JAFI: Joint Modeling Auto-Formalization and Auto-Informalization
through Training-Inference Integration

Anonymous ACL submission

Abstract

Recent advancements in large language models
(LLMs) have substantially improved models’
performance in auto-formalization and auto-
informalization task. However, existing ap-
proaches suffer from three key limitations: (1)
isolated treatment of these dual tasks despite
their inherent complementarity, (2) decoupled
optimization of model training and inference
phases, and (3) under-explored collaboration
potential among different LLMs. To address
these challenges, we propose JAFI, a unified
framework that integrates training and infer-
ence while jointly modeling auto-formalization
and auto-informalization, through modular col-
laboration among specialized components. We
evaluate JAFI which employs Lean 3 and Lean
4, respectively, on the mathematical dataset
AMR and miniF2F. The results demonstrate
that JAFI significantly surpasses existing meth-
ods across both tasks. Comprehensive ablation
studies further corroborate the effectiveness of
its meticulously designed modules. Addition-
ally, JAFTI’s superiority is validated by its per-
formance in the ICML 2024 Challenges on Au-
tomated Math Reasoning. Code and datasets
are available at https://anonymous.4open.
science/r/JAFI-EDBC.

1 Introduction

As a crucial component of human intelligence, the
ability of coding and mathematical reasoning has
attracted extensive attention in the research com-
munity of large language models (LLMs) (Shao
et al., 2024; Ying et al., 2024; Guo et al., 2024;
Roziere et al., 2023). Compared to the mathe-
matical reasoning expressed through natural lan-
guage (NL), i.e., informal proofs, formal languages
(FL) express mathematical theorems and proofs
in a machine-verifiable form akin to programming
code, ensuring the reliability of the proof process
(Li et al., 2024). Typical FL languages include Is-
abelle (Paulson and Nipkow, 1994), Coq (Huet and

Paulin-Mohring, 2000), and Lean (de Moura and
Ullrich, 2021), which have more rigorous syntax
and logical structures compared to the more flexi-
ble NL. The tasks of auto-formalization and auto-
informalization aim to convert natural language
descriptions of mathematical problems into formal
statements and proofs, and vice versa (Wang et al.,
2018). As the forms of automated theorem proving
(ATP), auto-formalization and auto-informalization
play a significant role in mathematical research and
education (Li et al., 2024; Jiang et al., 2023, 2022).

The development of LLLMs has shed new light on
the performance improvement of these two tasks,
primarily due to their robust capabilities of natural
language understanding and reasoning (Wu et al.,
2022; Azerbayev et al., 2023a; Jiang et al., 2022).
However, directly using LLMs to achieve mathe-
matical tasks has not yielded ideal results, mainly
due to (1) data bias, as mathematical language is
highly specialized and comprises a small portion
of LLMs’ pretraining data, and (2) the inherent
difficulty of the tasks, given the specialization and
complexity of mathematical reasoning.

Previous efforts have attempted to enhance
LLM performance on these two tasks, which
can be broadly categorized into training-based
and inference-based methods (Li et al., 2024).
Training-based methods (Azerbayev et al., 2023a;
Xin et al., 2024b; Azerbayev et al., 2023b; Shao
et al., 2024; Ying et al., 2024) typically involve fine-
tuning LLMs on extensive datasets containing both
informal and formal mathematical data, thereby
enhancing the model’s general mathematical ca-
pabilities. On the other hand, inference-based
methods (Jiang et al., 2022; Xin et al., 2023; Patel
et al., 2023; Zhao et al., 2023) utilize techniques
such as sophisticated prompt engineering and in-
context learning (ICL) to directly perform auto-
(in)formalization tasks with frozen LLMs. Overall,
training-based methods can enhance the model’s
potential across diverse mathematical tasks but re-

https://anonymous.4open.science/r/JAFI-EDBC
https://anonymous.4open.science/r/JAFI-EDBC
https://anonymous.4open.science/r/JAFI-EDBC

quire substantial computational resources, whereas
inference-based methods can effectively improve
LLM performance on specific tasks but have per-
formance limits.

However, previous methods have the following
issues: (1) Overlooking the synergy between the
two tasks. Previous works have primarily focused
on auto-formalization (Wu et al., 2022; Jiang et al.,
2022, 2023), and although some works (Wu et al.,
2022; Azerbayev et al., 2023a; Lu et al., 2024) have
considered auto-informalization, they seldom con-
sider their interrelation. (2) Lack of integration
between training and inference. Training-based
and inference-based methods each have their ad-
vantages, but few works have approached these
tasks from both aspects to balance training costs
and model performance. (3) Lack of research on
collaboration between different models. The auto-
(in)formalization task require expertise in specific
mathematical languages, translation capabilities be-
tween NL and FL, and ICL abilities. However, ex-
isting research has not explored solving these tasks
through collaboration between multiple models.

We propose JAFI, a Joint framework for Auto-
Formalization and auto-Informalization, that ad-
dresses these challenges through three key inno-
vations. (1) By integrating a carefully designed
memory module and retrieval module, JAFI effec-
tively leverages the synergy between the two tasks,
maximizing data utility within the tasks. (2) JAFI
offers a holistic approach to model training and in-
ference by accumulating high-confidence samples
from both tasks into a unified knowledge base, thus
facilitating modeling training. (3) During inference,
JAFI explores the use of multiple language models
for different subtasks, optimizing task completion
by leveraging the distinct advantages of each LLM.

The paper’s contributions are threefolds:
1. Integrated Framework: We propose the novel
JAFI framework, which effectively tackles both
auto-formalization and auto-informalization tasks,
featuring a seamless training-inference loop.
2. Architectural Innovations: JAFI is designed
with specialized modules for diverse subtasks and
promotes adaptive model collaboration.
3. Empirical Validation: Through extensive ex-
periments on the AMR and miniF2F mathematical
datasets, JAFI demonstrates state-of-the-art perfor-
mance. Our ablation studies provide further evi-
dence of the efficacy of the modules within JAFI.

2 Related Work

Auto-formalization aims to convert theorems and
proof to formal code automatically. (Wang et al.,
2018) first introduce deep learning models for
auto-formalization. Drawing inspiration from the
sequence-to-sequence models used in neural ma-
chine translation (Sutskever et al., 2014), various
encoder-decoder frameworks (Luong et al., 2017;
Lample et al., 2018) are experimented with to trans-
form mathematical texts written in LATEX into the
Mizar language (Szegedy, 2020).

The development of large language models
(LLMs) and their in-context learning capabilities
(Brown et al., 2020) has created new opportunities
for auto-formalization. Studies (Wu et al., 2022;
Agrawal et al., 2022; Gadgil et al., 2022) explored
the use of PaLM (Chowdhery et al., 2023) and
Codex (Chen et al., 2021) with few-shot prompt-
ing to convert mathematical problems into formal
languages like Isabelle and Lean seamlessly. Sev-
eral researchers (Jiang et al., 2022; Patel et al.,
2023; Zhao et al., 2023; Xin et al., 2023) propose
more structured approaches for auto-formalization.
For example, DSP (Jiang et al., 2022) uses Min-
erva (Lewkowycz et al., 2022) to generate informal
proofs and transforms them into formal sketches,
utilizing ATP systems to fill in the missing compo-
nents of the proof sketch.

