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INFINITETALK: AUDIO-DRIVEN VIDEO GENERATION
FOR SPARSE-FRAME VIDEO DUBBING
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“Yes, the documents arrived. 
I’ll send my notes before evening.”

“I won! Seven million! No more 6 AM 
alarms! Buy one island? No! Two 
islands! Mom! I'll get you a castle! “
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Figure 1: Compared to the traditional paradigm, sparse-frame video dubbing will not only edit mouth
regions. It gives the model freedom to generate audio aligned mouth, facial, and body movements
while referencing on sparse keyframes to preserve identity, emotional cadence, and iconic gestures.

ABSTRACT

Recent breakthroughs in video AIGC have ushered in a transformative era for audio-
driven human animation. However, conventional video dubbing techniques remain
constrained to mouth region editing, resulting in discordant facial expressions and
body gestures that compromise viewer immersion. To overcome this limitation,
we introduce sparse-frame video dubbing, a novel paradigm that strategically
preserves reference keyframes to maintain identity, iconic gestures, and camera
trajectories while enabling holistic, audio-synchronized full-body motion editing.
Through critical analysis, we identify why naive image-to-video models fail in
this task, particularly their inability to achieve adaptive conditioning. Addressing
this, we propose InfiniteTalk: a streaming audio-driven generator designed for
infinite-length long sequence dubbing. This architecture leverages temporal context
frames for seamless inter-chunk transitions and incorporates a simple yet effective
sampling strategy that optimizes control strength via fine-grained reference frame
positioning. Meanwhile, with additional modules, our method can also achieve
acurate camera and pose control. Comprehensive evaluations on HDTF, CelebV-
HQ, and EMTD datasets demonstrate state-of-the-art performance. Quantitative
metrics confirm superior visual realism, emotional coherence, and full-body motion
synchronization.
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1 INTRODUCTION

Video dubbing is an audio-driven video-to-video generation task that combines an original video with
new audio to create localized content Li et al. (2024); Zhang et al. (2025); Bigata et al. (2025). This
process requires editing facial movements, head rotations, and body gestures to synchronize with
the dubbed speech’s timing and emotional tone, while preserving the source video’s visual style and
camera motion—capabilities essential for global media distribution.

Recent advances in audio-driven generative models have greatly improved lip synchronization for
video dubbing Li et al. (2024). However, most methods focus on oral region inpainting, which
causes mismatched head rotations and body gestures, reducing viewer immersion. To address this,
we introduce sparse-frame video dubbing, a paradigm that preserves only key reference frames
and leverages modern generative models. As illustrated in Fig. 1, our approach references select
keyframes to retain the original video’s emotional cadence, gestures, and camera trajectories, while
allowing facial expressions, head motions, and body dynamics to organically synchronize with
dubbed audio. As a long video generation task, this requires robust temporal continuation, which can
be achieved by audio-conditioned video generators with initial and terminal frame guidance. Yet,
naive use of audio-conditioned image-to-video generators yields unsatisfactory results, as shown in
Fig. 2. These models struggle with identity preservation over extended sequences and tend to rigidly
copy motion on conditioning frames, resulting in stiff facial expressions and misaligned head or lip
movements. Simply conditioning on first and last frames also leads to abrupt transitions between
video chunks.

To resolve these challenges, we propose InfiniteTalk, an audio-driven generator for long sequence
sparse-frame video dubbing. InfiniteTalk uses a streaming video generation backbone with context
frames to inject momentum and create smooth transitions. Keyframes are referenced to preserve
human identity, background, and camera movement from the source video. To implement soft
reference conditioning, we analyze how control strength is influenced by the similarity between
video context and image condition, and propose a sampling strategy that balances control and motion
alignment through fine-grained reference positioning. This enables high-quality, infinite-length
dubbing with full-body, audio-aligned motion generation. Meanwhile, by using additional modules,
InfiniteTalk achieves accurate camera and pose control.

