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Abstract

In histopathology, staining quantification is a mandatory step to unveil and characterize
disease progression and assess drug efficiency in preclinical and clinical settings. Super-
vised Machine Learning (SML) algorithms allow the automation of such tasks but rely
on large learning datasets, which are not easily available for pre-clinical settings. Such
databases can be extended using traditional Data Augmentation methods, although gen-
erated images diversity is heavily dependent on hyperparameter tuning. Generative Ad-
versarial Networks (GAN) represent a potential efficient way to synthesize images with a
parameter-independent range of staining distribution. Unfortunately, generalization of such
approaches is jeopardized by the low quantity of publicly available datasets. To leverage
this issue, we propose a hybrid approach, mixing traditional data augmentation and GAN
to produce partially or completely synthetic learning datasets for segmentation application.
The augmented datasets are validated by a two-fold cross-validation analysis using U-Net
as a SML method and F-Score as a quantitative criterion.

Keywords: Generative Adversarial Networks, Histology, Machine Learning, Whole Slide
Imaging

1. Introduction

Histology is widely used to detect biological objects with specific staining such as protein
deposits, blood vessels or cells. Staining quantification heavily relies on manual techniques,
a tedious and time-consuming task. Therefore, automated methods, among which super-
vised machine learning SML (1), are increasingly used to automatically detect and quantify
biological structures. One of the biggest issues facing the use of SML in medical imaging
is the lack of large, labelled and available datasets. Not only manual annotation is time-
consuming, but it is also highly dependent on the bias of the experts. The limited amount
of annotated data can decrease the performance of SML algorithms which often need large
quantities of learning data to avoid overfitting.
To overcome these issues, learning datasets can be artificially increased using data aug-
mentation (2). A number of techniques have been proposed in the last decade, based on
traditional methods such as Rotation (3), RandomGaussBlur (4), RandomAffine (5), Elas-
tic Distortion (6) or HEDJitter (7). Although opening the way to using synthetic data
to compensate for limited dataset availability, the mentioned methods suffer from several
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problems, among which non-genericity: most of the proposed methods were designed and
optimized for specific datasets and markers. Another issue is related to their intrinsic na-
ture: standard data augmentation produces only limited alternative data, depending on
the hyperparameters intervals and degrees of freedom. As a result, transformed images
have a similar distribution or spatial diversity than the original ones, leading to limited
performance improvement. However Generative Adversarial Networks (GAN) offer a new
way to generate synthetic samples to extend and diversify datasets. The original method
was based on the competition of two networks: a Generator network aimed at producing
realistic images to fool a Discriminator network (8). Deep Convolutional GAN (DC-GAN)
(9) consisted in convolution layers without max pooling or fully connected layers.
The presented work aimed at mixing traditional Data Augmentation and GAN methods to
ensure sufficient databases generation for high-quality histopathological staining segmenta-
tion. The segmentation was performed with U-Net (10) and the model was validated using
two-fold cross-validation.

2. Material and Methods

2.1. Dataset and computational environment

2.1.1. Histological dataset

This study was performed accordingly with the principles of the Declaration of Helsinki.
Approval was granted by the CETEA (Comité d’éthique en expérimentation animale) n°44
and the Ministry of higher education, research and innovation (MESRI).
Dataset was composed of 114 histological sections extracted from a 13.5-months-old mouse
amyloidosis model (APP/PS1dE9) brain, stained with beta Amyloid Monoclonal Antibody
(BAM-10) and counter-stained with Bluing Reagent (11). From the digitized sections, 1600
images of 128x128 pixels each were randomly extracted. An expert segmented them in two
classes: 1- background and Bluing Reagent stained tissue and 2- BAM-10 stained tissue.

2.1.2. Learning and Test datasets

The dataset described in section 2.1.1 was split in half in a learning (800 couples, im-
age/segmentation) and a test (800 couples) datasets (Figure.1-a). Each initial learning
dataset used was built by randomly selecting 90 from the learning dataset.

2.1.3. Computational environment

Algorithms were run on the following hardware setup: 128 GB RAM, i9-7980XE CPU,
Nvidia Quadro P5000 graphics card. Software environment included 450.51.06 nvidia driver,
cuda version 10.0. hosted on an UBUNTU 16.04 operating system. Algorithms were coded
in python and implemented on Keras framework.