Furthermore, a body of research (Azerbayev
et al., 2023a; Jiang et al., 2023; Azerbayev et al.,
2023b; Shao et al., 2024; Ying et al., 2024) focuses
on training LLMs with extensive datasets compris-
ing both informal and formal mathematical data to
evaluate their auto-formalization performance. De-
spite these advancements, existing work often lacks
exploration into the integration of training-based
and inference-based methods.

Conversely, due to the inherent inconsisten-
cies in natural language, research into auto-
informalization is relatively sparse (Li et al., 2024;
Lu et al., 2024; Jiang et al., 2023). Overall, there
is a significant gap in exploring the synergy be-
tween auto-formalization and auto-informalization
tasks.

3 Proposed Method

3.1 Problem Formulation

Given a paired dataset D = {(i;, fj)}éyzl con-
sisting of IV aligned informal-formal proof pairs,
where i; denotes an informal proof (natural lan-
guage with mathematical reasoning) and f; rep-

informal statement: if n is an even number, then "2 is also even.

informal proof:
(a) training

o

pretrained LLM

specialized LLM(s)

rwmul_comm
SFT l‘ training samples <« end
- KB }

(b) inference

Assume n is an even number. By the definition of even numbers, there exists an integer
ksuch that n=2k. Therefore, n2=(2k)"2=4k"2 Hence, n"2 can also be written as 2
times some integer, which means n"2 is even.

formal state and proof:

import data.int.basic

def is_even (n: Nat): Prop := 3 k:Nat;n=2"k
theorem even_square_of_even (n: Nat)(his_even
n):is_even (n *n):=

begin

cases h with k hk,

use (2*k*K),

w hk,

rw mul_assoc.

formal-proof
generator

& i

My,

syntax rewriter

Mye

TG s

-~ 0

formalization

v i
') » et
v kNN :

retrieval l

high-confidence :
samples :

formal language semantic memory selector
executor corrector

Mg

)

{

informalization

informal-proof
generator

Mis

LLM-based
informal-proof

PPL-based

Figure 1: The overall framework of JAFI. Subfigure (a) (upper part) displays the model training process, while
subfigure (b) (lower part) depicts the inference architecture. The memory stores high-confidence inference data,
integrating them into a unified KB. The data is used to fine-tune specialized LLM(s), which are then applied in the

submodules of the inference process.

resents its corresponding formal proof (machine-
verifiable code), we formally define the two com-
plementary translation tasks:'

Auto-formalization Given an informal proof ¢,
this task focuses on generating its formal counter-
part f, denoted as i — f. The translation requires
preserving logical equivalence while adapting to
the strict syntax of formal languages.

Auto-informalization Conversely, given a for-
mal proof f, this task aims to produce its human-
readable informal version ¢, i.e., f — 4. The pro-
cess involves recovering natural language explana-
tions from symbolic representations without losing
mathematical rigor.

Figure 1(a) illustrates an example of this bidi-
rectional translation. Consider the theorem: “If
n is an even number, then n? is also even.” The
informal proof (in natural language) and its for-
mal counterpart (in a theorem prover like Lean)
constitute a task pair. Auto-formalization converts
the natural language proof into Lean code, while
auto-informalization achieves the inverse transfor-

"Both 4; and f; can be decomposed into theorem state-
ments and their proofs. For notational simplicity, we collec-
tively refer to them as informal/formal proofs.

mation.

3.2 Framework Overview

Figure 1 illustrates the JAFI framework, com-
prising two integrated components: the Model
Training subsystem (upper panel a) and the Step-
wise Inference subsystem (lower panel b). The
inference subsystem contains distinct pipelines for
auto-formalization (left) and auto-informalization
(right).

For auto-formalization, the input informal proof
¢ first undergoes context retrieval from the knowl-
edge base (KB), fetching k relevant theorem-proof
pairs {r; };?:1. The generator then produces candi-
date formal proof f, using this context, followed by
syntax correction to yield f;. Finally, semantic cor-
rection iteratively refines fs using formal executor
feedback, producing f .

Auto-informalization handles the inverse trans-
lation through a three-stage process: retrieval of
similar formal proofs, generation of ¢ candidate
informal proofs {i{™}¢ _, via in-context learn-
ing, and selection of optimal output i using qual-
ity metrics (perplexity or LLM-based assessment).
The asymmetric design accounts for formal proofs’
syntactic rigidity versus informal proofs’ natural

language flexibility.

JAFI’s Memory module bridges training and in-
ference by collecting high-confidence predictions
validated through formal verification and seman-
tic consistency checks. These validated samples
enrich the KB and enable continuous model im-
provement through curriculum learning, creating a
self-reinforcing loop where enhanced models gen-
erate better training data, which subsequently im-
proves model performance.

3.3 Retrieval Module

JAFI is built with a unified retrieval module to
extract the most relevant samples for both tasks.
Specifically, for an input g, the retrieval module R
identifies the k samples that are most closest to ¢
from the indexed dataset, expressed as:

{ri}f_, =R, D), (1)

where D denotes the stored and indexed sample set
of size IV, and ¢ represents either ¢ in the formal-
ization task or f in the informalization task.

Formally, in module R, we utilize an encoder to
convert the query ¢ and the indexed dataset D into
dense vector e, € R? and an embedding matrix
E € R?2VXd_ Then, the indexes of k samples are
retrieved by

{z’dmj}?:l = DenseRetriever(eg, E; k), (2)

where the index idx; corresponds to r;’s
remapped position in the KB. The operation
DenseRetriever(;) can be implemented with var-
ious k-Nearest Neighbor (kNN) algorithms. More
detailed settings can be found in Appendix A.

3.4 Formalization Process

As illustrated in the left part of Figure 1(b), the ob-
jective of auto-formalization process is predicting
the corresponding formal proof f given informal
proof <. This process mainly consists of four stages:
retrieval, generation, syntax rewriting, and seman-
tic correction. The detailed process is outlined in
Algorithm 1.

At first, module R retrieves the £ most relevant
examples {r; }é?:l from the annotated dataset D
based on the input informal statement and proof :.
These examples together with ¢, serve as the input
to the generation module, where the formal proof
generator M ;, generates a candidate f,. Next, in
the syntax rewriting module, the formal language
expert M s, performs syntax corrections on f, to

Algorithm 1 Formalization Process

Require: Informal proof , training dataset D, retrieval model
R, generator (model) M4, syntax rewriter (model)
My, semantic corrector (model) M., prompt tem-
plates T¢g, Tfs, Tfc, formal language executor &, pa-
rameter k)

Ensure: Predicted formal proof f

1: Retrieval: Retrieve the k£ samples most similar to 4, i.e.,
{Tj ,1;21 = R(i,D);

2: Generation: Generate candidate formal proof f, =
Mg (i, {ri} =15 Tta):

3: Syntax Rewriting: Perform syntax correction on the

candidate f. to obtain fs = Mss(fg; Tts)s

: Semantic Correction:

Initialize £{” = f,
Loop:
c('J+1) - Mfc(fc(‘]); 7}c7 5)»
until formal language executor £ returns the correct
result, or maximum iterations are reached.

: Return fc(j .

