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Abstract

Language models can be manipulated by ad-001
versarial attacks, which introduce subtle per-002
turbations to input data. While recent attack003
methods can achieve a relatively high attack004
success rate (ASR), we’ve observed that the005
generated adversarial examples have a different006
data distribution compared with the original007
examples. Specifically, these adversarial ex-008
amples exhibit reduced confidence levels and009
greater divergence from the training data dis-010
tribution. Consequently, they are easy to de-011
tect using straightforward detection methods,012
diminishing the efficacy of such attacks. To013
address this issue, we propose a Distribution-014
Aware Adversarial Attack (DA3) method. DA3015
considers the distribution shifts of adversarial016
examples to improve attacks’ effectiveness un-017
der detection methods. We further design a018
novel evaluation metric, the Non-detectable At-019
tack Success Rate (NASR), which integrates020
both ASR and detectability for the attack task.021
We conduct experiments on four widely used022
datasets to validate the attack effectiveness and023
transferability of adversarial examples gener-024
ated by DA3 against both the white-box BERT-025
BASE and ROBERTA-BASE models and the026
black-box LLAMA2-7B model1.027

1 Introduction028

Language models (LMs), despite their remarkable029

accuracy and human-like capabilities in many ap-030

plications, face vulnerability to adversarial attacks031

and exhibit high sensitivity to subtle input perturba-032

tions, which can potentially cause failures (Jia and033

Liang, 2017; Belinkov and Bisk, 2018; Wallace034

et al., 2019). Recently, an increasing number of035

adversarial attacks have been proposed, employing036

techniques such as insertion, deletion, swapping,037

and substitution at character, word, or sentence lev-038

els (Ren et al., 2019; Jin et al., 2020; Garg and039

1Our codes are available at https://anonymous.4open.
science/r/DALA-A16D/.
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Figure 1: Toy examples of two adversarial sentences
in a sentiment analysis task. Although both sentences
successfully attack the victim model, the top one is
flagged by the detector, while the bottom one is not
detected. In our task, we aim to generate adversarial
examples that are hard to detect.

Ramakrishnan, 2020; Ribeiro et al., 2020). These 040

thoroughly crafted adversarial examples are imper- 041

ceptible to humans yet can deceive victim models, 042

thereby raising concerns regarding the robustness 043

and security of LMs. For example, chatbots may 044

misunderstand user intent or sentiment, resulting 045

in inappropriate responses (Perez et al., 2022). 046

However, while existing adversarial attacks can 047

achieve a relatively high attack success rate (Gao 048

et al., 2018; Belinkov and Bisk, 2018; Li et al., 049

2020), our experimental observations detailed in §3 050

reveal notable distribution shifts between adversar- 051

ial examples and original examples, rendering high 052

detectability of adversarial examples. On one hand, 053

adversarial examples exhibit different confidence 054

levels compared to their original counterparts. Typ- 055

ically, the Maximum Softmax Probability (MSP), 056

a metric indicating prediction confidence, is higher 057

for original examples than for adversarial exam- 058

ples. On the other hand, there is a disparity in the 059

distance to the training data distribution between 060

adversarial and original examples. Specifically, 061

the Mahalanobis Distance (MD) to training data 062

distribution for original examples is shorter than 063

that for adversarial examples. Based on these two 064

observations, we conclude that adversarial exam- 065

ples generated by previous attack methods, such 066

as BERT-Attack (Li et al., 2020), can be easily 067

detected through score-based detection techniques 068

like MSP detection (Hendrycks and Gimpel, 2017) 069
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and embedding-based detection methods like MD070