2.2. Data augmentation

2.2.1. Traditional Data Augmentation methods

The first method was based on rotation, reversal (3) and a custom-made circular translation
method. The latter consisted in splitting an image into 2 parts, blending one part with the
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Figure 1: Example images and corresponding masks. From left to right: a) Initial dataset:
raw data, manual segmentation, U-Net segmentation. b) DC-GAN trained with
an intermediate dataset: generated image, generated mask, U-Net segmentation.
c) DC-GAN trained with the initial dataset: generated image, generated mask,
U-Net segmentation.

reversal of the other using the Gaussian Laplacian Pyramid Blend algorithm (12). The
other used methods were Random Affine (4), Random Gauss Blur (5), Random Elastic
transformation (6) and HEDJitter randomly disturbed HED color space values (7). During
the entire process, these traditional methods generated 149,600 couples of images with their
corresponding segmentation in two-fold cross-validation (13) (29,920 with each method).
Structural similarity index measure (SSIM) is a value scoring the spatial similarity between
two images. This index, not rotation invariant (14), ranges from 0 (images not similar) to
1 (identical images). The SSIM was computed 5 times between the initial learning dataset
and intermediate method for each traditional method. Then each method was scored by
the average SSIM and its standard deviation. Average SSIM computation was performed
in a two-fold cross-validation setting.

2.2.2. DC-GAN Data Augmentation

The GAN Data Augmentation was performed using the DC-GAN algorithm (9). The
quantity of the DC-GAN generated images was equal to the quantity of the generated images
using traditional methods in the intermediate dataset (between 880 and 3600 generated
images depending on the protocol, detailed section 2.2.3). Image generation started after
the 360th epochs and 100 images per epoch, until the generation of the final dataset. These
numbers were chosen empirically after a testing phase and interpretation of the epoch and
the number of images per epoch. Generated raw images were smoothed using a standard
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Figure 2: Scheme of the 4 learning protocols. a) GAN only. b) Traditional method only. c,
d) Mix between Traditional method and GAN

median filtering, with a kernel size of 3x3 pixels. During the entire process, the DC-
GAN generated a large quantity of images and their corresponding segmentation (151,040
generated couples), two examples are shown in Figure.1 b) and 1 c).

2.2.3. Data augmentation protocol

We trained a SML method (see section 2.2.4) with 4 different augmentation protocols (Fig-
ure.2). First, the SML was trained with a dataset generated with DC-GAN that was trained
with the learning dataset (protocol a). Then, the learning dataset was randomly split in
two sets (protocols b, c and d). This split was controlled by a factor q, ranging from 0
to 1. The size of the first set was equal to the number of images in the learning dataset
multiplied by q. An intermediate dataset, using this first set, was increased by a factor
of 5 using a traditional method. For protocol b) SML was trained with the final learning
dataset composed with the intermediate data set concatenated with the second set of the
split. For protocols c) and d), GAN was trained with the intermediate dataset. In c) SML
was trained with just a synthetic learning dataset coming directly from GAN. Finally, in
d) SML was trained with a Hybrid Learning dataset composed with the synthetic learning
dataset and the second set of the split of the learning dataset.

2.2.4. Data augmentation validation

U-Net, a supervised deep learning segmentation method developed for biomedical image
segmentation, was used to validate the data augmentation protocol (10). It was configured
with default architecture parameters and trained with 35 epochs. A two-fold cross-validation
(Direct Validation DV and Cross Validation CV) was performed through the computation
of two F-scores (13). First, F-score Validation was computed during training, on a specific
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Figure 3: Final learning dataset (protocol b) F-score test (continuous line: DV. Dashed
line: CV) against q values.

validation set (20 % of the final learning dataset) to detect potential overfitting (values close
to 1). Finally, the F-score Test was evaluated using the test dataset, which was completely
independent from the learning set. The model with the best F-score Validation during the
training phase was used in the test phase.

3. Results

As a reference result, the F-Score test without augmentation was 0.877 in DV and 0.883 in
CV.

3.1. DC-GAN based augmentation

The DC-GAN did not converge with the initial dataset (720 couple of images of 128x128 pix-
els) and generated unusable couples of images (Figure.2-c). In this case, F-score Validation
was next to one and F-score Test was next to zero.

3.2. Traditional augmentation method

For protocol b, F-score Test plateaued above 0.889 in DV and 0.894 in CV for all the
methods except HEDjitter (Figure.3). Moreover, the best F-score-test was achieved for
q=1 which corresponded to the maximum amount of augmented images injected into the
final learning dataset. Conversely, HEDjitter behavior was the opposite. The best F-score
was generated with a dataset which contained less transformed images with this method
(q=0.5).
The SSIM was used to sort traditional methods according to their power to structurally
distort an image. The geometric, random affine and random elastic methods showed the
lowest average SSIM value (Table 1).
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Traditional method SSIM (DV) SSIM (CV)

Geometric method 0.44 (±0.05) 0.46 (±0.05)
Random Affine 0.44 (±0.07) 0.45 (±0.08)

Random Gauss Blur 0.93 (±0.04) 0.92 (±0.04)
Random Elastic 0.57 (±0.18) 0.57 (±0.18)

HED Jitter 0.81 (±0.09) 0.82 (±0.09)

Table 1: The average values of the metric SSIM calculated for each traditional method with
the DV and CV mode, and the corresponding standard deviation.

Figure 4: Hybrid learning dataset (protocol d) F-score test (DV continuous line and CV
dashed line) against q values.

