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Abstract

The degree to which neural networks can gener-001
alize to new combinations of familiar concepts,002
and the conditions under which they are able to003
do so, has long been an open question. In this004
work, we study the systematicity gap in visual005
question answering: the performance differ-006
ence between reasoning on previously seen and007
unseen combinations of object attributes. To008
test, we introduce a novel diagnostic dataset,009
CLEVR-HOPE. We find that while increased010
quantity of training data does not reduce the011
systematicity gap, increased training data diver-012
sity of the attributes in the unseen combination013
does. In all, our experiments suggest that the014
more distinct attribute type combinations are015
seen during training, the more systematic we016
can expect the resulting model to be.017

1 Introduction018

Systematicity, the ability to handle novel combina-019

tions of known concepts, is a type of compositional020

generalization (Hupkes et al., 2020). While system-021

aticity is crucial to human intelligence (Fodor and022

Pylyshyn, 1988), conventionally trained neural net-023

works often struggle to generalize systematically024

(Csordás et al., 2021; Csordás et al., 2022a,b).025

Inspired by prior work investigating composi-026

tionality failures in language models (Press et al.,027

2022), we study the systematicity gap in visual028

question answering (VQA): the drop in model per-029

formance when reasoning about a combination of030

properties that was held out from both the text and031

vision modalities at train time. As an example, let032

us consider MATERIAL and SHAPE as two attribute033

types. If a model was trained without exposure to034

a particular combination of attribute values, e.g.,035

rubber sphere, then we say the model composes036

systematically if it has high performance at test037

time on data that includes a rubber sphere.038

Our work empirically demonstrates that system-039

aticity emerges in a neural VQA model if the model040

is trained with diverse contexts for the attribute 041

values in question (i.e., exposed to many MATE- 042

RIAL-SHAPE combinations). The intuition for this 043

hypothesis is simple: given many training exam- 044

ples of distinct combinations, the model learns how 045

material and shape interact, and thus systematically 046

generalizes to an unseen combination of MATE- 047

RIAL and SHAPE. In contrast, a model trained on 048

low-diversity data (i.e., only exposed to a few MA- 049

TERIAL-SHAPE combinations) fails to learn rules 050

to recombine them. 051

Using CLEVR-HOPE, a novel dataset for eval- 052

uating systematicity on a variety of held-out ob- 053

ject attribute value pairs in a controlled setting, we 054

measure the systematic compositionality of multi- 055

modal transformer and neurosymbolic models. We 056

find that, while systematicity does not improve with 057

more training data, it does improve with more di- 058

verse training data. Specifically, attribute types that 059

include more diverse combinations during training 060

can be composed systematically. 061

2 CLEVR-HOPE Diagnostic Dataset 062

Our dataset is based on CLEVR (Johnson et al., 063

2017a), a synthetic experimental setting for testing 064

basic visual reasoning skills. CLEVR comprises 065

English questions (such as “What is the color of 066

the cube on the right side of the yellow sphere?") 067

and corresponding 3D-rendered images of colored 068

blocks. Each block has four attribute types (SIZE, 069

COLOR, MATERIAL, and SHAPE). 070

We present the CLEVR Held-Out Pair Evalua- 071

tion (CLEVR-HOPE) dataset for testing the sys- 072

tematicity of VQA models. CLEVR-HOPE is a 073

controlled setting to test whether VQA models gen- 074

eralize to pairs of attribute values that were not 075

seen during either training or fine-tuning. Within 076

CLEVR-HOPE, we refer to an unseen pair of 077

attribute values as a Held-Out Pair (HOP). The 078

dataset is composed of 29 sub-datasets, each for a 079
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train

What is the shape of the blue 
metallic object that is the 
same size as the gray block?

cylinder

complex-IID

How many large red rubber 
objects are there?

0

minimal-IID

Are any rubber balls 
visible?

yes

minimal-OOD

Are there any rubber 
cylinders?

no

complex-OOD

There is a large shiny thing; 
is it the same color as the 
tiny matte cylinder to the 

right of the brown shiny thing?
yes

rubber cylinder Testrubber cylinder Train In the first sub-dataset, rubber cylinder is unseen at train time

Figure 1: Example image-question pairs for the sub-dataset of CLEVR-HOPE corresponding to rubber
cylinder.The test sets are in gray; rubber cylinder is omitted visually and textually in the train split and
the IID test splits; rubber cylinder only occurs in the OOD splits; occurrences are emphasized in this figure. The
train and complex sets are of comparable visual and textual complexity to CLEVR. The minimal sets consist only of
existence questions, checking whether a single object matches a given pair of attribute values.

different HOP (Appx. Tab. 2) . Each HOP has its080

own train set and 4 test sets. For rubber cylinder,081

visualized in Fig. 1, these datasets are:082

train: 560k image-question pairs in the train-083

ing/finetuning set. The data distribution is similar084

to CLEVR, but any images or questions involving085

rubber cylinder have been removed.086

complex-IID test: Test data sampled from the train087

distribution (i.e., rubber cylinder is filtered out).088

complex-OOD test: Test data sampled from the089

CLEVR distribution filtered to always have (i) at090

least one object matching rubber cylinder, and091

(ii) rubber cylinder in the question.092

minimal-IID test: Minimal image-question pairs093

that check whether a model can recognize pairs094

of attribute values, corresponding to rubber095

cylinder’s attribute types, that were seen in the096

train set.097

minimal-OOD test: Minimal image-question pairs098

that check recognition of rubber cylinder. Al-099

ways returning false would yield 75% accuracy.100

Appendix B includes dataset details. Note,101

CLEVR-HOPE omits validation sets to prevent tun-102

ing for specific task (Teney et al., 2020); instead,103

hyperparameters should be chosen using CLEVR.104

3 Models & Training105

Models: Our analysis focuses on LXMERT (Tan106

and Bansal, 2019), a multi-modal transformer-107

based (Vaswani et al., 2017) architecture.We also108

run experiments on a neurosymbolic model, Tensor-109

NMN (Johnson et al., 2017b), a neural module net-110

work (Andreas et al., 2016) that decomposes a task111

into composition of subtask-specific modules.112

Training: For each HOP, we subsample the113

training set to test the impact the amount of training114

data has on performance. For 3 random seeds per 115

HOP, we finetune pretrained LXMERT (LXMERT- 116

p) and train LXMERT from scratch (LXMERT-s). 117

We also train Tensor-NMN from scratch, again for 118

three runs, though only for the first 6 HOPs, com- 119

binations of {large, cyan, rubber, cylinder}. 120

For hyperparameter selection, we perform a grid 121

search on the original CLEVR dataset (Johnson 122

et al., 2017a). For further details, see Appendix C. 123

4 Results 124

4.1 Evidence of Systematic Behaviour 125

With sufficient training data, over 93% of the tested 126

model-HOP combinations exceed 75% accuracy 127

on the minimal-OOD test set, with some reaching 128

100% (see Appx. Fig. 5). The VQA models have a 129

wide range of accuracies generalizing to different 130

held out pairs. On all models tested, this accuracy 131

varies by around 25% across different HOPs. 132

Performance on the complex-OOD test set is also 133

generally increasing with the amount of training 134

data, and we see that the OOD accuracies across 135

HOPs are similarly distributed (see Appx. Fig. 7). 136

In all, we can conclude that the models consis- 137

tently exhibit at least some degree of systematic be- 138

haviour. The same trends are observed for Tensor- 139

NMN (see Appx. Figs. 10 and 12). 140

4.2 Systematicity Gap 141

Knowing that our models can exhibit systematic be- 142

haviour, a natural question to ask is whether there 143

is any trend in the difference between in- and out- 144

of-distribution performance: i.e., as the size of the 145

training set increases (and thus the model’s perfor- 146

mance generally improves), does its performance 147

on held-out combinations approach its performance 148
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Figure 2: Systematicity gap (difference between OOD
and IID model accuracy) on the complex test split, av-
eraged by held-out pair (HOP) diversity over 29 HOPs,
each with 3 runs.

on the combinations already seen at train time? We149

call this performance difference, between the OOD150

and IID combinations, the systematicity gap.151

For example, if a model has an IID accuracy of152

95%, but only 80% for data that requires the model153

to systematically compose rubber and cylinder154

into the held out pair rubber cylinder, then the155

systematicity gap is -15% (i.e., a 15% drop).156

Given that the models are somewhat systematic,157

and that performance in general improves with158

more training data, one might expect that the sys-159

tematicity gap would trend to zero. To the con-160

trary, we find that, averaging over all HOPs, the161

LXMERT systematicity gap plateaus to a drop of162

5-6% (see Appx. Fig. 15). On the minimal test sets,163

the systematicity gap again plateaus, to a drop of164

6-8% (see Appx. Fig. 16). The same trends are ob-165

served in Tensor-NMN (see Appx. Figs. 17 and 18),166

though the systematicity gap on minimal examples167

widens with additional training data.168

With that said, the standard deviation of the ob-169

served systematicity gap is quite high – in the fol-170

lowing section we make the case that the nature of171

the training data, specifically the attribute diversity172

seen at train time, is responsible.173

4.3 Train-time conceptual diversity impacts 174

systematicity 175

We define attribute diversity as the number of 176

possible attribute values corresponding to the un- 177

seen combination’s attribute types. For example, if 178

the unseen combination is rubber cylinders, that 179

corresponds to the MATERIAL and SHAPE attribute 180

types. Given there are 2 possible MATERIALS and 181

3 possible SHAPES in the training set, there are 182

2 × 3 = 6 possible MATERIAL-SHAPE combina- 183

tions; thus the attribute diversity is 6. 184

HOP Attribute Types Diversity
Large rubber SIZE + MATERIAL 4

Rubber cylinder MATERIAL + SHAPE 6
Large cylinder SIZE + SHAPE 6
Rubber cyan MATERIAL + COLOR 16
Large cyan SIZE + COLOR 16

Cyan cylinder COLOR + SHAPE 24

Table 1: Diversity of the first six held-out pairs (HOPs).
Diversity is the number of possible attribute values cor-
responding to the HOP’s attribute types.