A A

o

) from the last iteration;

produce f,. Finally, the semantic correction mod-
ule iteratively refines fs based on error messages
returned by the formal language executor &, result-
ing in the final prediction f 2

In the semantic correction module, fs is used
as the initial (iteration 0) corrected formal proof,
denoted as fc(o). It is refined iteratively by the
sematnic corrctor M . (as described in line 7 of
Algorithm 1) until the formal language executor £
executes féj *1 without errors or a maximum num-
ber of iterations is reached. The iterative process is
formalized as

) — g(fc(j))’ 3)
m\) = EMP(el?)),)
FID = Myo(f9,mD: Tre), (5)

where e?) is the raw output from executing fc(j) by
executor £. Given that this output can be lengthy
and complex, potentially exceeding the context
length limit of the LLM, we use an error message
processor EMP to simplify it into m). EMP can
either be a rule-based method to remove redun-
dant and unnecessary information or a model-based
method to summarize the raw output.

Specifically, three LLMs are respectively used
as Mg, Mg and M g, with the corresponding
prompt template T4, 75, Tfc. These LLMs can be
the same or different. M ;4 needs strong ICL capa-
bilities to understand both NL and FL for language

*For models M4, M5 and M., we can use them in
a training-free or training-train fashion, with specific prompt
templates. The used templates T;q, Trs, Tyc are listed in
Appendix C.

Algorithm 2 Informalization Process

Require: Formal statement and proof f, generation model
Mg, selection model S, parameters k, ¢
Ensure: Predicted informal statement and proof i
1: Retrieval: Retrieve the k most similar samples to f, i.e.,

{ri}i=1 = R(f,D):
2: Generation: Generate candidate informal proofs

(1) (2 .(c .
Z.SZ)vlg >7 'A' . 72.57)} = Mig(Z, {Tj};c:l;%g);
3: Selection: i = S({i{",i%?, ... i\ }: D);

« LLM-based: i = M, ({i{",i?, ..., i{ % 7o)

* PPL-based: Train LM M,,;; on dataset D, and

select 7 as the output by calculating the perplexity
of the generated candidate informal proofs;

translation. M ¢ requires a deep understanding of
the specific FL, such as knowing which packages to
invoke for different needs. M . needs the ability
to fix code based on feedback from the executor.

3.5 Informalization Process

The informalization process, as illustrated in the
right part of Figure 1(b), is to predict the corre-
sponding informal proof i given formal proof f,
consisting of three stages: retrieval, generation
and selection. The detailed steps are outlined in
Algorithm 2.

The retrieval module and generation module
(denoted as M;,) are similar to those in auto-
formalization process. However, unlike M, gen-
erating a single candidate formal proof with a tem-
perature of 0, M;, samples multiple candidate in-
formal proofs (the number is c).

In the selection module, the generated candi-
date informal proofs {i_f,l),ig), . ,igc)} are fil-
tered through two effective selection strategies:
the LLM-based method and the perplexity-based
method. In the LLM-based method, a frozen model
M;s, combined with a specific template 7Tjs, is
used. Notably, this method avoids the need for pa-
rameter tuning. In the perplexity-based method, we
train a language model M, (e.g., GPT-2 (Radford
et al., 2019)) on the existing dataset D to model
the language distribution of the dataset. We then
calculate the perplexity of the generated candidate
informal proofs and select the one with the lowest
perplexity as the final prediction i.

3.6 Integrating Training and Inference

To integrate model training and inference for per-
formance improvement, as shown in Figure 1, dur-
ing JAFI’s inference process, high-confidence data

from both tasks are saved into the memory and
uniformly added into the KB. Specifically, an pre-
diction f verified by £ in the formalization task is
paired with its input i to form a sample {(i, f)}.
In the informalization task, the prediction i with a
perplexity below a certain threshold is also paired
with its input f to form a sample {(f,7)}.

The data in the KB is leveraged for two pur-
poses. First, it acts as the data source for the
retrieval module, encoded and stored for future
auto-(in)formalization task as in-context examples.
Second, the data is used for model training, fine-
tuning a general pretrained LLM into specialized
LLM(s), i.e., Mg, Mys, My, and M,,, which
are employed in the modules of the inference pro-
cess °. In practice, depending on the amount of
data available and the training budget, these data
can be used to train a unified multi-task model or
multiple models for different subtasks.

4 Experiments

We have conducted our experiments to answer the
following questions.

RQ1: Can JAFI outperform the state-of-the-art
methods on the tasks of auto-formalization and
auto-informalization?

RQ2: Do the devised modules/methods in JAFI
contribute to the performance during the inference
process?

RQ3: Is it necessary to jointly model auto-
formalization and auto-informalization for better
performance?

RQ4: Is it necessary to integrate model training
and inference for better performance?

RQS5: How can the collaboration between different
models be utilized to achieve better results?

4.1 Experimental Setup

Dataset Our experiments leverage two mathemat-
ical reasoning benchmarks. The AMR dataset, de-
rived from MUSTARDSauce (Castro et al., 2019),
contains 4,866 training samples and 500 test sam-
ples spanning elementary to Olympiad-level math-
ematics (including IMO problems). Each sample
comprises four components: problem name, infor-
mal statement, informal proof, and corresponding
Lean3-formalized proof. For cross-version vali-
dation, we additionally evaluate on the miniF2F

3To align with the inference process, we actually use the
input-output pairs from generation, syntax rewriting and se-
mantic correction modules producing correct predictions as

SFT training samples, rather than only using {(i, f)} pairs.

dataset (Zheng et al., 2021) containing 244 valida-
tion and 244 test problems in Lean4 format, focus-
ing on algebra and number theory from AIME/AM-
C/IMO competitions. More detailed information
can be found in Appendix B.

Evaluation Metrics For both the auto-
formalization task and the auto-informalization
task, the prevalent metrics of ROUGE-L (Lin,
2004) and BLEU (Papineni et al., 2002) are
used to evaluate the quality of the generated
texts. Moreover, pass rate is also used for the
auto-formalization task. A generated formal proof
is considered correct if it can be successfully
executed by the Lean code executor and achieves a
ROUGE-L score above a specified threshold when
compared with the annotated solution.

Lean Execution Environment To support the se-
mantic correction module and calculation of pass
rate, we configured a local Lean 3 and Lean 4 exe-
cution environment running on a Linux server with
750GB of RAM and 96 CPU cores.

LLMsin JAFI JAFIleverages DeepSeek-Coder
(33B) (Guo et al., 2024) as its backbone model. For
the selection module of informalization, we fine-
tuned GPT-2 (Radford et al., 2019) to calculate
perplexity. In our model cooperation experiments,
we also evaluated proprietary LLMs including GPT-
4 variants (Turbo/40) and the Gemini series for
comparison. More detailed training settings can be
found in Appendix B.

Baselines Comparisons span two methodological
categories: Training-free approaches include /CL
(Wu et al., 2022) using vanilla few-shot prompt-
ing, and ICL-retrieval (Azerbayev et al., 2023a)
augmenting prompts with mathlib knowledge base
retrievals. Training-based competitors comprise
proofGPT (Azerbayev et al., 2023a) (1.3B parame-
ters via Codex-002 distillation) and Llemma (Azer-
bayev et al., 2023b) (7B/34B models continually
pretrained on Proof-Pile-2). More detailed infor-
mation can be found in Appendix B.

