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Abstract

Recent advancements in large language models001
(LLMs) have substantially improved models’002
performance in auto-formalization and auto-003
informalization task. However, existing ap-004
proaches suffer from three key limitations: (1)005
isolated treatment of these dual tasks despite006
their inherent complementarity, (2) decoupled007
optimization of model training and inference008
phases, and (3) under-explored collaboration009
potential among different LLMs. To address010
these challenges, we propose JAFI, a unified011
framework that integrates training and infer-012
ence while jointly modeling auto-formalization013
and auto-informalization, through modular col-014
laboration among specialized components. We015
evaluate JAFI which employs Lean 3 and Lean016
4, respectively, on the mathematical dataset017
AMR and miniF2F. The results demonstrate018
that JAFI significantly surpasses existing meth-019
ods across both tasks. Comprehensive ablation020
studies further corroborate the effectiveness of021
its meticulously designed modules. Addition-022
ally, JAFI’s superiority is validated by its per-023
formance in the ICML 2024 Challenges on Au-024
tomated Math Reasoning. Code and datasets025
are available at https://anonymous.4open.026
science/r/JAFI-EDBC.027

1 Introduction028

As a crucial component of human intelligence, the029

ability of coding and mathematical reasoning has030

attracted extensive attention in the research com-031

munity of large language models (LLMs) (Shao032

et al., 2024; Ying et al., 2024; Guo et al., 2024;033

Rozière et al., 2023). Compared to the mathe-034

matical reasoning expressed through natural lan-035

guage (NL), i.e., informal proofs, formal languages036

(FL) express mathematical theorems and proofs037

in a machine-verifiable form akin to programming038

code, ensuring the reliability of the proof process039

(Li et al., 2024). Typical FL languages include Is-040

abelle (Paulson and Nipkow, 1994), Coq (Huet and041

Paulin-Mohring, 2000), and Lean (de Moura and 042

Ullrich, 2021), which have more rigorous syntax 043

and logical structures compared to the more flexi- 044

ble NL. The tasks of auto-formalization and auto- 045

informalization aim to convert natural language 046

descriptions of mathematical problems into formal 047

statements and proofs, and vice versa (Wang et al., 048

2018). As the forms of automated theorem proving 049

(ATP), auto-formalization and auto-informalization 050

play a significant role in mathematical research and 051

education (Li et al., 2024; Jiang et al., 2023, 2022). 052

The development of LLMs has shed new light on 053

the performance improvement of these two tasks, 054

primarily due to their robust capabilities of natural 055

language understanding and reasoning (Wu et al., 056

2022; Azerbayev et al., 2023a; Jiang et al., 2022). 057

However, directly using LLMs to achieve mathe- 058

matical tasks has not yielded ideal results, mainly 059

due to (1) data bias, as mathematical language is 060

highly specialized and comprises a small portion 061

of LLMs’ pretraining data, and (2) the inherent 062

difficulty of the tasks, given the specialization and 063

complexity of mathematical reasoning. 064

Previous efforts have attempted to enhance 065

LLM performance on these two tasks, which 066

can be broadly categorized into training-based 067

and inference-based methods (Li et al., 2024). 068

Training-based methods (Azerbayev et al., 2023a; 069

Xin et al., 2024b; Azerbayev et al., 2023b; Shao 070

et al., 2024; Ying et al., 2024) typically involve fine- 071

tuning LLMs on extensive datasets containing both 072

informal and formal mathematical data, thereby 073

enhancing the model’s general mathematical ca- 074

pabilities. On the other hand, inference-based 075

methods (Jiang et al., 2022; Xin et al., 2023; Patel 076

et al., 2023; Zhao et al., 2023) utilize techniques 077

such as sophisticated prompt engineering and in- 078

context learning (ICL) to directly perform auto- 079

(in)formalization tasks with frozen LLMs. Overall, 080

training-based methods can enhance the model’s 081

potential across diverse mathematical tasks but re- 082
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quire substantial computational resources, whereas083

