to calculate FID are not Gaussian, violating the
main assumption in FID (Section 3). The 2-Wasserstein metric, which FID uses, cannot be extended
past Gaussians easily because it is typically computationally intractable and does not have closed
formed solutions for many families of distributions. Moreover, FID is only capturing the first two
moments of the feature distribution and completely ignores all information present in the higher
order moments. Missing this information biases FID toward artificially low values, an undesirable
property for a performance metric.

Thus, we propose using a Gaussian mixture model (GMM) (McLachlan & Peel, 2000) for the fea-
tures instead, because GMMs can model more complex distributions and capture higher order mo-
ments. GMMs are estimated efficiently and there exists a Wasserstein-type metric for GMMs (Delon
& Desolneux, 2020) (Section 4) which allows us to generalize FID. We use this to develop our gen-
erative model evaluation metric, WaM. We provide code for the community to use WaM at (link will
be added after acceptance).

Finally, we show that WaM is not as sensitive to visually imperceptible noise as FID (Section 5).
Since GMMs can capture more information than Gaussians, WaM more accurately identifies dif-
ferences between sets of images and avoids the low score bias of FID. We therefore reduce the
issue of FID being overly sensitive to various noise perturbations (Borji, 2019) by modelling more
information in the feature distributions. We test perturbation sensitivity using additive isotropic
Gaussian noise and perturbed images which specifically attempt to increase FID using backpropa-
gation (Mathiasen & Hvilshøj, 2020b). The ability of WaM to model more information in the feature
distribution makes it a better evaluation metric for generative networks.

2 RELATED WORK

2.1 WASSERSTEIN DISTANCE

There are several ways to define a distance metric between probability distributions. A popular
metric from optimal transport (Villani, 2003; 2009) is the p-Wasserstein metric. We first are given a
Polish metric space X with a metric d. Given p ∈ (0,∞) and two distributions P and Q on X with
finite moments of order p, the p-Wasserstein metric is given by

Wp(P,Q) =

(
inf
γ

∫
X×X

d(x, y)pdγ(x, y)

) 1
p

where the infimum is taken over all joint distributions γ of P and Q. Different values of p yield
different metric properties; in image processing, the 1-Wasserstein distance on discrete spaces is
used and called the earth mover distance (Rubner et al., 2000). The 2-Wasserstein metric (Dowson
& Landau, 1982; Olkin & Pukelsheim, 1982) is often used when comparing Gaussians since there
exists a closed form solution for

W2
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)
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1
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)
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as is used to calculate the Fréchet Inception distance.

2.2 FID AND VARIANTS

The Fréchet Inception distance (FID) (Heusel et al., 2017) is a performance measure typically used
to evaluate generative networks. In order to compare two sets of images, X1 and X2, they are
featurized using the penultimate layer of the Inception-v3 network to get sets of features F1 and F2.
For ImageNet data, this reduces the dimension of the data from 3× 224× 224 = 150,528 to 2048.
At this point, Heusel et al. assume that these features are Gaussian and use Equation (1) to obtain a
distance between them.

There are several ways that FID has been improved. One work has shown that FID is biased (Chong
& Forsyth, 2020), especially when it is computed using a small number of samples. They show that
FID is unbiased asymptotically and show how to estimate the asymptotic value of FID to obtain an
unbiased estimate. Others have used a network different from Inception-v3 to evaluate data that is
not from ImageNet; for example, a LeNet-like (LeCun et al., 1989) feature extractor can be used
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for MNIST. In this work we focus on several different ImageNet feature extractors because of their
widespread use. Modelling ImageNet features has been improved due to a conditional version of
FID (Soloveitchik et al., 2021) which extends FID to conditional distributions, and a class-aware
Fréchet distance (Liu et al., 2018) which models the classes with GMMs. In this work, we do not
consider conditional versions of FID, but our work can be extended to fit such a formulation in a
straightforward manner. Moreover, we use GMMs over the feature space rather than one component
per class as is done in the class-aware Fréchet distance.