We comprehensively evaluate InfiniteTalk on HDTF Zhang et al. (2021), CelebV-HQ Zhu et al.
(2022), and EMTD Rang Meng (2025), covering both facial and full-body animation. Quantitative
results show InfiniteTalk achieves state-of-the-art performance in audio-synchronized motion and
visual quality. Human evaluation demonstrates plausible lip, face, and body movements aligned with
speech cadence and emotional expression. Ablation experiments on sampling strategy and control
strength further validate our algorithm’s effectiveness.

Our contributions are: (1) Introducing sparse-frame video dubbing, a new paradigm for human-centric
audio-driven video-to-video generation that produces natural facial expressions, head motions, and
body dynamics synchronized with dubbed audio; (2) Analyzing why audio-driven image-to-video
generators fall short in this task, and how reference frame positioning during training determines
control strength, leading to InfiniteTalk—a streaming long-video generator with soft conditioning.
We also propose the camera and pose control methods for InfiniteTalk; and (3) Extensive experiments
showing state-of-the-art performance, especially in lip, head, and body motion synchronization.

2 RELATED WORKS

2.1 VIDEO GENERATION

Recent advances in generative models—including autoregressive, diffusion Wang et al. (2023b);
Song et al. (2020); Nichol & Dhariwal (2021), and flow matching approaches Liu et al. (2023)—have
transformed video generation. Early work such as Video Diffusion Model Ho et al. (2022b) focused
on pixel-space denoising, while later methods (Make-A-Video Singer et al. (2022), PYoCo Ge
et al. (2023), Imagen Video Ho et al. (2022a)) leveraged large language models for text-to-video
synthesis. To address video dimensionality, research shifted to latent space learning: VideoGPT
Yan et al. (2021) combined VQ-VAE Esser et al. (2021) and transformers, laying groundwork for
latent modeling. Diffusion-based latent video frameworks soon emerged (He et al. (2022); Zhou et al.
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(2022); Xing et al. (2023); Blattmann et al. (2023b;a); Wang et al. (2023a); Chen et al. (2023; 2024)),
with CogVideoX Yang et al. (2024) introducing diffusion transformers and temporal-compressed
VAEs for richer motion. Large-scale generators (Team (2024); Weijie Kong & Jie Jiang (2024); Wan
et al. (2025)) now deliver unprecedented video quality.

2.2 AUDIO-DRIVEN HUMAN ANIMATION

Audio-driven human animation generates videos from static images, synchronizing facial and body
movements to audio. Recent end-to-end diffusion-based methods Tian et al. (2024); Wei et al. (2024);
Xu et al. (2024); Chen et al. (2025b); Cui et al. (2024); Ji et al. (2024); Li et al. (2024); Jiang et al.
(2024) have excelled in talking head generation, eliminating intermediate representations. Other
approaches extend this to full-body animation Lin et al.; Tian et al. (2025); Lin et al. (2025); Meng
et al. (2024); Gan et al. (2025); Wang et al. (2025), benefiting from large, high-quality datasets.
Recent works Chen et al. (2025a); Kong et al. (2025a); Huang et al. (2025) address multi-human
animation. While these methods perform well on short videos, longer sequences suffer from error
accumulation, such as identity loss and color drift Kong et al. (2025b). StableAvatar Tu et al. (2025)
achieves infinite-length human animation but relies on a single image for conditioning, limiting its
applicability for video-to-video tasks.

3 METHOD

3.1 FORMULATION

Conditional Flow matching for audio-driven video generation Flow matching video generative
models Liu et al. (2023); Chen et al. (2025a); Wan et al. (2025) adopts a neural network to generate
realistic video frames by modeling a timestep-dependent vector field that transports samples from a
noise distribution to a target video distribution. Given a ground truth conditional video distribution
q(x|c) where x ∈ Rt×h×w×c is the encoded video latent. c = {y, a,xref}, y ∈ Rm×dtext , a ∈
Rn×daudio ,xref ∈ Rtref×h×w×c are the conditions, including the text prompt embedding, and the
audio embedding, and the reference frames latent. Conditional flow matching defines a series
of distributions by interpolating q(x|y, a) with a known trivial distribution (e.g. Gaussian noise)
p(x|y, a) using a continuous variable t ∈ [0.1].

qt(x|y, a) = (1− t) · p(x|y, a) + t · q(x|y, a). (1)

To be specific, a random variable xt ∼ qt(x|y, a) can be obtained by interpolating between x0 ∼
p(x|y, a) and x1 ∼ q(x|y, a) via xt = (1−t)·x1+t·x0. The generative model vθ(·), parameterized
by θ, is trained to match a continuous velocity field vθ(xt|y, a) ≃ dxt

dt . To achieve so, we adopt the
conditional flow matching objective.

