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Abstract

Controlling a physical system to behave in a desired manner requires a prior1

knowledge of the system, having access to a model or a collection of labeled2

data consisting of the desired inputs-outputs of the system. When the system3

is unknown or labeled data is not available or expensive to acquire, resorting to4

approaches that do not rely on the use of training data is inevitable. In this work,5

we propose an algorithm based on untrained neural networks that can be applied to6

a physical system in its most general form to obtain the required input that would7

result in a desired target output. We showcase the applicability of our algorithm to8

experimental phase-retrieval problems in the complex environment of a scattering9

medium whose input-output relation follows a nonlinear and slowly time-varying10

setting. We show that despite partial measurements of the system, comparable11

fidelity to that of fully-observed methods or supervised networks is achievable.12

1 Introduction13

Reconstructing the inputs of a physical system from measurements of its sensory outputs is a common14

practice in various disciplines such as microscopy Rivenson et al. [2017] and optical tomography15

Würfl et al. [2016], among others. Most learning approaches for information retrieval such as16

supervised learning methods, generative networks based on Generative Adversarial Networks (GANs)17

Mirza and Osindero [2014] or Variational Autoencoders (VAEs) Kingma and Welling [2013] and18

compressive sensing approaches Mousavi and Baraniuk [2017], Bora et al. [2017], Shah and Hegde19

[2018] rely heavily on labeled data to train deep neural networks that can faithfully recover the20

original inputs of the system. An interesting problem is finding inputs of the system that results in a21

desired target output. This is a common scenario when one is dealing with the problem of controlling22

a system when either the system is unknown or is too complex to be modeled, a setting in which no23

labeled input-output data from the distribution of target outputs might be available for supervised24

learning, a priori. In these settings, imposing a particular prior on the solutions of the inverse problem,25

i.e. the mapping from partially measured output to the input of the system, can encourage solutions26

whose resulting outputs lie within the desired part of the system’s support Van Veen et al. [2018],27

Ulyanov et al. [2018], Heckel and Hand [2018]. Compatibility with the physics of the problem could28

be leveraged as a prior on the sought-after solutions.29

We propose to use the system itself as a prior, i.e. to send the reconstructed inputs through the30

physical system or a model of the system and check if the resulting outputs agree with the original31

measurements. In cases where the physical system is difficult to model, the forward mapping could be32

learned as well. The learned forward and backward mappings together constitute a close loop where33

each one imposes a physical-compatibility prior on the other one. Here we show the applicability34

of the proposed algorithm for solving a real-world nonlinear problem with experimental results and35

compare its performance to that of the physics-based methods which require full characterization of36
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the system. It is concluded that the proposed algorithm could achieve the same level of fidelity as that37

of the gold-standard physics-based approach even despite partial measurements of the system. The38

contributions of this work are as follows:39

• Assuming that a particular subsets of inputs exist that generates system’s outputs belonging40

to a specific target distribution, we propose an algorithm for controlling the output of the41

system without the need to have access to labeled data from the distribution of desired target42

outputs. We show how one can fit the parameters of the network by using the physics-based43

compatibility as a prior.44

• We compare the performance of the algorithm with that of classic non-learning based full-45

measurement methods as well as learning based approaches trained with labeled data in a46

supervised fashion. We show that our proposed algorithm can achieve the same level of47

fidelity as the other two approaches but without full-measurements of the system or use of48

expensive labeled data.49

Related works: Untrained networks have recently been proposed to deal with scenarios in which50

labeled data is scarce or does not exists Ulyanov et al. [2018]. By fitting the parameters of the network,51

untrained methods impose a prior on the range of the network’s outputs for various application such52

as denoising, super-resolution and inpainting. In these settings, the network is often optimized for53

solving single-image tasks, i.e. the network is unique to a single task and a single image, and needs54

to be re-optimized (often from scratch for a new image). Here, we show that our optimized network55

is applicable to a range of images belonging to a similar distribution. We also show the use of56

physics-compatibility priors as a regularization.57

2 Methods58

Assume that the forward mapping of a (non-)linear physical system, can be formulated as:59

y = f(x) + η (1)

where f , x ∈ Rn (or more generally x ∈ Cn) and y ∈ Rm, respectively, are the forward mapping60

function, input and output of the system and η is the random noise.61

Inverse problem Denoting the target output and its sought-after corresponding input by yt and x∗,62

respectively, the inverse problem of obtaining the required input that results in the target output is63