Another metric related to our proposed metric is called WInD (Dimitrakopoulos et al., 2020). WInD
uses a combination of the 1-Wasserstein metric on discrete spaces with the 2-Wasserstein metric on
Rp. For this reason, it is not a p-Wasserstein metric in Rp or between GMMs. For example, if P
and Q are a mixture of Dirac delta functions then the WInD distance between them becomes the
1-Wasserstein distance. However, if P and Q are Gaussians, then the WInD distance between them
becomes the 2-Wasserstein distance. Moreover, if P and Q are arbitrary GMMs, the relationship
between WInD and the p-Wasserstein metrics is not clear. This means that WInD can alternate
between the 1-Wasserstein and 2-Wasserstein distance depending on the input distributions. In this
paper, we focus on using a metric which closely follows the 2-Wasserstein distance as is currently
done with FID.

2.3 MW2

A closed form solution for the 2-Wasserstein distance between GMMs is not known. This is be-
cause the joint distribution between two GMMs is not necessarily a GMM. However, if we restrict
ourselves to the relaxed problem of only considering joint distributions over GMMs, then the re-
sulting 2-Wasserstein distance of this new space is known. The restricted space of GMMs is quite
large since GMMs can approximate any distribution to arbitrary precision, given enough mixture
components. So given two GMMs, P and Q, we can calculate

MW2
2(P,Q) = inf

γ

∫
X×X

d(x, y)2dγ(x, y)

where the infimum is over all joint distributions γ which are also GMMs. Constraining the class
of joint distributions is a relaxation that has been done before (Bion-Nadal et al., 2019) due to the
difficulty of considering arbitrary joint distributions. This metric, MW2, appears in a few different
sources in the literature (Chen et al., 2016; 2018; 2019) and has been studied theoretically (Delon &
Desolneux, 2020); recently, implementations of this quantity have emerged.1

The practical formulation of this problem is done as follows. Let P =
∑K0

i=1 πiνi and Q =∑K1

j=1 αjµj be two GMMs with Gaussians νi, µj for i ∈ {1, . . . ,K0}, j ∈ {1, . . . ,K1}. Then,
we have that

MW2
2(P,Q) = min

γ

∑
ij

γijW2
2 (νi, µj) (2)

where γ is taken to be the joint distribution over the two categorical distributions [π1 . . . πK0 ]
and [α1 . . . αK1 ]; hence, γ in this case is actually a matrix. Thus, MW2 can be implemented as
a discrete optimal transport plan and efficient software exists to compute this (Flamary et al., 2021).

MW2 is a great candidate for modelling the distance between GMMs for several reasons; most
importantly, it is an actual distance metric. Since we are restricting the joint distribution to be a
GMM, we see that MW2 must be greater than or equal to the 2-Wasserstein distance between two
GMMs. Moreover, MW2 clearly approximates the 2-Wasserstein metric; Delon & Desolneux derive
bounds showing how close MW2 is to W2. It is also computationally efficient to compute because it
can be formulated as a discrete optimal transport problem, making it practical. The strong theoretical
properties and computational efficiency of MW2 make it a prime candidate to calculate the distance
between GMMs.

1https://github.com/judelo/gmmot
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Figure 1: Histograms showing non-Gaussianity of randomly chosen features from the ImageNet validation
dataset featurized by ResNet-18, ResNet-50, ResNeXt-101 (32×8d), and Inception-v3. They are non-negative
because these features are passed through a ReLU layer and then average pooled; for this reason, we have a
spike around 0. These histograms are empirical distributions and thus have an area of 1.
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Figure 2: The FID score between each pair of the distributions shown above is zero although they are clearly
different distributions. This is because Equation (1) is only defined for Gaussians, and FID treats any input
distribution as Gaussian, even if it is not. We plot one dimensional distributions here for visualization purposes,
but the FID score will remain zero even if we extend these distributions to their high dimensional isotrophic
counterparts. All that is required for the FID score between two distributions to be zero is that their first two
moments match. Figure 2a is the only Gaussian distribution. Figures 2b and 2d are Gaussian mixtures with two
components, Figure 2c is a uniform distribution, and 2e is a Laplace distribution.

3 INCEPTION-V3 HAS NON-GAUSSIAN FEATURES ON IMAGENET

3.1 NON-GAUSSIAN FEATURES CAN DIFFER AND HAVE ZERO FID

The calculation of FID assumes that features from the penultimate layer of Inception-v3 (Szegedy
et al., 2016a) are Gaussian. This layer average pools the outputs of several convolutional layers
which are rectified via the ReLU activation. Though an argument can be made for why the preac-
tivations of the convolutional layers are Gaussian (using the central limit theorem), the rectified
and averaged outputs are clearly not. In fact, they are likely to be averages of rectified Gaus-
sians (Beauchamp, 2018). Although these features are high dimensional and cannot be visual-
ized, we plot the histograms of a randomly selected feature extracted with Inception-v3, ResNet-18,
ResNet-50, and ResNeXt-101 (32×8d) in Figure 1. We construct these histograms using the 50,000
images in the ImageNet validation dataset. We see that none these randomly selected features look
Gaussian.