detection (Lee et al., 2018). Thus, the efficacy of071

previous attack methods is diminished when con-072

sidering Out-of-distribution (OOD) detection, as073

shown in Figure 1.074

To address the aforementioned problems, we075

propose a Distribution-Aware Adversarial Attack076

(DA3) method with Data Alignment Loss (DAL),077

which is a novel attack method that can gener-078

ate hard-to-detect adversarial examples. The DA3079

framework comprises two phases. Firstly, DA3 fine-080

tunes a LoRA-based LM by combining the Masked081

Language Modeling task and the downstream clas-082

sification task using DAL. This fine-tuning phase083

enables the LoRA-based LM to generate adversar-084

ial examples closely resembling original examples085

in terms of MSP and MD. Subsequently, the LoRA-086

based LM is used during inference to generate ad-087

versarial examples.088

To measure the detectability of adversarial ex-089

amples, we propose a new evaluation metric: Non-090

detectable Attack Success Rate (NASR), which091

combines Attack Success Rate (ASR) with OOD092

detection. We conduct experiments on four datasets093

to assess whether DA3 can effectively attack white-094

box LMs using ASR and NASR. Furthermore,095

given the widespread use of Large Language Mod-096

els (LLMs) and their costly fine-tuning process,097

coupled with the limited availability of open-source098

models, we also evaluate the attack transferability099

of adversarial examples on black-box LLMs. The100

results show that DA3 achieves competitive attack101

performance on the white-box BERT-BASE (De-102

vlin et al., 2019) and ROBERTA-BASE (Liu et al.,103

2019) models and superior transferability on the104

black-box LLAMA2-7B (Touvron et al., 2023).105

Our work has the following contributions:106

• We analyze the distribution of adversarial and107

original examples, revealing the existence of dis-108

tribution shifts in terms of MSP and MD.109

• We propose a novel Distribution-Aware Adver-110

sarial Attack method with Data Alignment Loss,111

which is capable of generating adversarial exam-112

ples that effectively undermine victim models113

while remaining difficult to detect.114

• We design a new evaluation metric – NASR – for115

the attack task, which considers the detectability116

of adversarial examples.117

• We conduct comprehensive experiments to com-118

pare DA3 with baselines on four datasets, demon-119

strating that DA3 achieves competitive attack120

capabilities and better transferability. 121

2 Related Work 122

2.1 Adversarial Attacks in NLP 123

Adversarial attacks have been extensively studied 124

to explore the robustness of LMs. Current methods 125

fall into character-level, word-level, sentence-level, 126

and multi-level (Goyal et al., 2023). Character- 127

level methods manipulate texts by incorporating 128

typos or errors into words, such as deleting, re- 129

peating, replacing, swapping, flipping, inserting, 130

and allowing variations in characters for specific 131

words (Gao et al., 2018; Belinkov and Bisk, 2018). 132

Word-level attacks alter entire words rather than 133

individual characters within words. Common ma- 134

nipulation includes addition, deletion, and substi- 135

tution with synonyms to mislead language models 136

while the manipulated words are selected based on 137

gradients or importance scores (Ren et al., 2019; 138

Jin et al., 2020; Li et al., 2020; Garg and Ramakr- 139

ishnan, 2020). Sentence-level attacks typically in- 140

volve inserting or rewriting sentences within a text, 141

all while preserving the original meaning (Zhao 142

et al., 2018; Iyyer et al., 2018; Ribeiro et al., 2020). 143

Multi-level attacks combine multiple perturbation 144

techniques to achieve both imperceptibility and a 145

high success rate in the attack (Song et al., 2021). 146

2.2 Out-of-distribution Detection in NLP 147

Out-of-distribution (OOD) detection methods have 148

been widely explored in NLP, like machine transla- 149

tion (Arora et al., 2021; Ren et al., 2022; Adila and 150

Kang, 2022). OOD detection methods in NLP can 151

be roughly categorized into two types: (1) score- 152

based methods and (2) embedding-based methods. 153

Score-based methods use maximum softmax prob- 154

ability (Hendrycks and Gimpel, 2017), perplexity 155

score (Arora et al., 2021), beam score (Wang et al., 156

2019b), sequence probability (Wang et al., 2019b), 157

BLEU variance (Xiao et al., 2020), or energy-based 158

scores (Liu et al., 2020). Embedding-based meth- 159

ods measure the distance to in-distribution data 160

in the embedding space for OOD detection. For 161

example, Lee et al. (2018) uses Mahalanobis dis- 162

tance; Ren et al. (2021) proposes to use relative 163

Mahalanobis distance; Sun et al. (2022) proposes a 164

nearest-neighbor-based OOD detection method. 165

We select the simple, representative, and widely- 166

used OOD detection methods of these two cate- 167

gories: MSP detection (Hendrycks and Gimpel, 168

2017) and MD detection (Lee et al., 2018), respec- 169
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(a) MSP on SST-2 dataset.
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(b) MSP on MRPC dataset.

Figure 2: Visualization of the distribution shift between
original data and adversarial data generated by BERT-
Attack when attacking BERT-BASE regarding MSP.
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(a) MD on SST-2 dataset.
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(b) MD on MRPC dataset.

Figure 3: Visualization of the distribution shift between
original data and adversarial data generated by BERT-
Attack when attacking BERT-BASE regarding MD.

tively. This selection serves to highlight a signif-170

icant issue within the community – the ability to171

detect adversarial examples using such basic and172

commonly employed OOD detection methods un-173

derscores the criticality of detectability. These two174

methods are then incorporated with the ASR to as-175

sess the robustness and detectability of adversarial176

examples generated by different attack models.177

3 Understanding Distribution Shifts of178

Adversarial Examples179

This section showcases distribution shifts between180

adversarial and original examples, suggesting that181

the original examples are in-distribution examples182

while adversarial examples are Out-of-Distribution183

(OOD) examples. Due to space constraints, we fo-184

cus our analysis on adversarial examples generated185

by BERT-Attack on SST-2 (Socher et al., 2013) and186

MRPC (Dolan and Brockett, 2005); the complete187

results are available in Appendix G.188

Maximum Softmax Probability (MSP). Max-189

imum Softmax Probability (MSP) is a metric190

to evaluate prediction confidence, rendering it a191

widely used score-based method for OOD detec-192

tion, where lower confidence values often signify193

OOD examples. To assess MSP, we visualize the194

MSP distribution of adversarial examples gener-195

ated by BERT-Attack and original examples from196

SST-2 and MRPC datasets in Figure 2. Our obser- 197

vation reveals that in both datasets, the majority 198

of original examples have an MSP exceeding 0.9, 199

indicating a significantly higher MSP compared 200

to adversarial examples overall. This distribution 201

shift is particularly notable in the MRPC dataset, 202

whereby most adversarial examples exhibit MSP 203

below 0.6, highlighting a clear distinction from the 204

original examples. 205

Mahalanobis Distance (MD). Mahalanobis Dis- 206

tance (MD) is a metric used to measure the distance 207

between a data point and a distribution, making it 208

a highly suitable and widespread method for OOD 209

detection. A high MD between an example and the 210

in-distribution data (training data) indicates that the 211

example is probably an OOD instance. To assess 212

the MD difference between adversarial and origi- 213

nal examples, we visualize the MD distribution of 214

adversarial examples generated by BERT-Attack 215

and original examples from the SST-2 and MRPC 216

datasets in Figure 3. From Figure 3, we can ob- 217

serve that distribution shifts exist between original 218

and adversarial examples in both datasets. This dis- 219

similarity is more noticeable on the SST-2 dataset 220

and not as conspicuous on the MRPC dataset. 221

Summary. These observations regarding MSP 222

and MD highlight clear distinctions between origi- 223

nal and adversarial examples generated by one of 224

the state-of-the-art methods, BERT-Attack. Com- 225

pared to the original examples, the adversarial ex- 226

amples exhibit a more pronounced OOD nature 227

in either MSP or MD, meaning that adversarial 228

examples are easy to detect and the practical effec- 229

tiveness of previous attack methods is diminished. 230

4 Methodology 231

In this section, we define the attack task (§4.1), 232

propose a novel attack method called Distribution- 233

Aware Adversarial Attack (§4.2), and introduce the 234

new Data Alignment Loss (§4.3). 235

4.1 Problem Formulation 236

Given an original sentence xorig ∈ X and its corre- 237

sponding original label yorig ∈ Y , our objective is 238

to generate an adversarial sentence xadv such that 239

the prediction of the victim model corresponds to 240

yadv ∈ Y and yadv ̸= yorig. 241

4.2 Distribution-Aware Adversarial Attack 242

Motivated by the observed distribution shifts of 243

adversarial examples, we propose a Distribution- 244
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Figure 4: The model architecture of DA3 comprises two phases: fine-tuning and inference. During fine-tuning, a
LoRA-based PLM is fine-tuned to develop the ability to generate adversarial examples resembling original examples
in terms of MSP and MD. During inference, the LoRA-based PLM is used to generate adversarial examples.

