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ABSTRACT

Establishing the relationship between 3D structures and the energy states of
molecular systems has proven to be a promising approach for learning 3D molecu-
lar representations. However, existing methods are limited to modeling the molec-
ular energy states from classical mechanics. This limitation results in a significant
oversight of quantum mechanical effects, such as quantized (discrete) energy level
structures, which offer a more accurate estimation of molecular energy and can
be experimentally measured through energy spectra. In this paper, we propose
to utilize the energy spectra to enhance the pre-training of 3D molecular repre-
sentations (MolSpectra), thereby infusing the knowledge of quantum mechanics
into the molecular representations. Specifically, we propose SpecFormer, a multi-
spectrum encoder for encoding molecular spectra via masked patch reconstruc-
tion. By further aligning outputs from the 3D encoder and spectrum encoder using
a contrastive objective, we enhance the 3D encoder’s understanding of molecules.
Evaluations on public benchmarks reveal that our pre-trained representations sur-
pass existing methods in predicting molecular properties and modeling molecular
dynamics, with an average performance improvements of 6.46%.

1 INTRODUCTION

Learning 3D molecular representations from geometric conformations offers a promising approach
for understanding molecular geometry and predicting quantum properties and interactions, which
is significant in drug discovery and materials science (Musaelian et al., 2023; Batatia et al., 2022;
Liao & Smidt, 2023; Wang et al., 2023b; Du et al., 2023b). Given the scarcity of molecular prop-
erty labels, self-supervised representation pre-training has been proposed and utilized to provide
generalizable representations (Hu et al., 2020; Rong et al., 2020).

In contrast to contrastive learning (Wang et al., 2022; Kim et al., 2022) and masked modeling (Hou
et al., 2022; Xia et al., 2023; Liu et al., 2023c) on 2D molecular graphs and molecular languages
(e.g., SMILES), the design of pre-training strategies on 3D molecular geometries is more closely
aligned with physical principles. Previous studies (Zaidi et al., 2023; Feng et al., 2023) have
guided representation learning through denoising processes on 3D molecular geometries, theoret-
ically demonstrating that denoising 3D geometries is equivalent to learning molecular force fields,
specifically the negative gradient of molecular potential energy with respect to position. Essentially,
these studies reveal that establishing the relationship between 3D geometries and the energy states
of molecular systems is an effective pathway for learning 3D molecular representations.

However, existing methods are limited to the continuous description (i.e., the potential energy func-
tion) of the molecular energy states within the classical mechanics, overlooking the quantized (dis-
crete) energy level structures from the quantum mechanical perspective. From the quantum per-
spective, molecular systems exhibit quantized energy level structures, meaning that energy states
can only assume specific discrete values. Specifically, different types of molecular motion, such
as electronic, vibrational, and rotational motion, correspond to different energy level structures.
Knowledge of these energy levels is crucial in molecular physics and quantum chemistry, as they
determine the spectroscopic characteristics, chemical reactivity, and many other important molec-
ular properties. Fortunately, experimental measurements of molecular energy spectra can reflect
these structures. Meanwhile, there are many molecular spectra data obtained through experimen-
tal measurements or simulations (Zou et al., 2023; Alberts et al., 2024). Therefore, incorporating
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Figure 1: The conceptual view of MolSpectra, which leverages both molecular conformation and
spectra for pre-training. Prior work only models classical mechanics by denoising on conformations.

the knowledge of energy levels into molecular representation learning is expected to facilitate the
development of more informative molecular representations.

In this paper, we propose MolSpectra, a framework that incorporates molecular spectra into the
pre-training of 3D molecular representations, thereby infusing the knowledge of quantized energy
level structures into the representations, as shown in Figure 1. In MolSpectra, we introduce a multi-
spectrum encoder, SpecFormer, to capture both intra-spectrum and inter-spectrum peak correlations
by training with a masked patches reconstruction (MPR) objective. Additionally, we employ a
contrastive objective to distills the spectral features and its inherent knowledge into the learning of
3D representations. After pre-training, the resulting 3D encoder can be fine-tuned for downstream
tasks, providing expressive 3D molecular representations without the need for associated spectral
data. Extensive experiments over different downstream molecular property prediction benchmarks
shows the superiority of MolSpectra, with an average performance improvements of 6.46%.