Tab. 1 lists the attribute diversity of the first six 185

HOPs in CLEVR-HOPE (see Appx. Tab. 2 for all 186

29 HOPs). Since the CLEVR training distribution 187

is uniform across object attribute values, for a train 188

set of fixed size, as attribute diversity increases, the 189

number of examples per combination decreases. 190

Fig. 2 again illustrates the systematicity gap, but 191

now only averages over HOPs of the same diversity 192

(rather than over all HOPs as in Sec. 4.2). With 193

this, we see that the systematicity gap is stratified 194

by the diversity of the combinations seen at train 195

time. Specifically, as the diversity of the training 196

data increases, the systematicity gap narrows. In 197

fact, the gap is typically near or within a standard 198

deviation of zero for diversities of 16 or above. In 199

comparison, diversities of 6 show a a plateauing 200

systematicity gap stabilizing at 7-14%. As seen 201

in Fig. 19, we observe similar results with the sys- 202

tematicity gap of the minimal test sets. 203

For Tensor-NMN, we also find stratification by 204

diversity for complex examples (see Appx. Fig. 21). 205

The trend on minimal examples is noisier, but con- 206

verges to the expected ordering (see Appx. Fig. 22). 207

4.4 Controlling for confounding 208

We ran additional experiments explicitly control- 209

ling for confounding to verify attribute diversity’s 210

impact on the systematicity gap. In our prior ex- 211

periments, attribute diversity is intrinsically tied to 212

attribute type. As seen in Tab. 1, the most diverse 213
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pairs are always SHAPE-COLOR combinations, and214

the least diverse pairs are always MATERIAL-SIZE215

combinations. Thus, it is possible that we are ac-216

tually measuring the effects of attribute type on217

generalization, rather than diversity. To address218

this, here we vary the attribute diversity while keep-219

ing the attribute type combination fixed.220

We focused on SHAPE-COLOR combinations and221

generated multiple datasets with varying levels222

of diversity [4, 8, 16, 24] by varying the unique223

color-shape combinations present during training.224

We trained separate instances of LXMERT-s on225

these datasets and evaluated performance on corre-226

sponding HOPs (averaged across 3 random seeds).227

In Fig. 3, we see that lower attribute diversity led228

to worse systematicity gap.229

Figure 3: For attribute pair COLOR + SHAPE, we control
the diversity by subsampling fixed number of combina-
tions (one of [4, 8, 16, 24]), and finetuning the model
accordingly. On the complex test sets, we observe that
increasing attribute diversity reduces systematicity gap.

5 Related work230

While compositionality in VQA has been studied,231

prior work has focused on generalization to new232

question structures (Bahdanau et al., 2019; Vani233

et al., 2021; Bogin et al., 2021), or question-answer234

combinations (Agrawal et al., 2017), rather than235

new attribute combinations. Systematicity has of-236

ten been investigated through synthetic datasets237

to control for the model’s exposure to particular238

attribute combinations. Lake and Baroni (2018) in-239

troduced the SCAN benchmark to evaluate compo-240

sitionality in sequence-to-sequence models, reveal-241

ing a lack of systematicity. Followup (Patel et al.,242

2022; Jiang et al., 2022) and concurrent (Zhou et al.,243

2023) seq2seq works have shown that the concep-244

tual diversity of the training set significantly affects245

systematicity — our work extends these findings 246

to the multi-modal domain of VQA. 247

The closest prior work is the CLEVR-CoGenT 248

dataset: Johnson et al. (2017a) created a train-test 249

CLEVR split where at train time cubes and cylin- 250

ders are restricted to limited color palettes, that are 251

reversed at test time. They observed that model 252

performance declined on held-out attribute com- 253

binations. But, unlike CLEVR-HOPE, CLEVR- 254

CoGenT does not change the question distribution 255

at train time — held-out combinations can leak 256

by appearing in text at train time. Furthermore, 257

CLEVR-CoGenT has only a single train set with 258

held-out COLOR-SHAPE combinations — whereas 259

CLEVR-HOPE expands the set of held-out combi- 260

nations to 29 train sets, covering all possible pairs 261

of attribute types. CLEVR-HOPE also indepen- 262

dently assesses each HOP, including in a minimal 263

setting. In combination, these improvements allow 264

us to study the impact of train-time diversity. 265

Our results align with concurrent work on the 266

effects of training diversity in VQA: Rahimi et al. 267

(2023) modify CLEVR to study the related ques- 268

tion of productivity, concluding that increasing the 269

diversity of question combinations increases pro- 270

ductivity. Unlike our work, they do not use a trans- 271

former architecture, instead studying MAC (Hud- 272

son and Manning, 2018), FiLM (Perez et al., 2018), 273

and Vector-NMN (Bahdanau et al., 2019). Addi- 274

tionally, as they study a fundamentally different 275

question, their dataset only alters the question dis- 276

tribution — their image distribution is unchanged 277

between train and test time. Given that system- 278

aticity and productivity are both aspects of compo- 279

sitional generalization (Hupkes et al., 2020), the 280

growing evidence across task settings and facets 281

of compositionality (Oren et al., 2021; Levy et al., 282

2022, 2023) suggests a close relationship between 283

train-time diversity and compositional generaliza- 284

tion as a broad phenomenon. 285

6 Conclusions 286

Using CLEVR-HOPE, we demonstrate that 287

LXMERT and Tensor-NMN exhibit some degree 288

of systematic generalization to held-out object at- 289

tribute pairs. Furthermore, we illustrate that the 290

systematicity gap (the difference between in- and 291

out-of-distribution performance) does not improve 292

with more data, but does with more attribute di- 293

verse data— i.e., the number of attribute pairs of 294

the same type seen at train time. 295
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Limitations296

First and foremost, while the synthetic nature of297

CLEVR-HOPE allows for a more controlled study298

of models, it raises the question whether the ob-299

served results will hold in more complex and di-300

verse real-world settings.301

The second major limitation arises from the302

choice of models. LXMERT uses a pretrained303

F-RCNN (Ren et al., 2015) for object detection,304

which we do not alter. As the F-RCNN is pre-305

trained, it may already possess implicit knowledge306

of the attributes (e.g., shape), and may contribute307

systematic structure to LXMERT. Any such vi-308

sual knowledge or biases are therefore given to309

both LXMERT-p and LXMERT-s. In contrast,310

note that the language component of LXMERT-s is311

randomly initialized — whereas (Tan and Bansal,312

2019) initialized their language transformer with313

BERT (Devlin et al., 2019) when pretraining from314

scratch. Similarly, Tensor-NMN uses a frozen pre-315

trained ResNet (He et al., 2016) as its vision back-316

bone, and its language components and modules317

are initialized from scratch. A related limitation318

is that LXMERT-p may have been exposed to the319

held-out attribute during its pretraining phase; we320

control for this via the LXMERT-s experiments321

where no vision-language pretraining is performed.322

Finally, due to time and resource limitations, we323

only evaluate Tensor-NMN on 6 of the 29 total324

HOPs, one for each attribute type combination.325

Ethics Statement326

We judge that our work has very low risk. The pri-327

mary risk is of using our dataset to measure model328

systematicity in models that are not trained on our329

train/test split. We have provided a highly specific330

diagnostic dataset that is designed to provide a data331

split for testing generalization claims, and our OOD332

set is not useful to measure generalization in arbi-333

trary VQA models. This concern is documented in334

the dataset datasheet in Section H of the Appendix.335
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A Extended Related Work521

While compositionality in VQA has been studied,522

prior work has focused on generalization to new523

question structures (Bahdanau et al., 2019; Vani524

et al., 2021; Bogin et al., 2021), or question-answer525

combinations (Agrawal et al., 2017), rather than526

new attribute combinations. One reason for this527

gap is that, with natural data, it is hard to control528

for the model’s exposure to particular attribute com-529

binations. By using a controlled synthetic setting,530

we can guarantee that generalization behavior is531

systematic based on the data split.532

Systematicity has often been investigated533

through synthetic datasets. Lake and Baroni (2018)534

introduced the SCAN benchmark to evaluate com-535

positionality in sequence-to-sequence models, re-536

vealing a lack of systematicity. Followup (Pa-537

tel et al., 2022; Jiang et al., 2022) and concur-538

rent (Zhou et al., 2023) seq2seq works have shown539

that the conceptual diversity of the training set sig-540

nificantly affects systematicity — our work extends541

these findings to the multi-modal domain of VQA.542

The closest prior work is the CLEVR-CoGenT543

dataset: Johnson et al. (2017a) created a train-test544

CLEVR split where at train time cubes and cylin-545

ders are restricted to limited color palettes, that are546

reversed at test time. They observed that model547

performance declined on held-out attribute com-548

binations. But, unlike CLEVR-HOPE, CLEVR-549

CoGenT does not change the question distribution550

at train time — held-out combinations can leak551

by appearing in text at train time. Furthermore,552

CLEVR-CoGenT has only a single train set with553

held-out COLOR-SHAPE combinations — whereas554

CLEVR-HOPE expands the set of held-out combi-555

nations to 29 train sets, covering all possible pairs556

of attribute types. CLEVR-HOPE also indepen-557

dently assesses each HOP, including in a minimal558

setting. In combination, these improvements allow559

us to study the impact of train-time diversity.560

Beyond CLEVR-CoGenT, our results align with561

concurrent work on the effects of training diversity562

in VQA: Rahimi et al. (2023) modify CLEVR to563

study the related question of productivity. Specif-564

ically, generalization to questions with more rea-565

soning steps, and generalization to new question566

combinations (e.g., answering counting questions 567

about shape, when all train-time counting ques- 568

tions are about color or size). They conclude that 569

increasing the diversity of question combinations 570

increases productivity. Unlike our work, they do 571

not use a transformer architecture, instead studying 572

MAC (Hudson and Manning, 2018), FiLM (Perez 573

et al., 2018), and Vector-NMN (Bahdanau et al., 574

2019). Additionally, as they study a fundamen- 575

tally different question, their dataset only alters the 576

question distribution — their image distribution is 577

unchanged between train and test time. 578

Given that systematicity and productivity are 579

both aspects of compositional generalization (Hup- 580

kes et al., 2020), the growing evidence across task 581

settings and facets of compositionality (Oren et al., 582

2021; Levy et al., 2022, 2023) suggests a close 583

relationship between train-time diversity and com- 584

positional generalization as a broad phenomenon. 585

B CLEVR-HOPE: Additional details 586

The full list of held-out pairs (HOPs) can be found 587

in Table 2. The HOPs were selected by choos- 588

ing two attribute values from each of large cyan 589

rubber cylinder, small brown rubber sphere, 590

small red metal cylinder, large gray metal 591

cube, and small purple rubber sphere. 592

Note that there are only 4 possible MATERIAL- 593

SIZE combinations, as there are only 2 SIZES and 2 594

MATERIALS. We include all 4 of these, as well as 595

5 HOPs for every other pair of attribute types. 596

Before selecting the 5 4-tuples from which we 597

created the HOPs in CLEVR-HOPE, we first cre- 598

ated a small set of minimal test questions for test- 599

ing how well a given model comprehends a given 600

attribute in isolation — CLEVR-PRELIM. For ex- 601

ample, for the color cyan we had two types of tests. 602

First, tests similar to the minimal-OOD test tests 603

(i.e., a single object and rephrasings of “Are any 604

cyan objects visible?”). Second, counting tests — 605

all questions were rephrases of “What number of 606

cyan objects are there?”, and images had varying 607

numbers of cyan objects. Specifically, we fixed the 608

position of 5 objects, and created 6 images, each 609

with a different number of objects matching the 610

attribute — i.e., 0, 1, 2, 3, 4, or 5 cyan objects. 611

Note that, unlike CLEVR-HOPE which studies 612

pairs of attributes values, CLEVR-PRELIM evalu- 613

ates only attribute values in isolation. 614

Using CLEVR-PRELIM, we performed a zero- 615

shot evaluation of Tan and Bansal (2019)’s VQA2.0 616
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(Goyal et al., 2017) fine-tuned LXMERT check-617