Lfm = Et,x0,x1∥vθ(xt|y)− (x1 − x0)∥22. (2)

An ODE solver can be used to sample from a flow matching generative models.

Sparse-frame video dubbing Video dubbing localizes content by replacing original audio with
translated speech while preserving visual authenticity. As formalized in this work, the task transforms
a source video latent x0 ∈ Rt×h×w×c and a target audio a ∈ Rn×daudio into an output video
where lip movements, facial expressions, and body dynamics synchronize organically with the new
audio. Traditional video dubbing techniques focus exclusively on oral region inpainting—editing
lip movements while freezing head rotations, facial expressions, and body gestures Li et al. (2024).
This creates immersion-breaking mismatches, as static body language contradicts emotional speech
(e.g., a rigid posture during passionate dialogue). Sparse-frame video dubbing, illustrated in Fig. 1,
fundamentally redefines this process: it preserves only select keyframes xref to anchor identity,
emotional cadence, symbolic gestures, and camera trajectories—critical for visual continuity—while
liberating full-body dynamics (facial expressions, head motions, body gestures) to organically
synchronize with dubbed audio. As Fig. 1 demonstrates, this paradigm shift enables lifelike alignment
where head turns follow speech rhythm and gestures amplify emotional tone—impossible with lip-
only editing. Crucially, sparse-frame dubbing operates on infinite-length sequences, demanding
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Figure 2: (left): I2V model accumulates error for long video sequences. (right): A new chunk starts
from frame 82. FL2V model suffers from abrupt inter-chunk transitions.
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…
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…

…

frame 1130
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Figure 3: A visual comparison between the training reference positioning strategies. All video chunks
are generated using the same context frames and the same reference frame shown in below.

generative continuation beyond short clips to maintain synchronization across extended durations, a
capability unattainable with traditional frame-by-frame inpainting.

3.2 OBSERVATION ON NAIVE SOLUTIONS

This section explores practical strategies for sparse-frame video dubbing using two baselines: image-
to-video (I2V) Cui et al. (2024) and first-last-frame-to-video (FL2V) Wan et al. (2025). As shown
in Fig. 2, both face key challenges in generating long video sequences. I2V initializes each video
chunk from a single reference frame and, for subsequent chunks, uses only the last frame generated.
While this preserves motion flexibility, the absence of persistent anchoring to original keyframes
leads to accumulated errors (e.g., gradual identity drift and shifting color tones) resulting in visible
degradation. FL2V, by conditioning on both the start and end frames of each chunk, maintains
alignment with source poses and eliminates accumulation errors, but enforces rigid replication of
reference frames. This strict control undermines the soft conditioning needed for dubbing, where
motion should adapt naturally to audio cues. Both methods also suffer from abrupt transitions between
chunks due to their reliance on static frame conditions and lack of momentum continuity. Overall,
I2V favors motion fluidity at the cost of accumulating errors, while FL2V ensures reference fidelity
but sacrifices motion naturalness.

3.3 AUDIO-DRIVEN STREAMING VIDEO GENERATOR WITH REFERENCE FRAMES

To address accumulated errors in I2V models and abrupt transitions in FL2V models, we design
an audio-driven streaming human animation framework. This architecture uses context frames, the
trailing segment of each previously generated chunk, to propagate motion continuity via a diffusion
transformer. To further prevent error accumulation, we dynamically sample multiple reference frames

4
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Figure 4: Visualization of InfiniteTalk pipeline. Left: The streaming model receives a audio, a
reference frame, and context frames to denoise iteratively. Right: The architecture of the diffusion
transformer. In addition to the traditional structures, each block includes an audio cross-attention
layer and a reference cross-attention layer.
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Figure 5: Visualization of reference frame conditioning strategies in video dubbing models. The
top four rows show conditioning on input frames; the bottom row shows conditioning on generated
frames. Left: Image-to-video dubbing with I2V and FL2V conditioning. Right: Streaming dubbing
with four conditioning strategies. All approaches within each category use the same generated-video
conditioning.

from the source video, preserving identity, background, camera trajectory, and style, similar to
FL2V’s multi-frame conditioning. Unlike FL2V’s rigid frame replication, our approach supports soft
conditioning as discussed in Section 3.4.