If the Gaussian assumption of FID is false, one can achieve low FID values while having drastically
different distributions, as shown on Figure 2. This is true in part because FID only considers the first
two moments of the distributions being compared; differences in skew and higher order moments
are not taken into account in the FID calculation. This can cause FID to be extremely low when the
distributions being compared are quite different.
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3.2 IMAGENET FEATURES ARE NOT GAUSSIAN

Testing if Inception-v3 features are Gaussian is not trivial because they are 2048-dimensional. Even
if each marginal distribution appears Gaussian, we cannot be sure that the joint distribution is Gaus-
sian. However, if the marginals are not Gaussian, this implies that original distribution is not Gaus-
sian. Therefore, we conducted a series of Kolmogorov–Smirnov hypothesis tests (Dodge, 2008), a
statistical nonparametric goodness-of-fit test that verifies whether an underlying probability distri-
bution, in our case the marginals, differs from a hypothesized distribution, a Gaussian distribution.

We calculated features from the entire ImageNet validation dataset using ResNet-18, ResNet-50,
ResNeXt-101 (32×8d), and Inception-v3. For each set of features, we then tested each marginal
using the Kolmogorov–Smirnov tests with the hypothesis that the features come from a normal
distribution. Using a p-value of 0.01, the test found that 100% of the marginals fail to pass the
hypothesis. This confirms, with high certainty, that neither the marginals nor the whole feature
distribution is Gaussian.

Since the features of Inception-v3 are not Gaussian, we have a few options. The first option is to use
features before the average pooling layer and ReLU operation because these features may actually
be Gaussian. However, these features are extremely high dimensional (64 × 2048 = 131,072)
and thus very hard to estimate accurately. Another option we have is to use a different network
for feature extraction; however, most networks which perform very well on ImageNet have high
dimensionality convolutional features followed by ReLU and average pooling, e.g., ResNeXt-101
(32×8d). Moreover, trying to obtain Gaussian features is not a general solution because even if
the training data has Gaussian features, new data may not. Therefore, we decided to model these
non-Gaussian features using Gaussian mixture models which can capture information past the first
two moments of a distribution.

4 WAM — MODEL DETAILS

4.1 WAM — A GAUSSIAN MIXTURE MODEL CAN LEARN MORE COMPLEX DISTRIBUTIONS

In this work we use the Gaussian mixture model (GMM) to model non-Gaussian features. GMMs
are a generalization of Gaussian distributions (i.e., when the number of components equal 1) and
hence we can generalize FID using the formulas discussed in Section 2.3. Moreover, any distribution
can be approximated to arbitrary precision using a GMM (Delon & Desolneux, 2020). Estimation
of GMM parameters are also computationally efficient and have been studied thoroughly (Bishop,
2006; McLachlan & Peel, 2000). Most importantly, we can calculate the distance between GMMs
using equation 2.

We calculate our performance metric for generative models by using the MW2 (Delon & Desolneux,
2020) metric for GMMs on GMMs estimated from extracted features of images. The procedure is
summarized as follows: We first pick a network, such as Inception-v3, to calculate the features.
These features are then used to estimate a GMM with K components. We do this for real data and
for generated data. We then calculate the FID of each combination of components, one from the
real data GMM and one from the generated data GMM. Then, we solve a discrete optimal transport
problem using the 2-Wasserstein distance squared as the ground distances to obtain WaM. We use
n = 50,000 samples because this was shown to be an approximately unbiased (Chong & Forsyth,
2020) estimate of FID. We call our metric WaM since it is a Wasserstein-type metric on GMMs of
image features.