point. From this preliminary study we found that618

zero-shot model performance was generally poor619

(e.g., over all attribute values of all types, the high-620

est count performance was 49.1%). Given our inter-621

est in studying the impact of the amount of training622

data, we created our first 4-tuple by individually623

selecting each attribute value; specifically choos-624

ing the attribute value that zero-shot LXMERT had625

the lowest performance on — this created the 4-626

tuple Large cyan rubber cylinder. The remain-627

ing four tuples were selected uniformly at random.628

Ultimately, as we did not see any significant dif-629

ference between a small sample of 6 HOPs (those630

created from attribute pairs in large cyan rubber631

cylinder) and a larger sample of 23 HOPs (those632

created from random 4-tuples), we present results633

aggregated over all 29 HOPs.634

Note that as two 4-tuples were rubber spheres635

and small spheres, we added the HOPs rubber636

cube and small cube so that we would maintain637

five MATERIAL-SHAPE and five SIZE-SHAPE pairs.638

HOP Attribute Types Diversity
Large rubber SIZE + MATERIAL 4
Small rubber SIZE + MATERIAL 4
Large metal SIZE + MATERIAL 4
Small metal SIZE + MATERIAL 4

Rubber cylinder MATERIAL + SHAPE 6
Metal cylinder MATERIAL + SHAPE 6
Rubber cube MATERIAL + SHAPE 6
Metal cube MATERIAL + SHAPE 6

Rubber sphere MATERIAL + SHAPE 6
Large cylinder SIZE + SHAPE 6
Small cylinder SIZE + SHAPE 6

Small cube SIZE + SHAPE 6
Large cube SIZE + SHAPE 6

Small sphere SIZE + SHAPE 6
Rubber cyan MATERIAL + COLOR 16
Rubber brown MATERIAL + COLOR 16
Rubber purple MATERIAL + COLOR 16

Metal red MATERIAL + COLOR 16
Metal gray MATERIAL + COLOR 16
Large cyan SIZE + COLOR 16
Small brown SIZE + COLOR 16
Small purple SIZE + COLOR 16
Small red SIZE + COLOR 16
Large gray SIZE + COLOR 16

Cyan cylinder COLOR + SHAPE 24
Brown sphere COLOR + SHAPE 24
Red cylinder COLOR + SHAPE 24
Gray cube COLOR + SHAPE 24

Purple sphere COLOR + SHAPE 24

Table 2: Train set diversity of each held-out pair (i.e.,
HOP) of object attribute values. Diversity is the number
of possible pairs of attribute values, corresponding to
the HOPs attribute types.

For each HOP in CLEVR-HOPE, the approxi-639

mate size of the corresponding splits is outlined640

below: 641

• train set: 62k images, and 560k image- 642

question pairs 643

• complex-IID test set: 13k images, 120k 644

image-question pairs 645

• complex-OOD test set: 15k images, 15k 646

image-question pairs 647

• minimal-IID test set: 2576-3200 images, 648

8640-11970 image-question pairs (depending 649

on HOP) 650

• minimal-OOD test set: 448-3840 images, 651

448-3840 image-question pairs (depending on 652

HOP) 653

To reduce the resources required to generate the 654

dataset, images are reused throughout the dataset. 655

Specifically, the images are reused across the train 656

sets for the HOPs, and reused from the original 657

CLEVR (Johnson et al., 2017a) training set. 658

Similarly, each of the test sets reuse images 659

across HOPs. Note that while the complex-IID 660

test and complex-OOD test sets do not reuse 661

eachother’s images, the minimal-IID test and 662

minimal-OOD test sets do for images that do not 663

involve the HOP under consideration. 664

To ensure that CLEVR can be fairly used for 665

hyperparameter tuning, and to prevent any data 666

leakage, no CLEVR validation or test images are 667

reused in CLEVR-HOPE. 668

For further information, including distribution 669

and maintenance, see the CLEVR-HOPE Datasheet 670

in Section H. The datasheet follows the format 671

outlined by Gebru et al. (2021), and is modified 672

from the template by Garbin (2021). 673

B.1 CLEVR-HOPE: minimal-OOD test set 674

and minimal-IID test set 675

All images in the minimal-OOD test and minimal- 676

IID test sets contain only a single object. All ques- 677

tions ask whether there are any objects matching 678

the attribute value pair. E.g., for the HOP rubber 679

cyan, some question variants include “Are there 680

any cyan matte things?” and “Are any cyan matte 681

things visible?”. 682

These splits are designed to test the model in 683

a systematic manner: each image matching the 684

HOP has 3 corresponding images that do not match 685

the HOP. These 4 images share identical question 686

phrasing. The non-matching images maintain the 687
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Hyperparameter LXMERT-p LXMERT-s
Learning Rate 5e-5 1e-5

Gradient Updates 218,750 481,000
Batch size 32 32

Table 3: Key hyperparameter values used for LXMERT

object position, lighting, and the attribute values688

that are irrelevant to the HOP, but change the first689

attribute value in the HOP, the second attribute690

value in the HOP, or both attribute values in the691

HOP, respectively. See Fig. 4 for an example.692

Note that the question template is taken directly693

from the original CLEVR dataset generation code.694

The main change is the aforementioned systematic695

design, and that the images used contain only a696

single object, whereas the original CLEVR requires697

at least 3 objects in any scene.698

The minimal-IID test split is created in the same699

way, but testing all other attribute-value pairs of700

the same type as the HOP. Note that the distractor701

attribute values in the negative examples were se-702

lected uniformly at random. Since this may create703

the held-out pair (and indeed, must do so for one704

of the four size-material images), after the initial705

creation of the minimal-IID test split, we filter it to706

remove any image-question pairs where the object707

in the image matches the HOP.708

C Training details709

All subsets of the train sets (i.e., of size 25k, 200k,710

and 560k) are created by taking the first however711

many indices. This corresponds to a random subset712

of images for 25k, which is consecutively randomly713

expanded. This is so because the image-question714

pairs are unsorted, apart from all questions for any715

given image having contiguous indices. Note that716

we fix the number of gradient updates across sub-717

set sizes, i.e., smaller subsets are trained for more718

epochs so that the total number of gradient updates719

is the same.720

For LXMERT, the maximum sequence length is721

increased to 49 so that CLEVR-HOPE questions722

are not truncated.723

For LXMERT-p, we follow Tan and Bansal724

(2019)’s procedure for finetuning their pretrained725

LXMERT checkpoint on a VQA dataset. As part726

of their procedure, the pretrained F-RCNN (Ren727

et al., 2015) object detector is not altered in any728

way.729

LXMERT-p hyperparameters were modified730

from the hyperparameters used by Tan and Bansal 731

(2019) for finetuning LXMERT for VQA. Specifi- 732

cally, Tan and Bansal (2019) finetuned LXMERT 733

for the VQA tasks of VQAv2 (Goyal et al., 2017), 734

NLVR2 (Suhr et al., 2019), and GQA (Hudson and 735

Manning, 2019) with a batch size of 32, 4 epochs, 736

and a learning rate of either 1e-5 or 5e-5. We ulti- 737

mately used a learning rate of 5e-5, and increased 738

the epochs to 10 as we found it yielded better per- 739

formance. 740

For LXMERT-s we randomly initialize all 741

LXMERT weights (this excludes the pretrained F- 742

RCNN object detector), and apply the LXMERT 743

finetuning procedure (albeit with different hyper- 744

paramters) to train this randomly initialized model. 745

Both LXMERT models contain 209 million train- 746

able parameters, in addition to the frozen F-RCNN 747

object detector (65 million frozen parameters). 748

LXMERT-s hyperparameter tuning was per- 749

formed via grid search over learning rate (1e-4, 750

5e-5, 1e-5) and training steps (218750, 481000, 751

700000). Note that we ultimately used 481k 752

gradient update steps, as its validation accuracy 753

(95.47%) was extremely close to 700k (96.99%), 754

with nearly half the training time. 755

The LXMERT hyperparameters used are sum- 756

marized in Tab. 3. 757

Tensor-NMN is trained from scratch following 758

the process used by Bahdanau et al. (2019).Follow- 759

ing their work, image features are extracted from 760

the conv4 layer of a frozen ResNet101 (He et al., 761

2016). Tensor-NMN is trained in a 3 stage process 762

— initially the program generator and execution en- 763

gine are trained in a supervised manner, following 764

which they are trained together using REINFORCE. 765

The default hyperparameters for CLEVR from Bah- 766

danau et al. (2019) are used. 767

The Tensor-NMN model contains 42 million 768

trainable parameters, in addition to the frozen 769

ResNet101 image feature extractor (27 million 770

frozen parameters – less than the full ResNet101 771

as only the conv4 features are used). 772

Models were trained on a mixture of 16GB 773

Nvidia Tesla T4 GPUs, and 8GB Nvidia GeForce 774

RTX 2070 GPUs. Each run was trained on a single 775

GPU, with the experiments spread over approxi- 776

mately 44 GPUs. We upper bound the number of 777

GPU hours of compute used at approximately 24k, 778

32k, and 66k for the LXMERT-p, LXMERT-s and 779

Tensor-NMN experiments respectively. 780
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Are there any matte 
cylinders?

Are there any matte 
cylinders?

Are there any matte 
cylinders?