inference-based methods can effectively improve084

LLM performance on specific tasks but have per-085

formance limits.086

However, previous methods have the following087

issues: (1) Overlooking the synergy between the088

two tasks. Previous works have primarily focused089

on auto-formalization (Wu et al., 2022; Jiang et al.,090

2022, 2023), and although some works (Wu et al.,091

2022; Azerbayev et al., 2023a; Lu et al., 2024) have092

considered auto-informalization, they seldom con-093

sider their interrelation. (2) Lack of integration094

between training and inference. Training-based095

and inference-based methods each have their ad-096

vantages, but few works have approached these097

tasks from both aspects to balance training costs098

and model performance. (3) Lack of research on099

collaboration between different models. The auto-100

(in)formalization task require expertise in specific101

mathematical languages, translation capabilities be-102

tween NL and FL, and ICL abilities. However, ex-103

isting research has not explored solving these tasks104

through collaboration between multiple models.105

We propose JAFI, a Joint framework for Auto-106

Formalization and auto-Informalization, that ad-107

dresses these challenges through three key inno-108

vations. (1) By integrating a carefully designed109

memory module and retrieval module, JAFI effec-110

tively leverages the synergy between the two tasks,111

maximizing data utility within the tasks. (2) JAFI112

offers a holistic approach to model training and in-113

ference by accumulating high-confidence samples114

from both tasks into a unified knowledge base, thus115

facilitating modeling training. (3) During inference,116

JAFI explores the use of multiple language models117

for different subtasks, optimizing task completion118

by leveraging the distinct advantages of each LLM.119

The paper’s contributions are threefolds:120

1. Integrated Framework: We propose the novel121

JAFI framework, which effectively tackles both122

auto-formalization and auto-informalization tasks,123

featuring a seamless training-inference loop.124

2. Architectural Innovations: JAFI is designed125

with specialized modules for diverse subtasks and126

promotes adaptive model collaboration.127

3. Empirical Validation: Through extensive ex-128

periments on the AMR and miniF2F mathematical129

datasets, JAFI demonstrates state-of-the-art perfor-130

mance. Our ablation studies provide further evi-131

dence of the efficacy of the modules within JAFI.132

2 Related Work 133

Auto-formalization aims to convert theorems and 134

proof to formal code automatically. (Wang et al., 135

2018) first introduce deep learning models for 136

auto-formalization. Drawing inspiration from the 137

sequence-to-sequence models used in neural ma- 138

chine translation (Sutskever et al., 2014), various 139

encoder-decoder frameworks (Luong et al., 2017; 140

Lample et al., 2018) are experimented with to trans- 141

form mathematical texts written in LATEX into the 142

Mizar language (Szegedy, 2020). 143

The development of large language models 144

(LLMs) and their in-context learning capabilities 145

(Brown et al., 2020) has created new opportunities 146

for auto-formalization. Studies (Wu et al., 2022; 147

Agrawal et al., 2022; Gadgil et al., 2022) explored 148

the use of PaLM (Chowdhery et al., 2023) and 149

Codex (Chen et al., 2021) with few-shot prompt- 150

ing to convert mathematical problems into formal 151

languages like Isabelle and Lean seamlessly. Sev- 152

eral researchers (Jiang et al., 2022; Patel et al., 153

2023; Zhao et al., 2023; Xin et al., 2023) propose 154

more structured approaches for auto-formalization. 155

For example, DSP (Jiang et al., 2022) uses Min- 156

erva (Lewkowycz et al., 2022) to generate informal 157

proofs and transforms them into formal sketches, 158

utilizing ATP systems to fill in the missing compo- 159

nents of the proof sketch. 160

Furthermore, a body of research (Azerbayev 161

et al., 2023a; Jiang et al., 2023; Azerbayev et al., 162

2023b; Shao et al., 2024; Ying et al., 2024) focuses 163

on training LLMs with extensive datasets compris- 164

ing both informal and formal mathematical data to 165

evaluate their auto-formalization performance. De- 166

spite these advancements, existing work often lacks 167

exploration into the integration of training-based 168

and inference-based methods. 169

Conversely, due to the inherent inconsisten- 170

cies in natural language, research into auto- 171

informalization is relatively sparse (Li et al., 2024; 172

Lu et al., 2024; Jiang et al., 2023). Overall, there 173

is a significant gap in exploring the synergy be- 174

tween auto-formalization and auto-informalization 175

tasks. 176

3 Proposed Method 177

3.1 Problem Formulation 178

Given a paired dataset D = {(ij , fj)}Nj=1 con- 179

sisting of N aligned informal-formal proof pairs, 180

where ij denotes an informal proof (natural lan- 181

guage with mathematical reasoning) and fj rep- 182
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Figure 1: The overall framework of JAFI. Subfigure (a) (upper part) displays the model training process, while
subfigure (b) (lower part) depicts the inference architecture. The memory stores high-confidence inference data,
integrating them into a unified KB. The data is used to fine-tune specialized LLM(s), which are then applied in the
submodules of the inference process.

resents its corresponding formal proof (machine-183

verifiable code), we formally define the two com-184

plementary translation tasks:1185

Auto-formalization Given an informal proof i,186

this task focuses on generating its formal counter-187

part f , denoted as i → f . The translation requires188

preserving logical equivalence while adapting to189

the strict syntax of formal languages.190

Auto-informalization Conversely, given a for-191

mal proof f , this task aims to produce its human-192

readable informal version i, i.e., f → i. The pro-193

cess involves recovering natural language explana-194

tions from symbolic representations without losing195

mathematical rigor.196

Figure 1(a) illustrates an example of this bidi-197

rectional translation. Consider the theorem: “If198

n is an even number, then n2 is also even.” The199

informal proof (in natural language) and its for-200

mal counterpart (in a theorem prover like Lean)201

constitute a task pair. Auto-formalization converts202

the natural language proof into Lean code, while203

auto-informalization achieves the inverse transfor-204

1Both ij and fj can be decomposed into theorem state-
ments and their proofs. For notational simplicity, we collec-
tively refer to them as informal/formal proofs.

mation. 205

3.2 Framework Overview 206

Figure 1 illustrates the JAFI framework, com- 207

prising two integrated components: the Model 208

Training subsystem (upper panel a) and the Step- 209

wise Inference subsystem (lower panel b). The 210

inference subsystem contains distinct pipelines for 211

auto-formalization (left) and auto-informalization 212

(right). 213

For auto-formalization, the input informal proof 214

i first undergoes context retrieval from the knowl- 215

edge base (KB), fetching k relevant theorem-proof 216

pairs {rj}kj=1. The generator then produces candi- 217

date formal proof fg using this context, followed by 218

syntax correction to yield fs. Finally, semantic cor- 219

rection iteratively refines fs using formal executor 220

feedback, producing f̂ . 221

Auto-informalization handles the inverse trans- 222

lation through a three-stage process: retrieval of 223

similar formal proofs, generation of c candidate 224

informal proofs {i(m)
g }cm=1 via in-context learn- 225

ing, and selection of optimal output î using qual- 226

ity metrics (perplexity or LLM-based assessment). 227

The asymmetric design accounts for formal proofs’ 228

syntactic rigidity versus informal proofs’ natural 229
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language flexibility.230

