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ABSTRACT

While the automatic recognition of musical instruments has
seen significant progress, the task is still considered hard for
music featuring multiple instruments as opposed to single
instrument recordings. Datasets for polyphonic instrument
recognition can be categorized into roughly two categories.
Some, such as MedleyDB, have strong per-frame instrument
activity annotations but are usually small in size. Other,
larger datasets such as OpenMIC only have weak labels,
i.e., instrument presence or absence is annotated only for
long snippets of a song. We explore an attention mechanism
for handling weakly labeled data for multi-label instrument
recognition. Attention has been found to perform well
for other tasks with weakly labeled data. We compare
the proposed attention model to multiple models which
include a baseline binary relevance random forest, recurrent
neural network, and fully connected neural networks. Our
results show that incorporating attention leads to an overall
improvement in classification accuracy metrics across all 20
instruments in the OpenMIC dataset. We find that attention
enables models to focus on (or ‘attend to’) specific time
segments in the audio relevant to each instrument label
leading to interpretable results.

1. INTRODUCTION

Musical instruments, both acoustic and electronic, are nec-
essary tools to create music. Most musical pieces comprise
of a combination of multiple musical instruments resulting
in a mixture with unique timbre characteristics. Humans
are fairly adept at recognizing musical instruments in the
music they hear. Recognizing instruments automatically,
however, is still an active area of research in the field of
Music Information Retrieval (MIR). Instrument recogni-
tion in isolated note or single instrument recordings has
achieved a fair amount of success [14, 26]. Recognizing
instruments in music with multiple simultaneously playing
instruments, however, is still a hard problem. The task is
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difficult because of (i) the superposition (in both time and
frequency) of multiple sources/instruments, (ii) the large
variation of timbre within one instrument, and (iii) the lack
of annotated data for supervised learning algorithms.

Identifying music in audio recordings is helpful for gen-
eral retrieval systems by allowing users to search for music
with specific instrumentation [32]. Instrument recognition
can also be helpful for other MIR tasks. For example, in-
strument tags may be vital for music recommendation sys-
tems to model users’ affinity towards certain instruments,
genre recognition systems could also improve with genre-
dependent instrument information. Building models con-
ditioned on a reliable detection of instrumentation could
also lead to improvements for tasks such as automatic mu-
sic transcription, source separation, and playing technique
detection.

As mentioned above, one of the challenges in MIR in
general, and in instrument recognition in particular, is the
lack of large-scale annotated or labeled data for supervised
machine learning algorithms [17, 36]. Datasets for instru-
ment recognition in polyphonic music can broadly be di-
vided into strongly and weakly labeled. A weakly labeled
dataset (WLD) contains clips that may be several seconds
long and have labels for one or more instruments for their
entirety without annotating the exact onset and offset times
of the instruments. A strongly labeled dataset (SLD), how-
ever, contains audio with fine-grained labels of instrument
activity. WLDs are easier to annotate compared to SLDs
and therefore scale better. Even though SLDs enable strong
supervision of learning algorithms, the smaller size may
lead to poor performance of deep learning methods. WLDs,
however, have the disadvantage that an instrument may be
marked positive even if the instrument is active for a very
short duration of the entire clip. This makes it challenging
to train models with WLDs.

Models for recognition in weakly labeled data may ben-
efit from inferring the specific location in time of the in-
strument to be recognized. We formulate the polyphonic
instrument recognition task as a multi-instance multi-label
(MIML) problem, where each weakly labeled example is
a collection of short-time instances, each with a contribu-
tion towards the labels assigned to the example. Toward
that end, we apply an attention mechanism to aggregate the
predictions for each short-time instance and compare this
approach to other models which include binary-relevance
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random forests, fully connected networks, and recurrent
neural networks. We hypothesize that the ability of the
attention model to weigh relevant and suppress irrelevant
predictions for each instrument leads to better classification
accuracy. We visualize the attention weights and find that
the model is able to mostly localize the instruments, thereby
enhancing the interpretability of the classifier.

The next section reviews literature in instrument recog-
nition and audio tagging or classification. Sect. 3 discusses
various datasets for instrument recognition and the chal-
lenges associated. Next, Sect. 4 formulates the problem and
describes the model. Sect. 5 specifies the various experi-
ments and the evaluation metrics to measure performance.
We report the results of the experiments and discuss them in
Sect. 6. Finally, in Sect. 7 we conclude the paper suggesting
future directions for research.