Aware Adversarial Attack (DA3) method. The245

key idea of DA3 is to consider the distribution of246

the generated adversarial examples and attempt to247

achieve a closer alignment between distributions248

of adversarial and original examples in terms of249

MSP and MD. DA3 is composed of two phases:250

fine-tuning and inference, as shown in Figure 4.251

Fine-tuning Phase. The fine-tuning phase aims252

to fine-tune a LoRA-based Pre-trained Language253

Model (PLM) to make it capable of generating ad-254

versarial examples through the Masked Language255

Modeling (MLM) task. We employ LoRA-based256

PLM because it is efficient to finetune and the257

frozen PLM can serve in both MLM and down-258

stream classification tasks. First, the original sen-259

tence xorig undergoes the MLM task through a260

LoRA-based PLM to generate the adversarial em-261

bedding Xadv, during which the parameters of the262

PLM are frozen, and the parameters of LORA (Hu263

et al., 2021) are tunable. Then, the generated adver-264

sarial embedding Xadv is fed into the frozen PLM265

to perform the corresponding downstream classi-266

fication task, producing logits of original ground267

truth label yorig and adversarial label yadv. The268

loss is computed based on Xadv, P (yorig|Xadv, θ),269

and P (yadv|Xadv, θ) to update the parameters of270

LORA, where θ is the model parameters. Details271

are discussed in §4.3.272

Inference Phase. The inference phase aims to273

generate adversarial examples with minimal per-274

turbation. The original sentence xorig is first tok-275

enized, and a ranked token list is obtained through276

token importance (Li et al., 2020). Then, a token is277

selected from the token list to be masked. Subse-278

quently, the MLM task of the frozen LoRA-based279

PLM is employed to generate a candidate list for280

the masked token. A word is then chosen from the281

list to replace the masked token until a successful282

attack on the victim model is achieved or the candi-283

date list is exhausted. If the attack is unsuccessful, 284

another token is chosen from the token list until 285

a successful attack is achieved or the termination 286

condition is met. The termination condition is set 287

as the percentage of the tokens. 288

4.3 Model Learning 289

The Data Alignment Loss, denoted as LDAL, is 290

used to minimize the discrepancy between distribu- 291

tions of adversarial examples and original examples 292

in terms of MSP and MD. LDAL is composed of 293

two losses: LMSP and LMD. 294

LMSP aims to increase the difference between 295

P (yadv|Xadv, θ) and P (yorig|Xadv, θ). LMSP is 296

formulated as 297

LMSP =
∑

Xadv

exp(P (yorig |Xadv ,θ))
exp(P (yorig |Xadv ,θ))+exp(P (yadv |Xadv ,θ))

. 298

According to our observation experiments in Fig- 299

ure 2, original examples have higher MSP than ad- 300

versarial examples. Minimizing LMSP increases 301

MSP of adversarial examples. Thus, minimizing 302

LMSP makes generated adversarial examples more 303

similar to original examples concerning MSP. 304

LMD aims to reduce MD between adversarial 305

input and the training data distribution. LMD is 306

formulated as: 307

LMD =
∑

Xadv

log
√

(Xadv − µ)
∑−1(Xadv − µ)⊺, 308

where µ and
∑−1 are the mean and covariance em- 309

bedding of the in-distribution (training) data respec- 310

tively. MD is a robust metric for OOD detection 311

and adversarial data detection. In general, adver- 312

sarial data has higher MD than original data, as 313

shown in Figure 3. Therefore, minimizing LMD 314

encourages the generated adversarial examples to 315

resemble original examples in terms of MD. LMD 316

is constrained to the logarithmic space for consis- 317

tency with the scale of LMSP . 318
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Thus, Data Alignment Loss is represented as319

LDAL = LMSP + LMD, (1)320

and DA3 is trained by optimizing LDAL.321

5 Automatic Evaluation Metrics322

Given the observations of distribution shifts ana-323

lyzed in Section 3, we adopt a widely-used metric –324

Attack Success Rate (ASR) – and design a new met-325

ric – Non-detectable Attack Success Rate (NASR)326

– to evaluate attack performance. We also report327

the Percentage of Perturbed Words (%Words) and328

Semantic Similarity (SS) to evaluate the impact of329

text perturbation. Detailed explanations of ASR,330

%Words, and SS are shown in Appendix A.331

Non-detectable Attack Success Rate (NASR).332

Considering the detectability of adversarial exam-333

ples generated by attack methods, we define a new334

evaluation metric – Non-Detectable Attack Success335

Rate (NASR). This metric considers both ASR and336

OOD detection. Specifically, NASR posits that337

a successful adversarial example is characterized338

by its ability to deceive the victim model while339

simultaneously evading OOD detection methods.340

We utilize two established and commonly em-341

ployed OOD detection techniques – MSP detec-342

tion (Hendrycks and Gimpel, 2017) and MD de-343

tection (Lee et al., 2018). MSP detection relies on344

logits and utilizes a probability distribution-based345

approach, while MD detection is a distance-based346

approach. For MSP detection, we use Negative347

MSPs, calculated as −max
y∈Y

P (y | X, θ). For MD348

detection, we compute
√

(X − µ)
∑−1(X − µ)⊺.349

NASRs under MSP detection and MD detection350

are denoted as NASRMSP and NASRMD.351

Thus, NASR is formulated as:352

NASRk = 1− |{xorig |yadv=yorig ,xorig∈X}|+|Dk|
|X | ,353

where Dk denotes the set of examples that success-354

fully attack the victim model but are detected by355

the detection method k ∈ {MSP,MD}.356

In this context, adversarial examples are consid-357

ered as OOD examples (positive), while original358

examples are considered as in-distribution exam-359

ples (negative). To avoid misdetecting original ex-360

amples as adversarial examples from a defender’s361

view, we use the negative MSP and MD value at362

99% False Positive Rate of the training data as363

thresholds. Values exceeding these thresholds are364

considered positive, while those falling below are 365

classified as negative. 366

6 Experimental Settings 367

Attack Baselines. We use two character-level 368

attack methods, DeepWordBug (Gao et al., 2018) 369

and TextBugger (Jinfeng et al., 2019), and three 370

word-level attack methods, TextFooler (Jin et al., 371

2020), BERT-Attack (Li et al., 2020) and A2T (Yoo 372

and Qi, 2021). Detailed descriptions are listed in 373

Appendix B.1. 374

Datasets. We evaluate DA3 on four different 375

types of tasks: sentiment analysis task – SST- 376

2 (Socher et al., 2013), grammar correctness task 377

– CoLA (Warstadt et al., 2019), textual entailment 378

task – RTE (Wang et al., 2019a), and textual sim- 379

ilarity task – MRPC (Dolan and Brockett, 2005). 380

Detailed descriptions and statistics of each dataset 381

are shown in Appendix B.2. 382

Implementation Details The backbone mod- 383

els of DA3 are BERT-BASE or ROBERTA-BASE 384

models fine-tuned on corresponding downstream 385

datasets. We use BERT-BASE and ROBERTA- 386

BASE as white-box victim models and LLAMA2- 387

7B as the black-box victim model. More detailed 388

information about hyperparameters and settings is 389

in Appendix B.3. The prompts used for the black- 390

box LLAMA2-7B are listed in Appendix B.4 391

7 Experimental Results and Analysis 392

In this section, we conduct experiments and analy- 393

sis to answer five research questions: 394

• RQ1 Will DA3 effectively attack the white-box 395

language models? 396

• RQ2 Are generated adversarial examples trans- 397

ferable to the black-box LLAMA2-7B model? 398

• RQ3 Will human judges find the quality of the 399

generated adversarial examples reasonable? 400

• RQ4 How do LDAL components impact DA3? 401

• RQ5 Does LDAL outperform other attack losses? 402

7.1 Automatic Evaluation Results 403

We use the adversarial examples generated by DA3 404

with BERT-BASE or ROBERTA-BASE as the back- 405

bone to attack the white-box BERT-BASE and 406

ROBERTA-BASE models, respectively. White-box 407

models have been fine-tuned on the corresponding 408

datasets and are accessible during our fine-tuning 409

phase. Besides, considering that LLMs are widely 410

used, expensive to fine-tune, and often not open 411
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Table 1: Evaluation results on the white-box victim models. BERT-BASE and ROBERTA-BASE models are finetuned
on the corresponding dataset. ACC represents model accuracy. We highlight the best and the second-best results.