We fit the GMM to the data using the expectation maximization algorithm implemented in the scikit-
learn (Pedregosa et al., 2011) package in Python. We model the features with full covariance ma-
trices so that we are truly generalizing FID. One can fit diagonal or spherical covariance matrices
if speed is required (as supported in our code), but this will yield simpler GMMs. We consid-
ered several GPU implementations of GMM fitting instead of the scikit-learn CPU implementation.
However, the sequential nature of the expectation maximization algorithm caused the run times to
be similar for GPU and CPU algorithms.
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Figure 3: AIC curves for ResNet-18, ResNet-50, ResNeXt-101 (32×8d), and Inception-v3 features used for
picking the number of mixture components K. We choose K = 10 for ResNet-18, K = 50 for ResNet-50,
and K = 30 for both ResNeXt-101 (32×8d) and Inception-v3.

4.2 USING DIFFERENT NETWORKS

While Inception-v3 is an excellent network to use for feature extraction because of its high accuracy
on the ImageNet classification task, we also use ResNet-18, ResNet-50, and ResNeXt-101 (32×8d).
For each network, we use the penultimate layer for feature extraction, as was done originally for
Inception-v3. We use ResNet-18 because its features are only 512-dimensional and hence can be
calculated faster than Inception-v3. ResNet-50 performs better than ResNet-18 and so we included
it in some of our experiments. Finally, ResNeXt-101 (32×8d) achieves the highest accuracy in the
ImageNet classification task of all the pretrained classifiers on Pytorch (Paszke et al., 2019).

4.3 PICKING K AND FITTING THE GMM

When modelling features, we must pick the number of components we choose to have in our GMM.
If we pick K = 1 (and use Inception-v3 as our feature extractor), then we just calculate FID. The
more components we pick, the better our fit will be. However, if we pick K to be too large, such as
K ≥ N , then we may overfit in the sense that we can have each component centered around single
data points. This is clearly not desirable, so we fit all of our GMMs with a maximum of K = 50
components.

We use the Akaike information criterion (AIC) to choose K since likelihood criteria are well suited
for density estimation (McLachlan & Peel, 2000). However, calculating AIC for multiple compo-
nents will take significant computation time and power if done every time one wants to calculate
WaM. For this reason, we pick a specific K based on the ImageNet validation set. A value for
K which models the ImageNet validation dataset well should be a good K for modelling similar
image datasets. As shown in Figure 3, the AIC curves have varying shapes. We use the kneed
method (Satopaa et al., 2011) for our choice of K (using S = 1 in the official implementation 2) for
the ResNet-18 features since we have a textbook power-law like curve. For ResNet-50, ResNeXt-
101 (32×8d), and Inception-v3 we use our best judgement since the curves do not have a knee for
reasonable values of K.

5 EXPERIMENTS

5.1 TARGETED PERTURBATIONS — A REAL EXAMPLE OF WHEN FID FAILS AND WAM DOES
NOT

Although features extracted from classifiers are not Gaussian, we do not have a perfect model for
them. In fact, it is difficult to come up with distributions of features without images, because we typ-
ically have to calculate them. Hence, if we want to see when FID fails and WaM does not, we must
construct data that will give us a distribution of features which cannot be modelled well with FID.
This can be done if we start with a set of images, perturb them in order to increase FID, then calcu-
late WaM on the perturbed images. Since WaM is a generalization of FID, the perturbed images will

2https://github.com/arvkevi/kneed
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Original (BigGAN) Perturbed (BigGAN) Original (ImageNet) Perturbed (ImageNet)
FID = 25.13

WaM2 = 142.12

FID = 98.69

WaM2 = 297.49

FID = 2.51

WaM2 = 52.60

FID = 54.12

WaM2 = 174.76

RFID = 3.93

RWaM = 2.09

R = 1.88

RFID = 21.5

RWaM = 3.32

R = 6.48

Figure 4: Samples of images showing targeted perturbations which artificially inflate FID but not WaM. The
two original images above are randomly selected from a set of 50,000 images generated by BigGAN and a
set of 50,000 images of the ImageNet training dataset. We cannot visually perceive the difference between
the original and perturbed images, despite the datasets from which they were selected clearly demonstrating a
drastic change in FID. Note that FID of the original ImageNet training data is approximately 10 times lower
than for the BigGAN generated images. The FID, WaM, and R values were calculated using ResNet-18.

affect WaM as well, particularly the first and second moments of the feature distribution. However,
since WaM can capture more information than FID on the feature distributions, we hypothesize that
WaM will not be as affected as FID.