Are there any matte 
cylinders?

yes no nono

Figure 4: Four example image-question pairs for the minimal-OOD test split of the sub-dataset of CLEVR-HOPE
corresponding to the first held-out attribute pair — i.e., rubber cylinder. Note how the first image matches
rubber cylinder (MATERIAL=rubber, and SHAPE=cylinder), and the next three image have one attribute value
(MATERIAL=metal), the other attribute value (SHAPE=cube), or both (MATERIAL=metal, and SHAPE=cube)
attribute values not matching rubber cylinder. This pattern repeats throughout the dataset, with the choice of
distractor values, object position, lightning, question-phrasing and the value of the attribute-types not in HOP, all
chosen randomly, but fixed within each set of 4 images.

D LXMERT Detailed Results781

LXMERT performance on minimal-OOD test can782

be found in Fig. 5. Performance on minimal-IID783

test can be found in Fig. 6. All plots mark 75%784

— this baseline performance is achieved on the785

minimal-OOD test split by always predicting false786

(i.e., the most common class). Always predicting787

false on minimal-IID test yield a baseline perfor-788

mance between 66% and 75%, depending on the789

HOP.790

LXMERT performance on complex-OOD test791

can be found in Fig. 7. Performance on complex-792

IID test can be found in Fig. 8.793

For LXMERT trained on the largest train sets794

(560k), we plot the complex and minimal model795

accuracies, averaged by the attribute types of the796

HOPs, in Fig. 9.797

The exact average accuracies and standard devi-798

ations over 3 runs are in Tables 4 through 11.799

E Tensor-NMN Detailed Results800

As Tensor-NMN was only evaluated on the first 6801

HOPs, we include the subset of LXMERT models802

trained on the same HOPs for comparison.803

Model performance on minimal-OOD test can be804

found in Fig. 10. Performance on minimal-IID test805

can be found in Fig. 11. All plots mark 75% — this806

baseline performance is achieved on the minimal-807

OOD test split by always predicting false (i.e., the808

most common class). Always predicting false on809

minimal-IID test yield a baseline performance be-810

tween 66% and 75%, depending on the HOP.811

Model performance on complex-OOD test can812

be found in Fig. 12. Performance on complex-IID813

test can be found in Fig. 13. 814

For Tensor-NMN trained on the largest train sets 815

(560k), we plot the complex and minimal model 816

accuracies, averaged by the attribute types of the 817

HOPs. The results are visualized in Fig. 14. Again, 818

we include the corresponding subset of LXMERT 819

models for comparison. 820

The exact average accuracies and standard devi- 821

ations over 3 runs are in Tables 12 through 15. 822

F Systematicity Gap 823

As outlined in Section 4.2, we find that, on all 824

models, averaged over HOPs, the gap between per- 825

formance on complex questions involving IID vs. 826

OOD attribute combinations does not trend to zero. 827

Instead, it plateaus (see Figures 15 and 17). In com- 828

parison, the performance gap on minimal questions 829

plateaus or decreases gently (see Figures 16 and 830

18). 831

In Fig. 20 we visualize the systematicity gap by 832

attribute-types in the pair on both LXMERT and 833

Tensor-NMN. It can be seen that the systematicity 834

gaps are still sorted by the diversity of the attribute 835

pairs (i.e., we see lighter colours in the top left, and 836

darker colours in the bottom right). 837

The exact average systematicity gaps and stan- 838

dard deviations over 3 runs are in Tables 16 through 839

21. 840

F.1 Detailed Tensor-NMN Systematicity Gap 841

Averaging the systematicity gap in Tensor-NMN by 842

diversity, we again find stratification by diversity 843

for complex examples (see Fig. 21). The trend on 844

minimal examples is noisier, but ultimately con- 845

verges to the expected ordering (see Fig. 22). Note 846
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that, as is to be expected, when limited to the first847

six HOPs the LXMERT trend is also noisier. It848

is therefore reasonable to expect the Tensor-NMN849

trend would be cleaner with additional HOPs.850

G Summary Statistics851

The exact LXMERT-p and LXMERT-s average ac-852

curacies and standard deviations (averaged over 3853

runs) are in Tables 4 through 11.854

The exact Tensor-NMN average accuracies and855

standard deviations (averaged over 3 runs) are in856

Tables 12 through 15.857

The exact average systematicity gaps and stan-858

dard deviations (averaged over all runs for HOPs859

with the diversity in question) are in Tables 16860

through 21.861
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Figure 5: Box plot of minimal-OOD test set perfor-
mance on all 29 HOPs. The average performance for
each HOP is produced by averaging over 3 trials. The
variation captured by this boxplot is from the difference
in average performance between HOPs, rather than from
the variation within the 3 trials.

25K 200K 560K
Train Samples

70

80

90

100

Av
er

ag
e 

Ac
cu

ra
cy

LXMERT (Pretrained)

25K 200K 560K
Train Samples

40

50

60

70

80

90

100

Av
er

ag
e 

Ac
cu

ra
cy

LXMERT (Scratch)

Figure 6: Box plot of minimal-IID test set performance
on all 29 HOPs. The average performance for each HOP
is produced by averaging over 3 trials. The variation
captured by this boxplot is from the difference in aver-
age performance between HOPs, rather than from the
variation within the 3 trials.
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Figure 7: Box plot of complex-OOD test set perfor-
mance on all 29 HOPs. The average performance for
each HOP is produced by averaging over 3 trials. The
variation captured by this boxplot is from the difference
in average performance between HOPs, rather than from
the variation within the 3 trials.
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Figure 8: Box plot of complex-IID test set performance
on all 29 HOPs. The average performance for each HOP
is produced by averaging over 3 trials. The variation
captured by this boxplot is from the difference in aver-
age performance between HOPs, rather than from the
variation within the 3 trials.
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Figure 9: Model accuracies for HOP-0 through 28. Note that the LXMERT models often struggle on both IID and
OOD questions when MATERIAL-SHAPE combinations are held out at train time.
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Figure 10: Average minimal-OOD test set Tensor-
NMN performance for the first 6 HOPs over 3 trials.
For comparison, we also plot the average LXMERT
model performances (i.e., Fig. 5), but restricted to only
the first 6 HOPs. An area corresponding to 1 standard
deviation is shaded.
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Figure 11: Average minimal-IID test set Tensor-NMN
performance for the first 6 HOPs over 3 trials. For
comparison, we also plot the average LXMERT model
performances (i.e., Fig. 6), but restricted to only the first
6 HOPs. An area corresponding to 1 standard deviation
is shaded.
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Figure 12: Average complex-OOD test set Tensor-
NMN performance for the first 6 HOPs over 3 trials.
For comparison, we also plot the average LXMERT
model performances (i.e., Fig. 7), but restricted to only
the first 6 HOPs. An area corresponding to 1 standard
deviation is shaded.
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Figure 13: Average complex-IID test set Tensor-NMN
performance for the first 6 HOPs over 3 trials. For
comparison, we also plot the average LXMERT model
performances (i.e., Fig. 8), but restricted to only the first
6 HOPs. An area corresponding to 1 standard deviation
is shaded.
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Figure 14: Model accuracies for only the first 6 HOPs. Note that while the LXMERT models struggle with
MATERIAL-SHAPE combinations on OOD questions, Tensor-NMN does not.
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Figure 15: Average systematicity gap on complex exam-
ples (i.e., complex-OOD test accuracy minus complex-
IID test accuracy) with 1 standard deviation; averaged
over 3 runs on each of the 29 HOPs. Note that the sys-
tematicity gap plateaus, suggesting that the performance
drop when generalizing to unseen combinations does
not improve with additional training data.
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Figure 16: Average systematicity gap on minimal exam-
ples (i.e., minimal-OOD test accuracy minus minimal-
IID test accuracy) with 1 standard deviation; averaged
over 3 runs on each of the 29 HOPs.
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Figure 17: Average systematicity gap on complex exam-
ples (i.e., complex-OOD test accuracy minus complex-
IID test accuracy) with 1 standard deviation; averaged
over 3 runs on only the first 6 HOPs. Note that the sys-
tematicity gap plateaus, suggesting that the performance
drop when generalizing to unseen combinations does
not improve with additional training data.
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Figure 18: Average systematicity gap on minimal exam-
ples (i.e., minimal-OOD test accuracy minus minimal-
IID test accuracy) with 1 standard deviation; averaged
over 3 runs on only the first 6 HOPs.
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Figure 19: Systematicity gap (difference between OOD and IID model accuracy) on the bf minimal split, averaged
by held-out pair (HOP) diversity over 29 HOPs, each with 3 runs.
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Figure 20: Systematicity gap on the complex splits (top corner) and minimal splits (bottom corner) for all models
trained on 560k training examples. The systematicity gap is averaged according to the attribute types of the HOPs,
all 29 HOPs for LXMERT, HOPs 0-5 for Tensor-NMN — attributes are sorted by increasing diversity on the axes
(e.g., SHAPE has 2 possible values, COLOR has 8 possible values). As expected, we see a worse systematicity gap
(i.e. lighter colors) in the top left (low-diversity combinations), and better systematicity gap (i.e., darker colors) in
the bottom right (high-diversity combinations).
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Figure 21: Systematicity gap (i.e. difference between
OOD and IID model performance) for complex exam-
ples, averaged by HOP diversity over for the first 6
held-out attribute pairs only, each with 3 runs.
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Figure 22: Systematicity gap (i.e. difference between
OOD and IID model performance) for minimal exam-
ples, averaged by HOP diversity over for the first 6
held-out attribute pairs only, each with 3 runs.
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HOP Diversity 25k 200k 560k
cyan cylinder 24 64.80± 0.13% 95.03± 0.05% 97.36± 0.05%
brown sphere 24 65.02± 0.15% 95.09± 0.01% 97.43± 0.02%
red cylinder 24 65.02± 0.23% 95.07± 0.04% 96.25± 0.97%
gray cube 24 65.53± 0.23% 94.90± 0.13% 69.88± 38.90%
purple sphere 24 64.85± 0.52% 94.71± 0.03% 97.27± 0.12%
large cyan object 16 65.32± 0.22% 94.86± 0.11% 97.34± 0.05%
cyan rubber object 16 65.70± 0.21% 94.35± 0.69% 97.27± 0.09%
brown rubber object 16 65.55± 0.15% 94.88± 0.10% 97.33± 0.05%
small brown object 16 65.23± 0.04% 95.28± 0.16% 71.86± 36.14%
red metal object 16 64.92± 0.14% 95.00± 0.08% 97.48± 0.03%
small red object 16 65.19± 0.15% 94.71± 0.50% 97.33± 0.02%
gray metal object 16 65.31± 0.28% 94.75± 0.11% 97.29± 0.04%
large gray object 16 64.98± 0.05% 94.83± 0.24% 97.22± 0.24%
purple rubber object 16 65.14± 0.06% 94.85± 0.07% 97.31± 0.07%
small purple object 16 64.60± 0.17% 94.58± 0.31% 97.37± 0.07%
large cylinder 6 66.75± 0.08% 94.44± 0.93% 97.64± 0.03%
rubber cylinder 6 66.62± 0.20% 95.11± 0.08% 97.35± 0.22%
rubber sphere 6 66.38± 0.21% 95.13± 0.14% 97.45± 0.07%
small sphere 6 65.65± 0.28% 95.14± 0.16% 97.44± 0.04%
metal cylinder 6 66.38± 0.31% 95.17± 0.24% 71.77± 36.57%
small cylinder 6 67.06± 0.21% 95.07± 0.31% 97.62± 0.19%
metal cube 6 66.04± 0.41% 95.18± 0.10% 71.79± 36.61%
large cube 6 66.24± 0.13% 95.49± 0.08% 97.88± 0.02%
rubber cube 6 66.93± 0.36% 70.18± 35.34% 97.49± 0.32%
small cube 6 65.95± 0.07% 70.30± 35.03% 70.67± 38.16%
large rubber object 4 51.60± 24.05% 95.23± 0.15% 97.65± 0.05%
small rubber object 4 69.59± 0.18% 95.87± 0.08% 97.69± 0.27%
small metal object 4 68.69± 0.31% 95.84± 0.12% 97.91± 0.13%
large metal object 4 66.96± 0.52% 95.70± 0.13% 97.95± 0.05%