4.2 Overall Performance

For RQ1, we compared the performance of JAFI
and the baselines on the AMR and miniF2F
datasets. The experimental results are shown in
Table 1. For ICL and ICL-retrieval, we used GPT-
40 as the backbone and followed the inference
methods described in their published papers. For

proofGPT and Llemma, we downloaded and uti-
lized their pretrained models to complete the auto-
(in)formalization task.

From the results, we can observe that: 1) On
the AMR dataset, JAFI achieved superior perfor-
mance in both the auto-formalization and auto-
informalization tasks. 2) Furthermore, our model
also demonstrated the best performance in the
auto-formalization task on the miniF2F dataset,
thereby validating the generalizability of the JAFI
approach.

4.3 Ablation Studies

In response to RQ2, we conducted a series of abla-
tion studies to investigate the effectiveness of the
proposed modules.

For the auto-formalization task, we validated the
effectiveness of the retrieval, syntax rewriting, and
semantic correction module, which are denoted as
rt, sr and sc, respectively. The results in Table 2
show that removing any module in JAFI results in
a performance drop, demonstrating the importance
of incorporating the in-context samples (retrieved
samples) before generation and post-processing the
generated results. An quantitative case study can
be found in Appendix D.

Furthermore, we randomly selected 50 samples
and counted the number of correct results (samples)
generated by the generation module (denoted as
#gen), and the number of correct results supple-
mented by the syntax rewriting module (denoted
as #sr). In addition, the number of correct sam-
ples supplemented by the first, second, and third
attempts (iterations) of semantic correction are de-
noted as #scl, #sc2, and #sc3, respectively. The
results are shown in Table 3, where EMP indicates
whether the FL. executor’s error messages were
processed. According to the results, (1) both the
syntax rewriting and semantic correction module
can correct a significant number of samples, validat-
ing their necessity. (2) Compared to the approach
without EMP, EMP allowed the model to correct
more samples, demonstrating the necessity of error
message processor.

For the auto-informalization task, we analyzed
the two methods of candidate informal proofs. For
the perplexity-based method, we trained two mod-
els, GPT-2 and Llama-7B. For the LLM-based
method, we used Gemini-Chat, DeepSeek-V2 and
GPT-40. Additionally, a random selection method
was also considered as a baseline. The experimen-
tal results in Table 4 support the following conclu-

AMR-Formalization AMR-Informalization | miniF2F-valid | miniF2F-test
Method ROUGE-L BLEU passrate | ROUGE-L BLEU passrate passrate
ICL 0.2102 0.0772 0.18 0.2102 0.0523 0.02 0.02
ICL-retrieval | 0.3487 0.1000 0.46 0.2753 0.0980 0.05 0.03
proofGPT 0.2545 0.0704 0.02 0.1805 0.0472 0.11 0.08
Llemma-7B 0.2766 0.0714 0.04 0.2102 0.0482 0.24 0.26
Llemma-34B | 0.3246 0.1023 0.16 0.2645 0.0743 0.28 0.25
JAFI 0.4217 0.1407 0.78 0.3412 0.1168 0.45 0.42
Table 1: Overall performance on the two tasks of all compared methods.
Variant ROUGE-L BLEU passrate Il\getEOd Model ggg;gEL (1)3]67135
anaom - . .
w/o rt 0.2866 0.0724 0.06 Peroloxite-based GPT 03306 01124
w/o sr&sc | 0.3487 0.1000 0.46 Tpiexity Llama-7B 0.3350 0.1207
w/o sr 0.3642 0.1109 0.56 Gemini-Chat 0.3198 0.0974
LLM-based DeepSeek-V2 | 0.3206 0.1042
w/o sc 0.4152 0.1224 0.64 GPT-40 03281 0.0989
JAFI 0.4217 0.1407 0.78

Table 2: Ablation study of JAFI’s modules on auto-
formalization.

Model EMP | #gen #sr #scl #sc2 #sc3

Gemini-Base v 21 +2 43 +1 0
X 21 +3 +4 +2 +1

DeepSeek-Coder Y 2 +3 +2 0 0
X 30 43 +3 +1 0

Table 3: The number of correct results (supplemen-
tal) after the processing of JAFI’s modules on auto-
formalization.

sions. (1) Both methods outperform the random
method, indicating the importance of sample selec-
tion. (2) The perplexity-based method has better
results, justifying the effectiveness of aligning lan-
guage models with the language features of the
training samples, even though the models are of
small size.

4.4 TImpacts of Joint Modeling and
Integrating Training and Inference

In response to RQ3 and RQ4, we conducted spe-
cific experiments on the auto-formalization task in
a low-resource environment, in which only 100 an-
notated samples randomly selected from the train-
ing set were considered. Then, we recorded the
average pass rates of JAFI’s variants for 300 ran-
domly selected test samples of auto-formalization,
where the used model is DeepSeek-Coder.

To investigate the necessity of jointly model-
ing the two tasks, we proposed three variants of
JAFI, denoted as MO, M1 and M2. These three
variants achieved the auto-formalization task by six

Table 4: The effects of selecting candidate informal
proofs on auto-informalization.

o
o
@
S

o
o
@
=
=}
o
o
il

Passrate
o =)
» o
[)
< < o <
o
=)

o
S
S

o
w
G

4

Figure 2: Auto-formalization performance of JAFI’s
variants under limited annotation resources. In Subfig-
ure (a), MO, M1 and M2 represent different inference
scenarios. In Subfigure (b) 70, T1 and T2 indicate dif-
ferent training strategies.

gradual steps, in each of which 50 samples were
inferred. Specifically, MO is the variant without
the memory module, indicating it can only retrieve
from the 100 annotated samples. In each inference
step of M1, the inferred high-confidence samples
were saved to the memory, which can be used in
the retrieval module of the next inference steps (for
the rest test samples). In M2, besides the inferred
high-confidence samples were used as M2, other
high-confidence samples obtained by inferring 50
randomly selected samples of auto-informalization
were also included into the memory, implying that
it leverages the synergy between the two tasks.
The pass rates of three variants for the six groups
of auto-formalization samples (each group has 50
samples) are depicted in Figure 2(a). It shows M1’s
performance improvement over M0, demonstrating
that accumulating experiences through the memory

Figure 3: The performance of JAFI using a single LLM.

module effectively enhances the model’s capability.
In addition, M2’s superiority over M1 is attributed
to jointly modeling the two tasks (leveraging the
synergy between the two tasks).

To investigate whether it is necessary to in-
tegrate model training and inference, we pro-
posed other three variants without the memory mod-
ule, denoted 70, T1 and T2. We used DeepSeek-
Coder as 70, to infer the 300 test samples of auto-
formalization directly. In 7/, only the generator
M4 was trained by the 100 training samples. In
T2, besides M 14, model M ¢, and M ;. were also
trained simultaneously with some samples which
come from the 100 training samples and were vali-
dated by the FL executor. These three variants’ pass
rates on the 300 test samples of auto-formalization
are shown as the columns in Figure 2(b). It is ev-
ident that 7'/ shows significant improvement over
T0, and 72 further improves upon 7'/, validating
the necessity of integrating model training and in-
ference.

4.5 Impacts of Model Cooperation

To answer RQS5, we first compared the auto-
formalization performance of using the same LLM
in all modules of JAFI, which was not trained*,
of which the results are displayed in Figure 3. It
shows that taking different LLLMs as the backbone
of JAFI exhibits varying performance.