As shown in Fig. 4, the model comprises an audio embedder Schneider et al. (2019), a video VAE,
and a diffusion transformer (DiT) Peebles & Xie (2022). Training requires only a video with its
audio track; dubbed pairs are unnecessary. Reference frames are randomly sampled a range shown in
Section 3.4, and context frames are taken as the first 4(tc − 1) + 1 frames. After VAE encoding, we
obtain: reference frame latent xref ∈ Rc×1×h×w, full video latent xfull ∈ Rc×(t+tc)×h×w, context
latent xcontext ∈ Rc×tc×h×w, and subsequent frames latent x0 ∈ Rc×t×h×s. The full video latent is
xfull = {xcontext,x0}, and the audio embedding a is obtained from the audio sequence. For training,
we use conditional flow matching at time t: noisy latent is xt = (1− t)x1 + tx0 with x1 ∼ N (0, I).
The DiT estimates vθ(xt|c) conditioned on c = {y, a,xref ,xtran}. We concatenate the noisy latent
and context frames in the temporal dimension (z1), pad the reference frame (z2), and concatenate
these with a reference mask (m) in the channel dimension:

z1 = concat((xcontext,xt), 2)

z2 = concat((xref ,0), 2)

m = concat((1,0), 2)

z = concat((z1, z2,m), 1)

(3)

Here, concat(·) denotes concatenation along the specified dimension, and 0,1 are zero and one
tensors of appropriate size. The transformer includes cross-attention modules for both audio and
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image conditioning, with reference frames processed by a CLIP vision model Cherti et al. (2023) to
obtain zref . The model is trained using the conditional flow matching loss Liu et al. (2023):

Lfm = Et,x0,x1,c∥vθ(xt|c)− (x1 − x0)∥22. (4)

Next, we briefly describe the sampling method, illustrated in Fig. 5. The long video sequence is
generated by auto-regressively producing small chunks. For the first chunk, the model uses the first
frame of the input video as the reference, with no context frames. For subsequent chunks, the last
4(tc − 1) + 1 frames from the previous output serve as context frames, while the first image of the
current input chunk is used as the reference frame.

3.4 SOFT CONDITIONING AND CONTROL

Control strength from the Reference frame This section investigates strategies for soft condi-
tioning in sparse-frame video dubbing, aiming to generate audio-aligned full-body motion without
rigidly mimicking reference frames that may conflict with dubbed speech. Ideally, the model should
adaptively adjust control strength: applying weak control when references resemble context frames to
allow motion diversity, and strong control when references differ to maintain identity and background
consistency. We analyze training strategies that fulfill these requirements.

We begin with Model M0, which randomly samples reference frames from the current input chunk
during training. As shown in Fig. 3, this results in excessive control, causing the model to inappro-
priately duplicate reference content at arbitrary times, disrupting audio-visual synchronization. To
understand how reference positioning affects control, we examine chunk-level (which segment) and
frame-level (which frame) sampling. Model M1 samples only the first or last frame of each chunk,
mirroring FL2V’s rigidity and causing the model to replicate reference poses at boundaries, even
when misaligned with audio emotion. Model M2 samples from temporally distant chunks, weakening
control and avoiding replication, but leading to accumulated color and background errors. Model M3
samples from adjacent chunks (within 1 second), achieving moderate control: it preserves identity
and camera motion without exact duplication, and eliminates accumulated errors.

Our results show chunk-level distance is the key factor in modulating control. Short distances
(M3) balance visual consistency and expressive, audio-synchronized motion; long distances (M2)
destabilize outputs; fixed boundaries (M1) enforce replication and suppress dynamics. Thus, near-
chunk reference sampling (M3) provides the optimal strategy for soft conditioning, enabling faithful
yet flexible video dubbing.

