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Abstract

This paper investigates the role of explicit thinking process in rule-based reinforce-
ment fine-tuning (RFT) for multi-modal large language models (MLLMs). We
first extend Thinking-RFT to image classification task, using verifiable rewards
for fine-tuning (FT). Experiments show Thinking-RFT significantly outperforms
supervised FT and yields a cross-dataset generalization effect. We then rethink
and question whether explicit thinking in RFT is always necessary and beneficial.
Challenging the convention that explicit thinking is crucial for the success of RFT,
we introduce No-Thinking-RFT, exploring RFT without thinking by introducing a
simple equality accuracy reward. We evaluate No-Thinking-RFT on six diverse
tasks across different model sizes and types. Experiment results reveal four key
findings: (1). Visual perception tasks do not require thinking during RFT, as No-
Thinking-RFT consistently outperforms or matches Thinking-RFT across model
sizes and types. (2). Models with limited capabilities struggle to generate high-
quality CoT for RFT, making Thinking-RFT less effective than No-Thinking-RFT.
(3). There are inconsistencies between the answers in the thinking tags and answer
tags for some responses of Thinking-RFT, which show lower average accuracy than
the overall accuracy. (4). The performance gain of No-Thinking-RFT mainly stems
from improved learning during no thinking FT and the avoidance of inference
overthinking, as evidenced by the partial gains from appending empty thinking tags
at inference time of Thinking-RFT. We hypothesize that explicit thinking before
verifiable answers may hinder reward convergence and reduce performance in cer-
tain scenarios. To test this, we propose Think-After-Answer, which places thinking
after the answer to mitigate this effect for experimental verification. Lastly, we con-
duct a pilot study to explore whether MLLMs can learn when to think during RFT,
introducing an Adaptive-Thinking method. Experiments show that model converges
to either thinking or not depending on model capability, achieving comparable
or better performance than both Thinking and No-Thinking-RFT. Our findings
suggest MLLMs can adaptively decide to think or not based on their capabilities
and task complexity, offering insights into the thinking process in RFT.

1 Introduction

Recently, rule-based reinforcement fine-tuning (RFT) has made significant progress and achieved
better performance than traditional supervised fine-tuning (SFT) [19,168.26]. RFT leverages verifiable

*Corresponding Author: zhangkaipeng @pjlab.org.cn

39th Conference on Neural Information Processing Systems (NeurIPS 2025).


https://github.com/minglllli/CLS-RL

Response Length Accuracy Reward

Food-101 — Caltech-101 — DescribableTextures GVCAircra — Caltech-101 — DescribableTextures

0.8
100 0.6

0.4

0.2 |
40

Epoch Epoch

o
S

10 20 30 40 50 10 20 30 40 50

(a) Response Length Curves (b) Accuracy Reward Curves

Figure 1: Thinking is less essential: Classification RFT exhibits sharp drops in response length at
specific steps, accompanied by significant rises in accuracy reward.

rewards for training, encouraging models to engage in a thinking process before answering for solution
exploration [[19]. The explicit thinking is widely believed as a key factor in RFT’s success, and many
works on multi-modal RFT (82} 24] aim to reproduce the length-increasing and *aha moment’ effects
seen in Deepseek-R1 [19]. However, a critical question emerges as RFT being widely used: Is explicit
thinking always necessary and beneficial for small-sized-model RFT? Recent studies [27, (64} [65]]
suggest that reasoning offers limited gains on commonsense tasks and overthinking may even harm
inference performance. While these findings offer insight into model reasoning, they focus solely
on inference, leaving the impact of explicit thinking during RFT unclear and largely unexplored.
Furthermore, RFT typically requires significantly more fine-tuning time and GPU memory than SFT
due to the generation of multiple lengthy responses [[19]. Consequently, the role of explicit thinking
during RFT warrants further exploration, considering both accuracy performance and computational
efficiency.

In this paper, we investigate the thinking process in rule-based RFT for MLLMs across different tasks
and model sizes. We begin with a case study exploring closed-form MLLM image classification.
Motivated by the success of rule-based RFT [[19,168L[77] in LLM fine-tuning, we extend thinking-based
RFT (Thinking-RFT) to few-shot classification fine-tuning. Thinking-RFT fine-tunes MLLMs using
class labels as verifiable answers for reward calculation. Extensive experiments show that Thinking-
RFT performs much better than SFT on both in-domain learning and new-class generalization.
Additionally, we observe a free-lunch phenomenon: fine-tuning MLLMs on one dataset with Thinking-
RFT improves performance on other datasets, despite shift in data distribution and entirely different
class names. This phenomenon validates that rule-based RFT can effectively teach models the
fundamentals of image classification rather than simply memorizing [S].

We then revisit the role of thinking process in rule-based RFT, a key factor in the success of
Deepseek-R1 [19]]. Unlike the gradual increase in response length of math problems observed in [[19],
classification RFT exhibits sharp drops in response length at specific steps, accompanied by significant
rises in accuracy reward (Figure [T). Our finding that thinking is less essential for classification,
prompting models to adopt minimal reasoning, aligns with recent studies [27, |64] showing that
overthinking during inference can hinder performance on certain tasks. To this end, we propose
No-Thinking-RFT, a rule-based RFT approach without explicit thinking process. No-Thinking RFT
utilizes a direct-answer instruction prompt and removes the format reward. It implements a strict
equality accuracy reward, granting a score of 1 solely when the output precisely matches the labels,
thereby effectively discouraging reasoning during fine-tuning. Notably, in few-shot classification
task, No-Thinking-RFT outperforms Thinking-RFT while achieving substantially shorter fine-tuning
and inference time (Sec/4.4) and faster convergence (Sec/4.5) than Thinking-RFT.

Next, we evaluate No-Thinking-RFT on general visual reasoning tasks, including math, spatial
reasoning, puzzles, referring grounding, and detection, across different model sizes. Results reveal
four important findings: (1): Thinking is unnecessary for visual perception tasks during RFT. Across
all test model sizes, No-Thinking-RFT matches or outperforms Thinking-RFT for these tasks, showing
that excluding thinking in RFT can preserve or improve performance while enhancing training and
inference efficiency. (2). Models with limited capability (e.g., 2B) tend to converge to produce trivial
reasoning under Thinking-RFT (refer to Figure [I3] ~ Figure [20] for examples), leading to worse
performance and longer fine-tuning time compared to No-Thinking-RFT. (3): For mid-sized models



(e.g., 7B), Thinking-RFT often produces inconsistencies between the content in thinking tags and
answer tags (see Figure[O-Figure[I4). We observe frequent mismatches comparing answers from the
thinking tags and answer tags, with the average accuracy amongst inconsistent responses lower than
the overall accuracy (Figure [2), which suggests that maintaining response consistency could improve
performance. (4): The performance gain of No-Thinking-RFT over Thinking-RFT mainly stems
from improved fine-tuning and the avoidance of inference overthinking. When we test Thinking-RFT
in a no-thinking mode by appending empty thinking tags during inference, performance improves on
perception tasks but still lags behind No-Thinking-RFT. This suggests that both enhanced learning
during no thinking fine-tuning and reduced inference overthinking contribute to the gain.

We further study why No-Thinking-RFT outperforms Thinking-RFT in certain scenarios (e.g., 2B
model on perception tasks), hypothesizing that the explicit thinking before verifiable answers may
hinder the learning process during RFT, slowing accuracy reward convergence and reducing accuracy.
To test this, we propose Think-After-Answer, a variant where reasoning occurs after generating
verifiable answers. Experiment results support our hypothesis: in tasks where No-Thinking-RFT
outperforms Thinking-RFT, Think-After-Answer converges faster and achieves higher accuracy than
Thinking-RFT. However, it still underperforms No-Thinking-RFT, suggesting that reasoning, even
when placed after answers, can remain detrimental during RFT in certain scenarios.

Finally, we conduct a pilot study to investigate whether MLLMs can learn to adaptively decide when
to think during RFT. We introduce Adaptive-Thinking: models are prompted to first assess if a problem
required reasoning or thinking. If reasoning was deemed necessary, the model would generate a
thinking process before answering; otherwise, it would answer directly. Our experiments revealed
that models consistently converged to a single response strategy (either always thinking or never
thinking). Notably, Adaptive-Thinking achieves comparative or better performance than the better
one of Thinking-RFT and No-Thinking-RFT, and the final response strategy always corresponded to
one suited for that specific model size and task complexity. For example, on math tasks, the 2B model
converged to the non-thinking answering response, whereas the 7B model consistently adopted the
thinking process before answering. These findings suggest that MLLMs may possess the capability to
learn whether to employ reasoning based on their inherent abilities and task complexity during RFT.

Our contributions can be summarized as follows:

e We extend Thinking-RFT to few-shot MLLM classification and reveal a cross-dataset transfer
across datasets.

e We show several important findings about No-Thinking-RFT and Thinking-RFT via experiments
on six tasks with 2B—7B models.

e Through Think-After-Answer and Adaptive-Thinking we confirm that deferring or omitting CoT
speeds convergence without harming accuracy and explore adaptive thinking strategy.

2 RFT Methods: Think vs. No Think

2.1 Thinking-RFT

Optimization Algorithm. We follow Deepseek-R1 [19, [59] to employ Group Relative Policy
Optimization (GRPO) as the RL algorithm for optimization in our study, since it is the most widely
used one. We refer readers to Appendix [A]for a brief introduction of the technical details of GRPO.

Instruction prompt. Following Deepseek-R1 [59], we utilize a prompt that encourages models to
first engage in a thinking process before generating the final answers. The prompt is designed as:
{Question} Please output the thinking process in <think> </think> and final answer in <answer>
</answer> tags. Here {Question} will be replaced by each specific question.

Reward Function. To clearly examine the RFT thinking process and promote the generalizability
of our findings, we employ the simplest binary reward function for our study. The reward function
is composed with two parts: format and accuracy reward. The format reward Rjom, 1S to check if
the responses follow the format correctly. Rfomae = 1 if the response format is correct, and 0 if it
is incorrect. The accuracy reward Raccuracy checks whether the answer in the answer tag matches
the ground truth. For example, Raccuracy Verifies the extracted answer against the correct choice in
multi-choice problems, class labels in classification tasks, and numeric results in math problems.
Riceuracy = 1 if the extracted answer matches correctly, and 0 otherwise.



Training Strategy. To study explicit thinking during RFT clearly, we adopt R1-zero [19] training for
all methods in our study, i.e., we apply RL to all base models without any SFT, following [80].

2.2 No-Thinking-RFT

We explore rule-based RFT without a thinking process and propose a No-Thinking-RFT method. The
instruction prompt and reward functions are designed as below:

Instruction prompt. Instead of the prompt in Thinking-RFT which encourages models to think
before answering, the prompt in the No-Thinking-RFT method prohibits the model from thinking.
The prompt is designed as: {Question} Please directly output the answer.

Reward Function. No-Thinking-RFT eliminates the format reward and relies solely on the accuracy
reward rather than combining two rewards. The accuracy reward Ryccuracy checks whether the model’s
output matches the ground truth exactly. Raccuracy = 1 if the model response matches the ground truth
and 0 otherwise. The equality-based matching reward forces the model to bypass any thinking process
and output only the answers, which are significantly shorter than the typical reasoning responses in
Thinking-RFT. As a result, training No-Thinking-RFT requires substantially less GPU memory, and
its training and inference times are markedly shorter than those of Thinking-RFT (Sec. [#.4).

3 General Visual Reasoning

In this section, we introduce results on general visual reasoning, including spatial understanding,
math, puzzle, referring grounding, and detection across different model sizes. We report the results
of spatial understanding, math, and puzzle tasks with 2B and 7B Qwen2-VL-Instruct [72]] models
in main text, and leave the results of referring grounding, detection tasks and other different model
types (e.g., InternVL2.5 [5] and Qwen2-5-VL-Instruct [1]]) in Appendix@ We also discuss offline
DPO, No-Thinking-RFT, and Thinking-RFT in Appendix[H.2] We first introduce Think-After-Answer
and Adaptive-Thinking methods and then report experimental results.