Dataset Model BERT-BASE ROBERTA-BASE
ACC↓ ASR↑ NASRMSP ↑ NASRMD ↑ ACC↓ ASR↑ NASRMSP ↑ NASRMD ↑

SST-2

Original 92.43 94.04
TextFooler 4.47 95.16 53.47 91.94 4.7 95.0 73.29 92.93
TextBugger 29.01 68.61 37.34 66.87 36.70 60.98 44.02 60.37

DeepWordBug 16.74 81.89 57.57 80.77 16.97 81.95 68.17 81.10
BERT-Attack 38.42 58.44 33.62 54.96 2.06 97.80 74.02 94.76

A2T 55.16 40.32 20.72 11.79 59.63 36.59 26.10 35.73
DA3 (ours) 21.10 77.17 54.22 75.06 4.82 94.88 75.98 94.27

CoLA

Original 81.21 85.04
TextFooler 1.92 97.64 95.63 94.92 5.56 93.46 90.98 89.18
TextBugger 12.18 85.01 81.23 77.69 15.63 81.62 75.87 73.28

DeepWordBug 7.09 91.26 88.78 86.19 11.02 87.03 84.10 74.18
BERT-Attack 12.46 84.65 79.22 79.93 2.21 97.41 91.43 90.98

A2T 20.44 74.82 71.63 48.82 19.75 76.78 72.72 71.82
DA3 (ours) 2.78 96.58 93.74 93.27 6.33 92.56 87.60 85.91

RTE

Original 72.56 78.34
TextFooler 1.44 98.01 68.66 79.60 5.05 93.55 67.74 87.56
TextBugger 2.53 96.52 68.66 83.08 9.75 87.56 70.05 81.57

DeepWordBug 4.33 94.03 79.60 88.06 16.25 79.26 69.59 76.04
BERT-Attack 3.61 95.02 67.16 72.64 1.44 98.16 70.51 90.32

A2T 8.66 88.06 62.69 25.87 16.97 78.34 67.28 77.88
DA3 (ours) 1.08 98.51 72.14 86.07 7.22 90.78 71.43 88.94

MRPC

Original 87.75 91.18
TextFooler 2.94 96.65 58.38 91.62 4.90 94.62 35.48 94.62
TextBugger 7.35 91.60 62.85 87.15 9.80 89.25 34.68 89.25

DeepWordBug 10.05 88.55 72.35 86.31 12.01 86.83 47.31 86.83
BERT-Attack 9.56 89.11 55.31 61.39 2.45 97.31 34.95 97.04

A2T 30.88 64.80 46.65 26.54 49.51 45.70 21.51 45.43
DA3 (ours) 0.74 99.16 74.86 93.29 0.49 99.46 50.27 99.46

source, we evaluate the attack transferability of the412

adversarial examples, which are generated by DA3413

with BERT-BASE as the backbone, on the black-414

box LLAMA2-7B model, which is not available415

during DA3 fine-tuning. The experimental results416

on ACC, ASR, and NASR are shown in Table 1.417

Attack Performance (RQ1). When attacking418

white-box models, DA3 obtains the best or second-419

to-best performance regarding NASR on most420

datasets. Aside from DA3, some baseline meth-421

ods perform well on one of the victim models.422

For example, TextFooler works well on BERT-423

BASE, while its NASRMSP decreases drastically424

compared to ASR on SST-2, RTE, and MRPC. Sim-425

ilarly, BERT-Attack shows good performance on426

ROBERTA-BASE, while its NASRMSP is notably427

lower than its ASR, especially on SST-2, RTE, and428

MRPC. This phenomenon indicates these adver-429

sarial examples are relatively easy to detect using430

MSP detection. Considering the results of both vic-431

tim models, DA3 consistently produces reasonable432

and favorable outcomes when attacking white-box433

models, which proves the effectiveness of DA3. 434

We also report %Words and SS in Appendix C. 435

DA3 achieves best or second-to-best %Words 436

and comparable SS compared to baselines across 437

datasets on both victim models. 438

Transferability to LLMs (RQ2). 2 When at- 439

tacking the black-box LLAMA2-7B model, DA3 440

performs the best on SST-2, RTE, and MRPC, 441

outperforming baselines in all evaluation metrics. 442

On CoLA, DA3 achieves second-to-best results on 443

NASR. Further analysis and visualization of attack 444

performance on LLAMA2-7B across five different 445

prompts are displayed in Appendix F. DA3 consis- 446

tently surpasses all baselines across five prompts. 447

The experimental results underscore the substan- 448

tial advantage of our model when generalizing 449

generated adversarial examples to the black-box 450

LLAMA2-7B model, compared to baselines. 451

2We also present results on MISTRAL-7B and the analysis
on why the generated samples can be transferred to another
LLMs in Appendix C. The results show DA3 achieves the best
performance in most cases when attacking MISTRAL-7B.
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Table 2: Evaluation results on the black-box LLAMA2-
7B model. Results of LLAMA2-7B are the average of
zero-shot prompting with five different prompts.

Dataset Model LLAMA2-7B
ACC↓ ASR↑ NASRMSP ↑ NASRMD ↑

SST-2

Original 89.91
TextFooler 68.97 23.81 22.97 23.58
TextBugger 84.50 6.89 6.51 6.69

DeepWordBug 81.97 9.49 9.01 9.39
BERT-Attack 66.42 26.61 25.81 26.38

A2T 81.33 10.63 10.14 10.15
DA3 (ours) 64.19 29.42 28.68 29.14

CoLA

Original 70.97
TextFooler 31.95 57.65 52.13 57.09
TextBugger 39.41 48.22 42.49 47.22

DeepWordBug 31.93 61.23 56.67 60.58
BERT-Attack 39.98 46.07 40.97 45.68

A2T 40.38 45.09 39.81 37.75
DA3 (ours) 33.06 58.51 53.39 57.69

RTE

Original 57.76
TextFooler 53.29 12.62 10.54 12.11
TextBugger 56.39 5.62 3.77 5.10

DeepWordBug 51.05 12.78 9.76 12.39
BERT-Attack 44.33 24.96 20.30 24.05

A2T 48.52 21.40 17.45 19.72
DA3 (ours) 42.81 28.95 24.26 26.87

MRPC

Original 67.94
TextFooler 61.96 14.32 9.69 7.74
TextBugger 65.25 8.60 6.71 7.21

DeepWordBug 63.97 9.59 6.77 8.87
BERT-Attack 60.64 15.47 10.99 14.82

A2T 60.19 15.40 11.06 14.17
DA3 (ours) 59.85 17.92 12.22 16.84

Table 3: Grammar correctness, prediction accuracy and
semantic preservation of original examples (denoted as
Orig.) and adversarial examples generated by DA3.