Furthermore, we plotted a Venn diagram (Figure
4) to illustrate the number of the samples success-
fully processed by the JAFI only using Deepseek-
Coder, Gemini-Base or GPT-40 when inferring 100
test samples of auto-formalization. The diagram
reveals that the sample set each model can solve are
distinct. Although Deepseek-Coder demonstrates
the strongest overall performance, there are still 6
and 3 problems (samples) that only GPT-40 and
Gemini-Base can solve, respectively.

This observation inspires us to achieve better per-

“The results of auto-informalization in Appendix E.

Deepseek-Coder

GPT-40

Gemini-Base

Figure 4: Number of the samples passed by three models
on 100 test samples of auto-formalization.

Model/Strategy ROUGE-L BLEU passrate
DeepSeek-Coder 0.4615 0.1365 0.68
Gemini-Chat 0.4082 0.1078 0.56
GPT-40 04512 0.1308 0.54
MM -single 0.4306 0.1375 0.76
MM-cross 0.4822 0.1412 0.82

Table 5: The performance of using single LLM and the
strategies of model cooperation.

formance through integrating the multiple models
in the modules. We proposed two simple strate-
gies for model cooperation as follows. (1) In MM-
single, each model independently attempts to solve
the problem and the first successful result passing
the FL executor is returned. (2) In MM-cross, each
of the three models acts as a generator to produce
candidate proofs, and the mathematically stronger
model Deepseek-Coder handles the syntax rewrit-
ing and semantic correction.

As shown in Table 5, the results indicate that
both strategies of model cooperation outperform
any single model used in JAFI, and MM-cross out-
performs MM-single, validating the effectiveness
of model cooperation.

5 Conclusion

In this paper, we present the JAFI framework,
a comprehensive solution tailored for both auto-
formalization and auto-informalization tasks. This
framework is underpinned by carefully designed
modules: retrieval, syntax rewriting, and seman-
tic correction for auto-formalization, alongside a
selector for auto-informalization. Furthermore,
JAFI incorporates an innovative memory module,
which not only records and utilizes successful past
operations for future tasks but also enriches the
dataset, thereby enhancing model training. Our
extensive experiments, conducted using the AMR
and miniF2F datasets for rigorous validation, con-
firm the effectiveness and robustness of JAFI and
its constituent modules in advancing both tasks.

6 Limitations

This study presents two primary limitations: 1) In-
sufficient model training: Due to time and cost
constraints, we trained the 33B DeepSeek-Coder
model only on the AMR dataset, resulting in a
relatively small amount of training data. It is es-
sential to explore methods for constructing more
comprehensive training datasets for both formal-
ization and informalization tasks, and to study the
impact of scaling up training data on model per-
formance. 2) Lack of exploration of alternative
test-time compute methods: Our approach pre-
dominantly focused on validating the efficacy of
joint modeling of the two tasks and integration of
model training and inference, ignoring other test-
time compute techniques that could potentially en-
hance auto-formalization outcomes, such as Monte-
Carlo Tree Search (MCTS) (Coulom, 2006; Xin
et al., 2024a). Furthermore, recent developments
include models that have strengthened reasoning
capabilities during inference, such as OpenAI’s
ol (Zhong et al., 2024) and DeepSeek-R1 (Guo
et al., 2025). Intuitively, their enhanced reason-
ing abilities could improve performance in both
auto-formalization and auto-informalization tasks,
warranting further investigation in future work.

References

Ayush Agrawal, Siddhartha Gadgil, Navin Goyal,
Ashvni Narayanan, and Anand Tadipatri. 2022.
Towards a mathematics formalisation assistant
using large language models. arXiv preprint
arXiv:2211.07524.

Zhangir Azerbayev, Bartosz Piotrowski, Hailey
Schoelkopf, Edward W. Ayers, Dragomir R. Radev,
and Jeremy Avigad. 2023a. Proofnet: Autoformaliz-
ing and formally proving undergraduate-level mathe-
matics. ArXiv, abs/2302.12433.

Zhangir Azerbayev, Hailey Schoelkopf, Keiran Paster,
Marco Dos Santos, Stephen McAleer, Albert Q.
Jiang, Jia Deng, Stella Biderman, and Sean Welleck.
2023b. Llemma: An open language model for math-
ematics. ArXiv, abs/2310.10631.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, et al. 2020. Language models are few-shot
learners. Advances in neural information processing
systems, 33:1877-1901.

Santiago Castro, Devamanyu Hazarika, Verénica Pérez-
Rosas, Roger Zimmermann, Rada Mihalcea, and Sou-
janya Poria. 2019. Towards multimodal sarcasm

detection (an _obviously_ perfect paper). arXiv

preprint arXiv:1906.01815.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming
Yuan, Henrique Ponde de Oliveira Pinto, Jared Ka-
plan, Harri Edwards, Yuri Burda, Nicholas Joseph,
Greg Brockman, et al. 2021. Evaluating large
language models trained on code. arXiv preprint
arXiv:2107.03374.

Aakanksha Chowdhery, Sharan Narang, Jacob Devlin,
Maarten Bosma, Gaurav Mishra, Adam Roberts, Paul
Barham, Hyung Won Chung, Charles Sutton, Sebas-
tian Gehrmann, et al. 2023. Palm: Scaling language
modeling with pathways. Journal of Machine Learn-
ing Research, 24(240):1-113.

Rémi Coulom. 2006. Efficient selectivity and backup
operators in monte-carlo tree search. In International
conference on computers and games, pages 72—83.
Springer.

Leonardo Mendonga de Moura and Sebastian Ullrich.
2021. The lean 4 theorem prover and programming
language. In CADE.

Siddhartha Gadgil, Anand Rao Tadipatri, Ayush
Agrawal, Ashvni Narayanan, and Navin Goyal. 2022.
Towards automating formalisation of theorem state-
ments using large language models. In 36th Con-

ference on Neural Information Processing Systems
(NeurIPS 2022) Workshop on MATH-AI.

Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song,
Ruoyu Zhang, Runxin Xu, Qihao Zhu, Shirong Ma,
Peiyi Wang, Xiao Bi, et al. 2025. Deepseek-rl: In-
centivizing reasoning capability in llms via reinforce-
ment learning. arXiv preprint arXiv:2501.12948.

Daya Guo, Qihao Zhu, Dejian Yang, Zhenda Xie, Kai
Dong, Wentao Zhang, Guanting Chen, Xiao Bi,
Yu Wu, Y. K. Li, Fuli Luo, Yingfei Xiong, and Wen-
feng Liang. 2024. Deepseek-coder: When the large
language model meets programming - the rise of code
intelligence. ArXiv, abs/2401.14196.

Gérard P. Huet and Christine Paulin-Mohring. 2000.
The coq proof assistant reference manual.

Albert Q Jiang, Wenda Li, and Mateja Jamnik. 2023.
Multilingual mathematical autoformalization. arXiv
preprint arXiv:2311.03755.

Albert Qiaochu Jiang, Sean Welleck, Jin Peng Zhou,
Wenda Li, Jiacheng Liu, Mateja Jamnik, Timo-
thée Lacroix, Yuhuai Wu, and Guillaume Lam-
ple. 2022. Draft, sketch, and prove: Guiding for-
mal theorem provers with informal proofs. ArXiv,
abs/2210.12283.