3.1 Think-After-Answer & Adaptive-Thinking

Think-After-Answer. We explore the reason that No-Thinking-RFT outperforms Thinking-RFT
under specific tasks and model sizes. As shown in Sec. [4.5] Thinking-RFT converges slower than
No-Thinking-RFT. Therefore, we hypothesize that for the 2B model, the explicit “think™ process
is detrimental, whereas for the 7B model, it is not universally required, as verifiable answers are
already conditioned on thinking. To verify this hypothesis, we propose Think-After-Answer by letting
MLLMs first answer the questions and then output a brief reasoning process, therefore alleviating
the negative impact of explicit thinking on verifiable answers during RFT, as now the thinking is
conditioned on answers. The prompt is provided in Appendix [E.Z]and the format and accuracy reward
do not change. If the hypothesis holds, the convergence speed of Think-After-Answer should be faster
and the final performance should be higher than Thinking-RFT in cases where No-Thinking-RFT
outperforms Thinking-RFT.

Adaptive-Thinking. We propose an Adaptive-Thinking method that lets MLLMs decide whether
to think by themselves during RFT. Specifically, we prompt MLLMs to first determine whether a
problem requires thinking, and then either output a reasoning process if needed or directly output an
answer if not (refer to Appendix [E.3|for the prompt). A response in either thinking format or direct
answering format will receive a format reward of 1. The accuracy reward is not changed as before.

3.2 Experimental Setup

We focus on three main visual or multi-modal tasks: visual perception (classifiction and spatial
grounding), multi-modal math reasoning, and visual puzzle reasoning in the main text. For a fair
comparison, we set hyperparameters the same for all methods. We provide a brief overview of the
experimental settings below, with detailed implementation described in Appendix [D.3]

Visual Perception. We follow [82] to fine-tune models on SAT dataset [57]] 2 epochs and then test on
CVBench dataset [69]]. We also include classification results for comparison. The number of rollout



Table 1: Results of Thinking-RFT, Think-After-Answer, No-Thinking-RFT, and Adaptive-Thinking
on CVBench.

Model Method Overall Count Relation Depth Distance FT Time
Thinking-RFT 70.36 66.12 83.38 68.50 63.67 599 m
2B Think-After-Answer 73.65 68.65 82.15 74.83 69.83 408 m
No-Thinking-RFT 76.76 69.67 84.46 80.67 73.83 139 m
Adaptive-Thinking 77.03 69.92 86.31 76.50 76.83 208 m
Thinking-RFT 80.36 66.24 90.92 87.33 80.00 651 m
7B Think-After-Answer 81.61 66.75 90.46 87.33 85.83 428 m
No-Thinking-RFT 80.67 66.50 92.15 83.83 83.67 155 m
Adaptive-Thinking 81.65 67.38 90.31 88.00 84.67 639 m

Table 2: Performance comparison of PuzzleVQA and AlgoPuzzleVQA across 2B and 7B models.

2B 7B
Method PuzzleVQA AlgoPuzzleVQA PuzzleVQA AlgoPuzzleVQA
Thinking-RFT 52.50 27.72 66.60 24.78
Think-After-Answer 64.70 26.94 80.45 28.11
No-Thinking-RFT 70.85 29.17 80.65 29.39
Adaptive-Thinking 75.45 27.94 85.05 29.00

is set to 4 for both 2B and 7B models. The number of rollout is set to 4 for both 2B and 7B models.
B is set to 0.04, learning rate is set to 1 x 1075, The temperature is set to 1 for all experiments.

Multi-Modal Math Reasoning. We utilize the Math-40K [61] as the find-tuning data and fine-tune
models 1 epoch. Then we test the fine-tuned models on both MathVista [43] and MathVision [71]].
The maximum length of input prompt and response are set to 4096 and 512 respectively. The number
of rollout is set to 8 for 2B model, and 4 for 7B model. [ is set to 0.04, learning rate is set to 1 x 107,

Visual Puzzle Reasoning. We follow the code of [[7] to generate a training dataset with 6.5k data
and fine-tune models 2 epochs. We then test fine-tuned models on PuzzleVQA [7] as in-domain
testing, and on AlgoPuzzleVQA [17] as out-of-domain testing. 3 is set to 0.04, learning rate is set
to 1 x 1075, The batch size is set to 1 per GPU and we use 2-step gradient accumulation during
training.

3.3 Results & Findings

We compare the results of four different thinking strategies here and show examples of responses
in Figure 2TFigure [25] We report the results of visual perception on Table [T} math reasoning on
Table[3] and puzzle reasoning on Table[2] We analyze these results and discuss several findings below.

Finding 1: For small models with weak ability (e.g., 2B size), Thinking-RFT may lead to
trivial reasoning and inferior performance compared with No-Thinking. We observe that for
2B models, by using much less fine-tuning time, No-Thinking-RFT outperforms Thinking-RFT in
most benchmarks by a large margin, including even Mathvista and except only MathVision. We find
that for Mathvista, No-Thinking-RFT outperforms Thinking-RFT on all tasks except math world
problems (MWP). It is reasonable that Thinking-RFT outperforms No-Thinking-RFT in MWP and
MathVision since these problems need much computation for obtaining final answers and it is hard to
directly output correct answers. When looking deeper into model responses under Thinking-RFT,
we find that most reasoning is trivial, i.e., it does not contribute meaningfully to the final answer,
especially for complex reasoning tasks (refer to Figures [[5h-Figure [20] for qualitative examples).
These results suggest that when the capability of models is poor, the thinking process during RFT may
converge to trivial solutions and finally lead to inferior performance compared with No-Thinking.

Finding 2: Visual perception and puzzle tasks do not need thinking. We find that No-Thinking-
RFT outperforms Thinking-RFT on spatial reasoning, classification (7B results in Table[T2)), and
puzzle tasks across both 2B and 7B models, while Thinking-RFT performs better on math reasoning
with the 7B model. We notice that although puzzle tasks typically require complex reasoning,
No-Thinking-RFT outperforms Thinking-RFT on both 2B and 7B models. This may be because
these tasks rely on visual rather than linguistic reasoning, and language-based reasoning might cause



Table 3: Accuracy (%) of 2B and 7B models on MathVista sub-tasks and MathVision overall. TQA:
Textbook QA, VQA: Visual QA, Geo: Geometry, MWP: Math Word Problem, FQA: Figure QA.

Model Method MathVista MathVision
Overall TQA VQA Geo MWP FQA
Thinking-RFT 44.90 46.84 36.87 37.02 52.15 50.19 16.45
7B Think-After-Answer 48.50 51.27 44.69 36.54 50.54 57.25 14.80
No-Thinking-RFT 48.80 52.53 46.37 38.94 49.46 55.39 13.49
Adaptive-Thinking 50.20 50.00 51.96 37.98 52.69 56.88 13.16
Thinking-RFT 64.60 65.19 59.22 60.58 68.28 68.40 21.71
7B Think-After-Answer 62.00 63.92 58.10 58.65 63.98 64.68 21.71
No-Thinking-RFT 59.10 65.19 58.66 55.77 56.45 60.22 18.09
Adaptive-Thinking 64.70 64.56 56.42 59.13 74.73 67.66 21.05
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Figure 2: Comparison of inconsistency proportion and test accuracy among different datasets.

hallucinations, or the 7B model’s puzzle-solving capability may still be limited. In summary, visual
perception and puzzle reasoning tasks do not need reasoning among test model sizes, and RFT
without thinking is beneficial to both accuracy performance and computational efficiency.

Finding 3: There are inconsistencies between thinking and answer content of some responses.
We use GPT-4o0 [25] to extract answers from the thinking tag and compare them with those in the
answer tag (see Appendix [E-I]for details). We find inconsistencies in some responses between the
thinking and answer tags. Figure [2] visualizes the proportion of inconsistent responses per dataset
and their respective accuracies in both tags. We also show examples of inconsistent responses in
Figure O~Figure[T4] We found that 1). Inconsistencies are more common in reasoning tasks such
as puzzles than in perception tasks like classification. 2). For inconsistent responses, accuracy of
answers in answer tags is much higher than in thinking tags, and both are below the overall accuracy.
These results suggest that encouraging more consistent responses could improve performance,
particularly on reasoning tasks. We leave strategies for enhancing consistency to future work.

Finding 4: Performance gain of No-Thinking-RFT over Thinking-RFT on certain tasks stems
from improved learning during RFT and avoidance of inference overthinking. We test the
No-Thinking inference mode of Thinking-RFT by appending an empty thinking tag during inference
and show the results on Table[T7] We find that while appending empty thinking tags during inference
could improve performance on CVBench and puzzle tasks, its performance is still far behind No-
Thinking-RFT. This suggests that the gain of No-Thinking-RFT primarily stems from two factors:
improved learning during fine-tuning and the avoidance of overthinking during inference.

Finding 5: Explicit thinking before verifiable answers may leads to slower reward convergence
and inferior performance. We observe that Think-After-Answer outperforms Thinking-RFT in
perception and puzzle tasks. We also visualize the accuracy-reward curves on the SAT and Puzzle
datasets in Figure 3] (2B) and Figure [§] (7B), where Think-After-Answer achieves faster reward
convergence and higher final accuracy than Thinking-RFT. These results indicate that placing explicit
CoT after verifiable answers during RFT can alleviate its negative impact, improving both convergence
speed and performance, thus validating our hypothesis that explicit thinking before answers may lead
to slower reward convergence and reduced performance on perception and puzzle tasks.

Finding 6: MLLMs can adaptively learn whether to think on task level during RFT on task level.
We find that Adaptive-Thinking performs comparably to or better than the stronger of Thinking-RFT



Table 4: Parameter Difference (L; Norm)

Dataset Method Visual Language MLP_V norm_V attn_.V MLP_L norm_L attn_L
DTD Thinking 0.267 0.434 0.206 0.001 0.158 0.372 0.000 0.153
No-Thinking  0.237 0.402 0.184 0.001 0.143 0.379 0.000 0.154
SAT Thinking 0.503 0.712 0.398 0.003 0.311 0.614 0.000 0.256
No-Thinking 0.518 0.718 0.398 0.003 0.327 0.704 0.000 0.281
Math Thinking 0.415 0.735 0.364 0.002 0.210 0.691 0.000 0.270
No-Thinking 0.731 0.931 0.581 0.004 0.455 0.880 0.000 0.388
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Figure 3: Comparison of accuracy reward convergence speed on SAT dataset over steps of Thinking-
RFT, Think-After-Answer, adn No-Thinking-RFT across 2B and 7B models.

and No-Thinking-RFT. Figure [6] shows the response length trend curves during RFT, and Table[T0]
summarizes the statistics of test response types. We observe that models initially produce a mix of
thinking and No-Thinking responses, but gradually converge to a single response type—either think
or not think and matching the better-performing strategy. For instance, the 2B model converges to
No-Thinking response, while the 7B model converges to thinking response for math tasks. These
results suggest that MLLMs can learn whether to think during RFT based on model capacity and task
complexity. Despite promising results, the same task can present problems requiring varied responses.
Ideally, Adaptive-Thinking would operate at the problem level, a refinement for future work.

3.4 Parameter Change during RL

We compare the changes in parameters by computing the L; norm of parameter difference. Our
analysis focuses on three aspects: 1. Modality: changes between visual and language components, 2.
Module: changes in different modules, 3. Layer: changes across different layers.

We analyzeQwen2VL-2B on SAT, DTD, and Math datasets using Thinking and No-Thinking-RFT.
Modality- and Module-level results are given in the table below. We directly discuss layer-level
findings as the table is too large.

1. Modality-Level: Language weights drift more than visual weights for all dataset—and the No-
Thinking strategy raises visual drift slightly. This implies that the reward gradient mainly applies to
the language modality.

2. Module-Level: MLP is the dominant changed component for both visual and language parts, and
attention blocks change less but still contribute near 15-20%.

3. Layer-Level: With Thinking, weight drift grows toward deeper layers as reward back-propagates
through the whole reasoning chain to high-level semantics. With No-Thinking, drift peaks in early-
mid layers and then declines, indicating that low-level features are reshaped so a shallow forward
path already produces the reward token.