2. RELATED WORK

2.1 Musical Instrument Recognition

Instrument recognition in audio containing a single instru-
ment can refer to both recognition from isolated notes
or recognition from solo recordings of pieces. We refer
to [15,26] for a review of literature in single instrument and
monophonic instrument recognition.

Current research has focused on instrument recognition
in polyphonic and multi-instrument recordings. While tradi-
tional approaches extract features followed by classification
algorithms were previously prevalent [9, 21], deep neural
networks have dominated recent work in this field. Han
et al. [13] applied Convolutional Neural Networks (CNNs)
to the task of predominant instrument recognition on the
IRMAS dataset [5] and outperformed various feature-based
techniques. Li et al. [25] proposed to learn features from
raw audio using CNNs for instrument recognition using
the MedleyDB dataset [4]. Gururani et al. [12] compared
various neural network architectures for instrument activity
detection using two multi-track datasets containing fine-
grained instrument activity annotations: MedleyDB and
Mixing Secrets [11] . They found significant improvement
of CNNs and Convolutional Recurrent Neural Networks
(CRNNs) over fully connected networks and proposed a
method for visualizing model confusion in a multi-label
setting. Hung et al. [19] utilized the fine-grained instru-
ment activity as well as pitch annotations in the MusicNet
dataset [33] and showed the benefits of pitch-conditioning
on instrument recognition performance. In follow-up re-
search, Hung et al. [18] proposed a multi-task learning ap-
proach for instrument recognition involving the prediction
of pitch in addition to instrumentation. They released a syn-
thetic, large-scale, and strongly-labeled dataset generated
from MIDI files for evaluation and found that multi-task
learning outperforms their previous approach of using pitch
features as additional inputs.

2.2 Audio event detection, tagging and classification

The task of audio or sound event classification shares many
commonalities with instrument recognition. Both tasks aim

to identify a time-variant sound source in a mixture of mul-
tiple sound sources. A few key differences are that research
in sound event classification typically focuses on uncorre-
lated sounds such as motor noise, car horns, baby cries, or
dog barks, while musical audio is highly correlated. Addi-
tionally, music has a rich harmonic and temporal structure
usually absent in audio captured from real world acoustic
scenes.

For a historic review of work in sound event and audio
classification, we refer readers to the survey article by Stow-
ell et al. [31]. We focus on more recent literature involving
deep neural network architectures —which are now the
standard approach— as well as on methods that focus on
addressing weak labels.

Hershey et al. [16] adapted deep CNN architectures from
computer vision and found that they are effective for large-
scale audio classification. Cakir et al. [6] researched the
benefits of CRNNs for sound event detection over models
comprising of only CNNs. They found that the ability of
RNNs to capture long-term temporal context helps improve
performance against models only comprising CNNs. Ada-
vanne et al. [1] proposed to use spatial features extracted
from multi-channel audio as inputs for CRNN architectures.
They found that presenting these features as separate layers
to the model outperforms concatenation of these features at
the input stage.

Learning from weakly labeled data has also been a focus
in audio classification. Most works utilize the Multiple-
Instance Learning (MIL) framework for the task, where
each example is a labeled bag containing multiple instances
whose labels are unknown. Kumar and Raj [24] utilized
support vector machines and neural networks for solving
the MIL problem. They train bag-level classifiers capa-
ble of predicting instances and are hence also useful for
localization of sound events. Similarly, Kong et al. [22]
proposed decision-level attention to solve the MIL prob-
lem for Audio Set [10] classification. Attention is applied
to instance predictions to enable weighted aggregation for
bag-level prediction. Kong et al. [23] extended this and
propose feature-level attention where instead of applying
attention to the instance predictions, it is applied to the
hidden layers of a neural network to construct a fixed-size
embedding for the bag. Finally a fully connected network
predicts the labels for the bag using the embedding vector.
McFee et al. [27] compared various methods for aggregat-
ing or pooling instance-level predictions. They developed
an adaptive pooling operation capable of interpolating be-
tween common pooling operations such as mean-, max- or
min-pooling.