In summary, our contributions are as follows:

• We introduce quantized energy level structures and molecular spectra into 3D molecular repre-
sentation pre-training for the first time, surpassing previous work that relied solely on physical
knowledge within the scope of classical mechanics.

• We propose SpecFormer as an expressive multi-spectrum encoder, along with the masked patches
reconstruction objective for spectral representation learning.

• We propose a contrastive objective to align molecular representations in the 3D modality and
spectral modalities, enabling the pre-trained 3D encoder to infer molecular spectral features in
downstream tasks without relying on spectral data.

• Experiments across different downstream benchmarks demonstrate that our method effectively
enhances the expressiveness of the pre-trained 3D molecular representations.

2 PRELIMINARIES

2.1 NOTATIONS

Consider a molecule characterized by its 3D structure and spectra, represented as M = (a,x,S).
Here, a ∈ {1, 2, . . . , 118}N specifies the atomic numbers, indicating the types of atoms within the
molecule. The vector x ∈ R3N describes the conformation of the molecule, while S represents its
spectra. The parameter N denotes the number of atoms in the molecule. Note that the atoms are
arranged in the same order in both a and x, ensuring consistency between the atomic numbers and
their corresponding spatial coordinates.

S = (s1, . . . , s|S|) represents the set of spectra for a molecule, where |S| denotes the number of
spectrum types considered. In our study, we focus on three types, so |S| = 3. The first spectrum,
s1 ∈ R601, is the UV-Vis spectrum, which spans from 1.5 to 13.5 eV with 601 data points at intervals
of 0.02 eV. The second spectrum, s2 ∈ R3501, is the IR spectrum, covering a range from 500 to 4000
cm−1 with 3501 data points at intervals of 1 cm−1. The third spectrum, s3 ∈ R3501, is the Raman
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spectrum, with the same range and intervals as the IR spectrum. Together, these spectra provide a
comprehensive description of the molecular characteristics across different spectral modalities.

2.2 PRE-TRAINING 3D MOLECULAR REPRESENTATION VIA DENOISING

Denoising has emerged as a prominent pre-training objective in 3D molecular representation learn-
ing, excelling in various downstream tasks. This method involves training models to predict and
remove noise introduced deliberately into molecular structures. This approach is physically inter-
pretable due to its proven equivalence to learning the molecular force field.

Equivalence between denoising and learning molecular force fields. The equivalence between
coordinate denoising and force field learning is established by Zaidi et al. (2023). For a given
molecule M, perturb its equilibrium structure x0 according to the distribution p(x|x0), where x
is the noisy conformation. Assuming the molecular distribution adheres to the energy-based Boltz-
mann distribution with respect to the energy function E(·), then

LDenoising(M) = Ep(x|x0)p(x0)∥GNNθ(x)− (x− x0)∥2

≃ Ep(x)∥GNNθ(x)− (−∇xE(x))∥2,
(1)

where GNNθ(x) denotes a graph neural network parameterized by θ, which processes the confor-
mation x to produce node-level predictions. The notation ≃ signifies the equivalence of different
objectives. The proof of this equivalence is provided in the Appendix A. In prior research, the energy
function E(·) has been defined in several forms. Below are three representative studies.

Energy function I: mixture of isotropic Gaussians. In Coord (Zaidi et al., 2023), the energy
function is approximated using a mixture of isotropic Gaussians centered at the known equilibrium
structures to replace the Boltzmann distribution, since these structures are local maxima of the Boltz-
man distribution. Leveraging the equivalence between the score-matching objective and denoising
autoencoders (Vincent, 2011), the following denoising-based energy function ECoord(·) is derived:

ECoord(x) =
1

2τ2c
(x− x0)

⊤(x− x0). (2)

Note that this objective is derived under the assumption of isotropic Gaussian noise, i.e., p(x|x0) ∼
N (x0, τ

2
c I3N ), where I3N represents the identity matrix of size 3N , and the subscript c indicates

the coordinate denoising approach.