JAFI’s Memory module bridges training and in-231

ference by collecting high-confidence predictions232

validated through formal verification and seman-233

tic consistency checks. These validated samples234

enrich the KB and enable continuous model im-235

provement through curriculum learning, creating a236

self-reinforcing loop where enhanced models gen-237

erate better training data, which subsequently im-238

proves model performance.239

3.3 Retrieval Module240

JAFI is built with a unified retrieval module to241

extract the most relevant samples for both tasks.242

Specifically, for an input q, the retrieval module R243

identifies the k samples that are most closest to q244

from the indexed dataset, expressed as:245

{rj}kj=1 = R(q,D), (1)246

where D denotes the stored and indexed sample set247

of size N , and q represents either i in the formal-248

ization task or f in the informalization task.249

Formally, in module R, we utilize an encoder to250

convert the query q and the indexed dataset D into251

dense vector eq ∈ Rd and an embedding matrix252

E ∈ R2N×d. Then, the indexes of k samples are253

retrieved by254

{idxj}kj=1 = DenseRetriever(eq,E; k), (2)255

where the index idxj corresponds to rj’s256

remapped position in the KB. The operation257

DenseRetriever(; ) can be implemented with var-258

ious k-Nearest Neighbor (kNN) algorithms. More259

detailed settings can be found in Appendix A.260

3.4 Formalization Process261

As illustrated in the left part of Figure 1(b), the ob-262

jective of auto-formalization process is predicting263

the corresponding formal proof f̂ given informal264

proof i. This process mainly consists of four stages:265

retrieval, generation, syntax rewriting, and seman-266

tic correction. The detailed process is outlined in267

Algorithm 1.268

At first, module R retrieves the k most relevant269

examples {rj}kj=1 from the annotated dataset D270

based on the input informal statement and proof i.271

These examples together with i, serve as the input272

to the generation module, where the formal proof273

generator Mfg generates a candidate fg. Next, in274

the syntax rewriting module, the formal language275

expert Mfs performs syntax corrections on fg to276

Algorithm 1 Formalization Process
Require: Informal proof i, training dataset D, retrieval model

R, generator (model) Mfg , syntax rewriter (model)
Mfs, semantic corrector (model) Mfc, prompt tem-
plates Tfg , Tfs, Tfc, formal language executor E , pa-
rameter k

Ensure: Predicted formal proof f̂
1: Retrieval: Retrieve the k samples most similar to i, i.e.,

{rj}kj=1 = R(i,D);
2: Generation: Generate candidate formal proof fg =

Mfg(i, {rj}kj=1; Tfg);
3: Syntax Rewriting: Perform syntax correction on the

candidate fc to obtain fs = Mfs(fg; Tfs);
4: Semantic Correction:
5: Initialize f

(0)
c = fs

6: Loop:
7: f

(j+1)
c = Mfc(f

(j)
c ; Tfc, E);

8: until formal language executor E returns the correct
result, or maximum iterations are reached.

9: Return f
(j+1)
c from the last iteration;

produce fs. Finally, the semantic correction mod- 277

ule iteratively refines fs based on error messages 278

returned by the formal language executor E , result- 279

ing in the final prediction f̂ . 2 280

In the semantic correction module, fs is used 281

as the initial (iteration 0) corrected formal proof, 282

denoted as f
(0)
c . It is refined iteratively by the 283

sematnic corrctor Mfc (as described in line 7 of 284

Algorithm 1) until the formal language executor E 285

executes f (j+1)
c without errors or a maximum num- 286

ber of iterations is reached. The iterative process is 287

formalized as 288

e(j) = E(f (j)
c ), (3) 289

m(j) = EMP(e(j)), (4) 290

f (j+1)
c = Mfc(f

(j)
c ,m(j); Tfc), (5) 291

where e(j) is the raw output from executing f
(j)
c by 292

executor E . Given that this output can be lengthy 293

and complex, potentially exceeding the context 294

length limit of the LLM, we use an error message 295

processor EMP to simplify it into m(j). EMP can 296

either be a rule-based method to remove redun- 297

dant and unnecessary information or a model-based 298

method to summarize the raw output. 299

Specifically, three LLMs are respectively used 300

as Mfg, Mfs and Mfc, with the corresponding 301

prompt template Tfg, Tfs, Tfc. These LLMs can be 302

the same or different. Mfg needs strong ICL capa- 303

bilities to understand both NL and FL for language 304

2For models Mfg , Mfs and Mfc, we can use them in
a training-free or training-train fashion, with specific prompt
templates. The used templates Tfg , Tfs, Tfc are listed in
Appendix C.
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Algorithm 2 Informalization Process
Require: Formal statement and proof f , generation model

Mig , selection model S, parameters k, c
Ensure: Predicted informal statement and proof î
1: Retrieval: Retrieve the k most similar samples to f , i.e.,

{rj}kj=1 = R(f,D);
2: Generation: Generate candidate informal proofs

{i(1)g , i
(2)
g , . . . , i

(c)
g } = Mig(i, {rj}kj=1; Tig);

3: Selection: î = S({i(1)g , i
(2)
g , . . . , i

(c)
g };D);