Camera and pose control We investigate camera movement preservation and pose control in
sparse-frame video dubbing. Reference frames provide global control of camera trajectory, but
fine-grained camera motion within video chunks may still diverge from the source. To address
this, we experiment with plugins such as SDEdit Meng et al. (2022) and Uni3C Cao et al. (2025),
but find they alone cannot maintain scene information during large camera movements, as a single
reference frame is insufficient for full scene coverage. Therefore, we extend InfiniteTalk to use
two reference frames when cloning camera trajectory and background is needed. Additionally, we
finetune a UniAnimate Wang et al. (2024) module for pose control within InfiniteTalk. Further details
are provided in the appendix.

4 EXPERIMENT

Implementation details Our model builds on MeiGen-MultiTalk Kong et al. (2025a), featuring
a 14B-parameter DiT for audio-driven image-to-video generation at multiple resolutions. We use
wav2vec2 Baevski et al. (2020) for audio embedding and CLIP/H Cherti et al. (2023) for image
embedding. Following OmniHuman Lin et al. (2025), we collect 2,000 hours of talking person videos
from the internet. Training is performed on a cluster of 64 NVIDIA H100 80G GPUs. Each context
includes 9 images, giving tc = 3 context frames in latent space. Video chunks are 81 frames long,
and the model generates 72 frames per autoregressive step for long videos.

Test datasets and evaluation metrics We evaluate our method on HDTF Zhang et al. (2021),
CelebV-HQ Zhu et al. (2022) (facial dynamics), and EMTD Rang Meng (2025) (full-body movement).
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"You wrote this? Without any help? This… this is 
college level work. I’ve never been prouder. Never."

Figure 6: A visual comparison between the video dubbing methods.

Following dubbing protocols Li et al. (2024); Fei et al. (2025), we create a test set of 120 videos by
sampling 40 per dataset and permuting audio channels to simulate dubbing. Videos are dubbed at
480× 480 resolution, matching the input frame count. Performance is assessed using both automatic
and human metrics. Objective metrics include FID (visual quality), FVD (temporal coherence),
SyncNet’s Sync-C and Sync-D (lip sync), and CSIM (identity preservation). Human studies cover
gesture-audio sync, head-speech alignment, lip sync, identity consistency, and overall naturalness,
with 340 responses from 17 participants on all 40 EMTD dubbing results.

4.1 QUANTITATIVE EXPERIMENTS

We compare InfiniteTalk to traditional video dubbing methods (MuseTalk Zhang et al. (2025),
FantacyTalking Wang et al. (2025), Hallo3 Cui et al. (2024)) and audio-driven image-to-video models
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Dataset Model Metrics
FID↓ FVD ↓ Sync-C↑ Sync-D↓ CSIM↑

HDTF
LatentSync 16.09 48.45 8.97 7.13 0.916
MuseTalk 14.20 49.13 7.17 7.90 0.933

Ours 26.11 131.65 9.35 6.67 0.775

CelebV-HQ
LatentSync 17.80 67.97 6.90 7.47 0.869
MuseTalk 17.62 72.07 4.16 9.86 0.857

Ours 32.29 229.67 7.53 7.33 0.726

EMTD
LatentSync 11.43 212.60 8.13 7.29 0.846
MuseTalk 14.26 46.07 5.35 9.28 0.825

Ours 32.55 312.17 8.60 7.16 0.713

Table 1: Quantitative comparisons our methods between the traditional video dubbing models.