4 Case Study on Image Classification Tasks

In this section, we introduce the experiment results on classification. Recent works [81]] show that the
classification abilities of MLLMs [42} 136, 12,13} 149, |6] are poor due to pre-training data limitations



Table 5: No-Thinking-RFT outperforms Thinking-RFT in 10 out of 11 datasets under few-shot
learning results. S.C.: StanfordCars dataset. F.A.: FGVCAircraft dataset.
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Qwen2VL 88.56 5479 4568 7754 708 6443 7389 3577 6383 6622 4275 6221
SFT 9391 71336 7516 7575 41.60 9687 8580 7113 41.66 63.81 60.15 70.65
Thinking-RFT 98.09  69.92 4946 8894 9224 8656  87.24 80.24 8457 821 7441 8125

No-Thinking-RFT 9846  73.52 58.02 90.78 92.31 91.6 86.13 925 86.72 83.82 7441 84.39

and SFT with large-scale data could improve performance [81]. However, acquiring large-scale
datasets incurs substantial cost and computational overhead [84]. Few-shot learning thus emerges as
a compelling alternative, previously validated in contrastive vision-language models (VLMs) 154 83}
84, 138}, 130], but its application to MLLMs remains underexplored. We report the results of few-shot
learning, free-lunch phenomenon, convergence and efficiency comparison in this section, the results
of base-to-new setting in Appendix [F.I] open-set classification in Appendix [F2] the results of 7B
Qwen2-VL-Instruct [[72] in Appendix [F.3] and examples of model response in Appendix[I|

4.1 Experimental Setup

Setting. In this paper, we mainly focus on closed-form classification for MLLMs, where a sub-
set of class names is provided for selection. The question format is {Question} {Instruction
prompt}, where {Question} and {Instruction promptl} will be replaced by the specific ques-
tions and instruction prompt of each dataset and method respectively.

Datasets. Following [83| 184], we conduct experiments on 11 public classification benchmarks.
The names, questions, statistics of each dataset are provided in Appendix [C} Due to computational
resource and model input limit, we select a subset of class labels as the choice list. For few-shot
classification, we sample 40% of labels including the gt labels to form the choice list in question.

Implementation Details. We utilize Qwen2-VL-2B-Instruct [72] as the base model, and fine-tune all
parameters, following [82, [3]]. All training is conducted in 8 A100 GPUs. The batch size is set to 1
per GPU and we use 2-step gradient accumulation during training [3} 60]. All images are resized to
328x328 resolution and no data augmentation is used. For inference test, we first extract answers
from the answer tag and then verify if class names are in answers. If the answer tag does not exist
in model responses we directly verify if class names are in model responses, following [81]. The
temperature is set to 1.0 for all experiments. The random seed is set to 100 for all experiments.

More details about dataset construction and implementation details are provided in Appendix

4.2 Few-Shot Learning Results

In this subsection, we present the results of few-shot learning. We train models on 4-shot setting and
report the accuracy results in Table [5|for 2B models and Table[7)for 7B models. For 2B models, we
observe that Thinking-RFT markedly surpasses SFT in most datasets, resulting in a notably higher
average accuracy than SFT, which implies that rule-base RFT can let model learn better downstream
knowledge than SFT. We further discover that No-Thinking-RFT outperforms Thinking-RFT in 10
out of 11 datasets, ultimately achieving a 3.14% higher average accuracy compared to Thinking-RFT.
For 7B models, the performance gap between Thinking-RFT and No- Thinking-RFT narrows but
remains. These results indicate that RFT without the thinking process can effectively enhance model’s
performance on classification than Thinking-RFT.

4.3 Free-Lunch Phenomenon

In this section, we discuss the free-lunch phenomenon. Previous work in few-shot contrastive VLM
fine-tuning has demonstrated that, when fine-tuned on a specific dataset, the performance of VLMs
on other datasets is drastically degraded, a phenomenon known as catastrophic forgetting [83| 30].
However, we will show that Thinking-RFT and No-Thinking-RFT can enhance the performance of
MLLMs on other datasets when fine-tuned on one specific dataset. We visualize the improvement of
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Figure 4: Free-lunch phenomenon: Both Thinking-RFT and No-Thinking-RFT lead to cross-dataset
accuracy gains. Red: increase; blue: decrease; x-axis: test dataset; y-axis: fine-tuning dataset.

Table 7: Comparison of Thinking-RFT and No-Thinking-RFT with 2B and 7B models on fewshot
classification. DTD: DescribableTextures.

Model Method DTD EuroSAT OxfordFlowers StanfordCars Average

7B Thinking-RFT 77.90 53.17 93.91 84.19 77.29
Think-After-Answer  76.29 62.95 94.84 89.32 80.85
Adaptive-Thinking ~ 79.60 56.62 96.86 89.92 80.75
No-Thinking-RFT 80.56 58.91 94.24 94.02 81.93

Thinking-RFT and No-Thinking-RFT compared with zero-shot Qwen2VL-instruct-2B in Figure 4]
We find that when fine-tuned on a specific dataset, both Thinking-RFT and No-Thinking-RFT yield
improvements on other datasets in most instances, despite variations in data distribution and even
completely different class lists. These results indicate that the application of rule-based verifiable
signals and reward loss for model fine-tuning can effectively compel models to acquire essential
classification knowledge instead of memorizing. This equips them to achieve superior performance
on entirely new datasets. We discuss more about the free lunch phenomenon in Appendix

4.4 Efficiency Comparison

In this subsection, we compare the training and inference
efficiency of SFT, Thinking-RFT and No-Thinking-RFT, Typle 6: Thinking-RFT requires much
using the ImageNet dataset as a case study. The results are  more time (in mins) for finetuning and in-
presented in Table[] We find that Thinking-RFT requires ference 1.s5. SFT and No-Thinking-RFT.
significantly more time for both training and inference

compared to SFT and No-Thinking-RFT, attributable to Method FT Infer

the necessity of generating multiple lengthy responses
. . . SFT 35 20
during fine-tuning and long reasoning response before I
.. . Thinking-RFT 1587 30
answers during inference. In contrast, SFT optimizes only No-Thinking-RFT 94 26

the label tokens during fine-tuning, and No-Thinking-RFT
compels the model to output only the ground truth labels during this phase, which significantly
reduces the time required. During the inference phase, both methods are designed to output solely
class labels, resulting in considerably reduced inference time.
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Figure 5: Comparison of accuracy reward convergence speed and test accuracy over steps between
Thinking-RFT and No-Thinking-RFT. No-Thinking-RFT converges faster than Thinking-RFT.

4.5 Convergence Comparison

In this subsection, we discuss the comparison in convergence rates between Thinking-RFT and No-
Thinking-RFT. We illustrate the accuracy reward at each training step and examine the test accuracy
at select intervals on the DescribableTextures and OxfordFlowers datasets. The results are shown
in Figure[5] We observe that No-Thinking-RFT exhibits a faster convergence speed compared to
Thinking-RFT, as evidenced by a higher accuracy reward and significantly higher test accuracy in the
early stages of training (within the first 30 steps). These findings imply that slower convergence speed
and lower accuracy reward of Thinking-RFT leads to inferior performance than No-Thinking-RFT.

5 Related Works

Rule-based RFT has recently achieved significant progress in LLMs [19] 26} [68] and show superior
performance compared with SFT. To extend this success to MLLMs, numerous studies have been
proposed [411 (60}, [82], 24],[46], [3]], aiming to replicate phenomena observed in Deepseek-R1, such as
increasing response length and emergence of ‘aha’ moments. Although these initial efforts offer
encouraging outcomes, none have thoroughly investigated the role of thinking processes during
RFT. Recent research into LLM and MLLM inference suggests that overthinking can degrade
performance [27, [64]], providing valuable insights into model reasoning. However, these studies
exclusively examine the inference stage and do not explore the impact of thinking during the fine-
tuning process. As a result, the role of the explicit thinking process in RFT remains unclear. In this
paper, we study the effect of explicit thinking during RFT and conduct extensive experiments across
different model sizes and tasks. More detailed related works are provided in Appendix [B]

6 Conclusion

In this paper, we conduct a comprehensive study on the explicit thinking in RFT. We begin by
extending Thinking-RFT to classification. Experiments show that Thinking-RFT performs much
better than SFT on both base-to-new and few-shot settings. Furthermore, we observed a free-lunch
phenomenon with classification RFT, wherein the performance of a model fine-tuned on one dataset
improves on other datasets. We then delve into the thinking process of RFT. Inspired by recent
research on inference overthinking and observations regarding the decreasing response length of
classification RFT, we introduce No-Thinking-RFT, which compels the model to bypass thinking.
We conduct extensive experiments on various visual reasoning tasks across different model sizes to
evaluate Thinking and No-Thinking-RFT. The results reveal four key findings about the inconsistency
in model responses, the impact and the necessity of thinking across different tasks and model sizes,
and the stem of No-Thinking-RFT’s performance gain. Finally, we propose Thinking-After-Answer
to verify the hypothesis that explicit thinking before verifiable reward may hinder fine-tuning and
Adaptive-Thinking to explore whether MLLMs can learn when to think or not during RFT.

Limitations This study has two main limitations. First, computational constraints restricted our
experiments to models 7B and smaller; thus, the applicability of our findings to larger models remains
unverified. Second, our Adaptive-Thinking method converges to a single response mode (thinking or
No-Thinking) at the task level, rather than adapting at the more granular problem level. Designing
methods to achieve this problem-level adaptation is a direction for future work.
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Table 8: Statistics and questions for each Dataset.

Dataset Classes Train Val Test Question

ImageNet 1,000 1.28M N/A 50,000 “What type of object is in the photo?”
Caltech101 100 4,128 1,649 2,465 “What type of object is in the photo?”
OxfordPets 37 2,944 736 3,669 “What type of object is in the photo?”
StanfordCars 196 6,509 1,635 8,041 “What type of object is in the photo?”
Flowers 102 4,093 1,633 2,463 “What type of object is in the photo?”
Food101 101 50,500 20,200 30,300 “What type of object is in the photo?”
FGVCAircraft 100 3,334 3,333 3,333 “What type of aircraft is in the photo?”
SUN397 397 15,880 3,970 19,850 “What type of object is in the photo?”

DTD 47 2,820 1,128 1,692 “What type of texture is in the photo?”
EuroSAT 10 13,500 5,400 8,100 “What type of object is in the centered satellite photo?”
UCF101 101 7,639 1,898 3,783  “What actions is the person performing in the photo?”

A Group Relative Policy Optimization

We follow Deepseek-R1 [19]159] to employ Group Relative Policy Optimization (GRPO) as the
RL algorithm for optimization. Unlike SFT, which optimizes models through token-level losses,
RL-based methods like GRPO utilize policy gradients, calculated from reward loss, for optimization.
This encourages reasoning by exploring a much larger solution space [[19].

Let () be the gestion set, 7y, be the policy model and {01, 02, - , 0} be a group of response from
Tp,, for a question gq. Let 7, denote the frozen reference model. The GRPO algorithms aim to
optimize model 7y by the following objective:

JGrro (9) = Eq~Q7{01}§:1 ~T 0014

1 mo(04lq) mo(04lq)
lG Zmin (MA; clip (M, 1—e1+ e) A,;) - BDKL(ﬂgﬂref)] ,

i=1 mo,4(0ilg) T64a (0i|q)

where € and (8 are clipping hyper-parameter and the coefficient controlling the Kullback-Leibler
(KL) penalty, respectively. Here, A; = ri—mean({r1,rz,....,rG })

std({r1,72,...,rc})

{r1,72,...,7G}, and D (mg||mef) = Tt (0sla) log (M) — 1 is the KL divergence loss

is the advantage using the group reward

mo(0ilq) mo(0ilq)
to prevent current model 7y deviating too much from reference model 7g,_,. GRPO eliminates the
critic model in PPO by estimating the relative advantage by sampling a group of responses {o; }$
and normalizing their rewards within the group to compute a relative advantage, which is more
computationally efficient [59].