3. DATA CHALLENGE

In Sec. 2.1, we introduced research on instrument recogni-
tion in polyphonic, multi-timbral music. One theme that
emerges is that with almost every new publication, a new
dataset is released by the authors in an effort to address
issues with previous ones. While releasing new datasets is
highly encouraged and vital for research in MIR in general,
an uncoordinated effort leads to lack of uniformity in the



datasets used. In this section we briefly describe the com-
mon datasets for instrument recognition and identify the
challenges associated with them.

The IRMAS dataset [5] is a frequently used dataset for
predominant instrument recognition. It consists of a sepa-
rate training and testing set, each containing annotations for
11 predominant instruments. The dataset consists of short
excerpts —3 s for training and variable length for testing—
of weakly labeled data. One fundamental problem of the
IRMAS annotations is that the training set lacks multi-label
annotation; this can be problematic for a general use case
as instrument co-occurrence is ignored.

The MedleyDB [4] and Mixing Secrets [11] datasets
are both multi-track datasets. Due to the availability of
instrument-specific stems, strong annotations of instrument
activity are available. Thus, these two multi-track datasets
provide all the necessary detailed annotations for instru-
ment activity detection and have been used in [12, 25].
These datasets have two disadvantages when training mod-
els. First, with a few hundred distinct songs models trained
with the data are hardly generalizable. Second, the datasets
are not well balanced in terms of either musical genre or
instrumentation. However, this may not be a problem if
the datasets were larger and the distribution represented the
real-world.

Most of these problems were addressed with the release
of the OpenMIC dataset [17]. This dataset contains 20,000
10 s clips of audio from different songs across various gen-
res. Each clip is annotated with the presence or absence of
one or more of 20 instrument labels. OpenMIC presents a
larger sample size as well as a uniform distribution across in-
struments. It is, however, weakly labeled, i.e., each 10 s clip
has instrument presence or absence tags without specific
onset and offset times. Due to the nature of weak labels,
models cannot be trained using fine-grained instrument ac-
tivity annotation as done, e.g., in [12, 19]. Additionally,
not all clips are labeled with all 20 instruments, i.e., there
are missing labels. This complicates the training proce-
dure if models are to predict the presence/absence for all
20 instruments for an input audio clip. Despite their draw-
backs, creation of WLDs scales better since weak labels
are cheaper to obtain; models capable of exploiting WLDs
may thus be vital for the future development of instrument
recognition.

4. METHOD

Before describing the model details, we provide a formaliza-
tion of our approach to the instrument recognition problem
in weakly labeled data.

4.1 Pre-Processing

As mentioned in Sect. 3, the OpenMIC dataset consists of
10 s audio clips, each labeled with the presence or absence
of one or more of 20 instrument labels. For each audio
file in the dataset, the dataset creators also release features
extracted from a pre-trained CNN, known as “VGGish”
[16]. The VGGish model, based on the VGG architectures
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Figure 1: Model Architecture

for object recognition [30], is trained for audio classification.
The model produces a 128-dimensional feature vector for
0.96 s windows of audio with no overlap. The features are
ZCA-whitened and quantized to 8-bits. For a 10 s audio
file, we obtain a 10 × 128-dimensional matrix. We also
normalize the 8-bit integers to a quantized range of [0, 1].

4.2 Formulation

4.2.1 Multi-Instance Multi-Label Problem

In the most general setting, instrument recognition can
be framed as Multi-Instance Multi-Label (MIML) classi-
fication [38, 42, 43]. Under this setting, we are given a
training dataset {(X1,Y1), . . . (Xm,Ym)} where Xi is
a bag containing r instances Xi = {xi,1, . . .xi,r} and
Yi = [yi,1, . . . ,yi,L] ∈ {0, 1}L is a label vector with L
labels with yi,j = 1 if any of the instances in Xi contains
label j. In the remainder of this section, we will drop the
indices used to reference a specific data point and simply
represent a sample from the dataset as (X,Y). In our case,
a bag X refers to the 10× 128-dimensional feature matrix
representing one audio clip and each bag contains 10 in-
stances. Our problem is also a Missing Label problem since
for a sample (X,Y), not all yj are known or annotated
(compare Sect. 3).

In our experiments, we assume that all labels can be
independently predicted for each instance. Under this as-
sumption, the MIML problem decomposes into L (20 for
OpenMIC dataset) instantiations of Multi-Instance Learn-
ing (MIL) [8,41] problems, one for each label in the dataset.