Dataset Model Metrics
FID↓ FVD ↓ Sync-C↑ Sync-D↓ CSIM ↑

HDTF

FantacyTalking 32.06 110.36 3.78 10.80 0.684
Hallo3 36.48 144.65 7.20 8.61 0.674

OmniAvatar 26.63 112.49 7.06 8.63 0.752
MultiTalk 27.61 133.58 9.02 6.96 0.754

StableAvatar 29.21 141.63 8.56 7.86 0.751
Ours 27.14 132.54 9.18 6.84 0.751

CelebV-HQ

FantacyTalking 37.53 237.58 2.93 10.79 0.654
Hallo3 42.36 258.65 5.63 9.12 0.591

OmniAvatar 37.41 250.67 5.88 8.68 0.703
MultiTalk 34.79 230.41 7.25 7.70 0.711

StableAvatar 34.23 235.79 7.06 8.01 0.709
Ours 33.96 230.12 7.41 7.59 0.713

EMTD

FantacyTalking 36.66 298.24 3.60 11.31 0.626
Hallo3 44.71 326.94 5.68 9.56 0.512

OmniAvatar 29.47 308.14 6.93 8.55 0.694
MultiTalk 33.80 315.33 8.13 7.50 0.702

StableAvatar 34.64 331.40 7.84 7.69 0.699
Ours 33.27 314.68 8.34 7.36 0.709

Table 2: Quantitative comparisons between our method and audio-driven image-to-video models.

(OmniAvatar Gan et al. (2025), MultiTalk Kong et al. (2025a), StableAvatar Tu et al. (2025)), using
their open-source weights and inference scripts for consistency.

As shown in Table 2, InfiniteTalk significantly outperforms image-to-video models in lip synchro-
nization. However, there is a trade-off among synchronization (Sync-C, Sync-D), visual quality (FID,
FVD), and identity preservation (CSIM). Methods that simply copy the input achieve top scores
in FID, FVD, and CSIM, but do not reflect true visual quality. When compared to methods with
competitive synchronization, InfiniteTalk excels in both visual quality and identity preservation. In
Table 1, traditional dubbing methods like LatentSync Li et al. (2024) and MuseTalk Zhang et al.
(2025) only edit the oral region, leaving the rest of the video unchanged and thus inflating FID
and FVD scores. Currently, no automatic metric effectively measures full-body motion and audio
alignment; music-motion metrics and Sync-C/Sync-D fail when there is significant head movement.
To address this, we conduct a user study, as shown in Table 4, where participants rank dubbing results
from MuseTalk, LatentSync, and our method. InfiniteTalk achieves the highest scores in both lip and
body motion synchronization, highlighting the limitations of traditional methods that restrict edits to
the mouth and often misalign body motion.
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Model FID↓ FVD ↓ Sync-C↑ Sync-D↓
Ours (M0) 32.69 322.04 8.51 7.31
Ours (M1) 32.21 307.21 7.96 8.11
Ours (M2) 42.17 376.53 8.23 7.44
Ours (M3) 32.55 312.17 8.60 7.16

Table 3: Ablation experiment results on EMTD.

Model Lip Sync.↓ Body Sync. ↓
MuseTalk 2.57 -

LatentSync 2.32 1.92
Ours 1.11 1.09

Table 4: Human evaluation between video dub-
bing methods on motion synchronization. Body
sync for MuseTalk is omitted as it is identical to
LatentSync.

Figure 7: InfiniteTalk can achieve camera and pose control. The upper-right corners show the
condition.

4.2 QUALITATIVE EXPERIMENTS

We conduct a visual comparison between our method and traditional video dubbing methods in
Fig. 6. The first input example is a static video. It showcases when only editing mouth regions,
traditional video dubbing methods cannot drive the head and body by the audio track. The following
two inputs are dynamic videos. Compared to the counterparts, InfiniteTalk is not only able to generate
plausible audio-aligned lip movements, but also synchronized face, head, and body movements with
matched emotional expressions. As a new paradigm, sparse-frame video dubbing also demonstrates
its necessity for modern audio-driven human animation video-to-video applications. The visual
results showing the camera and pose control capability is shown in Fig. 7. The fine-grained level of
customization ensures reliable controllable sparse-frame video dubbing.

4.3 ABLATION STUDY

To systematically evaluate which training strategy performs the best in sparse-frame video dubbing,
we conduct ablation studies comparing the four different reference frame positioning methods
introduced in Section 3.4. All ablated models are rigorously benchmarked using the 40-video test set
sampled from EMTD under identical conditions. As shown in Table 3, our fine-grained reference
frame positioning during training is the key to achieve reliable visual quality and audio-motion
synchronization.