3.3. Hybrid and synthetic learning datasets

With a value of q lower than 0.25, the DC-GAN was not able to generate exploitable
images. As for the hybrid learning dataset (Figure.4), the F-scores test in DV setting with
Geometric method Random Gauss blur and HEDjitter method were not relevant because
the DC-GAN could not converge. Conversely, the other methods presented high F-score
values. The results of DC-GAN depended on the factor q, and generally increased with
high q values. However, some DC-GAN failed to converge, even with q=1 (in CV setting,
F-score tests were null for Random Gauss Blur and q=1). Furthermore, the Random Elastic
method and the Random Affine method had a F-score higher than 0.89 in DV and 0.9 in
CV for almost all q values.
Even when the DC-GAN generated only unusable images, U-net segmentation resulted in
F-score test > 0, as data from the original learning dataset were injected in the learning
process through the hybrid approach.
For the synthetic learning dataset using the Random Affine and Random Elastic method, F-
score values stabilized asymptotically at approximately 0,87 in both DV and CV, following a
horizontal plateau after a certain amount of data generated by the DC-GAN (1800 generated
images of 128x128 pixels from 360 initial images, with q=0.5) (Figure.5). For the other
methods, the stability of the convergence stage was not guaranteed.

6



Figure 5: Synthetic learning dataset (protocol c) F-score test (DV continuous line and CV
dashed line) against q values

4. Discussion

This study demonstrated the relevance of Data Augmentation strategies for SML algorithms
in the context of histopathological images.
The geometric, random affine and random elastic methods led to low average SSIM values
demonstrating an increase of spatial diversity in the subsequent generated-images. Contrar-
ily to random gaussian blur and HEDJitter methods which changed only the color space
and the blur of images, the three aforementioned methods affected the spatial distribution
of the pixels. The geometric method obtained high results because SSIM was not rotation
invariant (14). Therefore the spatial diversity measure with SSIM must not be considered
equally between the geometric method and the couple formed by random affine and random
elastic methods.
As shown in section 3.3, DC-GAN data augmentation approach allowed to reach similar
segmentation quality than the reference result, but using only half of the initial dataset as
an input. DC-GAN training results quality for BAM-10 datasets was linked with the quan-
tity of data in the learning dataset. Without, or with a reduced traditional augmentation, a
small initial learning dataset resulted in unusable images generated by the DC-GAN. While
analyzing F-Scores (Figure.5), we noted that a minimum amount of data ( 1800 images of
128x128 pixels for q=0.5) was necessary to ensure exploitable results, as the GAN used an
image by image strategy, and not pixel by pixel one. However, minimal input data quantity
was a necessary condition but not sufficient condition to ensure the convergence of DC-GAN
(Figure.5) and the generation of exploitable images.
When the random elastic method was used for learning dataset augmentation, DC-GAN
convergence was ensured in almost all protocol cases, as already suggested elsewhere (15).
Convergence not only depended on the quality of the original learning dataset, but also
on the way augmentation methods extended datasets. Spatial deformation augmentation
algorithms achieved high segmentation quality and asymptotic stability (Table 1, Figures 4
and 5). The worst algorithms for this purpose were HEDJitter and random gaussian blur,
generating high-structural similarity images (Table 1).
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Random elastic and affine methods increased learning dataset spatial diversity and therefore
the quality of subsequent segmentation (15). Conversely, the other algorithms were not as
stable and randomized as geometric methods, and only changed the colorimetric diversity
(HED Jitter), but did not increase the geometric diversity (Random Gauss Blur).

5. Conclusion

In the light of these observations, we show that DC-GAN combined with traditional Data
Augmentation methods is an efficient tool for histopathological dataset segmentation with
a reduced initial manually labeled dataset. However the GAN learning dataset must meet
two criteria (quantitative and qualitative) in order to obtain an efficient synthetic images
generation. Firstly, a minimal quantity of initial learning images is necessary which corre-
sponds to approximately 1,800 images of 128x128 pixels. Secondly, the spatial diversity of
learning databases is mandatory to ensure high segmentation quality as shown by the SSIM
sorting. Random affine and random elastic methods meet with this criterion.
Future work will consist in exploring other values of q in order to better specify the minimum
quantity of data needed for GAN learning data, and reduce the minimal initial dataset size
needed to ensure segmentation quality and stability. A particular attention will be given to
the diversity of generated images, using the presented hybrid approach with the augmenta-
tion methods that work the best in collaboration with GANs. We will also test other GAN
implementations, such as Progressive Growing GAN (PG-GAN) (16) and will evaluate inter
GANs comparisons. Another lead will be to find data augmentation methods increasing
further the spatial diversity and incorporate them in the presented pipeline. We will also
investigate Transfer Learning between training GANs with different histological markers,
allowing the generation of models for markers with the minimal amount of initial images.
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