B Detailed Related Works

B.1 MLLM for Image Classification

Image classification is at the core of machine learning research, driving many fundamen-
tal advancements in theoretical understanding and practical applications. Early CNN-based
[35 132, 162, 166, 20, 37, 22} 167]] models perform classification by hierarchically extracting spatial
features through convolutional layers and mapping them to class probabilities. Vision transformers
[15] 1argely follow the same pipeline but replace convolution with self-attention [70] for global feature
modeling. CLIP [55] classifies images by computing the similarity between the image embedding
and text embeddings of category descriptions and then selecting the closest match. More recently,
the advent of MLLM enabled a new paradigm for image classification that leverages both vision
encoders and LLMs. Unlike traditional classifiers, MLLMs take images and natural language prompts
as input and generate text-based outputs, making them more interpretable, flexible, and user-friendly.
However, MLLM for image classification is still an underexplored area. Recent work [81]] shows
that MLLMs perform poorly at classification but can be improved with SFT. In this work, we take
a different angle and investigate a novel approach: using rule-based RL to fine-tune MLLM for
classification. We systematically study its effectiveness compared to SFT and show its advantage and
potential improvements.
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B.2 RL for Post Training

Reinforcement learning (RL) has become an important technique used in LLM and MLLM post-
training. Introduced by InstructGPT [50] as Reinforcement Learning from Human Feedback (RLHF),
RL was used to align LLM and MLLM output with human’s preference. Due to the computation
inefficiency of PPO [58]] used in RLHF, some offline RL algorithms [47}56] and value model free
RL algorithms [59, 23] were introduced in the post training stage. Besides, researchers also explored
how to build a good reward model in terms of robustness and reward density 73,18} 39]. Recently,
DeepSeek-R1 [19]] applied the rule-based reward to the reinforcement training of LLM, proving the
huge potential of RL in terms of incentivizing LLM’s reasoning ability. Inspired by DeepSeek-R1,
we applied reinforcement learning to the classification task with a rule-based reward function, and
analyzed its generalizability and learning efficiency compared to supervised fine-tuning.

B.3 Rule-Based Reinforcement Fine-tuning

Rule-based reinforcement fine-tuning (RFT) has recently achieved much process in large language
models [[19} 26, 68]]. To transfer this success to MLLMs, numerous studies have been proposed [41,
60, 182, 124] 1461 3| 134, [53]]. These works aim to replicate phenomena observed in Deepseek-R1, such
as increased response length and the emergence of *aha’ moments. However, the role of the thinking
process in RFT has not been explored in depth in these works. In this paper, we investigate its impact
across different model sizes and tasks.

B.4 Overthinking in LLMs and MLLMs

Recent advancements in sophisticated reasoning abilities enabled by techniques such as Chain-of-
Thought (CoT) prompting [74] have marked a significant milestone in the development of large
language models (LLMs) and multimodal LLMs (MLLMs). CoT allows models to generate inter-
mediate reasoning steps when solving complex problems, thereby improving both transparency and
performance. However, this capability has also introduced a notable challenge referred to as the
"overthinking phenomenon"[65].

Overthinking describes the tendency of LLMs and MLLMs to produce unnecessarily verbose,
redundant, and computationally expensive reasoning chains, even for simple queries. This behavior
can hinder practical deployment and, in some cases, degrade performance [40l |4, |10l [75] 28} 127, [29]
78, [11]. For example, [40]] shows that CoT can harm accuracy on tasks where extra deliberation
impairs human performance. [4] quantifies overthinking in powerful LLMs and proposes pruning
strategies, [10] shows excessive internal reasoning degrades success of LLM-based agents and
[27] demonstrates that reasoning offers limited benefits on commonsense tasks. Additionally, [28]
shows that overthinking can negatively impact MLLM inference accuracy and [/8] enhances CoT
reasoning by representing its steps in a continuous space which makes CoT more efficient and
improve performance.

While these studies provide valuable insights into model reasoning behavior, they focus exclusively
on inference. The effect of explicit reasoning during reinforcement fine-tuning (RFT), however,
remains largely unexplored.

C Dataset Statistics and Details

Following CoOp [84]], we conducted extensive experiments on 11 public classification benchmark
datasets to evaluate the effectiveness of the proposed CLIPFit. The datasets are ImageNet [14],
Caltech101 [16]], OxfordPets [S1]], StanfordCars [31]], Flowers102 [48]], Food101 [2], FGVCAircraft
[44], SUN397 [76l], DTD [9], EuroSAT [21]], and UCF101 [63]]. The dataset statistics and the
questions for each dataset are shown in Table 8]

For general reasoning dataset, CVBench is a benchmark for spatial reasoning and SAT is a training
dataset for spatial reasoning. PuzzleVQA is a dataset for visual puzzle reasoning. MathVista is for
general math reasoning and MathVision is for competition math reasoning.

The examples of these datasets can be found in
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Table 9: Comparison of Qwen2VL instruct, SFT, Thinking-RFT, and No-Thinking-RFT in the base-
to-new generalization setting. No-Thinking: No-Thinking-RFT. Base: base class accuracy. New: new
class accuracy. H: harmonic mean accuracy. No-Thinking: No-Thinking-RFT.

(a) Average over 11 datasets.

(b) ImageNet.

(c) Caltech101.

Base New H

Base New H

Qwen2VL 62.1 66.27 64.12
SFT 67.4 70.73 69.03
Thinking-RFT 81.17 79.15 80.15
No-Thinking 83.42 81.88 82.64

Base New H
Qwen2VL 61.56 74.9 67.58
SFT 27.78 47.78 35.13

Thinking-RFT 88.12 90.01 89.05
No-Thinking 88.97 90.66 89.81

Qwen2VL 88.83 92.9 90.82
SFT 93.87 93.01 93.44
Thinking-RFT 97.74 95.2 96.45
No-Thinking 97.93 95.63 96.77

(d) DescribableTextures. (e) EuroSAT. (f) Food101.
Base New H Base New H Base New H
Qwen2VL 60.99 61.34 61.17 Qwen2VL 54.52 63.54 58.69 Qwen2VL 74.07 80.42 77.12
SFT 7198 71.41 71.7 SFT 91.55 77.87 84.16 SFT 74.27 77.82 76.0

Thinking-RFT 77.42 67.82 72.3
No-Thinking 77.42 70.37 73.72

Thinking-RFT 58.09 69.33 63.22
No-Thinking 66.43 74.13 70.07

Thinking-RFT 87.29 87.56 87.42
No-Thinking 88.77 88.93 88.85

(g) OxfordFlowers. (h) OxfordPets. (i) StanfordCars.
Base New H Base New H Base New H
Qwen2VL 61.1 60.99 61.05 Qwen2VL 75.59 91.79 82.9 Qwen2VL 43.81 33.15 37.74
SFT 97.77 94.95 96.34 SFT 84.06 86.28 85.15 SFT 74.54 69.68 72.03

Thinking-RFT 87.78 74.97 80.87
No-Thinking 88.71 76.73 82.29

Thinking-RFT 83.28 94.49 88.53
No-Thinking 86.64 95.5 90.85

Thinking-RFT 82.08 75.74 78.78
No-Thinking 91.13 87.04 89.04

(j) SUN397. (k) UCF101. (1) FGVCAircraft.
Base New H Base New H Base New H
Qwen2VL 56.97 65.8 61.07 Qwen2VL 69.6 64.62 67.02 Qwen2VL 36.07 39.47 37.7

SFT 27.39 37.8 31.77
Thinking-RFT 81.03 82.52 81.77
No-Thinking 83.18 84.14 83.66

SFT 59.95 63.93 61.87
Thinking-RFT 79.47 74.95 77.14
No-Thinking 80.47 79.18 79.82

SFT 38.23 57.53 45.94
Thinking-RFT 70.53 58.07 63.69
No-Thinking 68.01 58.31 62.79

D Implementation Details

D.1 Dataset Construction for Classification

Due to computational resource and model input limit, we select subset of class labels as the choice
list. For few-shot classification, we sample 40% of labels including ground truth labels to form the
classification list in question. For base-to-new classification, we sample 80% of labels including
ground truth labels to form the classification list in question. If the length of the final choice list is
less than 30, we include all class labels in the choice list, and if the length of the final choice list is
larger than 100, we include 100 class labels in the choice list.

D.2 Implementation Details for Classification

We implement our code in Pytorch [52f]. We utilize Qwen2-VL-2B-Instruct [72] as the base model,
and fine-tune all parameters during training, following [82}[3]. All training is conducted in 8 A100
GPUs. The batch size is set to 1 per GPU and we use 2-step gradient accumulation during training.
All images are resized to 328x328 resolution with no data augmentation. We first extract answers
from answer tags (<answer> ...</answer>) and then verify if class names are in answers. If the
answer tag does not exist in model responses we directly verify if class names are in model responses,
following [81]. Both the maximum prompt length and maximum response length are set to 1024 for
all datasets except StanfordCars dataset. The maximum prompt length and maximum response length
are set to 1024 for StanfordCars dataset are set to 2048 and 1024, respectively. The number of rollout
is set to 4 for both 2B and 7B models. S is set to 0.04, learning rate is set to 1 X 106,
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D.3 Implementation Details for More Diverse Tasks

Visual Perception. We follow [82] to fine-tune models on SAT dataset [57] 2 epochs and then test on
CVBench dataset [69]. We also include classification results for comparison. The maximum length
of prompt and response is both set to 1024. The number of rollout is set to 4 for both 2B and 7B
models. The number of rollout is set to 4 for both 2B and 7B models. /3 is set to 0.04, learning rate is
set to 1 x 1075, The batch size is set to 1 per GPU and we use 2-step gradient accumulation during
training.

Multi-Modal Math Reasoning. We utilize the Math-40K [61] as the find-tuning data and fine-tune
models 1 epoch. Then we test the fine-tuned models on both MathVista [43] and MathVision [71]].
The maximum length of input prompt and response are set to 4096 and 512 respectively. The number
of rollout is set to 8 for 2B model, and 4 for 7B model. [ is set to 0.04, learning rate is set to 1 x 109,
The batch size is set to 1 per GPU and we use 2-step gradient accumulation during training.

Visual Puzzle Reasoning. We follow the code of [7] to generate a training dataset with 6.5k data and
fine-tune models 2 epochs. We then test fine-tuned models on PuzzleVQA [7] as in-domain testing,
and on AlgoPuzzleVQA [17] as out-of-domain (OOD) testing. 3 is set to 0.04, learning rate is set
to 1 x 1075, The batch size is set to 1 per GPU and we use 2-step gradient accumulation during
training. The maximum length of prompt and response is both set to 1024. The number of rollout is
set to 8 for 2B model, and 4 for 7B model.

E Prompt

E.1 Few-shot Prompt

We provide the prompt for thinking answer extract here. We use classification as the example, and for
other datasets, the only difference is the few-shot examples.

Prompt: [ will give you a question, answer and the model response. The model response is
in the form <thinking>...</thinking><answer>...</answer>. The thinking process is in <think-
ing>...</thinking> and the answer is in <answer>...</answer>.

I want to to extract the answer in thinking tags and see if it is the same as the answer in answer tag.
For multichoice problem, extract the choice (e.g., A,B,C) that corresponding to the answer meaning
of thinking process in thinking tag. If there is no answer in thinking tag, output None. Please output
three items answer in thinking tag: answer in answer tag:

consistency with answer tag:

Below is some examples:

Question: What type of texture is in the photo?

Please choose one from list [ perforated, marbled, zigzagged, waffled, meshed, flecked, sprinkled,
matted, woven, grooved, gauzy, bumpy, polka-dotted, potholed, veined, frilly, grid, bubbly, cobwebbed,
scaly, pleated, crosshatched, wrinkled, freckled, porous, stained, swirly, chequered, spiralled, fibrous].
answer: veined

model response: <think> The texture in the photo appears to be a series of parallel lines or grooves
running along the surface of the leaf. This suggests a grooved texture. </think> <answer> grooved
</answer>

answer in thinking tag: grooved

answer in answer tag: grooved

consistency with answer tag: Yes

Question: What type of texture is in the photo?

Please choose one from list [ fibrous, striped, chequered, swirly, studded, lacelike, knitted, freckled,
crosshatched, wrinkled, cobwebbed, grooved, waffled, grid, scaly, bubbly, sprinkled, paisley, spi-
ralled, interlaced, porous, veined, blotchy, pitted, zigzagged, crystalline, flecked, potholed, cracked,
honeycombed].

answer: potholed

model response:<think> The photo shows a road with visible damage, including cracks and pot-
holes. The texture appears to be characterized by these irregularities and depressions in the surface.
</think> <answer> potholed </answer>

answer in thinking tag: None

answer in answer tag: potholed
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Table 10: Comparison of Adaptive-Thinking model response type among 2B and 7B models on
MathVista, MathVision, CVBench, PuzzleVQA (Puzzle), and AlgoPuzzleVQA (AlgoPuzzle).

Model Response Form MathVista MathVision CVBench Puzzle AlgoPuzzle

B w/ Thinking 0% 0% 0% 0% 0%
w/o Thinking 100% 100% 100% 100% 100%

7B w/ Thinking 100% 100% 99.6% 0% 0%
w/o Thinking 0% 0% 0.4% 100% 100%

consistency with answer tag: None

Question: What type of texture is in the photo?