Table 4: LXMERT (Pretrained) complex-IID average accuracy and standard deviation over 3 runs with different
random seeds. Average accuracies are reported for each HOP (row) and each training set size (column).

HOP Diversity 25k 200k 560k
cyan cylinder 24 65.29± 0.48% 95.08± 0.15% 97.34± 0.08%
brown sphere 24 65.11± 0.08% 94.04± 0.40% 96.20± 0.22%
red cylinder 24 65.36± 0.11% 94.63± 0.08% 95.59± 1.32%
gray cube 24 65.60± 0.50% 94.19± 0.19% 69.15± 38.40%
purple sphere 24 65.92± 0.69% 94.55± 0.57% 97.43± 0.09%
large cyan object 16 64.08± 0.30% 94.70± 0.09% 97.19± 0.08%
cyan rubber object 16 63.44± 0.70% 92.69± 1.82% 95.85± 0.73%
brown rubber object 16 63.69± 0.20% 93.31± 0.09% 96.02± 0.14%
small brown object 16 63.57± 0.31% 91.02± 0.17% 70.20± 33.16%
red metal object 16 65.72± 0.68% 94.56± 0.26% 96.82± 0.26%
small red object 16 64.84± 0.45% 92.50± 1.09% 95.72± 0.11%
gray metal object 16 64.08± 0.31% 91.37± 0.37% 91.53± 0.58%
large gray object 16 64.24± 0.17% 94.37± 0.36% 96.96± 0.28%
purple rubber object 16 65.45± 0.22% 94.37± 0.20% 96.41± 0.38%
small purple object 16 65.05± 0.62% 93.67± 0.34% 96.42± 0.33%
large cylinder 6 65.69± 0.74% 88.60± 2.68% 93.76± 2.15%
rubber cylinder 6 63.26± 0.15% 84.66± 0.79% 85.46± 1.23%
rubber sphere 6 63.17± 0.57% 81.14± 0.77% 81.17± 1.60%
small sphere 6 63.23± 0.33% 88.92± 0.41% 90.06± 0.84%
metal cylinder 6 63.20± 0.64% 86.97± 1.39% 67.05± 31.47%
small cylinder 6 63.78± 0.21% 85.20± 0.91% 88.01± 0.20%
metal cube 6 63.27± 0.78% 83.82± 0.68% 64.88± 30.50%
large cube 6 63.84± 0.09% 88.33± 1.78% 88.95± 1.11%
rubber cube 6 63.34± 0.07% 66.41± 30.84% 88.78± 1.65%
small cube 6 63.98± 0.26% 67.35± 30.99% 67.21± 35.83%
large rubber object 4 47.32± 19.82% 85.71± 1.01% 88.39± 1.12%
small rubber object 4 61.10± 0.32% 78.04± 0.55% 79.62± 0.56%
small metal object 4 61.87± 0.54% 83.05± 0.08% 83.94± 2.44%
large metal object 4 61.07± 0.59% 86.40± 0.13% 86.08± 2.69%

Table 5: LXMERT (Pretrained) complex-OOD average accuracy and standard deviation over 3 runs with different
random seeds. Average accuracies are reported for each HOP (row) and each training set size (column).
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HOP Diversity 25k 200k 560k
cyan cylinder 24 90.89± 2.49% 99.97± 0.02% 100.00± 0.00%
brown sphere 24 92.33± 1.49% 99.98± 0.01% 100.00± 0.00%
red cylinder 24 92.05± 1.98% 99.99± 0.00% 99.89± 0.16%
gray cube 24 92.57± 1.40% 99.95± 0.03% 78.36± 30.60%
purple sphere 24 86.66± 4.47% 99.91± 0.07% 99.99± 0.01%
large cyan object 16 94.65± 1.06% 99.97± 0.01% 99.98± 0.01%
cyan rubber object 16 91.62± 1.09% 99.81± 0.05% 99.97± 0.01%
brown rubber object 16 91.63± 1.05% 99.58± 0.08% 99.93± 0.01%
small brown object 16 90.81± 1.49% 99.93± 0.03% 91.23± 12.40%
red metal object 16 91.15± 1.33% 99.72± 0.02% 99.97± 0.01%
small red object 16 92.06± 0.66% 98.60± 1.89% 99.99± 0.01%
gray metal object 16 90.09± 1.86% 99.52± 0.53% 99.98± 0.01%
large gray object 16 94.20± 1.19% 99.84± 0.11% 99.98± 0.02%
purple rubber object 16 88.69± 2.03% 99.77± 0.05% 99.96± 0.02%
small purple object 16 93.05± 0.41% 99.97± 0.02% 99.99± 0.01%
large cylinder 6 81.81± 3.51% 97.42± 3.37% 99.97± 0.01%
rubber cylinder 6 77.60± 6.47% 99.61± 0.15% 99.99± 0.00%
rubber sphere 6 81.61± 3.88% 99.75± 0.07% 99.87± 0.02%
small sphere 6 90.59± 1.41% 99.93± 0.04% 99.93± 0.03%
metal cylinder 6 85.59± 5.81% 99.84± 0.10% 76.46± 33.26%
small cylinder 6 86.79± 2.68% 99.95± 0.03% 99.99± 0.01%
metal cube 6 75.06± 7.55% 99.53± 0.35% 77.36± 31.95%
large cube 6 89.61± 1.98% 99.98± 0.02% 100.00± 0.00%
rubber cube 6 73.00± 1.91% 85.84± 19.75% 99.94± 0.06%
small cube 6 81.08± 2.96% 90.02± 13.74% 73.28± 37.77%
large rubber object 4 64.46± 28.99% 99.74± 0.03% 99.98± 0.01%
small rubber object 4 89.38± 1.37% 99.85± 0.09% 99.99± 0.01%
small metal object 4 86.15± 2.22% 99.90± 0.08% 99.89± 0.06%
large metal object 4 85.80± 2.25% 99.92± 0.03% 99.91± 0.01%

Table 6: LXMERT (Pretrained) minimal-IID average accuracy and standard deviation over 3 runs with different
random seeds. Average accuracies are reported for each HOP (row) and each training set size (column).

HOP Diversity 25k 200k 560k
cyan cylinder 24 90.25± 0.82% 98.88± 1.58% 100.00± 0.00%
brown sphere 24 88.76± 3.74% 99.78± 0.18% 99.26± 0.46%
red cylinder 24 90.33± 1.04% 98.74± 0.64% 98.96± 1.47%
gray cube 24 84.15± 1.28% 99.70± 0.11% 75.37± 34.67%
purple sphere 24 93.45± 6.74% 100.00± 0.00% 100.00± 0.00%
large cyan object 16 90.60± 4.23% 99.48± 0.31% 99.84± 0.06%
cyan rubber object 16 81.27± 4.82% 97.22± 1.23% 96.63± 1.12%
brown rubber object 16 84.84± 2.14% 96.90± 1.17% 98.13± 1.08%
small brown object 16 83.17± 3.10% 92.14± 0.99% 88.57± 9.60%
red metal object 16 87.34± 4.08% 97.18± 0.62% 98.53± 0.76%
small red object 16 87.10± 3.48% 95.16± 6.68% 99.60± 0.40%
gray metal object 16 85.52± 1.83% 93.13± 2.58% 85.20± 6.46%
large gray object 16 84.13± 2.25% 99.25± 1.07% 99.84± 0.15%
purple rubber object 16 85.83± 4.27% 97.70± 0.62% 98.61± 0.95%
small purple object 16 90.75± 1.31% 94.37± 0.98% 96.35± 2.66%
large cylinder 6 87.58± 5.31% 96.91± 3.45% 91.47± 8.00%
rubber cylinder 6 68.14± 2.73% 90.25± 6.35% 79.31± 2.58%
rubber sphere 6 71.30± 8.29% 80.13± 1.34% 82.83± 5.02%
small sphere 6 84.04± 3.47% 95.10± 0.49% 94.10± 1.60%
metal cylinder 6 74.71± 6.63% 88.76± 2.50% 63.80± 27.45%
small cylinder 6 82.37± 4.19% 81.02± 5.24% 80.82± 1.63%
metal cube 6 74.75± 5.48% 88.72± 2.93% 68.84± 28.41%
large cube 6 87.75± 3.30% 93.89± 4.10% 90.34± 6.22%
rubber cube 6 74.32± 4.40% 81.38± 15.25% 84.96± 7.58%
small cube 6 80.35± 0.17% 87.70± 9.12% 68.15± 39.08%
large rubber object 4 61.54± 27.48% 89.64± 1.88% 87.61± 3.48%
small rubber object 4 73.79± 1.94% 78.21± 2.26% 76.04± 0.91%
small metal object 4 79.95± 3.57% 86.15± 3.16% 79.51± 3.97%
large metal object 4 83.54± 4.87% 85.86± 4.14% 86.27± 8.20%