• LLM-based: î = Mis({i(1)g , i
(2)
g , . . . , i

(c)
g }; Tis);

• PPL-based: Train LM Mppl on dataset D, and
select î as the output by calculating the perplexity
of the generated candidate informal proofs;

translation. Mfs requires a deep understanding of305

the specific FL, such as knowing which packages to306

invoke for different needs. Mfc needs the ability307

to fix code based on feedback from the executor.308

3.5 Informalization Process309

The informalization process, as illustrated in the310

right part of Figure 1(b), is to predict the corre-311

sponding informal proof î given formal proof f ,312

consisting of three stages: retrieval, generation313

and selection. The detailed steps are outlined in314

Algorithm 2.315

The retrieval module and generation module316

(denoted as Mig) are similar to those in auto-317

formalization process. However, unlike Mfg gen-318

erating a single candidate formal proof with a tem-319

perature of 0, Mig samples multiple candidate in-320

formal proofs (the number is c).321

In the selection module, the generated candi-322

date informal proofs {i(1)g , i
(2)
g , . . . , i

(c)
g } are fil-323

tered through two effective selection strategies:324

the LLM-based method and the perplexity-based325

method. In the LLM-based method, a frozen model326

Mis, combined with a specific template Tis, is327

used. Notably, this method avoids the need for pa-328

rameter tuning. In the perplexity-based method, we329

train a language model Mppl (e.g., GPT-2 (Radford330

et al., 2019)) on the existing dataset D to model331

the language distribution of the dataset. We then332

calculate the perplexity of the generated candidate333

informal proofs and select the one with the lowest334

perplexity as the final prediction î.335

3.6 Integrating Training and Inference336

To integrate model training and inference for per-337

formance improvement, as shown in Figure 1, dur-338

ing JAFI’s inference process, high-confidence data339

from both tasks are saved into the memory and 340

uniformly added into the KB. Specifically, an pre- 341

diction f̂ verified by E in the formalization task is 342

paired with its input i to form a sample {(i, f̂)}. 343

In the informalization task, the prediction î with a 344

perplexity below a certain threshold is also paired 345

with its input f to form a sample {(f, î)}. 346

The data in the KB is leveraged for two pur- 347

poses. First, it acts as the data source for the 348

retrieval module, encoded and stored for future 349

auto-(in)formalization task as in-context examples. 350

Second, the data is used for model training, fine- 351

tuning a general pretrained LLM into specialized 352

LLM(s), i.e., Mfg, Mfs, Mfc and Mig, which 353

are employed in the modules of the inference pro- 354

cess 3. In practice, depending on the amount of 355

data available and the training budget, these data 356

can be used to train a unified multi-task model or 357

multiple models for different subtasks. 358

4 Experiments 359

We have conducted our experiments to answer the 360

following questions. 361

RQ1: Can JAFI outperform the state-of-the-art 362

methods on the tasks of auto-formalization and 363

auto-informalization? 364

RQ2: Do the devised modules/methods in JAFI 365

contribute to the performance during the inference 366

process? 367

RQ3: Is it necessary to jointly model auto- 368

formalization and auto-informalization for better 369

performance? 370

RQ4: Is it necessary to integrate model training 371

and inference for better performance? 372

RQ5: How can the collaboration between different 373

models be utilized to achieve better results? 374

4.1 Experimental Setup 375

Dataset Our experiments leverage two mathemat- 376

ical reasoning benchmarks. The AMR dataset, de- 377

rived from MUSTARDSauce (Castro et al., 2019), 378

contains 4,866 training samples and 500 test sam- 379

ples spanning elementary to Olympiad-level math- 380

ematics (including IMO problems). Each sample 381

comprises four components: problem name, infor- 382

mal statement, informal proof, and corresponding 383

Lean3-formalized proof. For cross-version vali- 384

dation, we additionally evaluate on the miniF2F 385

3To align with the inference process, we actually use the
input-output pairs from generation, syntax rewriting and se-
mantic correction modules producing correct predictions as
SFT training samples, rather than only using {(i, f̂)} pairs.
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dataset (Zheng et al., 2021) containing 244 valida-386