Please choose one from list [ dotted, knitted, woven, honeycombed, bubbly, lacelike, swirly, interlaced,
spiralled, marbled, zigzagged, pleated, stratified, gauzy, chequered, fibrous, paisley, lined, striped,
studded, grid, crosshatched, crystalline, blotchy, stained, wrinkled, frilly, scaly, waffled, perforated].
answer: spiral

model response: <think> The photo shows a pattern with concentric circles that twist and turn in a
spiral-like manner. This suggests that the texture is related to the spiral pattern.</think> <answer>
swirly </answer>

answer in thinking tag: spiral

answer in answer tag: swirly

consistency with answer tag: No

(two more examples)

E.2 Thinking-After-Answer

The prompt of Think-After-Answer is designed as: {Question} Please first output the answer in
<answer> </answer> tags and then output a brief reasoning process in <reason> </reason> tags.

E.3 Adaptive-Thinking

We provide more discussions about Adaptive-Thinking method in this subsection.

Instruction Prompt. {Question}. Please first identify whether this problem requires intermediate
thinking or calculation. If the problem requires thinking or calculation, output the thinking and
calculation process inside <think> </think> tags and the final answer inside <answer> </answer>
tags. If no thinking or calculation is required, directly output the final answer inside <answer>
</answer> tags. Your output should follow one of two cases: (1) '<answer> ... </answer>’, (2)
‘<think> ... </think> <answer> ... </answer>".

Format Reward. Both the thinking format (<think> ... </think> <answer> ... </answer>) and the
direct-answer format (<answer> ... </answer>) will be assigned a reward of 1.

Accuracy Reward. The accuracy reward is not changed as Thinking-RFT.

F More Experimental Results on Classification

F.1 Base-to-New Results

In this subsection, we introduce the results on the base-to-new generalization setting. Following [84]],
We split each dateset into two disjoint groups: the base class dataset and the new class dataset. This
experimental setup is designed to assess the model’s ability to acquire downstream knowledge while
simultaneously demonstrating generalization to novel information. All the methods are fine-tuned on
the base class dataset and evaluated on both the base and new class test dataset. We conduct 4-shot
experiments. The results are shown in Table 0]

As demonstrated in Table [0 our proposed Thinking-RFT framework notably surpasses SFT in
performance. In detail, Thinking-RFT exhibits an approximately 14% higher accuracy for base
classes and a 9% increase for new class accuracy, leading to an aggregate improvement of 11% in
the harmonic mean accuracy. These results demonstrate the effectiveness of rule-base reinforcemnet
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Figure 6: Comparison of response length trend on SAT, Math40k, and PuzzleVQA datasets over
steps of Thinking-RFT, No-Thinking-RFT , and Adaptive-Thinking across 2B and 7B models.

fine-tuning in image classification. However, we also find that SFT can surpass Thinking-RFT in
certain datasets, such as OxfordFlowers and EuroSAT, indicating that SFT may hold advantages in
specific scenarios. We also observed that SFT significantly underperforms on the ImageNet and
SUN397 datasets. The likely reason is that the prompts in these two datasets are very lengthy,
preventing SFT from effectively memorizing classification knowledge, thereby resulting in poor
performance.

The proposed No-Thinking-RFT demonstrates superior performance, in both base class and new class
average accuracy, resulting in a 2.5% enhancement in average harmonic mean accuracy, compared
with Thinking-RFT. These findings suggest that omitting the thinking process during fine-tuning
allows rule-based RL to achieve improved classification performance and enhanced generalization
capabilities than with thinking process.

F.2 Open-set Classification Comparison

We present the results of open-set classification using Thinking-RFT and No-Thinking-RFT in this
subsection. Unlike closed-form classification, open-set classification is not a well-defined problem,
which is much harder or even unrealistic for some datasets, since synonyms, plural forms, and name
partially missing will be judged as incorrect. For example, in the StanfordCars dataset [31], the
model can hardly output the correct year of the car in images. Therefore, we selected five datasets
with class names that are relatively straightforward for the model to output and compare the few-shot
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Table 11: Comparison on open-set Few-shot learning results.

ImageNet Caltechl01 Foodl01 Flowersl02 OxfordPets Average

Qwen2VL 46.57 62.96 57.79 48.44 47.40 52.63
Thinking-RFT 54.84 79.07 73.51 67.64 89.94 73.0
No-Thinking-RFT 56.45 86.29 71.99 71.21 86.07 74.40

Table 12: Comparison of Thinking-RFT and No-Thinking-RFT with 2B and 7B models on fewshot
classification. DTD: DescribableTextures.

Model Method DTD EuroSAT OxfordFlowers StanfordCars Average

B Thinking-RFT 69.92 49.46 86.56 80.24 71.55
No-Thinking-RFT 73.52  58.02 91.6 92.5 78.91

7B Thinking-RFT 77.90 53.17 93.91 84.19 77.29
Think-After-Answer  76.29 62.95 94.84 89.32 80.85
Adaptive-Thinking  79.60 56.62 96.86 89.92 80.75
No-Thinking-RFT 80.56 58.91 94.24 94.02 81.93

learning performance between Thinking-RFT and No-Thinking-RFT. The results are shown in Table
[IT] No-Thinking-RFT outperforms Thinking-RFT on three datasets among five datasets, ultimately
achieving a 1.4% improvement in average accuracy over Thinking-RFT.

F.3 Results of Classification with 7B Models.

We further conduct experiments of classification on DescribableTextures, EuroS AT, OxfordFlowers,
StanfordCars datasets using Qwen-VL-2-7B models on and report the results on Table [[2] As
shown in Table[T2] compared with 2B models, the performance gap between Thinking-RFT and No-
Thinking-RFT narrows but remains. These results suggest that image classification does not require
explicit thinking, and that excluding the explicit thinking process can enhance both performance and
computational efficiency.

F.4 More Discussion About Free-Lunch Phenomenon

In this subsection, we give more discussion about the free-lunch phenomenon. Despite improvement
in most cases for cross dataset improvement in Figure[4] it is also noted that such improvements can
be negative in certain instances. For example, fine-tuning on the EuroSAT dataset could result in
diminished performance on the OxfordPets dataset. This outcome is understandable, given that the
knowledge required for the EuroSAT dataset is significantly divergent from that of the OxfordPets
dataset, and the classification knowledge from the EuroSAT dataset may even be detrimental to the
classification of the OxfordPets dataset.

We further illustrate the comparative improvement of No-Thinking-RFT over Thinking-RFT by testing
on 11 datasets, using a model that was fine-tuned on one specific dataset. We also showcase the
comparative improvement achieved by using a standard training prompt over a No-Thinking Prompt
(which directs Thinking-RFT to immediately produce the answer during inference). The results are
shown in Figure[7] We can find that No-Thinking-RFT has a better cross-dataset generalization ability
than Thinking-RFT, except OxfordPets and FGVCAircraft datasets. This suggests that utilizing an
equality reward without engaging in any thinking process can enhance the model’s cross-dataset
generalization ability, with the exceptions being the OxfordPets and FGVCAircraft datasets. For
these datasets, the thinking process during fine-tuning appears to be important for cross-dataset
performance. These findings are consistent to the results of using different inference prompt strategies
of Thinking-RFT, as shown in Figure[/|(b). We find that using normal prompt for in-domain fewshot
test performs better than No-Thinking prompt among all datasets. This is reasonable given that the
normal prompt is the one used for fine-tuning. However, it is surprising to discover that using the
normal prompt for cross-dataset testing results in lower performance in many cases compared to
the No-Thinking prompt, except OxfordPets and FGVCAircraft datasets. These findings suggest
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Improvement of No-thinking-RL compared with CLS-RL
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(a) No-Thinking-RFT vs Thinking-RFT (b) Normal prompt vs No-Thinking prompt

Figure 7: Visualization of improvement of No-Thinking-RFT on different datastes compared with
Thinking-RFT (Left) and improvement of Thinking-RFT compared with Thinking-RFT with No-
Thinking prompt (Right). The accuracy improvement is marked as red, and decrease is marked as
blue
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Figure 8: Comparison of accuracy reward convergence speed on Puzzle dataset over steps of Thinking-
RFT, Think-After-Answer, adn No-Thinking-RFT across 2B and 7B models.

that while Thinking-RFT fine-tuning may enable the model to learn good cross-dataset classification
generalization ability, over-thinking during inference can potentially diminish this ability.

G More Experimental Results on More Diverse Tasks and Model Types

G.1 Experiments on More different Models

We report more experimental results on more diverse model types. We conduct experiments on
InternVL2.5-1B and InternVL2.5-4B [J3], and Qwen2-5-VL-Instruct-3B and Qwen2-5-VL-Instruct-
7B [1]]. The experimental results are shown in Table[T4]and Table[T3] The results are almost similar
to which in the main text, i.e., visual and puzzle tasks do not need thinking during RFT.

G.2 Referring Expression Comprehension Results

We follow VLM-R1 [60] to conduct experiments of the referring expression comprehension task.
The experiment setting and implementation is the same as VLM-R1 [60]. We follow [60] to use
the training splits of Refcoco/+/g [79} 43] as the training data, and the val split of Refcoco/+/g for
in-domain evaluation and test split of LISA-Grounding [33]] for out-of-domain (OOD) evaluation.
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Table 13: Results of Thinking-RFT and No-Thinking-RFT on CVBench across different models.
Model Setting Overall Count Relation Depth Distance

Thinking-RFT 68.57  62.82 80.46 75.33 56.50
No-Thinking-RFT ~ 70.55  65.48 77.08 78.67 62.00

Thinking-RFT 79.34  71.32 91.08 87.17 69.33
No-Thinking-RFT ~ 79.76  70.94 89.85 86.50 73.67

Thinking-RFT 76.76  70.43 86.46 79.67 71.67
No-Thinking-RFT ~ 79.83  70.18 89.54 83.67 78.17

InternVL-2.5-1B

InternVL-2.5-4B

Qwen-VL-2.5-3B

Table 14: Performance comparison of PuzzleVQA and AlgoPuzzleVQA on Qwen2-5-VL-Instruct-7B
models under three settings.

Model Method PuzzleVQA  AlgoPuzzleVQ

Thinking-RFT 77.10 27.72
No-Thinking-RFT 86.45 26.11

Qwen-VL-2.5-7B

We follow VLM-R1 [[60]] to report the evaluation results of first 600 steps. The results are shown in
Table[T5] We observe that No-Thinking-RFT generally achieves better performance than VLM-R1
on the RefCOCO/+/g in-domain tests but performs worse on the LISA-Grounding out-of-domain
(OOD) test. These results suggest that for referring grounding tasks, reinforcement fine-tuning (RFT)
without explicit thinking can improve in-domain performance while potentially degrading OOD
generalization. However, we also note that as fine-tuning progresses, the OOD performance of
No-Thinking-RFT improves and consistently surpasses that of SFT.

G.3 Experiments on Few-Shot Detection

We follow Viusal-RFT [41] to conduct experiments on few-shot object detection with MLLMs. We
follow [41] to select eight categories from the COCO dataset with 4 images per category, to construct
training dataset. We then follow [41]] to train the Qwen2-VL-2B-instruct-2B and Qwen2-VL-2B-
instruct-7B models for 100 steps (50 epochs). The results are shown in Table[T6] No-Thinking-RFT
consistently outperforms Thinking-RFT among both 2B and 7B models.

G.4 Experiments of Thinking-RFT inference with no-thinking tags.

We further conduct experiments to investigate where the performance gain of No-Thinking-RFT over
Thinking-RFT on perception and puzzle tasks originates. We explore the No-Thinking inference
mode of Thinking-RFT by appending an empty thinking tag (<thinking> </thinking>) during
inference. The results are shown in Table We find that while appending empty thinking tags
during inference could improve performance on CVBench and puzzle tasks, its performance is still far
behind No-Thinking-RFT. Moreover, appending empty thinking tags during inference will decrease
performance on math tasks. These results suggest that the performance gain of No-Thinking-RFT
over Thinking-RFT on perception and puzzle tasks primarily stems from two factors: improved
learning during fine-tuning and the avoidance of overthinking by bypassing inference.