Note that exploiting label-correlation in multi-label clas-
sification has shown to significantly improve the classifica-
tion performance [28, 28, 34, 40]. However, exploring ways
to incorporate label-correlation for instrument recognition
in the OpenMIC dataset has the additional challenge of miss-
ing and sparse labels [3]. Also, as is prevalent in most MIL
approaches [8], we assume independence among different
instances in a bag. Neighboring instances in a bag represent-
ing a polyphonic music snippet will, however, likely have
high correlation. Relaxing the aforementioned assumptions
about independence among labels, and instances in a bag
is left for future work since in our current work, we focus
on the impact of attention for aggregating instance-level
predictions.

4.2.2 Multi-Instance Learning

In the MIL setting, a bag label is produced through a score
function S(X). Under the assumption of independence



among instances, S(X) admits a parametrization of the
form

S(X) = µ
(
f(x)

)
(1)

where f(.) is a score function for an instance x, and µ(.) is
a permutation-invariant aggregation operation for instance
scores f(x) [37]. This parameterization induces a natural
approach to classify a bag of instances: (i) to produce scores
for each instance in the bag using an instance-level scoring
function f(x), and (ii) to aggregate the scores across differ-
ent instances in the bag using the aggregation function µ(.).
In our approach, we use a classification function to produce
instance-level scores f(x), which are essentially the proba-
bilities of a label being present for each instance. The max
and avg functions are two commonly used permutation-
invariant operations to aggregate instance-level scores to
bag-level scores. McFee et al. found that learning an aggre-
gation operation, however, significantly improved perfor-
mance over fixed predefined operations like max and avg.
We choose to represent our aggregation operation µ(.) as a
weighted sum of instance-level scores, i.e.,

S(X) =
∑
x∈X

wx f(x) (2)

where wx is a learnable weight for instance x. Our choice
of f(.) and µ(.) has the two advantages that (i) the resulting
S(.) is the probability of a label being present in the bag
and can be directly used to make a prediction and (ii) the
learned weights for each instance add interpretability to the
MIL models by encoding beliefs placed by the MIL model
on the score of each instance.

4.2.3 Attention Mechanism

The learnable aggregation operation is equivalent to at-
tention. Given a bag X = {x1, . . . ,xr} of r instances,
the instance level scoring function f(.) produces a bag
{f(x1), . . . , f(xr)} of instance scores. The bag-level
score S(X) is then computed using Eq. (2).

We further impose the restriction that instance weights
wx should sum to 1, i.e.,

∑
x∈X wx = 1. This ensures

that the aggregation operation is invariant to the size of the
bag, thus allowing the model to work with sound clips of
arbitrary length. Furthermore, this normalization leads to a
probabilistic interpretation of the instance weights which
can then be used to infer the relative contribution of each
instance towards S(X). For an instance x ∈ X, the weight
wx is thus parametrized as

wx =
σ(v>h(x))∑

x
′∈X σ(v

>h(x′))
(3)

where h(x) is a learned embedding of the instance x, v are
the learned parameters of the attention layer, and σ(.) is the
sigmoid non-linearity.

This corresponds to the attention mechanism tradition-
ally used in sequence modeling [2, 35]. For example, Raf-
fel and Ellis [29] produced attention weights in a manner
similar to Eq. (3) with the only difference being the use
of softmax operation to perform normalization of weights
across the instances.

4.3 Model Architecture

Computing bag-level scores S(.) involves computing
instance-level scores f(.) and aggregating the scores across
instances using a learned set-operator µ(.) which performs
weighted averaging with the weights computed with Eq. (3).
For our experiments, we represent the scores, both instance
level f(.) and bag-level S(.), as the probability estimate
of the instance or bag being a positive sample for a given
label. We first pass each instance x through an embedding
network of three fully connected layers to project each in-
stance to a suitable embedding space. Next, instance-level
scores f(.) are computed from the output of embedding
network with another fully connected layer. Similarly, at-
tention weights are computed by normalizing the outputs
of a fully connected layer, the weights of which correspond
to parameters v in Eq. (3). Note that the output dimen-
sion of these two parallel fully connected layers is equal
to the number of labels, i.e., 20. Figure 1 illustrates the
model architecture. In the embedding layer, the number
of hidden units is 128. We also found that adding a skip
connection from the input to the final embedding stabilized
the training across different random seeds. We use batch
normalization, ReLU activations, and a dropout of 0.6 af-
ter each embedding layer. The model has 55336 learnable
parameters.