Dataset Grammar Accuracy Semantic
DA3 Orig. DA3 Orig. DA3 TextFooler

SST-2 4.12 4.37 0.68 0.74 0.71 0.66
MRPC 4.62 4.86 0.68 0.76 0.88 0.84

7.2 Human Evaluation (RQ3)452

Given that our goal is to generate high-quality ad-453

versarial examples that preserve the original se-454

mantics and remain imperceptible to humans, we455

perform human evaluations to assess the adversar-456

ial examples generated by DA3 using BERT-BASE457

as the backbone. These evaluations focus on gram-458

mar, prediction accuracy, and semantic preserva-459

tion on SST-2 and MRPC datasets. For this pur-460

pose, three human judges evaluate 50 randomly se-461

lected original-adversarial pairs from each dataset.462

Detailed annotation guidelines are in Appendix D.463

First, human raters are tasked with evaluating464

the grammar correctness and making predictions of465

a shuffled mix of the sampled original and adversar-466

ial examples. Grammar correctness is scored from467

1-5 (Li et al., 2020; Jin et al., 2020). Then, human468

judges assess the semantic preservation of adversar-469

ial examples, determining whether they maintain470

the original semantics. We follow Jin et al. (2020)471

and ask human judges to classify adversarial exam-472

Table 4: Ablation study on BERT-BASE regarding MSP.

Dataset Model ACC↓ ASR↑ NASRMSP ↑ DRMSP ↓

SST-2
DA3 21.10 77.17 54.22 29.74

(w/o MSP) 1.61 98.26 47.27 51.89

CoLA
DA3 2.78 96.58 93.74 2.93

(w/o MSP) 2.11 97.40 93.15 4.36

RTE
DA3 1.08 98.51 72.14 26.77

(w/o MSP) 1.08 98.51 70.65 28.28

MRPC
DA3 0.74 99.16 74.86 24.51

(w/o MSP) 0.74 99.16 73.18 26.20

Table 5: Ablation study on BERT-BASE regarding MD.

Dataset Model ACC↓ ASR↑ NASRMD↑ DRMD↓

SST-2
DA3 21.10 77.17 75.06 2.73

(w/o MD) 15.60 83.13 80.77 2.84

CoLA
DA3 2.78 96.58 93.27 3.42

(w/o MD) 2.30 97.17 90.55 6.80

RTE
DA3 1.08 98.51 86.07 12.63

(w/o MD) 1.08 98.51 85.57 13.13

MRPC
DA3 0.74 99.16 93.29 5.90

(w/o MD) 1.72 98.04 90.22 7.98

ples as similar (1), ambiguous (0.5), or dissimilar 473

(0) to the original examples. We compare DA3 474

with the best baseline model, TextFooler, on se- 475

mantic preservation for better evaluation. We take 476

the average scores among human raters for gram- 477

mar correctness and semantic preservation and take 478

the majority class as the predicted label. 479

As shown in Table 3, grammar correctness 480

scores of adversarial examples generated by 481

DA3 are similar to those of original examples. 482

While word perturbations make predictions more 483

challenging, adversarial examples generated by 484

DA3 still show decent accuracy. Compared to 485

TextFooler, DA3 can better preserve semantic simi- 486

larity to original examples. Some generated adver- 487

sarial examples are displayed in Appendix E. 488

7.3 Ablation Study (RQ4) 489

To analyze the effectiveness of different compo- 490

nents of LDAL, we conduct an ablation study on 491

BERT-BASE. The results of the ablation study are 492

shown in Table 4 and Table 5. 493

MSP Loss. We ablate LMSP during fine-tuning 494

to assess the efficacy of LMSP . LMSP helps 495

improve NASRMSP and MSP Detection Rate 496

(DRMSP ), which is the ratio of |DMSP | to the 497

total number of successful adversarial examples, 498

across all datasets. An interesting finding is that on 499

SST-2 and CoLA, although models without LMSP 500

perform better in terms of ASR, the situation dete- 501

riorates when considering detectability, leading to 502

lower NASRMSP and higher DRMSP compared 503

to the model with LDAL. 504
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Figure 5: The change of LMSP , LMD, and LDAL

throughout the fine-tuning phase of DA3 with BERT-
BASE as backbone on SST-2. The x-axis represents
fine-tuning steps; the y-axis represents the change of
loss compared to the initial loss.

MD Loss. We ablate LMD during fine-tuning to505

assess the efficacy of LMD. LMD helps improve506

MD Detection Rate (DRMD), which is the ratio507

of |DMD| to the number of successful adversarial508

examples, across all datasets. LMD also improves509

NASRMD on all datasets except SST-2. A similar510

finding on CoLA exists that although models with-511

out LMD perform better on ASR, the performance512

worsens when considering detectability.513

The ablation study shows that both LMSP and514

LMD are effective on most datasets.515

7.4 Loss Visualization and Analysis (RQ4)516

To better understand how different loss compo-517

nents contribute to DA3, we visualize the changes518

of LMSP , LMD, and LDAL throughout the fine-519

tuning phase of DA3 with BERT-BASE as back-520

bone on SST-2 dataset, as illustrated in Figure 5.521

We observe that all three losses exhibit oscillat-522

ing descent and eventual convergence. Although523

the overall trends of LMSP and LMD are consis-524

tent, a closer examination reveals that they often525

exhibit opposite trends at each step, especially in526

the initial stages. Despite both losses sharing a com-527

mon goal of reducing distribution shifts between528

adversarial examples and original examples, this529

observation reveals a potential trade-off relation-530

ship between them. One possible interpretation is531

that, on the one hand, minimizing LMSP increases532

the confidence of wrong predictions, aligning with533

the objective of the adversarial attack task to induce534

incorrect predictions. On the other hand, minimiz-535

ing LMD encourages the generated adversarial sen-536

tences to resemble the original ones more closely,537

loosely akin to the objective of the masked lan-538

guage modeling task to restore masked tokens to539

Table 6: Comparison of DA3 using BERT-BASE as
backbone with loss variants.

Dataset Model ACC↓ ASR↑ MSP MD
NASR↑ DR↓ NASR↑ DR↓

SST-2
w/ LNCE 18.23 80.27 55.71 30.60 76.30 4.95
w/ LFCE 17.66 80.89 63.03 22.09 78.04 3.53

ours 21.10 77.17 54.22 29.74 75.06 2.73

CoLA
w/ LNCE 2.03 97.52 94.10 3.51 92.80 4.84
w/ LFCE 3.07 96.22 93.98 2.33 91.97 4.42