We construct these perturbed sets of images by backpropagating through FID using the Fast Gradient
Sign Method (FGSM) (Goodfellow et al., 2014b). Backpropagation through FID was recently shown
to be useful in finding adversarial examples for FID and for improving image quality of trained
generators (Mathiasen & Hvilshøj, 2020b;a)3.

To calculate FID or WaM, we must compare two sets of images; thus, we always compare to the
ImageNet validation set. This allows us to calculate the FID and WaM of the ImageNet validation
set against real images from the ImageNet training set, generated images from BigGAN Brock
et al. (2018), and perturbed images from each. We used 50,000 images for each set when doing
all the comparisons. To produce the adversarial images, we extracted the features from all the
50,000 ImageNet validation images, then ran FGSM with an ϵ = 0.01 and batch size of 16 until
we perturbed all 50,000 of our target images (e.g., ImageNet training set). It is worth noting that
during training we calculated the gradients that maximize FID between the batch of 16 images and
the extracted features the ImageNet validation set.

Comparing FID and WaM is difficult because they are different metrics with different scales. For
this reason, we must normalize them when comparing. Thus, we define RFID to be the ratio of the
FID of the perturbed images over the FID of the original images. Hence, RFID shows how much FID
has increased due to the perturbation. Similarly, we define RWaM to be the ratio of WaM squared
of the perturbed images over WaM squared of the original images. FID is typically reported as the
2-Wasserstein squared distance, hence we square WaM so that it is also a squared distance. Then
we define R = RFID

RWaM
to be the ratio for these two increases. Hence, for R > 1 we have that FID

increased faster than WaM due to perturbation.

When we perturb images generated from BigGAN (Brock et al., 2018) or the ImageNet training data
we cannot visually perceive a difference, as shown in Figure 4. However, for the BigGAN images,
FID increases by a factor of RFID = 3.93 while WaM only increases by a factor of RWaM = 2.09.
This difference is even more evident with real images drawn from the ImageNet training data set.
We see that the FID score after perturbation increases by RFID = 21.5 times! Since WaM only
increases by RWaM = 3.32 times, we see that FID increased R = 6.48 times more than WaM for

3Although the authors of the paper introduced a Fast FID, we backpropagated through FID in our work.
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original σ = 0.01 σ = 0.05 σ = 0.1 σ = 0.2 σ = 0.5

σ 0.01 0.05 0.1 0.2 0.5
FID(orig) 183.59 183.59 183.59 183.59 183.59
FID(pert) 190.57 241.62 324.32 569.18 731.74
WaM2(orig) 285.04 285.04 285.04 285.04 285.04
WaM2(pert) 292.63 339.39 418.59 614.83 741.13
RFID 1.04 1.32 1.77 3.1 3.99
RWaM 1.03 1.19 1.47 2.16 2.6
R 1.01 1.11 1.2 1.44 1.53

Figure 5: R values for BigGAN-generated images using additive isotropic Gaussian noise showing that FID
is slightly more sensitive than WaM to noise perturbations of generated images. The noise perturbations in this
experiment are all greater in magnitude than the targeted perturbations in Section 5.1. The original image above
was randomly selected from a set of 50,000 images generated by BigGAN. The FID, WaM, and R values were
calculated using ResNet-18.

an imperceptible, but targeted, perturbation. A metric which reflects perceptual quality perfectly
would not be affected whatsoever by these perturbations. Neither FID nor WaM are perfect, but
WaM’s lower sensitivity to visually imperceptible perturbation is better aligned with the objective
of assessing perceptual quality in images.

Even though these perturbations are targeted to specifically increase FID (and not WaM), this is still
a fair comparison of these two metrics. WaM can learn a Gaussian distribution (e.g., if all the com-
ponents are the same), yet FID and WaM yield different results in this experiment, implying that the
features are not modeled well by FID and benefit from the additional information captured by WaM.
Moreover, since the AIC decreases after K = 1, we know that WaM is using more information from
the feature distributions. WaM uses more information than FID and is less sensitive than FID to
these imperceptible perturbations.

Since Kernel Inception distance (KID) Bińkowski et al. (2018) may also be able to capture the higher
order moments of the features, we ran our experiments using KID as well. Our results show that KID
is significantly more affected than WaM by the perturbations targeted to fool FID. The details are
discussed in Section A of the supplementary material. Thus, WaM is less sensitive to imperceptible
FID-targeted noise than both FID and KID.