formulated as:64

θ̂A = argmin
θA
L
(
M
(
x̂, θM

)
− yt

)
(2a)

x̂ = A
(
yt, θA

)
(2b)

in which, θ̂A are the optimal parameters of the Actor network that yields the required input of the65

system, i.e. x∗ = A
(
yt, θ̂A

)
, L is a loss function, and M is the forward path of the physical system66

or a learned model of it. In the latter case, the parameters θ̂M of network M are kept fixed while67

solving this optimization problem.68

We also compare the efficacy of the proposed algorithm with that of a neural network trained69

with labeled data in a supervised fashion, thus the solutions are not explicitly constrained with70

physics-based compatibility priors. The solutions of the latter problem are obtained from:71

θ̂G = argmin
θG

1

N

N∑
i=1

∥∥∥G(yti , θG)− xti
∥∥∥2
2

(3)

where G is a neural network that is trained with input-output tuples (xti, y
t
i) that are directly drawn72

from distribution of desired outputs and their corresponding inputs. Once trained, then a sample of73
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Figure 1: An example of the input (left) and partially measured (amplitude-only) output of the
medium (right).

desired target output yt from test dataset (also from the same distribution of desired targets) is given74

to the G network to obtain the estimated input control pattern x∗∗ = G(yt, θ̂G).75

The fidelity of both algorithm 1 (A network) and algorithm 2 (G network) are calculated by sending76

x∗ and x∗∗ through the physical system and then comparing the resulting outputs.77

Forward model Here we proposed our algorithm for cases where a forward model of the system is78

not readily available and needs to be learned. Applicability of the algorithm to cases where a forward79

model already exists is straightforward. With N input data points x0i drawn from the distribution D80

(here the distribution of natural images from ImageNet) and their corresponding output measurements81

y0i , the forward path of the physical system can be modelled. In particular, the neural network Model82

is trained so that when fed with x0i , the output measurement y0i is reproduced, i.e. y0i =M(x0i , θM)83

where θM are the parameters of the Model network. Solving the following optimization problem84

yields:85

θ̂M = argmin
θM

1

N

N∑
i=1

∥∥∥M(x0i , θM)− y0i
∥∥∥2
2

(4)

where θ̂M are the sought-after optimal parameters of the Model network.86

training The iteration of training M and A, in this order, could be repeated for multiple times87

each time with updated dataset for training of M . The updated dataset is comprised of the inputs xji88

obtained from the trained Actor network in iteration j and their corresponding measurements outputs89

yji , collected from the physical system through actual experiment. The intuition behind this is that90

training the Model network M with a dataset whose distribution is closer in some metrics to the91

distribution of the target outputs positively affects the reconstruction step.92

3 Experiment and discussion93

We showcase the applicability of the proposed algorithm for imaging in a diffuse medium. The94

latter is an example of a scattering media in which the input x ∈ C51×51 is scrambled to give rise95

to random patterns known as speckles y ∈ R200×200 (the system f , here, is effectively a random96

matrix). An example of an input-output of this medium is shown in Figure 1. For generating desired97

target outputs, we use the proposed algorithm, with Pearson coefficient Benesty et al. [2009] used98

as L, to obtain the required input of the system that results in the target output. Figure 2 depicts99

examples of projected images through the diffuse medium. It can be inferred that our proposed100

approach has an fidelity on par with the supervised methods but without the need to rely on the labeled101

data. We used the same architecture of networks (two fully connected networks for the real and102

imaginary parts of the data with sigmoid non-linearity as the input x is a complex number) for both103

our method and the supervised learning approach. It should be noted that contrary to the untrained104

methods whose networks are optimized for a single image, we here optimize our network for 1000105

images from EMNIST Cohen et al. [2017] dataset, simultaneously. For the sake of comparison, the106

network of supervised learning approach is trained with 1000 labeled dataset as well. The average107

fidelitiy (Pearson coefficient, PSNR) of our method and that of the supervised learning reads as108
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Figure 2: Qualitative results of the system output control obtained by our algorithm (second column),
a neural network trained with labeled data (third column), full-measurement non learning methods
(fourth column). The original targets are also shown (first column). The inset shows the fidelity
(Pearson coefficient) of the generated output as compared with the original target.

(0.9787, 20.17) and (0.9823, 20.71), respectively. The fidelity of the full-measurement non-learning109

method reads as (0.9850, 29.0486).110
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