ours 2.78 96.58 93.74 2.93 93.27 3.42

RTE
w/ LNCE 1.08 98.51 71.14 27.78 85.57 13.13
w/ LFCE 1.44 98.01 69.65 28.93 85.07 13.20

ours 1.08 98.51 72.14 26.77 86.07 12.63

MRPC
w/ LNCE 2.45 97.21 71.79 26.15 89.39 8.05
w/ LFCE 0.74 99.16 68.99 30.42 91.34 7.89

ours 0.74 99.16 74.86 24.51 93.29 5.90

their original values. While these two objectives 540

are not inherently conflicting, an extreme stand- 541

point reveals that when the latter objective is fully 542

satisfied – meaning the model generates identical 543

examples to the original ones – the former objective 544

naturally becomes untenable. 545

7.5 Loss Comparison (RQ5) 546

Other than using our LDAL, we also explore other 547

loss variants: LNCE and LFCE . 548

Minimizing the negative of regular cross-entropy 549

loss (denoted as LNCE) or minimizing the cross- 550

entropy loss of flipped adversarial labels (denoted 551

as LFCE) are two simple ideas as baseline attack 552

methods. We replace LDAL with LNCE or LFCE 553

during the fine-tuning phase to assess the efficacy 554

of our loss LDAL. The results in Table 6 show that 555

LDAL outperforms the other two losses across all 556

evaluation metrics on RTE and MRPC datasets. On 557

CoLA dataset, LDAL achieves better or similar per- 558

formance compared to LNCE and LFCE . While 559

LDAL may not perform as well as LNCE and 560

LFCE on SST-2, given its superior performance 561

on the majority of datasets, we believe LDAL is 562

more effective than LNCE and LFCE generally. 563

8 Conclusion 564

We analyze the adversarial examples generated by 565

previous attack methods and identify distribution 566

shifts between adversarial examples and original 567

examples in terms of MSP and MD. To address this, 568

we propose a Distribution-Aware Adversarial At- 569

tack (DA3) method with the Data Alignment Loss 570

and introduce a novel evaluation metric, NASR, 571

which integrates out-of-distribution detection into 572

the assessment of successful attacks. Our experi- 573

ments validate the attack effectiveness of DA3 on 574

BERT-BASE and ROBERTA-BASE and the trans- 575

ferability of adversarial examples generated by 576

DA3 on the black-box LLAMA2-7B. 577
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Limitations578

We analyze the distribution shifts between adver-579

sarial examples and original examples in terms of580

MSP and MD, which exist in most datasets. Nev-581

ertheless, the MD distribution shift is not very ob-582

vious in some datasets like MRPC. This indicates583

that MD detection may not always effectively iden-584

tify adversarial examples. However, we believe585

that since such a distribution shift is present in586

many datasets, we still need to consider MD detec-587

tion. Furthermore, our experiments demonstrate588

that considering distribution shift is not only effec-589

tive for NASR but also enhances the performance590

of the model in ASR.591

Ethics Statement592

There exists a potential risk associated with our593

proposed attack methods – they could be used mali-594

ciously to launch adversarial attacks against off-the-595

shelf systems. Despite this risk, we emphasize the596

necessity of conducting studies on adversarial at-597

tacks. Understanding these attack models is crucial598

for the research community to develop effective599

defenses against such attacks.600
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Appendix807

A Evaluation Metrics808

Percentage of Perturbed Words (%Words).809

Percentage of Perturbed Words (%Words) is used810

to measure how much a text has been altered or811

perturbed from its original form. %Words is for-812

mulated as813

%Words =
Number of Perturbed Words

Total Number of Words
× 100.814

Semantic Similarity (SS). We calculate Seman-815

tic Similarity (SS) using sentence semantic sim-816

ilarity between xorig and xadv. Specifically, we817

transform the two sentences into high-dimensional818

sentence embeddings using the Universal Sentence819

Encoder (USE) (Cer et al., 2018). We then approx-820

imate their semantic similarity by calculating the821

cosine similarity score between these vectors.822

Attack Success Rate (ASR). Attack Success823

Rate (ASR) is defined as the percentage of gener-824

ated adversarial examples that successfully deceive825

model predictions. Thus, ASR is formulated as826

ASR =
|{xorig | yadv ̸= yorig, xorig ∈ X}|

|X |
.827

These definitions are consistent with prior work.828

B More Implementation Details829

B.1 Baselines830

DeepWordBug (Gao et al., 2018) uses two scoring831

functions to determine the most important words832

and then adds perturbations through random sub-833

station, deletion, insertion, and swapping letters in834

the word while constrained by the edit distance.835

TextBugger (Jinfeng et al., 2019) finds important836

words through the Jacobian matrix or scoring func-837

tion and then uses insertion, deletion, swapping,838

substitution with visually similar words, and sub-839

stitution with semantically similar words.840

TextFooler (Jin et al., 2020) uses the prediction841

change before and after deleting the word as the842

word importance score and then replaces each word843

in the sentence with synonyms until the prediction844

label of the target model changes.845

BERT-Attack (Li et al., 2020) finds the vulnerable846

words through logits from the target model and847

then uses BERT to generate perturbations based on848

the top-K predictions.849

Table 7: Dataset statistics.

Dataset Train Validation Description
SST-2 67,300 872 Sentiment analysis
CoLA 8,550 1,043 Grammar correctness
RTE 2,490 277 Textual entailment

MRPC 3,670 408 Textual similarity

Table 8: Hyperparameters of different datasets.

Backbone Hyperparameter SST-2 CoLA RTE MRPC

BERT-BASE

batch size 128 128 32 128
learning rate 1e-4 5e-5 1e-5 1e-3

% masked tokens 30 30 30 30

ROBERTA-BASE

batch size 128 128 32 128
learning rate 5e-5 1e-4 1e-5 1e-3

% masked tokens 30 30 30 30

A2T (Yoo and Qi, 2021) employs a gradient-based 850

method for ranking word importance, iteratively 851

replacing each word with top synonyms gener- 852

ated from counter-fitting word embeddings (Mrkšić 853

et al., 2016). 854

For the implementation of baselines, we use the 855

TextAttack3 package with its default parameters. 856

B.2 Datasets 857

SST-2. The Stanford Sentiment Treebank (Socher 858

et al., 2013) is a binary sentiment classification 859

task. It consists of sentences extracted from movie 860

reviews with human-annotated sentiment labels. 861

CoLA. The Corpus of Linguistic Acceptabil- 862

ity (Warstadt et al., 2019) contains English sen- 863

tences extracted from published linguistics litera- 864

ture, aiming to check grammar correctness. 865

RTE. The Recognizing Textual Entailment 866

dataset (Wang et al., 2019a) is derived from a com- 867

bination of news and Wikipedia sources, aiming 868

to determine whether the given pair of sentences 869

entail each other. 870

MRPC. The Microsoft Research Paraphrase Cor- 871

pus (Dolan and Brockett, 2005) comprises sentence 872

pairs sourced from online news articles. These 873

pairs are annotated to indicate whether the sen- 874

tences are semantically equivalent. 875

Data statistics for each dataset are shown in Ta- 876

ble 7. 877

B.3 Hyperparameters and More Settings 878

For each experiment, the DA3 fine-tuning phrase is 879

executed for a total of 20 epochs. The learning rate 880

is searched from [1e− 5, 1e− 3]. Up to 30% of 881

3https://github.com/QData/TextAttack (MIT Li-
cense).
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Table 9: Prompt template for different datasets. {instruct} is replaced by different instructions in Table 10, while
{text} is replaced with input sentence.

Dataset Prompt
SST-2 “{instruct} Respond with ‘positive’ or ‘negative’ in lowercase, only one word. \nInput: {text}\nAnswer:”
CoLA “{instruct} Respond with ‘acceptable’ or ‘unacceptable’ in lowercase, only one word.\nInput:

{text}\nAnswer:”,
RTE “{instruct} Respond with ‘entailment’ or ‘not_entailment’ in lowercase, only one word.\nInput:

{text}\nAnswer:
MRPC “{instruct} Respond with ‘equivalent’ or ‘not_equivalent’ in lowercase, only one word.\nInput: {text}

\nAnswer:

Table 10: Different instructions used for different runs.