Energy function II: mixture of anisotropic Gaussians. Considering rigid and flexible com-
ponents in molecular structures, isotropic Gaussian can lead to significant approximation errors.
To address the anisotropic distribution, Frad (Feng et al., 2023) introduces hybrid noise on di-
hedral angles of rotatable bonds and atomic coordinates, incorporating fractional denoising of
the coordinate noise. The equilibrium structure x is initially perturbed by dihedral angle noise
p(ψa|ψ0) ∼ N (ψ0, σ

2
fIm), followed by coordinate noise p(x|xa) ∼ N (xa, τ

2
f I3N ). Here,

ψa,ψ0 ∈ [0, 2π)m represent to the dihedral angles of rotatable bonds in structures xa and x0, re-
spectively, with m denoting the number of rotatable bonds. The subscript f indicates the fractional
denoising approach. Subsequently, the energy function is induced:

EFrad(x) ≈
1

2
(x− x0)

⊤Σ−1
τf ,σf

(x− x0), (3)

where Στf ,σf
= τ2f I3N + σ2

fCC
⊤, and C ∈ R3N×m is a matrix used to linearly transform the

dihedral angle noise into coordinate change, expressed as ∆x ≈ C∆ψ.

Energy function III: classical potential energy theory. SliDe (Ni et al., 2024) derives energy
function from classical molecular potential energy theory (Alavi, 2020; Zhou & Liu, 2022). In this
form, the total intramolecular potential energy is mainly attributed to three types of interactions:
bond stretching, bond angle bending, and bond torsion. The following energy function is derived:

ESliDe(r,θ,ϕ) =
1

2
[kB ⊙ (r − r0)]⊤(r − r0) +

1

2
[kA ⊙ (θ − θ0)]⊤(θ − θ0)

+
1

2
[kT ⊙ (ϕ− ϕ0)]

⊤(ϕ− ϕ0),

(4)

where r ∈ (R≥0)
m1 ,θ ∈ [0, 2π)

m2 ,ϕ ∈ [0, 2π)
m3 represent vectors of the bond lengths, bond

angles, and bond torsion angles of the molecule, respectively. r0,θ0,ϕ0 correspond to the respective
equilibrium values. The parameter vectors kB ,kA,kT determine the interaction strength.
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Figure 2: Overview of the MolSpectra pre-training framework. Our pre-training framework com-
prises three sub-objectives: the denoising objective and the MPR objective, which respectively guide
the representation learning of the 3D and spectral modalities, and the contrastive objective, which
aligns the representations of both modalities.

3 THE PROPOSED MOLSPECTRA METHOD

Considering the complementarity of different spectra, we introduce multiple spectra into molecular
representation learning. To effectively comprehend molecular spectra, we designed a Transformer-
based multi-spectrum encoder, SpecFormer, along with a masked reconstruction objective to guide
its training. Finally, a contrastive objective is employed to align the 3D encoding guided by the
denoising objective with the spectra encoding guided by the reconstruction objective, endowing the
3D encoding with the capability to understand spectra and the knowledge they encompass.

3.1 SPECFORMER: A SINGLE-STREAM ENCODER FOR MULTI-MODAL ENERGY SPECTRA

For different types of spectra, each spectrum is independently patched and initially encoded. Then,
all the resulting patch embeddings are concatenated and encoded using a Transformer-based encoder.

Patching. Compared to directly encoding individual frequency points, we divided each spectrum
into multiple patches. This approach offers two distinct advantages: (i) By forming patches from
adjacent frequency points, local semantic features, such as absorption peaks, can be captured more
effectively. (ii) It reduces the computational overhead of subsequent Transformer layers. Techni-
cally, each spectrum si ∈ RLi where i = 1, · · · , |S| is first divided into patches according to the
patch length Pi and the stride Di. When 0 < Di < Pi, the consecutive patches will be overlapped
with overlapping region length Pi − Di. When Di = Pi, the consecutive patches will be non-
overlapped. Li denotes the length of si. The patching process on each spectrum will generate a
sequence of patches pi ∈ RNi×Pi , where Ni =

⌊
Li−Pi

Di

⌋
+ 1 is the number of patches.

Patch encoding and position encoding. Prior to be fed into the encoder, the patches of the i-th
spectrum are mapped to the latent space of dimension d via a trainable linear projection Wi ∈
RPi×d. A learnable additive position encoding W pos

i ∈ RNi×d is applied to maintain the order
of the patches: p′i = piWi +W

pos
i , where p′i ∈ RNi×d denotes the latent representation of the

spectrum si that will be fed into the subsequent SpecFormer encoder.