Guillaume Lample, Myle Ott, Alexis Conneau, Ludovic
Denoyer, and Marc’ Aurelio Ranzato. 2018. Phrase-
based & neural unsupervised machine translation.
arXiv preprint arXiv:1804.07755.

https://api.semanticscholar.org/CorpusID:257205653
https://api.semanticscholar.org/CorpusID:257205653
https://api.semanticscholar.org/CorpusID:257205653
https://api.semanticscholar.org/CorpusID:257205653
https://api.semanticscholar.org/CorpusID:257205653
https://api.semanticscholar.org/CorpusID:264172303
https://api.semanticscholar.org/CorpusID:264172303
https://api.semanticscholar.org/CorpusID:264172303
https://api.semanticscholar.org/CorpusID:235800962
https://api.semanticscholar.org/CorpusID:235800962
https://api.semanticscholar.org/CorpusID:235800962
https://api.semanticscholar.org/CorpusID:267211867
https://api.semanticscholar.org/CorpusID:267211867
https://api.semanticscholar.org/CorpusID:267211867
https://api.semanticscholar.org/CorpusID:267211867
https://api.semanticscholar.org/CorpusID:267211867
https://api.semanticscholar.org/CorpusID:59695435
https://api.semanticscholar.org/CorpusID:253098549
https://api.semanticscholar.org/CorpusID:253098549
https://api.semanticscholar.org/CorpusID:253098549

Aitor Lewkowycz, Anders Andreassen, David Dohan,
Ethan Dyer, Henryk Michalewski, Vinay Ramasesh,
Ambrose Slone, Cem Anil, Imanol Schlag, Theo
Gutman-Solo, et al. 2022. Solving quantitative rea-
soning problems with language models. Advances
in Neural Information Processing Systems, 35:3843—
3857.

Zhaoyu Li, Jialiang Sun, Logan Murphy, Qidong Su,
Zenan Li, Xian Zhang, Kaiyu Yang, and Xujie Si.
2024. A survey on deep learning for theorem proving.
ArXiv, abs/2404.09939.

Chin-Yew Lin. 2004. Rouge: A package for automatic
evaluation of summaries. In Text summarization
branches out, pages 74-81.

Jianqgiao Lu, Zhengying Liu, Yingjia Wan, Yinya Huang,
Haiming Wang, Zhicheng YANG, Jing Tang, and Zhi-
jiang Guo. 2024. Process-driven autoformalization
in lean 4. ArXiv, abs/2406.01940.

Minh-Thang Luong, Eugene Brevdo, and Rui Zhao.
2017. Neural machine translation (seq2seq) tutorial.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2002. Bleu: a method for automatic evalu-
ation of machine translation. In Proceedings of the
40th annual meeting of the Association for Computa-
tional Linguistics, pages 311-318.

Nilay Patel, Jeffrey Flanigan, and Rahul Saha. 2023.
A new approach towards autoformalization. arXiv
preprint arXiv:2310.07957.

Lawrence Charles Paulson and Tobias Nipkow. 1994.
Isabelle: A generic theorem prover.

Alec Radford, Jeff Wu, Rewon Child, David Luan,
Dario Amodei, and Ilya Sutskever. 2019. Language
models are unsupervised multitask learners.

Baptiste Roziere, Jonas Gehring, Fabian Gloeckle,
Sten Sootla, Itai Gat, Xiaoqing Tan, Yossi Adi,
Jingyu Liu, Tal Remez, Jérémy Rapin, Artyom
Kozhevnikov, 1. Evtimov, Joanna Bitton, Manish P
Bhatt, Cristian Canton Ferrer, Aaron Grattafiori, Wen-
han Xiong, Alexandre D’efossez, Jade Copet, Faisal
Azhar, Hugo Touvron, Louis Martin, Nicolas Usunier,
Thomas Scialom, and Gabriel Synnaeve. 2023. Code
llama: Open foundation models for code. ArXiv,
abs/2308.12950.

Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu,
Junxiao Song, Mingchuan Zhang, YK Li, Y Wu, and
Daya Guo. 2024. Deepseekmath: Pushing the limits
of mathematical reasoning in open language models.
arXiv preprint arXiv:2402.03300.

Ilya Sutskever, Oriol Vinyals, and Quoc V Le. 2014.
Sequence to sequence learning with neural networks.
Advances in neural information processing systems,
27.

10

Christian Szegedy. 2020. A promising path towards
autoformalization and general artificial intelligence.
In Intelligent Computer Mathematics: 13th Interna-
tional Conference, CICM 2020, Bertinoro, Italy, July
26-31, 2020, Proceedings 13, pages 3—20. Springer.

Qingxiang Wang, C. Kaliszyk, and Josef Urban. 2018.
First experiments with neural translation of informal
to formal mathematics. In International Conference
on Intelligent Computer Mathematics.

Yuhuai Wu, Albert Qiaochu Jiang, Wenda Li,
Markus Norman Rabe, Charles Staats, Mateja Jam-
nik, and Christian Szegedy. 2022. Autoformalization
with large language models. ArXiv, abs/2205.12615.

Huajian Xin, ZZ Ren, Junxiao Song, Zhihong Shao,
Wanjia Zhao, Haocheng Wang, Bo Liu, Liyue Zhang,
Xuan Lu, Qiushi Du, et al. 2024a. Deepseek-prover-
v1.5: Harnessing proof assistant feedback for re-
inforcement learning and monte-carlo tree search.
arXiv preprint arXiv:2408.08152.

Huajian Xin, Haiming Wang, Chuanyang Zheng, Lin
Li, Zhengying Liu, Qingxing Cao, Yinya Huang,
Jing Xiong, Han Shi, Enze Xie, et al. 2023. Lego-
prover: Neural theorem proving with growing li-
braries. arXiv preprint arXiv:2310.00656.

Huajian Xin, Huajian Xin, Daya Guo, Zhihong Shao,
Zhizhou Ren, Qihao Zhu, Bo Liu, Chong Ruan,
Wenda Li, and Xiaodan Liang. 2024b. Deepseek-
prover: Advancing theorem proving in llms through
large-scale synthetic data. ArXiv, abs/2405.14333.

Huaiyuan Ying, Shuo Zhang, Linyang Li, Zhejian Zhou,
Yunfan Shao, Zhaoye Fei, Yichuan Ma, Jiawei Hong,
Kuikun Liu, Ziyi Wang, et al. 2024. Internlm-math:
Open math large language models toward verifiable
reasoning. arXiv preprint arXiv:2402.06332.

Xueliang Zhao, Wenda Li, and Lingpeng Kong. 2023.
Decomposing the enigma: Subgoal-based demon-
stration learning for formal theorem proving. arXiv
preprint arXiv:2305.16366.

Kunhao Zheng, Jesse Michael Han, and Stanislas Polu.
2021. Minif2f: a cross-system benchmark for for-
mal olympiad-level mathematics. arXiv preprint
arXiv:2109.00110.