4.4 Loss Function and Training Procedure

Our model performs a multi-label classification over 20
labels given an input. However, as we point out earlier,
the OpenMIC dataset does not contain all labels for each
instance. This leads to missing ground truth labels for
training with loss functions such as binary cross-entropy
(BCE). To account for this, we utilize the partial binary
cross-entropy (BCEp) loss function introduced for handling
missing labels [7]:

BCEp(y, q) =
g(py)

L

∑
l∈Lo

yl log q + (1− yl) log(1− q)

g(py) = αpγy + β

(4)

Here g(py) is a normalization function, py is the proportion
of observed labels for the current data point, L is the total
number of labels, Lo is the list of observed labels for the in-
put data, yl ∈ {0, 1} is the ground truth (absent or present)
for label l, and q is the model’s probability output for the
label l being present in the input data X. The hyperparam-
eters in Eq. (4) are α, β, and γ. Note that in the absence
of g(py), data points with few observed labels will have a
lower contribution in loss computation than those with sev-
eral observed labels. This is undesirable behavior and the
inclusion of a normalization factor, dependent on the pro-
portion of observed labels, is important. Therefore, we set
α, β, and γ to 1, 0, and −1, respectively. This normalizes
the loss for a data point by the number of observed labels
and is equivalent to only computing the loss for observed
labels.



Finally, the Adam optimization algorithm [20] is used
for training with a batch size of 128 and learning rate of
5e−4 for 250 epochs. We checkpoint the model at the epoch
with the best validation loss.

5. EVALUATION

In this section we describe the experimental setup including
the dataset, the baseline methods, and evaluation metrics.

5.1 Dataset

We use the OpenMIC dataset for the experiments in this
paper. In addition to the audio and label annotations, the
data repository contains pre-computed features extracted
from the publicly available VGG-ish model for audio clas-
sification. We utilize those features in our experiments to
strictly focus on handling the weak labels and avoid fur-
ther complexity by having to learn features from the raw
data or spectrogram representations. Pilot experiments for
feature learning showed that CNN architectures based on
state-of-the-art instrument recognition models were unable
to outperform the baseline model of 20 instrument-wise
random forest classifiers trained using the pre-computed
features. For reproducibility and comparability, we utilize
the training and testing split released with the dataset. Addi-
tionally, we randomly sample and separate 15% data from
the training split to create a validation set.

5.2 Experiments

We compare the attention model (ATT) with the following
models:

1. RF_BR: This model is the baseline random forest
model in [17]. A binary-relevance transformation is
applied to convert the multi-label classification task
into 20 independent binary classification tasks [39].

2. FC: A 3-layer fully connected network trained to
predict the presence or absence of all instruments
for a given data instance. Here, the input features
of dimension 10 × 128 are flattened into a single
feature vector for classification. Dropout is used for
regularization and the Leaky ReLU (0.01 slope) is
used. The model has 986772 parameters.

3. FC_T: This model serves as an ablation study to ob-
serve the benefits of the attention mechanism. FC_T
uses the same embedding layer as ATT. However,
the aggregation of predictions in time is simply per-
formed with average-pooling. The model has 52116
parameters.

4. RNN: A 3-layer bi-directional gated recurrent unit
model with 64 hidden units per direction. The model
processes the input features and produces a single
embedding which is then fed to a classifier for all 20
instruments. The model has 226068 parameters.

Source code for the Pytorch implementation of the neu-
ral network models is publicly available. 1 For each model,
we train 10 randomly initialized instances with different ran-
dom seeds and compute the classification metrics for each.

1 https://github.com/SiddGururani/AttentionMIC
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Figure 2: Precision, recall, and F1-score for different mod-
els

This gives us a distribution of each model’s performance.
One benefit of ATT over the FC and RNN models is its
small size. Both the ATT and FC_T utilize weight-sharing
for embedding instances from the bags. This leads to sig-
nificantly fewer learnable parameters compared to FC and
RNN while performing better than both of these models.