SpecFormer: multi-spectrum Transformer encoder. Although several encoders have been pro-
posed to map molecular spectrum into implicit representations, such as the CNN-AM (Tao et al.,
2024) based on one-dimensional convolution, these encoders are designed to encode only a sin-
gle type of spectrum. In our approach, multiple molecular spectra (UV-Vis, IR, Raman) are
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jointly considered. When encoding multiple spectra of a molecule simultaneously, an observa-
tion caught our attention and led us to adopt a Transformer-based encoder with multiple spec-
tra as input, similar to the single-stream Transformer in multi-modal learning (Shin et al., 2021).
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Figure 3: Illustrate of intra-spectrum (left) and inter-
spectrum (right) dependencies.

The observation refers to the fact that
the same functional group not only
causes multiple peaks within a sin-
gle spectrum but also generates peaks
across different spectra. As shown on
the left of Figure 3, the different vi-
brational modes of the methyl group
(-CH3) in methanol (CH3OH) result
in three peaks in the IR spectrum,
indicating intra-spectrum dependen-
cies among these peaks. A simi-
lar phenomenon occurs with the hy-
droxyl group (-OH) in methanol. Ad-
ditionally, the aromatic ring in phe-
nol (C6H5OH), shown on the right of
Figure 3, not only produces multiple peaks in the IR spectrum due to different vibrational modes
but also causes an absorption peak near 270 nm in the UV-Vis spectrum due to the π → π∗ transi-
tion in the aromatic ring, demonstrating the existence of inter-spectrum dependencies. A theoretical
example is vibronic coupling (Kong et al., 2021).

To capture intra-spectrum and inter-spectrum dependencies, we concatenate the embeddings ob-
tained from patch encoding and position encoding of different spectra: p̂ = p′1∥ · · · ∥p′|S| ∈
R(

∑|S|
i=1 Ni)×d, and then input them into the Transformer encoder as depicted in Figure 2. Then each

head h = 1, . . . ,H in multi-head attention will transform them into query matrices Qh = p̂WQ
h ,

key matricesKh = p̂WK
h and value matrices Vh = p̂W V

h , whereWQ
h ,W

K
h ∈ Rd×dk and WV

h ∈
Rd× d

H . After that a scaled production is used for getting attention outputOh ∈ R(
∑|S|

i=1 Ni)× d
H :

Oh = Attention(Qh,Kh,Vh) = Softmax
(
QhK

⊤
h√

dk

)
Vh. (5)

The multi-head attention block also includes BatchNorm layers and a feed forward network with
residual connections as shown in Figure 2. After combining all outputs of all heads, it generates the
representation denoted as z ∈ R(

∑|S|
i=1 Ni)×d. Finally a flatten layer with representation projection

head is used to obtain the molecular spectra representation zs ∈ Rd.

3.2 MASKED PATCHES RECONSTRUCTION PRE-TRAINING FOR SPECTRA

Before distilling the spectra information into 3D molecular representation learning, we need first
ensure that the spectrum encoder can effectively comprehend molecular spectra and generate spec-
tral representations. Considering the success of masking modeling across various domains (Devlin
et al., 2019; He et al., 2022; Hou et al., 2022; Nie et al., 2023; Li et al., 2024), we propose a masked
patches reconstruction (MPR) objective to guide the training of SpecFormer.

After the patching step, we randomly select a portion of patches according to the mask ratio α
and replace them with zero vectors to implement the masking. Subsequently, the masked patches
undergo patch encoding and position encoding. In this way, the semantics of the masked patches
(the absorption intensity at specific wavelengths) are obscured during patch encoding, while the
positional information is retained to facilitate the reconstruction of the original semantics.

After encoding by SpecFormer, the encoded results corresponding to the masked patches are input
into a spectrum-specific reconstruction head to reconstruct the original spectral values that were
masked. The mean squared error (MSE) between the reconstruction results and the original masked
spectra serves as the loss function for the MPR task, guiding the training of SpecFormer:

LMPR =

|S|∑
i=1

Epi,j∈P̃i
∥p̂i,j − pi,j∥22, (6)

5
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where P̃i denotes the set of masked patches in the i-th type of molecular spectra, and p̂i,j denotes
the reconstructed patch corresponding to the masked patch pi,j .