5 CONCLUSION

We introduce sparse-frame video dubbing, a novel paradigm for audio-driven video-to-video genera-
tion that employs reference keyframes to maintain emotional cadence and camera trajectories while
liberating facial, head, and body dynamics to synchronize organically with dubbed audio. We propose
InfiniteTalk, an audio-driven generator that overcomes critical limitations in long-form synthesis.
By incorporating transient frame conditioning for seamless transitions, motion-provoking sampling
to activate natural gestures, and adaptive camera control, InfiniteTalk achieves state-of-the-art lip,
head, and body synchronization while eliminating identity drift and motion artifacts across extended
sequences. Extensive validation confirms its superiority in producing natural, audio-aligned dynamics
essential for immersive dubbed content.
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A LLM USAGE

DeepSeek R1 and GPT 4.1 are used to only polish the text on the finished manuscript. LLama-Next
is used to generate textual prompts of the videos.

B CONTROLLED SPARSE-FRAME VIDEO DUBBING

Soft first-last frame conditioning To improve the content preserving in the scene, we extend
InfiniteTalk, enabling it to use two reference frames to confirm the details in the video chunk. The
model is finetuned from the M3 model. The two reference images are randomly selected from the
M3 reference range shown in Fig. 5, then we sort the two frames according to their frame number.
Let xref1 and xref2 denote the first reference frame and the second reference frame respectively, the
conditional input of the InfiniteTalk extension is:

z1 = concat((xcontext,xt), 2)

z2 = concat((xref1,0,xref2), 2)

m = concat((1,0), 2)

z = concat((z1, z2,m), 1).

(5)

We do not feed the second reference frame to the clip vision embedding. The model is finetuned
by only updating audio cross-attention layers. The M3 reference range ensures soft conditioning of
the two reference frames. We can achieve better scene consistency without losing introducing rigid
replication on the content of reference frames.

Camera trajectory control We test our model with SDEdit Meng et al. (2022) and Uni3C Cao
et al. (2025). SDEdit incorporates trajectory information by adding the source video to the initialize
noise at a scale t0. The denoising sampling process starts from t = t0 instead of t = 1. xt0 =
(1 − t0) · x1 + t0 · x0. While Uni3C is a ControlNet-like architecture attached to the diffusion
transformer. A visual comparison is shown in Fig. 8. Using InfiniteTalk alone will not replicate
the subtle camera movement of source video. With SDEdit Meng et al. (2022) or Uni3C Cao et al.
(2025), we can achieve fine-grained camera control.

Pose control To enable InfiniteTalk for pose-controlled human animation. We borrow the modules
from VACE Jiang et al. (2025) and UniAnimate Wang et al. (2024). Compared to VACE, we
find UniAnimate is introducing very little additional computation, since it only perform low-rank
adaptation on the diffusion transformer, whereas VACE rely on a ControlNet architecture. To further
enhance the pose control in our audio-driven animation task. We finetune the model using LoRA on
1,000 videos given the audio and pose annotation.

C ADDITIONAL RESULTS

Pose control We show examples using human pose to drive sparse-frame video dubbing in Fig. 9.
InfiniteTalk allows users to use a custom human motion sequence to control the generated video.
Our method will generate satifactory facial and body details to match the pose input and the audio,
allowing versatile human related content creation.

Long video dubbing We show visual results for long video generation using InfiniteTalk. In Fig. 10
and Fig. 11, we use a single image as the condition and use a long audio track to animate the human in
the condition image. Our method is able to achieve high fidelity full body animation. After thousands
of frames, InfiniteTalk will not cause color tone or identity bias. In Fig. 12 and Fig. 13, we dub a
long video using a long video track. Our method can follow the camera movements, scene cut of the
input video while produce authentic, audio-aligned human motion. Please see our attachment for
additional video samples.
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Input

Ours

Ours 
w. Uni3C

Ours 
w. SDEdit

Figure 8: Visual comparison on the camera trajectory control methods.

Figure 9: Pose controlled sparse-frame video dubbing.
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Figure 10: Long image animation results. The number in left up corners show the frame number.
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Figure 11: Long image animation results. The number in left up corners show the frame number.
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Figure 12: Long video dubbing results. The number in left up corners show the frame number.
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Figure 13: Long video dubbing results. The number in left up corners show the frame number.
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