Table 7: LXMERT (Pretrained) minimal-OOD average accuracy and standard deviation over 3 runs with different
random seeds. Average accuracies are reported for each HOP (row) and each training set size (column).
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HOP Diversity 25k 200k 560k
cyan cylinder 24 49.05± 0.41% 86.74± 1.90% 94.75± 0.54%
brown sphere 24 48.77± 0.23% 88.69± 0.25% 95.60± 0.23%
red cylinder 24 49.44± 0.29% 85.45± 1.99% 95.56± 0.29%
gray cube 24 49.41± 0.64% 81.59± 1.95% 95.02± 0.42%
purple sphere 24 49.60± 0.94% 86.01± 5.30% 95.13± 0.42%
large cyan object 16 49.54± 0.74% 83.34± 1.77% 95.83± 0.30%
cyan rubber object 16 49.59± 0.70% 86.97± 1.66% 95.71± 0.33%
brown rubber object 16 49.16± 0.36% 88.87± 1.06% 95.52± 0.65%
small brown object 16 49.22± 0.34% 87.78± 2.15% 96.21± 0.17%
red metal object 16 49.29± 0.27% 89.25± 1.86% 95.70± 0.14%
small red object 16 49.13± 0.47% 87.76± 1.07% 95.53± 0.26%
gray metal object 16 48.95± 0.53% 85.17± 2.57% 95.88± 0.27%
large gray object 16 50.06± 0.92% 82.79± 4.83% 95.77± 0.07%
purple rubber object 16 48.31± 0.08% 86.51± 0.25% 95.31± 0.14%
small purple object 16 49.59± 0.49% 88.13± 1.41% 95.77± 0.09%
large cylinder 6 52.66± 1.68% 91.39± 1.48% 96.56± 0.15%
rubber cylinder 6 51.87± 0.88% 89.82± 0.64% 96.25± 0.25%
rubber sphere 6 50.21± 0.71% 90.07± 0.69% 96.24± 0.08%
small sphere 6 50.01± 0.58% 91.56± 0.89% 96.12± 0.07%
metal cylinder 6 51.87± 0.78% 90.57± 1.05% 96.58± 0.08%
small cylinder 6 52.01± 1.18% 91.29± 1.87% 96.53± 0.06%
metal cube 6 50.34± 0.33% 90.57± 1.09% 96.29± 0.15%
large cube 6 52.44± 0.90% 91.34± 0.92% 96.72± 0.13%
rubber cube 6 50.38± 0.76% 91.13± 0.85% 96.45± 0.15%
small cube 6 50.69± 0.58% 91.75± 0.47% 96.68± 0.17%
large rubber object 4 54.28± 0.47% 89.77± 0.72% 96.31± 0.20%
small rubber object 4 53.33± 0.90% 92.14± 0.65% 96.91± 0.24%
small metal object 4 51.94± 0.49% 90.97± 0.69% 96.84± 0.28%
large metal object 4 54.42± 0.66% 89.87± 2.50% 96.77± 0.17%

Table 8: LXMERT (Scratch) complex-IID average accuracy and standard deviation over 3 runs with different
random seeds. Average accuracies are reported for each HOP (row) and each training set size (column).

HOP Diversity 25k 200k 560k
cyan cylinder 24 49.86± 0.31% 86.08± 1.80% 94.92± 0.68%
brown sphere 24 49.46± 0.04% 87.24± 0.40% 94.64± 0.38%
red cylinder 24 50.20± 0.41% 83.70± 2.24% 94.90± 0.19%
gray cube 24 49.23± 0.32% 78.86± 1.74% 93.60± 0.55%
purple sphere 24 48.94± 0.80% 85.44± 5.63% 94.67± 0.58%
large cyan object 16 48.35± 0.43% 82.03± 1.74% 94.78± 0.48%
cyan rubber object 16 49.54± 0.47% 85.65± 2.12% 95.63± 0.24%
brown rubber object 16 49.31± 0.49% 85.95± 1.48% 94.17± 1.01%
small brown object 16 49.78± 0.26% 82.61± 2.81% 91.87± 0.37%
red metal object 16 49.21± 0.37% 87.74± 2.22% 94.61± 0.09%
small red object 16 49.04± 0.09% 84.42± 1.02% 92.90± 0.67%
gray metal object 16 48.60± 0.35% 80.64± 2.27% 92.56± 0.15%
large gray object 16 50.33± 0.75% 80.34± 4.06% 94.11± 0.30%
purple rubber object 16 48.29± 0.38% 84.71± 0.59% 94.06± 0.31%
small purple object 16 49.33± 0.53% 86.43± 1.87% 94.27± 0.10%
large cylinder 6 52.40± 1.33% 87.06± 2.46% 91.94± 0.63%
rubber cylinder 6 51.24± 0.48% 80.18± 1.71% 85.12± 0.67%
rubber sphere 6 49.89± 0.55% 78.99± 1.82% 83.34± 0.48%
small sphere 6 50.54± 0.41% 84.70± 1.24% 89.78± 0.56%
metal cylinder 6 50.87± 0.72% 81.76± 0.75% 88.00± 0.49%
small cylinder 6 51.01± 1.12% 82.43± 2.17% 86.01± 2.06%
metal cube 6 50.47± 0.52% 79.56± 1.94% 81.98± 1.20%
large cube 6 50.83± 0.72% 82.49± 1.37% 87.40± 1.06%
rubber cube 6 49.52± 0.33% 81.98± 1.08% 86.71± 0.90%
small cube 6 50.39± 0.89% 85.11± 0.51% 90.91± 0.09%
large rubber object 4 50.94± 0.22% 78.98± 0.83% 85.98± 1.34%
small rubber object 4 51.22± 0.87% 78.31± 1.62% 80.23± 0.39%
small metal object 4 50.78± 0.36% 78.53± 0.93% 81.94± 0.49%
large metal object 4 51.63± 0.47% 78.94± 2.44% 83.54± 0.42%

Table 9: LXMERT (Scratch) complex-OOD average accuracy and standard deviation over 3 runs with different
random seeds. Average accuracies are reported for each HOP (row) and each training set size (column).
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HOP Diversity 25k 200k 560k
cyan cylinder 24 47.40± 4.40% 99.02± 0.54% 99.96± 0.01%
brown sphere 24 48.37± 2.65% 98.74± 0.45% 99.97± 0.03%
red cylinder 24 60.03± 5.11% 98.32± 1.54% 99.95± 0.03%
gray cube 24 60.73± 3.48% 98.72± 0.48% 99.93± 0.03%
purple sphere 24 49.28± 5.04% 99.44± 0.21% 99.96± 0.03%
large cyan object 16 60.52± 3.26% 96.72± 2.22% 99.87± 0.10%
cyan rubber object 16 61.60± 1.37% 98.60± 0.32% 99.89± 0.06%
brown rubber object 16 62.04± 5.68% 99.53± 0.04% 99.70± 0.17%
small brown object 16 55.37± 3.64% 98.73± 0.74% 99.80± 0.16%
red metal object 16 60.21± 3.89% 98.31± 0.29% 99.95± 0.03%
small red object 16 66.29± 2.51% 99.23± 0.34% 99.82± 0.22%
gray metal object 16 53.61± 0.64% 98.51± 0.47% 99.97± 0.02%
large gray object 16 49.47± 3.32% 99.36± 0.11% 99.95± 0.00%
purple rubber object 16 57.13± 5.64% 98.22± 0.77% 99.92± 0.04%
small purple object 16 62.36± 4.10% 99.35± 0.44% 99.97± 0.03%
large cylinder 6 48.47± 7.39% 95.77± 1.04% 99.92± 0.07%
rubber cylinder 6 38.64± 3.31% 98.71± 0.73% 99.90± 0.04%
rubber sphere 6 39.95± 6.05% 98.12± 0.59% 99.72± 0.05%
small sphere 6 48.61± 3.31% 99.13± 0.52% 97.38± 2.38%
metal cylinder 6 38.36± 1.81% 94.38± 2.12% 99.96± 0.00%
small cylinder 6 39.51± 5.54% 96.51± 1.99% 99.97± 0.01%
metal cube 6 40.55± 4.83% 99.11± 0.27% 99.92± 0.02%
large cube 6 43.91± 4.48% 99.24± 0.95% 99.97± 0.01%
rubber cube 6 48.91± 0.93% 98.90± 0.60% 99.91± 0.08%
small cube 6 36.78± 1.94% 99.68± 0.37% 99.88± 0.15%
large rubber object 4 37.95± 4.58% 93.24± 3.61% 99.93± 0.02%
small rubber object 4 44.15± 1.84% 96.51± 1.36% 99.81± 0.10%
small metal object 4 43.83± 1.89% 94.47± 1.34% 99.94± 0.08%
large metal object 4 44.12± 4.62% 99.05± 0.76% 99.93± 0.03%

Table 10: LXMERT (Scratch) minimal-IID average accuracy and standard deviation over 3 runs with different
random seeds. Average accuracies are reported for each HOP (row) and each training set size (column).

HOP Diversity 25k 200k 560k
cyan cylinder 24 38.76± 5.93% 98.14± 1.00% 99.78± 0.32%
brown sphere 24 57.37± 4.03% 97.17± 2.20% 100.00± 0.00%
red cylinder 24 60.57± 5.86% 96.43± 3.01% 100.00± 0.00%
gray cube 24 70.16± 2.97% 93.38± 3.11% 99.70± 0.28%
purple sphere 24 57.59± 8.41% 99.48± 0.74% 100.00± 0.00%
large cyan object 16 69.72± 1.99% 99.56± 0.30% 100.00± 0.00%
cyan rubber object 16 61.98± 4.66% 97.86± 1.69% 99.96± 0.06%
brown rubber object 16 68.49± 4.69% 96.98± 1.46% 99.17± 0.70%
small brown object 16 45.16± 7.22% 93.89± 6.27% 96.31± 1.35%
red metal object 16 53.81± 7.51% 98.93± 0.93% 98.45± 0.83%
small red object 16 69.76± 4.76% 98.41± 0.66% 99.88± 0.10%
gray metal object 16 60.52± 9.88% 93.37± 4.08% 95.67± 2.43%
large gray object 16 52.22± 6.42% 99.17± 0.59% 98.49± 0.99%
purple rubber object 16 50.12± 6.01% 97.26± 2.13% 98.17± 2.00%
small purple object 16 66.59± 6.63% 94.25± 0.62% 96.94± 3.29%
large cylinder 6 63.96± 11.55% 98.57± 1.29% 97.66± 2.14%
rubber cylinder 6 48.46± 8.28% 91.89± 3.47% 80.42± 0.91%
rubber sphere 6 36.09± 5.65% 87.04± 6.71% 84.36± 3.71%
small sphere 6 57.90± 5.78% 92.84± 8.36% 95.91± 1.82%
metal cylinder 6 53.75± 6.33% 85.42± 5.21% 89.99± 2.71%
small cylinder 6 39.30± 13.90% 86.47± 7.28% 82.04± 4.75%
metal cube 6 54.99± 5.96% 84.52± 1.40% 84.97± 4.35%
large cube 6 46.34± 3.32% 98.65± 0.49% 92.34± 6.77%
rubber cube 6 61.26± 5.22% 92.67± 2.57% 83.29± 1.18%
small cube 6 52.83± 5.33% 93.68± 4.05% 95.27± 0.69%
large rubber object 4 44.57± 10.97% 89.50± 2.31% 89.53± 5.20%
small rubber object 4 51.26± 4.02% 85.70± 0.79% 80.11± 3.01%
small metal object 4 50.97± 6.85% 88.53± 4.26% 84.69± 2.55%
large metal object 4 47.07± 3.88% 88.61± 3.05% 88.37± 1.54%