tion and 244 test problems in Lean4 format, focus-387

ing on algebra and number theory from AIME/AM-388

C/IMO competitions. More detailed information389

can be found in Appendix B.390

Evaluation Metrics For both the auto-391

formalization task and the auto-informalization392

task, the prevalent metrics of ROUGE-L (Lin,393

2004) and BLEU (Papineni et al., 2002) are394

used to evaluate the quality of the generated395

texts. Moreover, pass rate is also used for the396

auto-formalization task. A generated formal proof397

is considered correct if it can be successfully398

executed by the Lean code executor and achieves a399

ROUGE-L score above a specified threshold when400

compared with the annotated solution.401

Lean Execution Environment To support the se-402

mantic correction module and calculation of pass403

rate, we configured a local Lean 3 and Lean 4 exe-404

cution environment running on a Linux server with405

750GB of RAM and 96 CPU cores.406

LLMs in JAFI JAFI leverages DeepSeek-Coder407

(33B) (Guo et al., 2024) as its backbone model. For408

the selection module of informalization, we fine-409

tuned GPT-2 (Radford et al., 2019) to calculate410

perplexity. In our model cooperation experiments,411

we also evaluated proprietary LLMs including GPT-412

4 variants (Turbo/4o) and the Gemini series for413

comparison. More detailed training settings can be414

found in Appendix B.415

Baselines Comparisons span two methodological416

categories: Training-free approaches include ICL417

(Wu et al., 2022) using vanilla few-shot prompt-418

ing, and ICL-retrieval (Azerbayev et al., 2023a)419

augmenting prompts with mathlib knowledge base420

retrievals. Training-based competitors comprise421

proofGPT (Azerbayev et al., 2023a) (1.3B parame-422

ters via Codex-002 distillation) and Llemma (Azer-423

bayev et al., 2023b) (7B/34B models continually424

pretrained on Proof-Pile-2). More detailed infor-425

mation can be found in Appendix B.426

4.2 Overall Performance427

For RQ1, we compared the performance of JAFI428

and the baselines on the AMR and miniF2F429

datasets. The experimental results are shown in430

Table 1. For ICL and ICL-retrieval, we used GPT-431

4o as the backbone and followed the inference432

methods described in their published papers. For433

proofGPT and Llemma, we downloaded and uti- 434

lized their pretrained models to complete the auto- 435

(in)formalization task. 436

From the results, we can observe that: 1) On 437

the AMR dataset, JAFI achieved superior perfor- 438

mance in both the auto-formalization and auto- 439

informalization tasks. 2) Furthermore, our model 440

also demonstrated the best performance in the 441

auto-formalization task on the miniF2F dataset, 442

thereby validating the generalizability of the JAFI 443

approach. 444

4.3 Ablation Studies 445

In response to RQ2, we conducted a series of abla- 446

tion studies to investigate the effectiveness of the 447

proposed modules. 448

For the auto-formalization task, we validated the 449

effectiveness of the retrieval, syntax rewriting, and 450

semantic correction module, which are denoted as 451

rt, sr and sc, respectively. The results in Table 2 452

show that removing any module in JAFI results in 453

a performance drop, demonstrating the importance 454

of incorporating the in-context samples (retrieved 455

samples) before generation and post-processing the 456

generated results. An quantitative case study can 457

be found in Appendix D. 458

Furthermore, we randomly selected 50 samples 459

and counted the number of correct results (samples) 460

generated by the generation module (denoted as 461

#gen), and the number of correct results supple- 462

mented by the syntax rewriting module (denoted 463

as #sr). In addition, the number of correct sam- 464

ples supplemented by the first, second, and third 465

attempts (iterations) of semantic correction are de- 466

noted as #sc1, #sc2, and #sc3, respectively. The 467

results are shown in Table 3, where EMP indicates 468

whether the FL executor’s error messages were 469

processed. According to the results, (1) both the 470

syntax rewriting and semantic correction module 471

can correct a significant number of samples, validat- 472

ing their necessity. (2) Compared to the approach 473

without EMP, EMP allowed the model to correct 474

more samples, demonstrating the necessity of error 475

message processor. 476

For the auto-informalization task, we analyzed 477

the two methods of candidate informal proofs. For 478

the perplexity-based method, we trained two mod- 479

els, GPT-2 and Llama-7B. For the LLM-based 480

method, we used Gemini-Chat, DeepSeek-V2 and 481

GPT-4o. Additionally, a random selection method 482

was also considered as a baseline. The experimen- 483

tal results in Table 4 support the following conclu- 484
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AMR-Formalization AMR-Informalization miniF2F-valid miniF2F-test
Method ROUGE-L BLEU passrate ROUGE-L BLEU passrate passrate
ICL 0.2102 0.0772 0.18 0.2102 0.0523 0.02 0.02
ICL-retrieval 0.3487 0.1000 0.46 0.2753 0.0980 0.05 0.03
proofGPT 0.2545 0.0704 0.02 0.1805 0.0472 0.11 0.08
Llemma-7B 0.2766 0.0714 0.04 0.2102 0.0482 0.24 0.26
Llemma-34B 0.3246 0.1023 0.16 0.2645 0.0743 0.28 0.25
JAFI 0.4217 0.1407 0.78 0.3412 0.1168 0.45 0.42

Table 1: Overall performance on the two tasks of all compared methods.

Variant ROUGE-L BLEU passrate
w/o rt 0.2866 0.0724 0.06
w/o sr&sc 0.3487 0.1000 0.46

w/o sr 0.3642 0.1109 0.56
w/o sc 0.4152 0.1224 0.64

JAFI 0.4217 0.1407 0.78

Table 2: Ablation study of JAFI’s modules on auto-
formalization.

Model EMP #gen #sr #sc1 #sc2 #sc3

Gemini-Base
✓ 21 +2 +3 +1 0
✕ 21 +3 +4 +2 +1

DeepSeek-Coder
✓ 29 +3 +2 0 0
✕ 30 +3 +3 +1 0

Table 3: The number of correct results (supplemen-
tal) after the processing of JAFI’s modules on auto-
formalization.

sions. (1) Both methods outperform the random485

method, indicating the importance of sample selec-486

tion. (2) The perplexity-based method has better487

results, justifying the effectiveness of aligning lan-488

guage models with the language features of the489

training samples, even though the models are of490

small size.491

4.4 Impacts of Joint Modeling and492

Integrating Training and Inference493

In response to RQ3 and RQ4, we conducted spe-494

cific experiments on the auto-formalization task in495

a low-resource environment, in which only 100 an-496

notated samples randomly selected from the train-497

ing set were considered. Then, we recorded the498

average pass rates of JAFI’s variants for 300 ran-499

domly selected test samples of auto-formalization,500

where the used model is DeepSeek-Coder.501

To investigate the necessity of jointly model-502

ing the two tasks, we proposed three variants of503

JAFI, denoted as M0, M1 and M2. These three504

variants achieved the auto-formalization task by six505

Method Model ROUGE-L BLEU
Random - 0.2866 0.0724

Perplexity-based GPT-2 0.3306 0.1124
Llama-7B 0.3350 0.1207

LLM-based
Gemini-Chat 0.3198 0.0974
DeepSeek-V2 0.3206 0.1042
GPT-4o 0.3281 0.0989

Table 4: The effects of selecting candidate informal
proofs on auto-informalization.