Dataset Prompt
SST-2 “Evaluate the sentiment of the given text.”

“Please identify the emotional tone of this passage.”
“Determine the overall sentiment of this sentence.”
“After examining the following expression, label its emotion.”
“Assess the mood of the following quote.”

CoLA “Assess the grammatical structure of the given text.”
“Assess the following sentence and determine if it is grammatically correct.”
“Examine the given sentence and decide if it is grammatically sound.”
“Check the grammar of the following sentence.”
“Analyze the provided sentence and classify its grammatical correctness.”

RTE “Assess the relationship between sentence1 and sentence2.”
“Review the sentence1 and sentence2 and categorize their relationship.”
“Considering the sentence1 and sentence2, identify their relationship.”
“Please classify the relationship between sentence1 and sentence2.”
“Indicate the connection between sentence1 and sentence2.”

MRPC “Assess whether sentence1 and sentence2 share the same semantic meaning.”
“Compare sentence1 and sentence2 and determine if they share the same semantic meaning.”
“Do sentence1 and sentence2 have the same underlying meaning?”
“Do the meanings of sentence1 and sentence2 align?”
“Please analyze sentence1 and sentence2 and indicate if their meanings are the same.”

the tokens are masked during the fine-tuning phrase.882

The rank of the update matrices of LORA is set to883

8; LORA scaling factor is 32; LORA dropout value884

is set as 0.1. The inference termination condition885

is set as 40% of the tokens.886

Table 8 shows the hyperparameters used in ex-887

periments.888

White-box experiments are conducted on two889

NVIDIA GeForce RTX 3090ti GPUs, and black-890

box experiments are conducted on two NVIDIA891

RTX A5000 24GB GPUs.892

B.4 Prompts Used for the Black-box LLM893

The constructed prompt templates used for the894

Black-box LLM (LLAMA2-7B4) are shown in895

Table 9. For each run, {instruct} in the prompt896

template is replaced by different instructions in897

4LLaMA2 Community License

Table 10, while {text} is replaced with the input 898

sentence. 899

C More Automatic Evaluation Results 900

Experimental results of %Words and SS on 901

the white-box victim models BERT-BASE and 902

ROBERTA-BASE are shown in Table 12 and Ta- 903

ble 13. DA3 achieves best or second-to-best 904

%Words and comparable SS compared to baselines 905

across datasets on both victim models. 906

The results of the generated adversarial exam- 907

ples by DA3 with BERT-BASE as the backbone 908

on attacking the white-box MISTRAL-7B model 909

on CoLA, RTE, and MRPC are shown in Table 11. 910

Our proposed DA3 outperforms all other baselines. 911

Although BERT-BASE, LLAMA2-7B, and 912

MISTRAL-7B have different structures and param- 913

eters, they are both trained on large text corpora. 914
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Table 11: Evaluation results on the black-box MISTRAL-
7B models. Results of MISTRAL-7B are the average of
zero-shot prompting with five different prompts.

Dataset Model MISTRAL-7B
ACC↓ ASR↑ NASRMSP ↑ NASRMD ↑

CoLA

Original 79.35
TextFooler 27.84 66.20 57.59 63.57
TextBugger 38.28 52.52 46.36 48.26

DeepWordBug 34.67 58.99 51.69 53.87
BERT-Attack 33.25 59.58 52.23 55.96

A2T 35.70 56.36 49.26 51.86
DA3 (ours) 29.11 66.12 63.41 62.49

RTE

Original 80.94
TextFooler 65.20 24.35 24.35 24.17
TextBugger 77.91 6.95 6.95 6.86

DeepWordBug 77.98 6.33 6.33 6.24
BERT-Attack 56.73 33.18 33.18 33.12

A2T 57.69 32.11 32.11 32.11
DA3 (ours) 54.08 3598 35.71 35.45

MRPC

Original 79.31
TextFooler 63.09 25.00 24.81 22.97
TextBugger 78.68 4.52 4.52 4.52

DeepWordBug 78.33 4.46 4.46 4.40
BERT-Attack 56.22 34.58 33.72 34.60

A2T 61.91 26.52 26.03 26.52
DA3 (ours) 56.18 35.30 35.07 35.38

Thus, they share similar knowledge. From Table 2915

and Table 11, we can see that BERT-based mod-916

els (BERT-Attack and DA3) perform better than917

other models in most cases, which confirms our918

explanations. Besides, the best transferability also919

shows that our proposed DA3 can generate high-920

quality adversarial examples that are robust to the921

black-box LLMs.922

D Annotation Guidelines923

Here we provide the annotation guidelines for an-924

notators:925

Grammar. Rate the grammaticality and fluency926

of the text between 1-5; the higher the score, the927

better the grammar of the text.928

Prediction. For SSTS-2 dataset, classify the sen-929

timent of the text into negative (0) or positive (1);930

For MRPC dataset, classify if the two sentences931

are equivalent (1) or not_equivalent (0).932

Semantic. Compare the semantic similarity be-933

tween text1 and text2, and label with similar (1),934

ambiguous (0.5), and dissimilar (0).935

E Examples of Generated Adversarial936

Sentences937

Table 14 displays some original examples and the938

corresponding adversarial examples generated by939

DA3. The table also shows the predicted results of940

the original or adversarial sentence using BERT-941

BASE. Blue words are perturbed into the red words.942

Table 14 shows that DA3 only perturbs a very small 943

number of words, leading to model prediction fail- 944

ure. Besides, the adversarial examples generally 945

preserve similar semantic meanings to their origi- 946

nal inputs. 947

F Results Visualization Across Different 948

Prompts 949

We display the individual attack performance of 950

five runs with different prompts on the MRPC 951

dataset in Figure 6. The figure illustrates that DA3 952

consistently surpasses other baseline methods for 953

each run. 954

G Observation Experiments 955

The observation experiments on previous attack 956

methods TextFooler, TextBugger, DeepWordBug, 957

and BERT-Attack are shown in Figure 7, Figure 8, 958

Figure 9, Figure 10, Figure 11, Figure 12, Fig- 959

ure 13, and Figure 14. 960

The distribution shift between adversarial exam- 961

ples and original examples is more evident in terms 962

of MSP across all the datasets. The distribution 963

shift between adversarial examples and original 964

examples in terms of MD is clear only on SST-2 965

dataset and MRPC dataset. Although this shift is 966

not always present in terms of MD, it is imperative 967

to address this issue given its presence in certain 968

datasets. 969
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Table 12: %Words and SS results on the BERT-BASE victim model.