Table 11: LXMERT (Scratch) minimal-OOD average accuracy and standard deviation over 3 runs with different
random seeds. Average accuracies are reported for each HOP (row) and each training set size (column).
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Diversity 25k 200k 560k
24 0.41± 0.48% −0.46± 0.51% −0.50± 0.59%
16 −0.78± 1.08% −1.55± 1.39% −1.47± 1.82%

6 −2.72± 0.84% −7.98± 3.95% −8.18± 4.69%
4 −6.37± 2.62% −12.36± 3.49% −13.29± 3.72%

Table 16: LXMERT (Pretrained) complex systematicity gap (complex-OOD accuracy minus complex-IID accuracy).
Average systematicity gap and standard deviation are on the differences, over all 3 runs (with different random
seeds) of all HOPs with the stated diversity. Average accuracies are reported for each diversity (row) and each
training set size (column).

Diversity 25k 200k 560k
24 −1.51± 5.76% −0.54± 0.93% −0.93± 2.22%
16 −5.74± 4.13% −3.42± 2.96% −2.97± 4.80%

6 −3.74± 7.26% −8.80± 7.31% −12.22± 7.35%
4 −6.74± 6.30% −14.89± 5.15% −17.59± 6.83%

Table 17: LXMERT (Pretrained) minimal systematicity gap (minimal-OOD accuracy minus minimal-IID accuracy).
Average systematicity gap and standard deviation are on the differences, over all 3 runs (with different random
seeds) of all HOPs with the stated diversity. Average accuracies are reported for each diversity (row) and each
training set size (column).

Diversity 25k 200k 560k
24 0.28± 0.63% −1.43± 0.90% −0.67± 0.57%
16 −0.11± 0.55% −2.60± 1.38% −1.83± 1.22%

6 −0.53± 0.71% −8.52± 2.14% −9.32± 3.11%
4 −2.35± 0.91% −12.00± 1.54% −13.78± 2.47%

Table 18: LXMERT (Scratch) complex systematicity gap (complex-OOD accuracy minus complex-IID accuracy).
Average systematicity gap and standard deviation are on the differences, over all 3 runs (with different random
seeds) of all HOPs with the stated diversity. Average accuracies are reported for each diversity (row) and each
training set size (column).

Diversity 25k 200k 560k
24 3.72± 7.32% −1.93± 2.96% −0.06± 0.22%
16 0.98± 8.62% −1.69± 3.84% −1.58± 2.18%

6 9.12± 8.97% −6.78± 7.26% −11.03± 7.32%
4 5.95± 5.51% −7.73± 4.70% −14.23± 4.96%

Table 19: LXMERT (Scratch) minimal systematicity gap (minimal-OOD accuracy minus minimal-IID accuracy).
Average systematicity gap and standard deviation are on the differences, over all 3 runs (with different random
seeds) of all HOPs with the stated diversity. Average accuracies are reported for each diversity (row) and each
training set size (column).
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H CLEVR-HOPE Dataset Datasheet862

Motivation for Dataset Creation863

864

Why was the dataset created? (e.g., were865

there specific tasks in mind, or a specific gap866

that needed to be filled?)867

The CLEVR-HOPE diagnostic dataset was created868

to study systematicity with respect to held-out pairs869

of attribute values in a controlled setting. These870

held-out pairs include various color-shape, color-871

material, color-size, size-shape, size-material, and872

shape-material pairs; each of the 29 pairs has a873

dedicated train set and four dedicated test sets. The874

specific task is visual question answering (VQA),875

in the form of 28-way classification.876

To the best of the author’s knowledge, this was877

a specific gap that needed to be filled. The closest878

prior work is the CLEVR-CoGenT dataset: John-879

son et al. (2017a) created a train-test CLEVR split880

where at train time cubes and cylinders are re-881

stricted to limited color palettes, that are reversed882

at test time. Unlike CLEVR-HOPE, CLEVR-883

CoGenT does not change the question distribution884

at train time — held-out combinations can leak885

by appearing in text at train time. Furthermore,886

CLEVR-CoGenT has only a single train set with887

held-out COLOR-SHAPE combinations — whereas888

CLEVR-HOPE expands the set of held-out combi-889

nations to 29 train sets, covering all possible pairs890

of attribute types. CLEVR-HOPE also indepen-891

dently assesses each HOP, including in a minimal892

setting. In combination, these improvements al-893

lows the use of CLEVR-HOPE to study the impact894

of train-time diversity on systematicity.895

What (other) tasks could the dataset be896

used for? Are there obvious tasks for which it897

should not be used?898

CLEVR-HOPE can also be useful for studying899

model transfer from another domain (e.g., natural900

images) to the synthetic CLEVR domain. CLEVR-901

HOPE is a diagnostic dataset only, it is not intended902

as a thorough evaluation of a model’s systematicity.903

904

Has the dataset been used for any tasks905

already? If so, where are the results so others906

can compare (e.g., links to published papers)?907

CLEVR-HOPE has only been used in this paper. A908

GitHub repo for recording works using this dataset909

will be provided. It is redacted at present to pre-910

serve anonymity.911

Who funded the creation of the dataset? If 912

there is an associated grant, provide the grant 913

number. 914

Redacted to preserve the anonymity of the submis- 915

sion. 916

Any other comments? N/A 917

Dataset Composition 918

919

What are the instances? (that is, examples; 920

e.g., documents, images, people, countries) 921

Are there multiple types of instances? (e.g., 922

movies, users, ratings; people, interactions 923

between them; nodes, edges) 924

Each instance is comparable to a CLEVR instance. 925

i.e., each instance consists of an image (a rendered 926

blender scene of colored blocks on a plain back- 927

ground in the style of the CLEVR dataset), an En- 928

glish question, and a 1-word answer (there are 28 929

possible answers, exactly the same as in the original 930

CLEVR). Scene graphs and the question’s corre- 931

sponding functional program (specified with the 932

CLEVR question primitives) are also provided. 933

For each of the 29 held-out pairs (HOPs) in 934

CLEVR-HOPE, train instances are of comparable 935

complexity to CLEVR and do not contain the HOP 936

in the image, or the question. 937

Of the four test sets: The complex-IID test and 938

complex-OOD test sets have images and ques- 939

tions of comparable complexity to CLEVR. The 940

minimal-OOD test and minimal-IID test sets con- 941

tain minimal examples; the images are of only a 942

single object, and the questions ask whether there 943

is an object in the scene matching a specific pair 944

of attribute values – e.g., “Are there any rubber 945

cylinders?”. Of these four test sets, the IID sets are 946

like the train set in that the images and questions 947

do not contain the HOP. The OOD test sets contain 948

the HOP in both the question, and in at least one 949

object in the image. 950

For more details see Sections 2 and B. Example 951

images and questions are visualized in Fig. 1. 952

Are relationships between instances made 953

explicit in the data (e.g., social network links, 954

user/movie ratings, etc.)? 955

The only relationships between instances are that 956

some instances re-use images (see Appendix B for 957

further details), and some instances use questions 958

generated from the same base template. In both 959

cases, these relationships are available in the data. 960

Instances reusing images refer to the same image 961
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index, and each question records its question fam-962

ily, as in CLEVR.963

How many instances of each type are964

there?965

For each of the 29 held-out pairs (HOPs) in966

CLEVR-HOPE, the approximate size of the corre-967

sponding splits is outlined below:968

• train set: 62k images, and 560k image-969

question pairs970

• complex-IID test set: 13k images, 120k971

image-question pairs972

• complex-OOD test set: 15k images, 15k973

image-question pairs974

• minimal-IID test set: 2576-3200 images,975

8640-11970 image-question pairs (depending976

on HOP)977

• minimal-OOD test set: 448-3840 images,978

448-3840 image-question pairs (depending on979

HOP)980

In general, for every HOP, each image in the981

train, and complex-IID test has 9 matching ques-982

tions. Each image in complex-OOD test has 1 cor-983

responding question.984

The number of questions per image for minimal-985

IID test and minimal-OOD test varies depending on986

the HOP – see Section B for details on the construc-987

tion of the minimal-IID test and minimal-OOD test988

datasets.989

What data does each instance consist of?990

“Raw” data (e.g., unprocessed text or images)?991

Features/attributes? Is there a label/target as-992

sociated with instances? If the instances are993

related to people, are subpopulations identi-994

fied (e.g., by age, gender, etc.) and what is995

their distribution?996

For every instance, the image is a 320× 480 pix-997

els. Images are individually provided in the PNG998

format, and also aggregated over all HOPs in three999

HDF5 files (corresponding to train, IID test sets,1000

and OOD test sets, respectively).1001

The scene graphs are represented as .json files,1002

following the CLEVR specification.1003

Questions, programs, and answer labels are pro-1004

vided in HDF5 files. Functional programs are en-1005

coded as a sequence of integers, the vocabulary1006

mapping these integers to their English equivalents1007

is provided in a JSON file. Questions are similarly1008

encoded. Questions have undergone minimal tok- 1009

enization, and the raw English questions are avail- 1010

able in a separate JSON file. The only tokenization 1011

performed is the treating of “,” and “;” as separate 1012

tokens, the removal of “.” and “?” characters, and 1013

separation by white space. Answers are encoded 1014

as a single integer; the mapping to English is again 1015

in the JSON vocab file. 1016

Instances are not related to people. 1017

Is everything included or does the data rely 1018

on external resources? (e.g., websites, 1019

tweets, datasets) If external resources, a) are 1020

there guarantees that they will exist, and re- 1021

main constant, over time; b) is there an official 1022

archival version. Are there licenses, fees or 1023

rights associated with any of the data? 1024

CLEVR-HOPE does not rely on external resources. 1025

1026

Are there recommended data splits or eval- 1027

uation measures? (e.g., training, develop- 1028

ment, testing; accuracy/AUC) 1029

The dataset comes with recommended train/test 1030

splits that ensure no images are shared between the 1031

train and test splits, and the held-out pair only oc- 1032

curs in given test sets. It is recommended that 1033

hyperparameter tuning be done on the original 1034

CLEVR dataset. The intended evaluation is to re- 1035

port accuracy. 1036

What experiments were initially run on this 1037

dataset? Have a summary of those results 1038

and, if available, provide the link to a paper 1039

with more information here. 1040

Initial experiments were the fitting of LXMERT 1041

(both finetuned, and from scratch) on each of the 1042

29 held-out pairs. Tensor-NMN was also fit to the 1043

first 6 HOPs. Models were trained using the full 1044

training set (560k image-question pairs), as well as 1045

subsets of size 25k and 200k. 1046

In all cases, models exhibited some degree of 1047

systematicity, but performance degraded on OOD 1048

test sets. Furthermore, studying the systematicity 1049

gap (the difference between OOD and IID test per- 1050

formance) it was clear that the systematicity gap 1051

narrrowed as the train-time diversity of the HOP 1052

(i.e., the number of pairs of the same attribute types 1053

but different values) increased. See Sections 4.1 1054

and 4.2 for details. 1055

Data Collection Process 1056

1057
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How was the data collected? (e.g.,1058