Tianyang Zhong, Zhengliang Liu, Yi Pan, Yutong
Zhang, Yifan Zhou, Shizhe Liang, Zihao Wu, Yanjun
Lyu, Peng Shu, Xiaowei Yu, et al. 2024. Evaluation
of openai ol: Opportunities and challenges of agi.
arXiv preprint arXiv:2409.18486.

https://api.semanticscholar.org/CorpusID:269148388
https://api.semanticscholar.org/CorpusID:270226883
https://api.semanticscholar.org/CorpusID:270226883
https://api.semanticscholar.org/CorpusID:270226883
https://api.semanticscholar.org/CorpusID:117282451
https://api.semanticscholar.org/CorpusID:160025533
https://api.semanticscholar.org/CorpusID:160025533
https://api.semanticscholar.org/CorpusID:160025533
https://api.semanticscholar.org/CorpusID:261100919
https://api.semanticscholar.org/CorpusID:261100919
https://api.semanticscholar.org/CorpusID:261100919
https://api.semanticscholar.org/CorpusID:21687988
https://api.semanticscholar.org/CorpusID:21687988
https://api.semanticscholar.org/CorpusID:21687988
https://api.semanticscholar.org/CorpusID:249063032
https://api.semanticscholar.org/CorpusID:249063032
https://api.semanticscholar.org/CorpusID:249063032
https://api.semanticscholar.org/CorpusID:269983755
https://api.semanticscholar.org/CorpusID:269983755
https://api.semanticscholar.org/CorpusID:269983755
https://api.semanticscholar.org/CorpusID:269983755
https://api.semanticscholar.org/CorpusID:269983755

Reproducibility Checklist * All datasets drawn from the existing literature
(potentially including authors’ own previously
published work) are accompanied by appro-

priate citations. (yes)

This paper:

* Includes a conceptual outline and/or pseu-
docode description of Al methods introduced

(yes) * All datasets drawn from the existing literature
yes

(potentially including authors’ own previously

¢ Clearly delineates statements that are opin- published work) are publicly available. (yes)

ions, hypothesis, and speculation from objec-

) * All datasets that are not publicly available are
tive facts and results (yes)

described in detail, with explanation why pub-
licly available alternatives are not scientifi-

* Provides well marked pedagogical references cally satisficing. (NA)

for less-familiare readers to gain background

necessary to replicate the paper (yes) Does this paper include computational experi-

ments? (yes)

Does this paper make theoretical contributions? .
If yes, please complete the list below.

(no)

If yes, please complete the list below. * Any code required for pre-processing data is

* All assumptions and restrictions are stated
clearly and formally. (yes/partial/no)

* All novel claims are stated formally (e.g., in
theorem statements). (yes/partial/no)

* Proofs of all novel claims are included. (yes/-
partial/no)

* Proof sketches or intuitions are given for com-
plex and/or novel results. (yes/partial/no)

* Appropriate citations to theoretical tools used
are given. (yes/partial/no)

* All theoretical claims are demonstrated empir-
ically to hold. (yes/partial/no/NA)

* All experimental code used to eliminate or
disprove claims is included. (yes/no/NA)

included in the appendix. (yes).

 All source code required for conducting and
analyzing the experiments is included in a
code appendix. (yes)

* All source code required for conducting and
analyzing the experiments will be made pub-
licly available upon publication of the paper
with a license that allows free usage for re-
search purposes. (yes)

* All source code implementing new methods
have comments detailing the implementation,
with references to the paper where each step
comes from (yes)

¢ If an algorithm depends on randomness, then
the method used for setting seeds is described
in a way sufficient to allow replication of re-
sults. (NA)

Does this paper rely on one or more datasets?
(ves) *
If yes, please complete the list below.

This paper specifies the computing infrastruc-
ture used for running experiments (hardware

* A motivation is given for why the experiments
are conducted on the selected datasets (yes)

 All novel datasets introduced in this paper are
included in a data appendix. (NA)

 All novel datasets introduced in this paper will
be made publicly available upon publication
of the paper with a license that allows free
usage for research purposes. (NA)

11

and software), including GPU/CPU models;
amount of memory; operating system; names
and versions of relevant software libraries and
frameworks. (yes)

* This paper formally describes evaluation met-
rics used and explains the motivation for
choosing these metrics. (yes)

* This paper states the number of algorithm runs
used to compute each reported result. (yes)

* Analysis of experiments goes beyond single-
dimensional summaries of performance (e.g.,
average; median) to include measures of vari-
ation, confidence, or other distributional infor-
mation. (yes)

* The significance of any improvement or de-
crease in performance is judged using appro-
priate statistical tests (e.g., Wilcoxon signed-
rank). (yes)

* This paper lists all final (hyper-)parameters
used for each model/algorithm in the paper’s
experiments. (NA)

¢ This paper states the number and range of val-
ues tried per (hyper-) parameter during devel-
opment of the paper, along with the criterion
used for selecting the final parameter setting.
(NA)

12

Appendices
A Detailed Model Description

Retrieval Settings Given the substantial differ-
ences between natural language (NL) and formal
language (FL), it is impractical to directly incorpo-
rate them into the retrieval module without pre-
processing, as this could cause interference be-
tween the two languages. Therefore, we employ
a symmetric encoding approach to manage both
retrieval tasks effectively. Specifically, for the ex-
isting samples (i;, f;), we prepend the prefixes
Natural language statement and proof: and
Formal statement and proof: toi; and f;, re-
spectively.

B Detailed Experiment Settings

Dataset The AMR dataset can be found
at https://sites.google.com/view/
aid4mathworkshopicml2024/challenges. It
includes 4,866 samples for training and 500
samples for evaluation. Each sample in the dataset
contains four fields: name, informal statement,
informal proof, and formal proof, as illustrated in
Figure 1(a).

The miniF2F dataset was first presented
by OpenAl (Zheng et al., 2021) in the for-
mat of Lean 3 (https://github.com/openai/
miniF2F). Later researchers converted it to an
equivalent Lean 4 version (https://github.com/
yangky11/miniF2F-1ean4). To validate the gen-
eralizability of our method, we conducted experi-
ments using the Lean 4 version.

Evaluation Metrics We utilized the
rouge_score (https://github.com/
google-research/google-research/

tree/master/rouge) and nltk (https:
//github.com/nltk/nltk) packages for the

implementation of our evaluation metrics.

LLM training settings For JAFI model, we used
33B DeepSeek-Coder as the backbone, training
My and M, with labelled data, while train-
ing My, and M. on the high-confidence data
inferred from DeepSeek-Coder on training data.
To ensure a fair comparison with other methods,
we used a single backbone for multi-task training
across these four sub-tasks. We employed a GPT-2
model for candidate selection trained on dataset
with the LM object.

For model training, we combined data from all
four sub-tasks, using different prompts, to train a
single 33B model. The final version of our model
was trained for approximately three hours on eight
A100 GPUs.

Baselines We compared JAFI with the follow-
ing state-of-the-art methods. Based on whether
the models are trained on specialized mathemat-
ical data, they can be categorized into training-
free and training-based methods. For training-free
methods, they enhance the performance on auto-
(in)formalization task through inference, including:

e ICL method (Wu et al., 2022) employs few-
shot learning by leveraging the ICL capabili-
ties of LLMs.

* ICL-retrieval method (Azerbayev et al.,
2023a) enhances few-shot learning through
incorporating the retrieved k-nearest neigh-
bors from formal statements, utilizing a KB
from Lean’s package mathlib.

For training-based methods, they generally im-
prove the model’s overall mathematical capabilities
through training on large-scale mathematical data,
including:

* proofGPT (Azerbayev et al., 2023a) utilizes
the distilled backtranslation and employs
Davinci-codex-002 as the teacher model to
train a student model with 1.3 billion parame-
ters.