H More Discussion

H.1 Limited Gains in Puzzle Tasks

In this subsection, we discuss the explanation accounts for limited puzzle gains. As a pragmatic
proxy, we evaluated the o4-mini model, whose API supports optional in-context visual reasoning
(e.g., cropping). On PuzzleVQA, performance rises from 84.30% (no visual reasoning) to 86.48%
(with visual reasoning), a gain of +2.18% accuracy. This suggests that visual-context learning can
improve puzzle performance.
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Table 15: Performance comparison of Refcoco/+/g and LISA ground datasets.

Training method Evaluation Dataset 100 200 400 500 600
SFT Refcocoya 88.7 88.85 88.25 88.85 88.7
VLM-R1 Refcocoyy 88.7 88.7 89.25 90 90.55
No-Thinking-RFT  Refcocoy, 90.29 90.85 90.52 90.88 90.85 90.83
SFT Refcoco+ai 82.55 82.15 8185 819 82.3 82.25
VLM-R1 Refcoco+ya1 82.6 81.9 83.35 83.6 84.3
No-Thinking-RFT  Refcoco+ya 83.71 84.39 84.76 85.02 85.28 85.24
SFT Refcocogya) 85.65 8595 8585 856 8595 8595
VLM-R1 Refcocogya 85.95 85.05 8545 85.65 8715 87.1
No-Thinking-RFT  Refcocogya; 85.70 86.15 86.70 86.60 86.97 8691
SFT LISA-Grounding 5591 56.51 55.66 55.18 55.66 5482
VLM-R1 LISA-Grounding 61.82 61.27 61.64 62.6 61.88 63.14
No-Thinking-RFT  LISA-Grounding 5790 5724 5899 59.65 5995 61.76

Table 16: Performance comparison of 4-shot results on COCO dataset of 8 categories.

S

S &
S ) o @
Models mAP & & & »'-}°Q & o S &
Qwen2-VL-2B
Zero-Shot 19.6 19.0 15.8 25.8 18.4 29.9 23.2 14.6 9.8
Thinking-RFT 40.6 30.0 40.6 45.7 35.0 60.9 449 24.6 43.1
No-Thinking-RFT 43.72 32.29 44.64 47.38 43.43 61.59 52.94 24.81 42.71
QOwen2-VL-7B
Zero-shot 43.0 35.0 433 37.1 36.7 57.3 50.3 37.4 47.1
Thinking-RFT 54.3 443 59.8 52.0 46.0 72.7 62.8 41.9 55.0
No-Thinking-RFT 54.99 49.10 58.72 53.37 45.52 72.35 63.64 46.41 50.79

H.2 Discussion between offline DPO, No-Thinking-RFT, and Thinking-RFT

In this subsection, we discuss the difference between offline DPO, No-Thinking-RFT, and Thinking-

RFT.

(i) Although No-Thinking-RFT removes the "think" phase, a list-wise DPO algorithm should
not be expected to reproduce similar effect due to the fundamental difference between DPO

and GRPO. We discuss the detailed difference below:

(a) Sampling strategy. List-wise DPO selects one positive and several negatives offline.
In contrast, No-Thinking-RFT samples responses online at every training step: the mix

of positives and negatives is not fixed at 1 : (N — 1) but varies with task difficulty

and model competence (from 0 : N to N : 0). Thus while removing thinking, No-
Thinking-RFT continues to explore and learn from fresh errors, whereas DPO does

not.

(b)

Gradient update rule. No-Thinking-RFT computes a policy-gradient using verifi-

able rewards (R = 1 for an exact match, R = 0 otherwise) and a group-advantage
formulation, i.e. GRPO. Listwise DPO, by contrast, minimises a cross-entropy loss
over a pre-computed list, functioning more like contrastive SFT. This distinction yields
different learning dynamics.

Because of these differences, listwise DPO should not be expected to match the empirical

behaviour of No-Thinking-RFT.

(i) We also implemented preliminary DPO and listwise DPO baselines to quantify the per-

formance difference. We evaluated two negative-sampling strategies: one using samples
generated by Qwen2-VL (DPO model) and the other using randomly generated samples

(DPO random). Experiments were carried out on the FGVCAircraft classification dataset
and the MathVQA dataset. The results shown in Table [I8]indicate that both DPO vari-
ants under both sampling strategies perform substantially worse than Thinking-RFT and
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Table 17: Comparison of Adaptive-Thinking model response type among 2B and 7B models on
MathVista, MathVision, CVBench, PuzzleVQA (Puzzle), and AlgoPuzzleVQA (AlgoPuzzle).

Model Response Type MathVista MathVision CVBench Puzzle AlgoPuzzle
w/ Thinking 44.90 16.45 70.36 52.50 24.78

2B w/o Thinking 41.9 15.79 71.72 62.90 27.50
No-Thinking-RFT 48.80 13.16 76.76 70.85 29.17
w/ Thinking 64.60 21.71 80.36 66.60 24.78

7B w/o Thinking 61.20 22.04 81.62 76.85 27.95
No-Thinking-RFT 59.10 18.09 80.67 80.65 29.39

Table 18: Performance comparison of DPO, Listwise DPO, Thinking-RFT, and No-Thinking-RFT.

Model FGVC MathVista MathVision
DPO random 46.23 40.15 12.3
DPO model 51.25 40.32 14.4
Listwise DPO random 47.19 40.78 12.45
Listwise DPO model 51.36 42.66 15.1
Thinking-RFT 74.41 44.90 16.45
No-Thinking-RFT 74.41 48.80 13.49

No-Thinking-RFT. This finding highlights the importance of online sampling and policy-
gradient optimization in RFT. Moreover, model-generated negative samples consistently
outperform random negatives in both DPO and listwise DPO settings, demonstrating that
the quality of negative samples is critical to DPO training.

I Examples of the Model Response

In this subsection, we delve into the content of the thought process in Thinking-RFT among different
model sizes and tasks. Specifically, we show We compare the response examples of four different
thinking strategies in Figure 2ThFigure 23] the examples of trivial reasoning responses of 2B models
in Figure[I5] ~ Figure[20] the inconsistent responses of 7B models in Figure O-Figure[T4] Typically,
for 2B model responses, the content found in the "thinking" tags are somewhat trivial, such as "This
is a photo of <class>" (classification) or "To find the area of the overlap between the two squares,
we need to find the length of the diagonal of the smaller square." (MathVision) which offers little
to no benefit towards arriving at the final answer, or they might already represent the final answers
themselves without any reasoning process. For 7B models, the content within the thinking tag is
significantly more meaningful and contributes more effectively to the reasoning process leading to the
final answers. However, we frequently observe inconsistencies in the responses, where the content
within the thinking tag diverges significantly from that in the answer tag. For example, the reasoning
may support choice B, while the final answer provided is choice A. To quantify this issue, we use
GPT-40 to extract the answers from thinking tag and answer tag and then calculate the proportion of
such inconsistencies across each dataset. The detailed results are presented in Figure[2] Our analysis
reveals that reasoning tasks are particularly prone to inconsistencies between the thinking and answer
tags. Notably, as illustrated in Figure 2] the average accuracy of the answer tags in inconsistent
responses is substantially higher than that of their corresponding thinking tags. This observation
is expected, given that the answer tags are directly optimized via an accuracy-based reward signal,
whereas the thinking tags receive no explicit supervision. Additionally, we find that the average
accuracy of answer tags in inconsistent responses is lower than the overall average accuracy across all
responses. This indicates that maintaining internal consistency between reasoning and final answers
is conducive to improved model performance.
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Question: What is the missing number of the part denoted with a
question mark? Please choose your answer from: ['1°,°2’,°7°,°5’]
Ground Truth: 5.
Response from Thinking-RFT:
<think> The pattern in the rows and columns is as follows:
- First row: 3, 2, 7
- Second row: 3, 4, ?
- Third row: 4, 1,7
The pattern in the rows and columns is that each number in the second row is the sum of the
corresponding numbers in the first and third rows.
So, for the second row:
-3+4=7
-4+1=5
Therefore, the missing number in the second row is 5.
So, </think>
<answer>1</answer>

O]9
> ®

Question: What is the missing number of the part denoted with a question mark? Please
choose your answer from: [7, 4, 5, 3]

Ground Truth: 7.

Response from Thinking-RFT:

<think> The pattern in the shapes is that the number of sides of each shape increases by one
from the bottom to the top. The shapes are a triangle (3 sides), a hexagon (6 sides), and an
octagon (8 sides). Following this pattern, the next shape should have 9 sides. The number in
the center of the octagon is 8, so the missing number in the center of the pentagon should be
7. Therefore, </think>

<answer>5</answer>

Response from No-Thinking-RFT: 7.

Figure 9: Examples of the inconsistency error of fine-tuned Qwen-VL-2-7B model on PuzzleVQA.
The correct answer part is marked as , and wrong answer part is marked as red.
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Question: How many walls are in the image? A. 1 B.3C.2D. 0

Ground Truth: A.

Response from Thinking-RFT:

<think> The image shows a window with curtains on both sides. The curtains are hanging
from a rod that is attached to the wall. There is no visible wall in the image, only the window
and the curtains. Therefore, the number of walls in the image is zero.</think>

<answer> (A) | </answer>

Question: How many rugs are in the image? A.3B. 1 C.0D. 2

Ground Truth: B.

Response from Thinking-RFT:

<think> The image shows a living room with various items and decorations. There is a rug
on the floor in front of the coffee table, and another rug on the floor in front of the fireplace.
Therefore, there are two rugs in the image.</think> <answer> (B) | </answer>

Figure 10: Examples of the inconsistency error of fine-tuned Qwen-VL-2-7B model on CVBench.
The correct answer part is marked as green, and wrong answer part is marked as red.
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Question: Hint: Please answer the question requiring an integer answer and provide the
final value, e.g., 1, 2, 3, at the end.

Question: what is the total volume of the measuring cup? (Unit: g)

Ground Truth: 1000.

Response from Thinking-RFT:

<think> The measuring cup has a scale marked in milliliters (mL). To convert milliliters to
grams, we need to know the density of the substance being measured. For flour, the density
is approximately 0.5 g/mL. The total volume of the measuring cup is 1000 mL. Therefore,
the total volume in grams is 1000 mL * 0.5 g/mL = 500 g. </think>

<answer> 1000 </answer>

Question: Hint: Please answer the question and provide the correct option letter, e.g., A, B,
C, D, at the end.

Question: What time is shown? Answer by typing a time word, not a number. It is (_) past
Six.

Choices:

(A) half

(B) quarter

(C) o’clock

(D) quarter to

(E) quarter past

Ground Truth: B.

Response from Thinking-RFT:

<think> The clock shows a time where the minute hand is pointing at the 3, which represents
15 minutes past the hour. The hour hand is between the 6 and the 7, which means it is 6
o’clock. Therefore, the time is 6:15. </think> <answer> A </answer>

Figure 11: Examples of the inconsistency error of fine-tuned Qwen-VL-2-7B model on MathVista.
The correct answer part is marked as green, and wrong answer part is marked as red.
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Question: Hint: Please answer the question and provide the correct option letter, e.g., A, B,
C, D, E, F at the end.
Peter rides his bike along a cycle path in a park. He starts at point .S and rides in the direction
of the arrow. At the first crossing he turns right, then at the next left, and then again to the
right and then again to left. Which crossing does he not reach?
<imagel>Choices: A.AB.BC.CD.DE.E
Ground Truth: D.
Response from Thinking-RFT:
<think> The arrow indicates the direction Peter rides his bike. He starts at point S and
follows the path indicated by the arrow. He turns right at the first crossing, then left at the
next, right again, and finally left. This means he will pass through the crossings labeled B,
C, and D. The crossing labeled A is not mentioned in his path. Therefore, the crossing he
does not reach is A.</think> <answer> C </answer>

il

Question: Hint: Please answer the question and provide the correct option letter, e.g., A, B,
C, D, E, F at the end.

A (very small) ball is kicked off from point A on a square billiard table with side length 2 m.
After moving along the shown path and touching the sides three times as indicated, the path
ends in point B. How long is the path that the bal travels from A to B? (As indicated on the
right: incident angle = emergent angle.)

Choices: A.7B.2/13C.8D. 4y/3E.2- (v2 +/3)

Ground Truth: B.