5.2 RANDOM PERTURBATIONS

In this section we show that WaM is also less sensitive than FID to additive isotropic Gaussian
noise. We do this by corrupting images generated from BigGAN and the ImageNet training dataset
by adding isotropic Gaussian noise with standard deviation σ ∈ {0.01, 0.05, 0.1, 0.2, 0.5} and then
calculating their features. Samples of how these noisy images compare to the original are shown in
Figures 5 and 6. In these experiments, we use ResNet-18 to extract the features. The ϵ = 0.01 used
in Section 5.1 corresponds to approximately σ = 0.0014, meaning that the additive random noise in
Figures 5 and 6 perturbs the images much more than the targeted noise in Figure 4.

We see that FID and WaM do not increase much when calculated using noisy BigGAN generated
images, but FID skyrockets when calculated using ImageNet training data. This is likely due to FID
not being able to capture the differences between the ImageNet training and validation set. One
can justly assume that both data sets are sampled from the same distribution; however, we are not
comparing the distributions from which they are sampled. We are comparing the two sets of images
from the training and validation set, which are not the same. Therefore, FID’s inability to model the
correct distribution of features causes it to become extremely sensitive to this noise, even when it
is barely visually perceptible. This sensitivity of FID to noise has been noted before (Heusel et al.,
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original σ = 0.01 σ = 0.05 σ = 0.1 σ = 0.2 σ = 0.5

σ 0.01 0.05 0.1 0.2 0.5
FID(orig) 4.08 4.08 4.08 4.08 4.08
FID(pert) 4.52 19.83 51.14 120.57 323.05
WaM2(orig) 48.75 48.75 48.75 48.75 48.75
WaM2(pert) 50.18 99.95 120.09 184.36 400.65
RFID 1.11 4.87 12.55 29.59 79.27
RWaM 1.03 2.05 2.46 3.78 8.22
R 1.08 2.37 5.09 7.82 9.65

Figure 6: R values for real images (ImageNet training data) using additive isotropic Gaussian noise showing
that FID is significantly more sensitive than WaM to noise perturbations of real images. The noise perturbations
in this experiment are all greater in magnitude than the targeted perturbations in Section 5.1. The original
image above was randomly selected from a set of 50,000 images of the ImageNet training dataset. In contrast
to Figure 5, we see that FID is more sensitive to these perturbations when the images look more realistic. The
FID and WaM values were calculated using ResNet-18.

2017; Borji, 2019). FID is affected R = 5.09 times as much as WaM when the noise is barely visible
(σ = 0.1), making WaM must more desirable to use in noisy contexts.

We also use KID to evaluate BigGAN-generated and ImageNet images and discuss the details in
Section A of the supplementary material. Our findings show that KID has similar sensitivity as
WaM on BigGAN-generated images but that KID skyrockets on ImageNet images as compared to
WaM. This means that for imperceptible additive noise on realistic images, WaM is less sensitive
than KID and can offer a better means to evaluate generative models which produce realistic images.

A good metric for evaluating generative network performance should be able to capture the quality
of generated images at all stages. FID does not do this well. FID is sensitive to noise perturbations,
especially when the images look realistic; hence, R is much larger for the ImageNet training data
than it is for the BigGAN generated images. As generative networks get better and better, we must
use more information (not just the first and second moment) from the feature distribution in order to
accurately evaluate generated samples.

6 CONCLUSIONS

We generalize the notion of FID by modeling image features with GMMs and computing a relaxed
2-Wasserstein distance on the distributions. Our proposed metric, WaM, allows us to accurately
model more complex distributions than FID, which relies on the invalid assumption that image
features follow a Gaussian distribution. Moreover, we show that WaM is less sensitive to both
imperceptible targeted perturbations that modify the first two moments of the feature distribution
and imperceptible additive Gaussian noise. This is important because we want a performance metric
which is truly reflective of the perceptual quality of images and will not vary much when visually
imperceptible noise is added. We can use WaM to evaluate networks which generate new images,
superresolve images, solve inverse problems, perform image-to-image translation tasks, and more.
As networks continue to evolve and generate more realistic images, WaM can provide a superior
model of the feature distributions, thus enabling more accurate evaluation of extremely-realistic
generated images.
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SUPPLEMENTARY MATERIAL

A KERNEL INCEPTION DISTANCE EXPERIMENTS

Kernel Inception distance (KID) Bińkowski et al. (2018) is a popular method to evaluate the perfor-
mance of a GAN which uses embeddings from powerful classifiers, such as Inception-v3 Szegedy
et al. (2016b). We use the cubic polynomial kernel, i.e., k(x,y) = ( 1dx

⊤y + 1)3 for x,y ∈ Rd,
to compute similarities between featurized samples, as is typically done. We use this method to
evaluate WaM’s sensitivity to imperceptible noise perturbations. To do this, we define RKID to be
the ratio of the KID of the perturbed images over the KID of the original images. We further define
R′ = RKID

RWaM
.