50 100 150 200 250 300
(a)

0.30

0.35

0.40

0.45

0.50

0.55

0.60

Pa
ss

ra
te

M0
M1
M2

T0 T1 T2
(b)

0.30

0.35

0.40

0.45

0.50

0.55

0.60

Figure 2: Auto-formalization performance of JAFI’s
variants under limited annotation resources. In Subfig-
ure (a), M0, M1 and M2 represent different inference
scenarios. In Subfigure (b) T0, T1 and T2 indicate dif-
ferent training strategies.

gradual steps, in each of which 50 samples were 506

inferred. Specifically, M0 is the variant without 507

the memory module, indicating it can only retrieve 508

from the 100 annotated samples. In each inference 509

step of M1, the inferred high-confidence samples 510

were saved to the memory, which can be used in 511

the retrieval module of the next inference steps (for 512

the rest test samples). In M2, besides the inferred 513

high-confidence samples were used as M2, other 514

high-confidence samples obtained by inferring 50 515

randomly selected samples of auto-informalization 516

were also included into the memory, implying that 517

it leverages the synergy between the two tasks. 518

The pass rates of three variants for the six groups 519

of auto-formalization samples (each group has 50 520

samples) are depicted in Figure 2(a). It shows M1’s 521

performance improvement over M0, demonstrating 522

that accumulating experiences through the memory 523
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Figure 3: The performance of JAFI using a single LLM.

module effectively enhances the model’s capability.524

In addition, M2’s superiority over M1 is attributed525

to jointly modeling the two tasks (leveraging the526

synergy between the two tasks).527

To investigate whether it is necessary to in-528

tegrate model training and inference, we pro-529

posed other three variants without the memory mod-530

ule, denoted T0, T1 and T2. We used DeepSeek-531

Coder as T0, to infer the 300 test samples of auto-532

formalization directly. In T1, only the generator533

Mfg was trained by the 100 training samples. In534

T2, besides Mfg, model Mfs and Mfc were also535

trained simultaneously with some samples which536

come from the 100 training samples and were vali-537

dated by the FL executor. These three variants’ pass538

rates on the 300 test samples of auto-formalization539

are shown as the columns in Figure 2(b). It is ev-540

ident that T1 shows significant improvement over541

T0, and T2 further improves upon T1, validating542

the necessity of integrating model training and in-543

ference.544

4.5 Impacts of Model Cooperation545

To answer RQ5, we first compared the auto-546

formalization performance of using the same LLM547

in all modules of JAFI, which was not trained4,548

of which the results are displayed in Figure 3. It549

shows that taking different LLMs as the backbone550

of JAFI exhibits varying performance.551

Furthermore, we plotted a Venn diagram (Figure552

4) to illustrate the number of the samples success-553

fully processed by the JAFI only using Deepseek-554

Coder, Gemini-Base or GPT-4o when inferring 100555

test samples of auto-formalization. The diagram556

reveals that the sample set each model can solve are557

distinct. Although Deepseek-Coder demonstrates558

the strongest overall performance, there are still 6559

and 3 problems (samples) that only GPT-4o and560

Gemini-Base can solve, respectively.561

This observation inspires us to achieve better per-562

4The results of auto-informalization in Appendix E.

Figure 4: Number of the samples passed by three models
on 100 test samples of auto-formalization.

Model/Strategy ROUGE-L BLEU passrate
DeepSeek-Coder 0.4615 0.1365 0.68
Gemini-Chat 0.4082 0.1078 0.56
GPT-4o 0.4512 0.1308 0.54
MM-single 0.4306 0.1375 0.76
MM-cross 0.4822 0.1412 0.82

Table 5: The performance of using single LLM and the
strategies of model cooperation.

formance through integrating the multiple models 563

in the modules. We proposed two simple strate- 564

gies for model cooperation as follows. (1) In MM- 565

single, each model independently attempts to solve 566

the problem and the first successful result passing 567

the FL executor is returned. (2) In MM-cross, each 568

of the three models acts as a generator to produce 569

candidate proofs, and the mathematically stronger 570

model Deepseek-Coder handles the syntax rewrit- 571

ing and semantic correction. 572

As shown in Table 5, the results indicate that 573

both strategies of model cooperation outperform 574

any single model used in JAFI, and MM-cross out- 575

performs MM-single, validating the effectiveness 576

of model cooperation. 577

5 Conclusion 578

In this paper, we present the JAFI framework, 579

a comprehensive solution tailored for both auto- 580

formalization and auto-informalization tasks. This 581

framework is underpinned by carefully designed 582

modules: retrieval, syntax rewriting, and seman- 583

tic correction for auto-formalization, alongside a 584

selector for auto-informalization. Furthermore, 585

JAFI incorporates an innovative memory module, 586

which not only records and utilizes successful past 587

operations for future tasks but also enriches the 588

dataset, thereby enhancing model training. Our 589

extensive experiments, conducted using the AMR 590

and miniF2F datasets for rigorous validation, con- 591

firm the effectiveness and robustness of JAFI and 592

its constituent modules in advancing both tasks. 593
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6 Limitations594