* Llemma (Azerbayev et al.,, 2023b) is an
LLM continuously pretrained on a large-
scale dataset named Proof-Pile-2 from Code-
Llama(Roziere et al., 2023), available in the
variants of 7B and 34B versions.

C Prompts

C.1 Prompt for Formal-Proof Generator

13

You are a math expert and familiar with
Lean 3 formal language.

Now please translate the following
statement and solution of a math word
problem into Lean 3 formal solution.
Please note that the informal solution
and the formal solution need to be
identical.

{samples}

Problem:
{informal_statement}

https://sites.google.com/view/ai4mathworkshopicml2024/challenges
https://sites.google.com/view/ai4mathworkshopicml2024/challenges
https://sites.google.com/view/ai4mathworkshopicml2024/challenges
https://github.com/openai/miniF2F
https://github.com/openai/miniF2F
https://github.com/openai/miniF2F
https://github.com/yangky11/miniF2F-lean4
https://github.com/yangky11/miniF2F-lean4
https://github.com/yangky11/miniF2F-lean4
https://github.com/google-research/google-research/tree/master/rouge
https://github.com/google-research/google-research/tree/master/rouge
https://github.com/google-research/google-research/tree/master/rouge
https://github.com/google-research/google-research/tree/master/rouge
https://github.com/google-research/google-research/tree/master/rouge
https://github.com/nltk/nltk
https://github.com/nltk/nltk
https://github.com/nltk/nltk

Informal Solution:
{informal_proof}

Formal Solution in Lean 3:

Listing 1: Prompt for Formal-Proof Generator

C.2 Prompt for Formal-Proof Syntax
Rewriter

You are an expert in the Lean 3 language

Please check the Lean code below, and if
there are any issues, please correct
them to make it a valid, runnable code.
Note:

1. When working with mathematical
structures that cannot be effectively
computed, such as real numbers or
infinite sets, don't forget to add the
keyword 'noncomputable’
For example:
noncomputable def inv (x
\mathbb{R} := 1 / x

\mathbb{R})

2. Pay attention to the completeness of
the code, for example, ensuring there is
an “end” corresponding to each “begin’.

3. Always check the 'State' of the
theorom in proving, avoid unnecessary
tactics

4. If the problem involves substitution
calculations with unknowns, carefully
choose one of [rw], [simpl, or [norm_num

1o

5. In one problem, put all 'import' at
the beginning of the code.

6. remember to use "#eval” to give the
final answer if the problem has a
definit output

Below are some reference Lean codes:
{samples}

For the problem "{informal_statement}”,
here is a piece of code addressing this
problem:

> lean
{code}

Please provide your corrected code to
ensure it can run correctly, only give
the lean code:

You are a math expert and familar with
Lean 3 formal language.

Please check the Lean code below. The
error message from the Lean 3 server has
been given. Please correct them to make
it a valid, runnable code.

For the problem "{informal_statement}"

Here is a piece of code addressing this

problem:

"~ lean

{code}

Error message:
{err_msg}
Please provide your corrected code to

ensure it can run correctly, only give
the lean code:

Listing 3: Prompt for Formal-Proof Semantic Corrector

C.4 Prompt for Informal-Proof Generator

You are a math expert and familar with
Lean 3 formal language.

Now please translate the following Lean
3 code into natural language.

You should output the natural language
statement of the problem and the natural
language solution of the problem in the
form of JSON. e.g. {{"Problem”: xxx ,"
Solution”: xxx1}}

{samples}
Formal Solution in Lean 3:

>~ lean
{formal_proof}

Problem and Solution:

Listing 4: Prompt for Informal-Proof Generator

D Qualitative Analysis Case

Below, we present a simplified example to highlight
the roles of the generator, rewriter, and corrector
modules:

1) The informal problem is "John had 1/2 of a
pizza and he ate 1/4 of it. How much pizza does he
have left?" The ground truth formal proof is:

Listing 2: Prompt for Formal-Proof Syntax Rewriter

C.3 Prompt for Formal-Proof Semantic
Corrector

import data.real.basic
noncomputable def half : R := 1/2

noncomputable def quarter R := 1/4
theorem john_pizza : half - quarter =
quarter :=
begin

unfold half quarter, -- This

replaces 'half' and 'quarter' with
their definitions.

norm_num, -- This performs the
subtraction.
end

2) The generator produces the following result:

def john_pizza_initial : R := 1/2
def john_pizza_eaten : R := 1/4
def john_pizza_left : R :=

john_pizza_initial - john_pizza_eaten
#eval john_pizza_left

3) The rewriter identifies two issues in the gener-
ated code: the lack of an import statement and the
absence of the noncomputable modifier (in Lean,
the real number type R cannot directly compute
concrete values).

import data.real.basic

noncomputable def john_pizza_initial

1/2

noncomputable def john_pizza_eaten
= 1/4

noncomputable def john_pizza_left : R :
john_pizza_initial - john_pizza_eaten

#eval john_pizza_left

: R

: R

4) After the Lean executor runs the code, it
returns an error: error: code generation
failed, VM does not have code for
’john_pizza_left.’ The corrector then modi-
fies the code to yield the correct proof:

example 1/4

begin
unfold john_pizza_left
john_pizza_initial john_pizza_eaten,
norm_num,

end

john_pizza_left

E Detailed Comparison Results for
Different Backbone Models

Here we provide the detailed comparison results for
different backbone models in auto-informalization.
The BLEU and ROUGE-L scores of different mod-
els are shown in Figure 5 and Figure 6. The BLEU
and ROUGE-L scores’ distribution of different
models over 50 samples are shown in Figure 7 and
Figure 8.

15

Comparison of BLEU Across Different Models

01100 01079

01056

0.1040 01024

Figure 5: The BLEU scores of different models in auto-
informalization.

Comparison of ROUGE-L Across Different Models

03395

0.3386

03323 03307 0.3270 03235

Figure 6: The ROUGE-L scores of different models in
auto-informalization.

Comparison of BLEU Across Different Models

Model
—e— deepseek-coder
—e— gemini-chat
—e— gemini-base
—e— gpted-turbo

samples

Figure 7: The BLEU scores’ distribution of different
models over 50 samples in auto-informalization.

Comparison of ROUGE Across Different Models

s
—e— gpt-d-turbo

—o— deepseek-chat
—— gptdo

0 5 10 9 1 27 2 B 3 o
Samples

Figure 8: The ROUGE-L scores’ distribution of differ-
ent models over 50 samples in auto-informalization.

	Introduction
	Related Work
	Proposed Method
	Problem Formulation
	Framework Overview
	Retrieval Module
	Formalization Process
	Informalization Process
	Integrating Training and Inference

	Experiments
	Experimental Setup
	Overall Performance
	Ablation Studies
	Impacts of Joint Modeling and Integrating Training and Inference
	Impacts of Model Cooperation

	Conclusion
	Limitations
	Detailed Model Description
	Detailed Experiment Settings
	Prompts
	Prompt for Formal-Proof Generator
	Prompt for Formal-Proof Syntax Rewriter
	Prompt for Formal-Proof Semantic Corrector
	Prompt for Informal-Proof Generator

	Qualitative Analysis Case
	Detailed Comparison Results for Different Backbone Models