The targeted perturbation experiments in Section 5.1 of the original paper had values of R = 1.88
and R = 6.48 for BigGAN generated and real images, respectively. Hence, Figure 7 shows that KID
is is still significantly affected by these perturbations even though they are constructed to fool FID,
not KID. WaM is less sensitive than FID and KID in this setting, implying that it does not depend as
heavily on the first two moments and can capture more higher order information than both metrics.

Original (BigGAN) Perturbed (BigGAN) Original (ImageNet) Perturbed (ImageNet)
KID = 0.071

WaM2 = 142.12

KID = 0.248

WaM2 = 297.49

KID = 0.006

WaM2 = 52.60

KID = 0.387

WaM2 = 174.76

RKID = 3.492

RWaM = 2.09

R′ = 1.67

RKID = 61.191

RWaM = 3.32

R′ = 18.43

Figure 7: Samples of images showing targeted perturbations which artificially inflate FID but not WaM; how-
ever, we show KID values being indirectly inflated more than WaM. The two original images above are ran-
domly selected from a set of 50,000 images generated by BigGAN and a set of 50,000 images of the ImageNet
training dataset. We cannot visually perceive the difference between the original and perturbed images, despite
the datasets from which they were selected clearly demonstrating a drastic change in KID. The KID, WaM, and
R′ values were calculated using ResNet-18.

We now consider the random perturbations in Section 5.2 of the original paper and evaluate R′ on
them, as shown in Figures 8 and 9. We see that KID has similar sensitivity to WaM on BigGAN
generated images but much higher sensitivity on real images. In fact, KID has higher sensitivity on
real images than FID. We stress that the ability to evaluate realistic images is important because that
is what we want to generate. Therefore, WaM provides a means to evaluate realistic images better
than FID and KID under imperceptible noise perturbations.

13



Under review as a conference paper at ICLR 2022

original σ = 0.01 σ = 0.05 σ = 0.1 σ = 0.2 σ = 0.5

σ 0.01 0.05 0.1 0.2 0.5
KID(orig) 2.11 2.11 2.11 2.11 2.11
KID(pert) 2.22 2.74 3.47 4.65 5.23
WaM2(orig) 285.04 285.04 285.04 285.04 285.04
WaM2(pert) 292.63 339.39 418.59 614.83 741.13
RKID 1.05 1.29 1.64 2.2 2.47
RWaM 1.03 1.19 1.47 2.16 2.6
R′ 1.02 1.09 1.12 1.02 0.95

Figure 8: R′ values for BigGAN-generated images using additive isotropic Gaussian noise showing that KID
has similar sensitivity as WaM to noise perturbations of generated images. The original image above was
randomly selected from a set of 50,000 images generated by BigGAN. The KID, WaM, and R′ values were
calculated using ResNet-18.

original σ = 0.01 σ = 0.05 σ = 0.1 σ = 0.2 σ = 0.5

σ 0.01 0.05 0.1 0.2 0.5
KID(orig) 0.025 0.025 0.025 0.025 0.025
KID(pert) 0.033 0.187 0.496 1.146 2.745
WaM2(orig) 48.75 48.75 48.75 48.75 48.75
WaM2(pert) 50.18 99.95 120.09 184.36 400.65
RKID 1.283 7.363 19.528 45.143 108.118
RWaM 1.03 2.05 2.46 3.78 8.22
R′ 1.247 3.591 7.928 11.939 13.157

Figure 9: R′ values for real images (ImageNet training data) using additive isotropic Gaussian noise showing
that KID is significantly more sensitive than WaM to noise perturbations of real images. The original image
above was randomly selected from a set of 50,000 images of the ImageNet training dataset. In contrast to
Figure 5, we see that KID is more sensitive to these perturbations when the images look more realistic. The
FID and WaM values were calculated using ResNet-18.
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