This study presents two primary limitations: 1) In-595

sufficient model training: Due to time and cost596

constraints, we trained the 33B DeepSeek-Coder597

model only on the AMR dataset, resulting in a598

relatively small amount of training data. It is es-599

sential to explore methods for constructing more600

comprehensive training datasets for both formal-601

ization and informalization tasks, and to study the602

impact of scaling up training data on model per-603

formance. 2) Lack of exploration of alternative604

test-time compute methods: Our approach pre-605

dominantly focused on validating the efficacy of606

joint modeling of the two tasks and integration of607

model training and inference, ignoring other test-608

time compute techniques that could potentially en-609

hance auto-formalization outcomes, such as Monte-610

Carlo Tree Search (MCTS) (Coulom, 2006; Xin611

et al., 2024a). Furthermore, recent developments612

include models that have strengthened reasoning613

capabilities during inference, such as OpenAI’s614

o1 (Zhong et al., 2024) and DeepSeek-R1 (Guo615

et al., 2025). Intuitively, their enhanced reason-616

ing abilities could improve performance in both617

auto-formalization and auto-informalization tasks,618

warranting further investigation in future work.619
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Appendices896

A Detailed Model Description897

Retrieval Settings Given the substantial differ-898

ences between natural language (NL) and formal899

language (FL), it is impractical to directly incorpo-900

rate them into the retrieval module without pre-901

processing, as this could cause interference be-902

tween the two languages. Therefore, we employ903

a symmetric encoding approach to manage both904

retrieval tasks effectively. Specifically, for the ex-905

isting samples (ij , fj), we prepend the prefixes906

Natural language statement and proof: and907

Formal statement and proof: to ij and fj , re-908

spectively.909

B Detailed Experiment Settings910

Dataset The AMR dataset can be found911

at https://sites.google.com/view/912

ai4mathworkshopicml2024/challenges. It913

includes 4,866 samples for training and 500914

samples for evaluation. Each sample in the dataset915

contains four fields: name, informal statement,916

informal proof, and formal proof, as illustrated in917

Figure 1(a).918

The miniF2F dataset was first presented919

by OpenAI (Zheng et al., 2021) in the for-920

mat of Lean 3 (https://github.com/openai/921

miniF2F). Later researchers converted it to an922

equivalent Lean 4 version (https://github.com/923

yangky11/miniF2F-lean4). To validate the gen-924

eralizability of our method, we conducted experi-925

ments using the Lean 4 version.926

Evaluation Metrics We utilized the927

rouge_score (https://github.com/928

google-research/google-research/929

tree/master/rouge) and nltk (https:930

//github.com/nltk/nltk) packages for the931

implementation of our evaluation metrics.932

LLM training settings For JAFI model, we used933

33B DeepSeek-Coder as the backbone, training934

Mfg and Mig with labelled data, while train-935

ing Mfs and Mfc on the high-confidence data936

inferred from DeepSeek-Coder on training data.937

To ensure a fair comparison with other methods,938

we used a single backbone for multi-task training939

across these four sub-tasks. We employed a GPT-2940

model for candidate selection trained on dataset941

with the LM object.942

For model training, we combined data from all 943

four sub-tasks, using different prompts, to train a 944

single 33B model. The final version of our model 945

was trained for approximately three hours on eight 946

A100 GPUs. 947

Baselines We compared JAFI with the follow- 948

ing state-of-the-art methods. Based on whether 949

the models are trained on specialized mathemat- 950

ical data, they can be categorized into training- 951

free and training-based methods. For training-free 952

methods, they enhance the performance on auto- 953

(in)formalization task through inference, including: 954

• ICL method (Wu et al., 2022) employs few- 955

shot learning by leveraging the ICL capabili- 956

ties of LLMs. 957

• ICL-retrieval method (Azerbayev et al., 958

2023a) enhances few-shot learning through 959

incorporating the retrieved k-nearest neigh- 960

bors from formal statements, utilizing a KB 961

from Lean’s package mathlib. 962

For training-based methods, they generally im- 963

prove the model’s overall mathematical capabilities 964

through training on large-scale mathematical data, 965

including: 966

• proofGPT (Azerbayev et al., 2023a) utilizes 967

the distilled backtranslation and employs 968

Davinci-codex-002 as the teacher model to 969

train a student model with 1.3 billion parame- 970

ters. 971

• Llemma (Azerbayev et al., 2023b) is an 972

LLM continuously pretrained on a large- 973

scale dataset named Proof-Pile-2 from Code- 974

Llama(Rozière et al., 2023), available in the 975

variants of 7B and 34B versions. 976

C Prompts 977

C.1 Prompt for Formal-Proof Generator 978

979
You are a math expert and familiar with 980
Lean 3 formal language. 981
Now please translate the following 982
statement and solution of a math word 983
problem into Lean 3 formal solution. 984
Please note that the informal solution 985
and the formal solution need to be 986
identical. 987

988
{samples} 989

990
## Problem: 991
{informal_statement} 992

993
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## Informal Solution:994
{informal_proof}995