Response from Thinking-RFT:

<think> The path of the ball is a series of right angles, so we can break it down into segments
of equal length. Each segment is the hypotenuse of a right triangle with legs of length 1
meter (since the side length of the square is 2 meters). Using the Pythagorean theorem, the
length of each segment is v/12 + 12 = /2 meters. Since there are four segments, the total
length of the path is 4+/2 meters. However, we can simplify this to 2v/2 - 2 = 44/2 meters.
Therefore, the correct answer is D. </think>

<answer> B </answer>

Figure 12: Examples of the inconsistency error of fine-tuned Qwen-VL-2-7B model on MathVision.
The correct answer part is marked as , and wrong answer part is marked as red.
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Question: You are playing a Tower of Hanoi game with 3 rods and 5 disks of various
diameters, which can slide onto any rod. You are given the starting and ending configuration
of the game as shown in the top and the bottom of the image, respectively. The game has
the following rules: i) Only one disk may be moved at a time; ii) Each move consists of
taking the upper disk from one of the stacks and placing it on top of another stack or on an
empty rod; and iii) No disk can be placed on top of a disk that is smaller than it. What is the
minimum number of moves required to go from the starting to the ending configuration?
Please choose your answer from: 6, 2, 4, 5.

Ground Truth: 5.

Response from Thinking-RFT:

<think> The Tower of Hanoi problem is a classic puzzle that requires moving a stack of disks
from one rod to another, following specific rules. The minimum number of moves required
to solve the puzzle can be calculated using the formula 2" — 1, where n is the number of
disks.

In this case, we have 5 disks, so the minimum number of moves required is 25— 1 =
32 —1=31.

However, the options provided are 6, 2, 4, and 5. It seems there might be a misunderstanding
in the question or the options. The correct answer based on the formula is 31, but it is not
listed among the options.

Let’s re-examine the image to see if there’s any additional information or a different inter-
pretation of the problem that might lead to a different answer.

Upon closer inspection, the image shows a specific starting and ending configuration, but
it does not provide enough information to determine the exact number of moves required
to solve the puzzle. The image does not show the intermediate steps or the specific rules
applied to reach the ending configuration.

Given the options provided, it seems there might be a misunderstanding or an error in the
question. The correct answer based on the formula is 31, but it is not listed among the
options.

Therefore, the minimum number of moves required to go from the starting to the ending
configuration is 31, but this is not listed among the options.

Final answer: 31 (not listed among the options)</think>

<answer>5</answer>

March
Mon Tue Wed Thu Fri Sat Sun

14 15 16 17 18 19 20
21 22 23 24 25 26 27

Question: The image shows the calendar of a month of a particular non-leap year. Which
day of the week was on February 25 of that year?
Please choose your answer from: Friday, Sunday, Monday, Tuesday.
Ground Truth: Friday.
Response from Thinking-RFT:
<think> The calendar shows that February 25 is a Friday. Therefore,
. </think>
<answer> Tuesday </answer>

Figure 13: Examples of the inconsistency error of fine-tuned Qwen-VL-2-7B model on AlgoPuz-
zleVQA. The correct answer part is marked as , and wrong answer part is marked as red.
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Question: What type of texture is in the photo?

Please choose one from list [ matted, grid, crosshatched, frilly, flecked, zigzagged, freckled,
waffled, chequered, porous, striped, fibrous, sprinkled, perforated, crystalline, cracked,
banded, lacelike, veined, polka-dotted, paisley, scaly, pleated, smeared, dotted, cobwebbed,
wrinkled, gauzy, interlaced, knitted].

Ground Truth: wrinkled.

Response from Thinking-RFT:

<think> The photo shows a close-up of a fabric with a smooth, continuous surface. There are
no visible patterns, lines, or textures that would suggest a grid, crosshatched, frilly, flecked,
zigzagged, freckled, waffled, chequered, porous, striped, fibrous, sprinkled, perforated,
crystalline, cracked, banded, lacelike, veined, polka-dotted, paisley, scaly, pleated, smeared,
dotted, cobwebbed, wrinkled, gauzy, interlaced, or knitted texture. The fabric appears to be
soft and smooth, with a consistent, even texture. Therefore, the most appropriate texture to
describe this fabric is "pleated".</think> <answer> wrinkled </answer>

Question: What type of texture is in the photo?

Please choose one from list [ smeared, bubbly, fibrous, lacelike, frilly, potholed, spiralled,
chequered, flecked, paisley, stained, meshed, wrinkled, zigzagged, polka-dotted, matted,
freckled, lined, stratified, banded, cracked, sprinkled, gauzy, striped, marbled, crosshatched,
swirly, pitted, grid, veined].

Ground Truth: striped.

Response from Thinking-RFT:

<think> <think> The photo shows a pattern of vertical lines. The lines are straight and evenly
spaced, creating a consistent and repetitive visual effect. There are no visible curves, ripples,
or other irregularities in the lines. Therefore, the texture in the photo is best described as
"lined." </think> <answer> striped </answer>

Figure 14: Examples of the inconsistency error of fine-tuned Qwen-VL-2-7B model on classification
DTD dataset. The correct answer part is marked as green, and wrong answer part is marked as red.
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Question: How many cubes have been taken from the block?
Ground Truth: 4.
Response from Thinking-RFT:

<think>
To solve this, we need to determine the missing number in the pattern. Let’s examine the

numbers and their positions.

</think>
<answer>4</answer>

Question: What is the missing number of the part denoted with a question mark?
Please choose your answer from: [2, 3, 4, 1]

Ground Truth: 2.

Response from Thinking-RFT:

<think>
To solve this, we need to determine the missing number in the sequence. Let’s analyze the

pattern in the sequence: 2, 3,3, 1, 1, 1, 2.
</think>

P

<answer>
1
</answer>

Figure 15: Examples of the trivial reasoning of fine-tuned Qwen-VL-2-2B model on PuzzleVQA.
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Question: Alice has 10 segments of chains of different lengths as shown in the image. The
total length of all the segments combined is 19 pieces. She has a saw machine with which a
closed piece can be cut opened. She also has a welding machine with which an open piece
can be closed. Each cut takes 5 minutes and each welding takes 5 minutes. Initially, she has
3 segments each with 1 open piece as shown in the image. All the other pieces are closed.
She now wants to make the longest possible necklace using all the available 19 pieces. Each
piece in the necklace would be connected to exactly two other pieces. This would require
cutting open some pieces and then joining all the resulting segments together. What is the
minimum time in which she can create the necklace?

Please choose your answer from: 40, 41, 35, 3.

Ground Truth: 35.

Response from Thinking-RFT:

<think>

To create the longest possible necklace, Alice needs to maximize the number of segments
she can use. She has 10 segments, and she wants to use all 19 pieces. The goal is to
maximize the number of segments used while ensuring that each segment is connected to
exactly two other segments.

</think>

<answer>35</answer>

Question: A 3 * 3 Rubik’s Cube has six different coloured panels: red, green, blue, yellow,
orange, and grey. The initial state of the cube in terms of the different colour positions in its
six faces is shown in the image. To represent the movements of the cube we use six letters: U
for Up, D for Down, L for Left, R for Right, F for Front, B for Back. These letters are used
in sequence where you need to perform each letter in the sequence from left to right. Each
letter tells you to move that face clockwise by 90 degrees. A number 'n’ immediately after a
letter denotes that you need to move that face clockwise by 90 * n degrees. For example,
’U R3’ would mean rotating the up face 90 degrees clockwise and then rotating the right
face 270 degrees clockwise. You perform the move sequence *B B2’ starting from the state
shown in the image. What would be the number of small 1 * 1 red squares in the left face
after completing the move sequence?

Please choose your answer from: 3, 4, 7, 0.

Ground Truth: 3.

Response from Thinking-RFT:

<think>

To solve this problem, we need to understand the sequence of moves and the effect each
move has on the cube’s state. The sequence is 'B B2’, which means rotating the left face
clockwise by 90 degrees twice. We need to calculate the final state of the cube after these
moves.

</think>

<answer>7</answer>

\. J

Figure 16: Examples of the trivial reasoning of fine-tuned Qwen-VL-2-2B model on AlgoPuzzleVQA.
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Figure 21-25

Problems 10,11, and 70.
Question: Hint: Please answer the question requiring a floating-point number with two
decimal places and provide the final value, e.g., 1.23, 1.34, 1.45, at the end.
Question: In Fig. 21-25, the particles have charges ¢ = —g2 = 100nC and g3 = —qq =
200nC, and distance a = 5.0 cn. What is the  component of the net electrostatic force on
particle 3?
Ground Truth: 0.17.
Response from Thinking-RFT:
<think>
To find the x component of the net electrostatic force on particle 3, we need to find the net
force acting on particle 3 and then divide it by the charge of particle 3.
</think>
<answer>100</answer>

Question: Hint: Please answer the question requiring an integer answer and provide the
final value, e.g., 1, 2, 3, at the end.

Question: What is the difference between the highest and the lowest time required to import
5

Ground Truth: 4.

Response from Thinking-RFT:

<think>

To determine the difference between the highest and the lowest time required to import
goods in Mexico, we need to analyze the data provided in the plot.

</think>

<answer>4</answer>

Figure 17: Examples of the trivial reasoning of fine-tuned Qwen-VL-2-2B model on MathVista.
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Question: Hint: Please answer the question and provide the correct option letter, e.g., A, B,
C, D, E, F at the end.

Two squares with side 1 have a common vertex, and the edge of one of them lies
along the diagonal of the other. What is the area of the overlap between the squares?
<imagel>Choices: A. V2-1

B. L2

2
C.@

D.v2+1
E.V3-V2

Ground Truth: A.

Response from Thinking-RFT:

<think>

To find the area of the overlap between the two squares, we need to find the length of the
diagonal of the smaller square.

</think>

<answer>B</answer>

<imagel>:

2 2
SO
£ oo

<image3>:

<image4>:

WO W W0 WH WX
Question: <imagel>
In the picture above we see a cube in two different positions.
The six sides of the cube look like this:
<image2>
Which side is opposite to <image3>?
<image4>
Ground Truth: C.
Response from Thinking-RFT:
<think>
To determine which side is opposite to <image3>, we need to identify the opposite side of
the cube in <image4>.
</think>

<answer>D</answer>

Figure 18: Examples of the trivial reasoning of fine-tuned Qwen-VL-2-2B model on MathVision.
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Question: How many chests are in the image? A.3B. 1 C.2D.0

Ground Truth: B.

Response from Thinking-RFT:

<think>

The image shows a bed with a nightstand, a curtain, and a toy chest. There is only one chest
in the image.

</think>

<answer> | </answer>

Question: How many walls are in the image? A. 1 B.0C.3D.4E. 2

Ground Truth: E.

Response from Thinking-RFT:

<think>

The image shows a classroom with a blackboard, desks, and windows. The walls are painted
in a light color, and there are no visible windows on the back wall. Therefore, the correct
answer is (A) 1.

</think>

<answer> 1 </answer>

Figure 19: Examples of the reasoning of fine-tuned Qwen-VL-2-2B model on CVBench. Unlike the
trivial responses in reasoning tasks, the thinking process in CVBench is not trivial.
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Championdealers.com
Question: What type of object is in the
photo? Please choose one from list [ 2012
Acura TL Sedan, 2012 Chrysler Town and
Country Minivan,...]
Response from Thinking-RFT:
<think> The object in the photo is a 2012 Ford
Fiesta Sedan.</think>
<answer> 2012 Ford Fiesta Sedan</answer>

Question: What type of aircraft is in the
photo? Please choose one from list [ MD-90,
Beechcraft 1900, DHC-6, MD-87, 777-300,
CRIJ-900...]
Response from Thinking-RFT: <think> The
aircraft in the photo is an An-12. </think>
<answer>An-12</answer>

P el /

Question: What type of object is in
the photo? Please choose one from
list [ grilled_cheese_sandwich, caesar_salad,
lasagna, ...]

Response from Thinking-RFT:

<think> The photo shows a dish of paella,
which is a traditional Spanish dish made with
rice, seafood, vegetables, and spices.</think>
<answer>Paella</answer>

Question: What type of texture is in the
photo? Please choose one from list [ spiralled,
knitted, sprinkled....]

Response from Thinking-RFT:

<think> The texture in the photo appears to be
woven. </think>

<answer>Woven</answer>

Question: What type of object is in the
photo? Please choose one from list [ okapi,
bass, revolver, cup, nautilus, ...]

Response from Thinking-RFT:

<think> The object in the photo is a Joshua
tree. </think>
<answer>Joshua_tree</answer>

Question: What type of object is in the
photo? Please choose one from list [ minia-
ture_pinscher, yorkshire_terrier,...]