Dataset SST-2 CoLA
Model TextFooler TextBugger DeepWordBug BERT-Attack A2T DA3 TextFooler TextBugger DeepWordBug BERT-Attack A2T DA3

%Words 17.58 15.35 19.11 13.42 11.06 10.72 19.16 19.16 18.53 18.34 19.04 16.83
SS 82.32 90.98 80.03 89.89 90.25 87.78 82.09 91.36 83.60 90.65 88.62 86.95

Dataset RTE MRPC
Model TextFooler TextBugger DeepWordBug BERT-Attack A2T DA3 TextFooler TextBugger DeepWordBug BERT-Attack A2T DA3

%Words 6.01 12.07 6.59 6.97 4.41 4.75 9.69 19.09 8.32 11.66 6.2 6.64
SS 96.80 97.26 96.72 96.32 97.18 96.37 94.04 95.60 94.56 93.07 96.10 93.86

Table 13: %Words and SS results on the ROBERTA-BASE victim model.

Dataset SST-2 CoLA
Model TextFooler TextBugger DeepWordBug BERT-Attack A2T DA3 TextFooler TextBugger DeepWordBug BERT-Attack A2T DA3

%Words 18.73 18.03 22.70 14.33 12.30 12.58 19.07 18.40 19.10 17.31 17.60 17.29
SS 81.58 90.37 75.26 86.44 89.48 86.98 83.31 91.90 83.22 90.49 90.15 85.99

Dataset RTE MRPC
Model TextFooler TextBugger DeepWordBug BERT-Attack A2T DA3 TextFooler TextBugger DeepWordBug BERT-Attack A2T DA3

%Words 6.96 7.93 5.27 6.59 3.93 6.38 12.50 18.84 13.18 10.09 7.04 8.10
SS 96.35 97.32 96.93 96.67 97.69 94.88 92.12 93.28 90.44 93.13 95.96 94.12
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Figure 6: Results of LLAMA2-7B across five different prompts on MRPC.
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(a) MSP on SST-2 dataset.
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(b) MSP on CoLA dataset.
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(c) MSP on RTE dataset.
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(d) MSP on MRPC dataset.

Figure 7: Visualization of the distribution shift between original data and adversarial data generated by TextFooler
when attacking BERT-BASE regarding Maximum Softmax Probability.
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(a) MD on SST-2 dataset.
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(c) MD on RTE dataset.
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Figure 8: Visualization of the distribution shift between original data and adversarial data generated by TextFooler
when attacking BERT-BASE regarding Mahalanobis Distance.
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Table 14: Examples of generated adversarial sentences

Sentence Prediction
Ori / but daphne , you ’re too buff / fred thinks he ’s tough / and velma - wow , you ’ve lost weight ! Negative
Adv / but daphne , you ’re too buff / fred thinks he ’s tough / and velma - wow , you ’ve corrected

weight !
Positive

Ori The car was driven by John to Maine. Acceptable
Adv The car was amounted by John to Maine. Unacceptable
Ori The sailors rode the breeze clear of the rocks. Acceptable
Adv The sailors wandered the breeze clear of the rocks. Unacceptable
Ori The more Fred is obnoxious, the less attention you should pay to him. Acceptable
Adv The more Fred is obnoxious, the less noticed you should pay to him. Unacceptable
Ori Sentence1: And, despite its own suggestions to the contrary, Oracle will sell PeopleSoft and JD

Edwards financial software through reseller channels to new customers.<SPLIT>Sentence2:
Oracle sells financial software.

Not_entailment

Adv Sentence1: And, despite its own suggestions to the contrary, Oracle will sell PeopleSoft and JD
Edwards financial software through reseller channels to new customers.<SPLIT>Sentence2:
Oracle sells another software.

Entailment

Ori Sentence1: Ms Stewart , the chief executive , was not expected to attend .<SPLIT>Sentence2:
Ms Stewart , 61 , its chief executive officer and chairwoman , did not attend .

Equivalent

Adv Sentence1: Ms Stewart , the chief executive , was not expected to visiting .<SPLIT>Sentence2:
Ms Stewart , 61 , its chief executive officer and chairwoman , did not attend .

Not_equivalent

Ori Sentence1: Sen. Patrick Leahy of Vermont , the committee ’s senior Democrat , later said the
problem is serious but called Hatch ’s suggestion too drastic .<SPLIT>Sentence2: Sen. Patrick
Leahy , the committee ’s senior Democrat , later said the problem is serious but called Hatch ’s
idea too drastic a remedy to be considered .

Equivalent

Adv Sentence1: Sen. Patrick Leahy of Vermont , the committee ’s senior Democrat , later said the
problem is serious but called Hatch ’s suggestion too drastic .<SPLIT>Sentence2: Sen. Patrick
Leahy , the committee ’s senior Democrat , later said the problem is serious but called Hatch ’s
idea too drastic a remedy to be counted .

Not_equivalent
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(a) MSP on SST-2 dataset.
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(b) MSP on CoLA dataset.
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(c) MSP on RTE dataset.
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Figure 9: Visualization of the distribution shift between original data and adversarial data generated by TextBugger
when attacking BERT-BASE regarding Maximum Softmax Probability.
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(a) MD on SST-2 dataset.
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(b) MD on CoLA dataset.
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Figure 10: Visualization of the distribution shift between original data and adversarial data generated by TextBugger
when attacking BERT-BASE regarding Mahalanobis Distance.
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(a) MSP on SST-2 dataset.
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(b) MSP on CoLA dataset.
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(c) MSP on RTE dataset.
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Figure 11: Visualization of the distribution shift between original data and adversarial data generated by DeepWord-
Bug when attacking BERT-BASE regarding Maximum Softmax Probability.
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(a) MD on SST-2 dataset.
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(b) MD on CoLA dataset.
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(c) MD on RTE dataset.
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Figure 12: Visualization of the distribution shift between original data and adversarial data generated by DeepWord-
Bug when attacking BERT-BASE regarding Mahalanobis Distance.
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(a) MSP on SST-2 dataset.
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(b) MSP on CoLA dataset.
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(c) MSP on RTE dataset.
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Figure 13: Visualization of the distribution shift between original data and adversarial data generated by BERT-
Attack when attacking BERT-BASE regarding Maximum Softmax Probability.
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Figure 14: Visualization of the distribution shift between original data and adversarial data generated by BERT-
Attack when attacking BERT-BASE regarding Mahalanobis Distance.

17


	Introduction
	Related Work
	Adversarial Attacks in NLP
	Out-of-distribution Detection in NLP

	Understanding Distribution Shifts of Adversarial Examples
	Methodology
	Problem Formulation
	Distribution-Aware Adversarial Attack
	Model Learning

	Automatic Evaluation Metrics
	Experimental Settings
	Experimental Results and Analysis
	Automatic Evaluation Results
	Human Evaluation (RQ3)
	Ablation Study (RQ4)
	Loss Visualization and Analysis (RQ4)
	Loss Comparison (RQ5)

	Conclusion
	Evaluation Metrics
	More Implementation Details
	Baselines
	Datasets
	Hyperparameters and More Settings
	Prompts Used for the Black-box LLM

	More Automatic Evaluation Results
	Annotation Guidelines
	Examples of Generated Adversarial Sentences
	Results Visualization Across Different Prompts
	Observation Experiments