996
## Formal Solution in Lean 3:997998

Listing 1: Prompt for Formal-Proof Generator

C.2 Prompt for Formal-Proof Syntax999

Rewriter1000

1001
You are an expert in the Lean 3 language1002
.1003
Please check the Lean code below , and if1004
there are any issues , please correct1005

them to make it a valid , runnable code.1006
Note:1007

1008
1. When working with mathematical1009
structures that cannot be effectively1010
computed , such as real numbers or1011
infinite sets , don 't forget to add the1012
keyword 'noncomputable '.1013
For example:1014
noncomputable def inv (x : $\mathbb{R}$)1015
: $\mathbb{R}$ := 1 / x1016

1017
2. Pay attention to the completeness of1018
the code , for example , ensuring there is1019
an `end ` corresponding to each `begin `.1020

1021
3. Always check the 'State ' of the1022
theorom in proving , avoid unnecessary1023
tactics .1024

1025
4. If the problem involves substitution1026
calculations with unknowns , carefully1027
choose one of [rw], [simp], or [norm_num1028
].1029

1030
5. In one problem , put all 'import ' at1031
the beginning of the code.1032

1033
6. remember to use "#eval" to give the1034
final answer if the problem has a1035
definit output1036

1037
Below are some reference Lean codes:1038

1039
{samples}1040

1041
For the problem "{ informal_statement }",1042
here is a piece of code addressing this1043
problem:1044

1045
```lean1046
{code}1047
```1048

1049
Please provide your corrected code to1050
ensure it can run correctly , only give1051
the lean code:10521053

Listing 2: Prompt for Formal-Proof Syntax Rewriter

C.3 Prompt for Formal-Proof Semantic1054

Corrector1055

1056
You are a math expert and familar with 1057
Lean 3 formal language. 1058
Please check the Lean code below. The 1059
error message from the Lean 3 server has 1060
been given. Please correct them to make 1061
it a valid , runnable code. 1062

For the problem "{ informal_statement }" 1063
Here is a piece of code addressing this 1064
problem: 1065
```lean 1066
{code} 1067

1068
Error message: 1069

1070
{err_msg} 1071

1072
Please provide your corrected code to 1073
ensure it can run correctly , only give 1074
the lean code: 10751076

Listing 3: Prompt for Formal-Proof Semantic Corrector

C.4 Prompt for Informal-Proof Generator 1077

1078
You are a math expert and familar with 1079
Lean 3 formal language. 1080
Now please translate the following Lean 1081
3 code into natural language. 1082

1083
You should output the natural language 1084
statement of the problem and the natural 1085
language solution of the problem in the 1086
form of JSON. e.g. {{" Problem ": xxx ," 1087

Solution ": xxx}} 1088
1089

{samples} 1090
1091

## Formal Solution in Lean 3: 1092
1093

```lean 1094
{formal_proof} 1095
``` 1096

1097
## Problem and Solution: 10981099

Listing 4: Prompt for Informal-Proof Generator

D Qualitative Analysis Case 1100

Below, we present a simplified example to highlight 1101

the roles of the generator, rewriter, and corrector 1102

modules: 1103

1) The informal problem is "John had 1/2 of a 1104

pizza and he ate 1/4 of it. How much pizza does he 1105

have left?" The ground truth formal proof is: 1106
1107

import data.real.basic 1108
noncomputable def half : R := 1/2 1109
noncomputable def quarter : R := 1/4 1110
theorem john_pizza : half - quarter = 1111
quarter := 1112
begin 1113

unfold half quarter , -- This 1114
replaces 'half ' and 'quarter ' with 1115
their definitions. 1116

14



norm_num , -- This performs the1117
subtraction.1118

end11191120

2) The generator produces the following result:1121
1122

def john_pizza_initial : R := 1/21123
def john_pizza_eaten : R := 1/41124
def john_pizza_left : R :=1125
john_pizza_initial - john_pizza_eaten1126
#eval john_pizza_left11271128

3) The rewriter identifies two issues in the gener-1129

ated code: the lack of an import statement and the1130

absence of the noncomputable modifier (in Lean,1131

the real number type R cannot directly compute1132

concrete values).1133
1134

import data.real.basic1135
noncomputable def john_pizza_initial : R1136
:= 1/21137

noncomputable def john_pizza_eaten : R1138
:= 1/41139
noncomputable def john_pizza_left : R :=1140
john_pizza_initial - john_pizza_eaten1141

#eval john_pizza_left11421143

4) After the Lean executor runs the code, it1144

returns an error: error: code generation1145

failed, VM does not have code for1146

’john_pizza_left.’ The corrector then modi-1147

fies the code to yield the correct proof:1148
1149

...1150
example : john_pizza_left = 1/4 :=1151
begin1152

unfold john_pizza_left1153
john_pizza_initial john_pizza_eaten ,1154
norm_num ,1155

end11561157

E Detailed Comparison Results for1158

Different Backbone Models1159

Here we provide the detailed comparison results for1160

different backbone models in auto-informalization.1161

The BLEU and ROUGE-L scores of different mod-1162

els are shown in Figure 5 and Figure 6. The BLEU1163

and ROUGE-L scores’ distribution of different1164

models over 50 samples are shown in Figure 7 and1165

Figure 8.1166

Figure 5: The BLEU scores of different models in auto-
informalization.

Figure 6: The ROUGE-L scores of different models in
auto-informalization.

Figure 7: The BLEU scores’ distribution of different
models over 50 samples in auto-informalization.

Figure 8: The ROUGE-L scores’ distribution of differ-
ent models over 50 samples in auto-informalization.
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