hardware apparatus/sensor, manual hu-1059

man curation, software program, soft-1060

ware interface/API; how were these con-1061

structs/measures/methods validated?)1062

Data was generated via computer program. The1063

code was modified from the original CLEVR code-1064

base, and tested via code review among the authors,1065

and manual inspection of the output.1066

Who was involved in the data collection pro-1067

cess? (e.g., students, crowdworkers) How1068

were they compensated? (e.g., how much1069

were crowdworkers paid?)1070

N/A: Only the authors were involved.1071

Over what time-frame was the data col-1072

lected? Does the collection time-frame match1073

the creation time-frame? How was the data1074

associated with each instance acquired? Was1075

the data directly observable (e.g., raw text,1076

movie ratings), reported by subjects (e.g., sur-1077

vey responses), or indirectly inferred/derived1078

from other data (e.g., part of speech tags;1079

model-based guesses for age or language)?1080

If the latter two, were they validated/verified1081

and if so how? Does the dataset contain all1082

possible instances? Or is it, for instance, a1083

sample (not necessarily random) from a larger1084

set of instances?1085

N/A: The data was generated by python program,1086

and the images rendered with Blender 2.7.1087

If the dataset is a sample, then what is the1088

population? What was the sampling strategy1089

(e.g., deterministic, probabilistic with specific1090

sampling probabilities)? Is the sample repre-1091

sentative of the larger set (e.g., geographic1092

coverage)? If not, why not (e.g., to cover a1093

more diverse range of instances)? How does1094

this affect possible uses?1095

For each of the 29 HOPs:1096

For the train, and complex-IID test the full pop-1097

ulation of images is the space of all valid CLEVR1098

images such that no object matches the HOP (e.g.,1099

if the HOP is rubber cylinder, then there must be1100

no rubber cylinders in the scene). The complex-1101

OOD test population of images is valid CLEVR1102

images such that at least one object matches the1103

HOP. The minimal-OOD test and minimal-IID test1104

are similar to complex-IID test and complex-OOD1105

test respectively, but always have exactly 1 object1106

in the scene.1107

The key constraints that valid CLEVR images 1108

must meet are that at least 100 pixels of each object 1109

must be visible, and that there must be 3-10 objects 1110

in the scene. 1111

The sampling of images was probabilistic, uni- 1112

formly at random. 1113

The space of questions is the space of all in- 1114

stantiations of the CLEVR templates that produce 1115

well-formed questions (the key constraint being 1116

that questions are unambiguously answerable from 1117

the scenegraph and the functional form of the ques- 1118

tion). The sampling method was probabilistic in 1119

all cases. Following CLEVR, question templates 1120

were sampled randomly, and instantiations found 1121

via depth first search with randomized ordering of 1122

possibilities. Following CLEVR, sampling prob- 1123

abilities shift over time to encourage distribution 1124

balance with respect to question templates. 1125

Is there information missing from the 1126

dataset and why? (this does not include in- 1127

tentionally dropped instances; it might include, 1128

e.g., redacted text, withheld documents) Is this 1129

data missing because it was unavailable? 1130

No. 1131

Are there any known errors, sources of 1132

noise, or redundancies in the data? 1133

No. 1134

Data Preprocessing 1135

1136

What preprocessing/cleaning was done? 1137

(e.g., discretization or bucketing, tokenization, 1138

part-of-speech tagging, SIFT feature extrac- 1139

tion, removal of instances, processing of miss- 1140

ing values, etc.) 1141

The English questions were tokenized. The only 1142

tokenization performed is the treating of “,” and 1143

“;” as separate tokens, the removal of “.” and “?” 1144

characters, and separation by white space. Capital- 1145

ization was not changed. 1146

Was the “raw” data saved in addition to 1147

the preprocessed/cleaned data? (e.g., to 1148

support unanticipated future uses) 1149

Yes. 1150

Is the preprocessing software available? 1151

Yes, the same tokenization as (Johnson et al., 1152

2017b) was used. 1153

Does this dataset collection/processing 1154

procedure achieve the motivation for creat- 1155
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ing the dataset stated in the first section of1156

this datasheet?1157

Yes, for each of the 29 held-out pairs, we have a1158

train set that does not contain the HOP, and test1159

sets of minimal and comparable complexity that do1160

or do not contain the HOP. Thus we can asses the1161

systematicity of a model, as well as how the sys-1162

tematicity is affected by the exact HOP, the amount1163

of training data, and the complexity of test data.1164

Dataset Distribution1165

1166

How is the dataset distributed? (e.g., web-1167

site, API, etc.; does the data have a DOI; is it1168

archived redundantly?)1169

Distribution details TBD. The data is not1170

archived redundantly.1171

When will the dataset be released/first1172

distributed? (Is there a canonical pa-1173

per/reference for this dataset?)1174

CLEVR-HOPE will be released with the publica-1175

tion of this paper.1176

What license (if any) is it distributed under?1177

Are there any copyrights on the data?1178

CLEVR-HOPE is shared under a Creative Com-1179

mons CC BY 4.0 license.1180

Note that CLEVR-HOPE contains images from1181

the original CLEVR dataset (Johnson et al., 2017a)1182

which is also shared under a CC BY 4.0 license,1183

and CLEVR-HOPE was created using a modified1184

version of the CLEVR generation code which was1185

shared under a BSD license.1186

Are there any fees or access/export restric-1187

tions?1188

No.1189

Dataset Maintenance1190

1191

Who is supporting/hosting/maintaining the1192

dataset?1193

Hosting TBD. The lead author is maintaining the1194

dataset.1195

How does one contact the1196

owner/curator/manager of the dataset1197

(e.g. email address, or other contact info)?1198

Contact the lead author via email. Address1199

redacted for anonymity.1200

Will the dataset be updated? How often1201

and by whom? How will updates/revisions be1202

documented and communicated (e.g., mailing 1203

list, GitHub)? Is there an erratum? 1204

There are no plans for the dataset to be updated. If 1205

needed, it will be updated by the lead author, and 1206

changes documented via GitHub. 1207

If the dataset becomes obsolete how will 1208

this be communicated? 1209

The GitHub page will be updated to reflect this. 1210

Is there a repository to link to any/all pa- 1211

pers/systems that use this dataset? 1212

A GitHub repo for recording works using this 1213

dataset will be provided. It is redacted at present to 1214

preserve anonymity. 1215

If others want to extend/augment/build on 1216

this dataset, is there a mechanism for them 1217

to do so? If so, is there a process for track- 1218

ing/assessing the quality of those contribu- 1219

tions. What is the process for communicat- 1220

ing/distributing these contributions to users? 1221

There is no provided mechanism, but they are free 1222

to do so under the license, and enouraged to do so 1223

by the authors. 1224

Any other comments? 1225

Due to the size of the dataset (over 100GB), we 1226

are currently exploring hosting options. 1227

Legal & Ethical Considerations 1228

1229

If the dataset relates to people (e.g., their at- 1230

tributes) or was generated by people, were 1231

they informed about the data collection? 1232

(e.g., datasets that collect writing, photos, in- 1233

teractions, transactions, etc.) 1234

N/A 1235

If it relates to other ethically protected sub- 1236

jects, have appropriate obligations been 1237

met? (e.g., medical data might include in- 1238

formation collected from animals) If it relates 1239

to people, were there any ethical review appli- 1240

cations/reviews/approvals? (e.g. Institutional 1241

Review Board applications) 1242

N/A 1243

If it relates to people, were they told what 1244

the dataset would be used for and did they 1245

consent? What community norms exist for 1246

data collected from human communications? 1247

If consent was obtained, how? Were the peo- 1248

ple provided with any mechanism to revoke 1249

their consent in the future or for certain uses? 1250
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N/A1251

If it relates to people, could this dataset ex-1252

pose people to harm or legal action? (e.g.,1253

financial social or otherwise) What was done1254

to mitigate or reduce the potential for harm?1255

N/A1256

If it relates to people, does it unfairly ad-1257

vantage or disadvantage a particular social1258

group? In what ways? How was this miti-1259

gated?1260

N/A1261

If it relates to people, were they provided1262

with privacy guarantees? If so, what guar-1263

antees and how are these ensured?1264

N/A1265

Does the dataset comply with the EU Gen-1266

eral Data Protection Regulation (GDPR)?1267

Does it comply with any other standards, such1268

as the US Equal Employment Opportunity1269

Act?1270

N/A1271

Does the dataset contain information that1272

might be considered sensitive or confiden-1273

tial? (e.g., personally identifying information)1274

No.1275

Does the dataset contain information that1276

might be considered inappropriate or offen-1277

sive?1278

No.1279

33


	Introduction
	CLEVR-HOPE Diagnostic Dataset
	Models & Training
	Results
	Evidence of Systematic Behaviour
	Systematicity Gap
	Train-time conceptual diversity impacts systematicity
	Controlling for confounding

	Related work
	Conclusions
	Extended Related Work
	CLEVR-HOPE: Additional details
	CLEVR-HOPE: minimal-OOD test set and minimal-IID test set

	Training details
	LXMERT Detailed Results
	Tensor-NMN Detailed Results
	Systematicity Gap
	Detailed Tensor-NMN Systematicity Gap

	Summary Statistics
	CLEVR-HOPE Dataset Datasheet