5.3 Metrics

While the total number of clips per instrument label in the
OpenMIC dataset is balanced, the number of positive and
negative examples is not well balanced for each instrument
label. Therefore, we separately compute the precision, re-
call and F1-score for the positive and negative class. There-
after, we compute the macro-average of these metrics to
report the final instrument-wise metrics, meaning that posi-
tive and negative examples are weighted equally. We call
these the instrument-wise precision, recall, and F1-score.
Additionally, to measure the overall performance of a classi-
fier, we macro-average the instrument-wise precision, recall
and F1-score. We use a fixed threshold of 0.5 to convert the
outputs into binary predictions for computing the classifica-
tion metrics.

6. RESULTS AND DISCUSSION

Figure 2 shows the overall performance of ATT compared
to the baseline models with box plots for the macro-
averaged precision, recall, and F1-score. Additionally, we
compare the instrument-wise F1-score for each model in
Figure 3. Note that we only show the mean instrument-wise
F1-score across 10 seeds in Figure 3 for improved visibility.

We observe that while the attention mechanism does
not lead to an improvement in precision compared to the
other models, the recall is improved significantly and con-
sequently the F1-score is also improved. We also observe
that ATT performs better than RF_BR in almost every in-
strument label, especially for the labels with high positive-
negative class imbalance, such as clarinet, flute, and organ.
This ties to the observation made about improved recall,
as ATT is able to overcome this imbalance possibly due
to the ability to localize the relevant instances for the mi-
nority class. In the case of an imbalanced instrument label,
the recall for the minority class greatly suffers for RF_BR.
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Figure 3: Instrument-wise F1-scores

While this problem is easily mitigated in standard multi-
class problems by using balanced sampling, it is difficult to
address with multi-label data. Comparing to FC_T, we can
attribute the better performance of ATT to better aggrega-
tion of instance-level predictions. FC_T is essentially the
same model as ATT using mean pooling instead of atten-
tion, and ATT outperforms it for most instrument classes,
especially the generally more difficult to classify instru-
ments. The RNN model also beats the RF_BR baseline. In
polyphonic music, the instances in a bag are structured and
highly correlated and hence using a recurrent network to
model the temporal structure in the instance sequence leads
to a powerful embedding of the bag, incorporating useful
information from each instance.

We visualize the attention weights for two example clips
in Figure 4. The left clip is from the test set and starts
with the vocals fading out until 2 seconds. From 5 second
onwards, the vocals grow in loudness until the end of the
clip. The violin plays throughout but is the pre-dominant
instrument only for a few seconds between 3 and 6 seconds,
as visualized in the corresponding attention weights as well.
The right clip is from the training set and contains vocals
starting from 6 second onwards. The attention weights for
vocals directly coincides with that. It is interesting to note
that the annotation for vocals was missing for this clip.

7. CONCLUSION

Weakly labeled datasets for instrument recognition in poly-
phonic music are easier to develop or annotate than strongly
labeled datasets. This calls for a paradigm shift in the ap-
proaches towards supervised learning approaches better
suited for weakly labeled data. We formulate the instru-
ment recognition task as a MIML problem and introduce an
attention-based model, evaluated on the OpenMIC dataset
for 20 instruments, and compared against several other base-
line models including: (i) binary-relevance random forest,
(ii) fully connected networks, and (iii) recurrent neural net-
works, We find that the attention mechanism improves the
overall performance as well as the instrument-wise perfor-
mance of the model while keeping the model light-weight.
The example visualizations show that the model indeed is

voice voice
violin

voice

voice
violin

voice

Attention Weights Attention Weights

Figure 4: Attention Weight Visualization: The horizon-
tal bars above the mel-spectrogram represent the attention
weights across the instances of the clip for the respective
instruments.

able to attend to relevant sections on a clip.
Some of the assumptions made in the formulation of the

MIML problem are strong and may be worth relaxing due
to the nature of musical data. We plan to further explore the
task of instance-level embeddings using recurrent networks
or using self-attention mechanisms as used in Transformer
networks [35]. Additionally, we plan to address the prob-
lem of missing labels or label sparsity in the OpenMIC
dataset using the curriculum learning-based methods pro-
posed in [7]. Our concern is that the dataset is not large
enough with enough labels for strictly supervised learning
approaches to significantly improve the results much further
than what we achieve with the attention mechanism, and
we therefore plan to tackle the problem from other angles,
such as handling missing labels or data augmentation.
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