Response from Thinking-RFT:
<think>The dog in the photo appears to be a
Leonberger, a breed known for its long, thick
coat and large size. </think>
<answer>Leonberger</answer>

Figure 20: Examples of Thinking-RFT fine-tuned model responses across six datasets. The thinking
content appears not very beneficial to deriving the final answers.
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Question: Hint: Please answer the question and provide the correct option letter, e.g., A, B,
C, D, at the end.

Question: What time is shown? Answer by typing a time word, not a number. It is (_) past
three.

Choices:

(A) half

(B) quarter

(C) o’clock

(D) quarter to

(E) quarter past

Ground Truth: B.

Response from 2B Thinking-RFT: <think>

To determine the correct time shown on the clock, let’s analyze the image:

- The clock is red and has the time displayed as 3:15.

- The time is shown as "quarter to" because it is 15 minutes past the hour.

</think>

<answer> D </answer>

Response from 2B Think-After-Answer: <answer> E </answer>

<reason> The time shown is quarter past, as indicated by the "15" in the clock. The word
"quarter" is used to describe the position of the hour hand between the two halves of the
clock. Therefore, the correct option is E. </reason>

Response from 2B No-Thinking-RFT: D

Response from 2B Adaptive-Thinking: <answer> E </answer>

Response from 7B Thinking-RFT: <think> The time shown on the clock is 3:15. To
determine the time, we look at the minute hand, which is pointing at 3, and the hour hand,
which is between 3 and 4. Since the minute hand is at 15 minutes past the hour, it is 15
minutes past 3. Therefore, the correct answer is "quarter past" because 15 minutes is a
quarter of an hour. </think> <answer> B </answer>

Response from 7B Think-After-Answer: <answer> B </answer>

<reason> The time shown on the clock is 3:15. Since the minute hand is on the 3, which
represents 15 minutes past the hour, the correct answer is "quarter past" or "quarter to".
However, since the question asks for a time word, "quarter past" is the appropriate choice.
</reason>

Response from 7B No-Thinking-RFT: B

Response from 7B Adaptive-Thinking: <think> The time shown is 3:15. The minute
part is 15, which is a quarter of an hour. Therefore, the time is 15 minutes past 3. </think>
<answer> B </answer>

Figure 21: Comparison of the model response of different fine-tuned model on MathVista.
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Question: Malaika is skiing on a mountain. The graph below shows her elevation, in meters,
above the base of the mountain as she skis along a trail. In total, how many seconds does
she spend at an elevation between 4 and 7 meters?

Ground Truth: 8.

Response from 2B Thinking-RFT: <think>

To find out how many seconds Malaika spends at an elevation between 4 and 7 meters, we
need to find the area under the curve between these two values.

</think>

<answer>10</answer>

Response from 2B Think-After-Answer: <answer>10</answer>

<reason>She spends 10 seconds between 4 and 7 meters. The graph shows that she is at an
elevation between 4 and 7 meters for 10 seconds.</reason>

Response from 2B No-Thinking-RFT: 10

Response from 2B Adaptive-Thinking: <answer> 10 </answer>

Response from 7B Thinking-RFT: <think> The graph shows the elevation of Malaika over
time. To find out how many seconds she spends at an elevation between 4 and 7 meters, we
need to look at the portion of the graph where the elevation is between 4 and 7 meters. This is
the area under the curve between the horizontal lines at 4 meters and 7 meters. By examining
the graph, we can see that Malaika spends approximately 6 seconds at an elevation between
4 and 7 meters. </think> <answer> 6 </answer>

Response from 7B Think-After-Answer: <answer>6</answer>

<reason>The graph shows that Malaika’s elevation is between 4 and 7 meters for 6 seconds.
This is the time when the line is above the 4-meter mark and below the 7-meter mark on the
graph. </reason>

Response from 7B No-Thinking-RFT: 6

Response from 7B Adaptive-Thinking: <think> The graph shows Malaika’s elevation over
time. To find the time she spends at an elevation between 4 and 7 meters, we need to look
at the portion of the graph where the elevation is between 4 and 7 meters. This portion of
the graph is between the time of 4 seconds and 12 seconds. Therefore, Malaika spends 8
seconds at an elevation between 4 and 7 meters. </think> <answer> 8 </answer>

Figure 22: Comparison of the model response of different fine-tuned model on MathVision.
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Question: How many light switchs are in the image?

A.1B.0C.2D.3

Ground Truth: A.

Response from 2B Thinking-RFT:

<think>

To determine the number of light switchs in the image, let’s analyze the visible parts of the
room:

1. The wall on the left side has several light switchs.
2. The wall on the right side has several light switchs.
3. The ceiling has several light switchs.

4. The floor has no visible light switchs.

Based on this analysis, there are 4 light switchs in the image.
</think>

<answer> (C) 2 </answer>

Response from 2B Think-After-Answer:

<answer>1</answer>

<reason>There is only one light switch visible in the image, which is located on the wall to
the right of the garage area.</reason>

Response from 2B No-Thinking-RFT: (A) 1

Response from 2B Adaptive-Thinking: <answer>1</answer>

Response from 7B Thinking-RFT:

<think>There are two light switches visible in the image, one on the wall near the ceiling and
another on the wall near the floor. Therefore, the total number of light switches is 2.</think>
<answer>(A) 1</answer>

Response from 7B Think-After-Answer:

<answer> (A) 1 </answer>

<reason> There is one light switch visible on the wall in the image. </reason>

Response from 7B No-Thinking-RFT: (A) 1

Response from 7B Adaptive-Thinking:

<think> There are two light switches in the image, one on the wall near the ceiling and
another on the wall near the floor. </think> <answer> A </answer>

Figure 23: Comparison of the model response of different fine-tuned model on CVBench.
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Question: What is the size of the missing part denoted by a question mark?

Please choose your answer from: [’large’, *'medium’, *small’]

Ground Truth: large.

Response from 2B Thinking-RFT:

<think>

To determine the size of the missing part denoted by the question mark, let’s analyze the
sizes of the shapes in the image.

</think>

<answer>large</answer>

Response from 2B Think-After-Answer:

<answer>small</answer>

<reason>Since the shapes are arranged in a way that the larger shapes are on the left and
the smaller shapes are on the right, the missing part, which is the question mark, should
be of the same size as the square, which is medium in size. Therefore, the missing part is
small.</reason>

Response from 2B No-Thinking-RFT: medium

Response from 2B Adaptive-Thinking: <answer> large </answer>

Response from 7B Thinking-RFT:

<think> The pattern in the image seems to be that the shapes are getting larger as we move
from left to right and top to bottom. The smallest shapes are the hexagon, square, and
triangle, and the largest shapes are the large triangle and square. The missing shape is in the
middle row, second column, which should be the medium-sized square. Therefore, the size of
the missing part denoted by a question mark is medium.</think> <answer> large</answer>
Response from 7B Think-After-Answer:

<answer> large </answer>

<reason> The question mark is placed below the large triangle, indicating that the missing
part should be of the same size as the large triangle. </reason>

Response from 7B No-Thinking-RFT: large

Response from 7B Adaptive-Thinking:

<answer> large </answer>

Figure 24: Comparison of the model response of different fine-tuned model on PuzzleVQA.
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Question: The board shown in the image is a sliding puzzle of 5 * 5 tile dimensions. It has
24 numbered tiles and one unoccupied (open) position. Tiles in the same row or column of
the open position can be moved by sliding them horizontally or vertically, respectively. All
tiles always stay and move inside the red boundary wall, as shown in the image. A move is
defined as moving the open position by one tile unit in any available direction. You start
from the board position shown in the image and perform exactly 2 moves. How many unique
final board positions can you reach?

Please choose your answer from: 3, 1, 4, 5.

Ground Truth: 5.

Response from 2B Thinking-RFT: <think>To determine the number of unique final board
positions that can be reached by performing exactly 2 moves, we need to analyze the possible
moves that can be made from the given starting position and the constraints imposed by the
sliding puzzle rules. </think><answer>5</answer>

Response from 2B Think-After-Answer: <answer>5</answer>

<reason>After performing 2 moves, the board can reach 5 unique final positions: (1, 1), (1,
2), (1, 3), (1, 4), and (1, 5). These positions are reached by sliding the open position in the
first row and column of the board. The other positions are not reachable because the board
cannot move the open position in the first row or column of the board. Therefore, there are 5
unique final board positions.</reason>

Response from 2B No-Thinking-RFT: 5

Response from 2B Adaptive-Thinking: <answer> 5 </answer>

Response from 7B Thinking-RFT: <think> The puzzle is a 5x5 sliding puzzle with 24
numbered tiles and one empty space. We need to find the number of unique final board
positions after exactly 2 moves. Let’s analyze the possible moves:

1. Moving the open position to the left or right by one tile unit.

2. Moving the open position up or down by one tile unit.

Since the puzzle is 5x5, there are 4 possible moves for each direction (left, right, up, down).
Therefore, there are a total of 8 possible moves.However, we need to perform exactly 2
moves. The number of ways to choose 2 moves out of 8 is given by the combination formula
C(n, k) =n! / (k!(n-k)!), where n is the total number of moves and k is the number of moves
we want to choose. So, C(8, 2) = 8! / (2!(8-2)!) = 28. However, we need to consider that
some of these combinations might result in the same final board position. For example,
moving the open position to the left and then to the right is the same as moving it to the right
and then to the left. Therefore, we need to remove these duplicates.

To do this, we can use the concept of permutations. The number of permutations of 8 items
taken 2 at a time is given by P(n, k) =n! / (n-k)!, where n is the total number of items and k
is the number of items to choose. So, P(8, 2) = 8! / (8-2)! = 56. However, we need to divide
this by 2 to account for the duplicates mentioned earlier. Therefore, the number of unique
final board positions is 28 / 2 = 14. So, the answer is 14.</think> <answer>5</answer>
Response from 7B Think-After-Answer: <answer> 4 </answer>

<reason> The open position can move to any of the four adjacent tiles (up, down, left, right)
in one move. Since there are 24 tiles and each tile can be in one of the 25 positions (including
the open position), there are 24 possible starting positions for the open position. After the
first move, there are 4 possible positions for the open position (since it can move to any
of the four adjacent tiles). Therefore, there are 24 * 4 = 96 possible final board positions.
However, since the open position can move in any of the four directions, there are 4 * 4 = 16
possible final board positions. </reason>

Response from 7B No-Thinking-RFT: 4

Response from 7B Adaptive-Thinking: <answer> 4 </answer>

Figure 25: Comparison of the model response of different fine-tuned model on AlgoPuzzleVQA.
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]
Justification: All contributions are clearly stated in abstract and Sec. [T}
Guidelines:

e The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: The limitations about this paper is discussed in Sec. [6}
Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]
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Justification: This paper does not contain theoretical claims.
Guidelines:

» The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

e Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]
Justification: All implementation details are stated in Sec.
Guidelines:

* The answer NA means that the paper does not include experiments.
* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.
If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [Yes]
Justification: We will release all code, data, and models.
Guidelines:

» The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.
6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]
Justification: All training and dataset details are discussed in Sec.[D]and Sec.[4.1]
Guidelines:

* The answer NA means that the paper does not include experiments.

» The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer:

Justification: Given the high cost of fine-tuning, we do not report error bars. Please note
that in Sec. ] and Sec. [3|spent huge resources for comparison of thinking and No-Thinking
study during RFT across 17 benchmarks and datasets, which makes it prohibitively to run
each experiments for multiple times.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)
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8.

10.

* The assumptions made should be given (e.g., Normally distributed errors).

e It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

e It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

» For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]
Justification: We have include compute resouces information in Sec.|[D]and Sec.[4.1]
Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines]?

Answer: [Yes]
Justification: The research in this paper is with the NeurIPS Code of Ethics.
Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).
Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]
Justification: There is no social impact of this work.
Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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» The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: This paper poses no such risks.
Guidelines:

» The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]
Justification: All used datasets and other assets are cited and with proper license.
Guidelines:

* The answer NA means that the paper does not use existing assets.

* The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

 For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]
Justification: No new assets are released in this paper.
Guidelines:

* The answer NA means that the paper does not release new assets.

» Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

Declaration of LLM usage
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Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]

Justification: This paper does not involve LLMs as any important, original, or non-standard
components

Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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