3.3 CONTRASTIVE LEARNING BETWEEN 3D STRUCTURES AND SPECTRA

Under the guidance of the denoising objective for 3D representation learning and the MPR objec-
tive for spectral representation learning, we further introduce a contrastive objective to align the
representations across these two modalities. We treat the 3D representation zx ∈ Rd and spectral
representation zs ∈ Rd of the same molecule as positive samples, and negative samples otherwise.
Subsequently, the consistency between positive samples and the discrepancy between negative sam-
ples are maximized through the contrastive objective. Given the theoretical and empirical effective-
ness, we employ InfoNCE (van den Oord et al., 2018) as the contrastive objective:

LContrast = − 1
2Ep(zx,zs)

[
log exp(fx(zx,zs))

exp(fx(zx,zs))+
∑

j exp(fx(z
j
x,zs))

+ log exp(fs(zs,zx))

exp(fs(zs,zx))+
∑

j exp(fs(z
j
s,zx))

]
,

(7)
where zjx, z

j
s are randomly sampled 3D and spectra views regarding to the positive pair (zx, zs).

fx(zx, zs) and fs(zs, zx) are scoring functions for the two corresponding views, with flexible for-
mulations. Here we adopt fx(zx, zs) = fs(zs, zx) = ⟨zx, zs⟩.
Note that the denoising objective can utilize any form from existing 3D molecular representation
pre-training studies, enabling seamless integration of our method into these frameworks.

3.4 TWO-STAGE PRE-TRAINING PIPELINE

Previous pre-training efforts for 3D molecular representation have been conducted on unlabeled
datasets using denoising objective. These datasets typically provide only equilibrium 3D structures
without offering spectra for all molecules. To enhance the pre-training effect by incorporating spec-
tra while leveraging denoising pre-training, we employ a two-stage pre-training approach. The first
stage involves training on a larger dataset (Nakata & Shimazaki, 2017) without spectra using only
the denoising objective. Subsequently, the second stage involves training on a dataset that includes
spectra using the complete objective as follows:

L = βDenoisingLDenoising + βMPRLMPR + βContrastLContrast, (8)

where βDenoising, βMPR, and βContrast denote the weights of each sub-objective.

4 EXPERIMENTS

To comprehensively evaluate the impact of molecular spectra on molecular tasks, we first verify
the effectiveness of molecular spectra in the training-from-scratch method for the downstream task.
Furthermore, we evaluate the effectiveness of our pre-training framework MolSpectra.

4.1 EFFECTIVENESS OF MOLECULAR SPECTRA IN TRAINING FROM SCRATCH

This pilot experiment aims to demonstrate the rationality for incorporating molecular spectra into
pre-training. We introduce additional spectral features into a train-from-scratch molecular property
prediction model to observe the impact of spectral information on prediction outcomes. We employ
EGNN (Satorras et al., 2021), a representative 3D molecular encoder, equipped with an MLP-based
prediction head as the baseline model. While EGNN encodes the 3D representations, the UV-Vis
spectrum of each molecule provided by the QM9S (Zou et al., 2023) dataset is encoded into spectral
representations by a spectrum encoder. Before making predictions with the final MLP, we concate-
nate the spectral and 3D representations for prediction. The results are presented in Table 1.

We observe that by directly concatenating spectral representations, the performance of molecular
property prediction can be effectively enhanced. This indicates that the information from molecular
spectra is beneficial for downstream molecular property prediction. Further incorporating molecu-
lar spectra into the pre-training phase of molecular representation has the potential to enhance the
informativeness and generalization capability of the representations, thereby broadly improving the
performance of downstream tasks.

6
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Table 1: Performance (MAE ↓) when training from scratch on QM9 dataset.

Task µ α homo lumo gap R2 ZPVE U0 U H G Cv

Units (D) (a3
0) (meV) (meV) (meV) (a2

0) (meV) (meV) (meV) (meV) (meV) ( cal
mol·K )

w/o spectra 0.029 0.071 29 25 48 0.106 1.55 11 12 12 12 0.031

w/ spectra 0.027 0.049 28 24 43 0.084 1.45 10 11 10 10 0.030

4.2 EFFECTIVENESS OF MOLECULAR SPECTRA IN REPRESENTATION PRE-TRAINING

We conduct experiments to evaluate MolSpectra by first introducing spectral data into the pre-
training of 3D representations, followed by evaluating the performance on downstream tasks.
For a comprehensive comparison, two types of baselines are adopted: (1) training-from-scratch
methods, including SchNet (Schütt et al., 2017), EGNN, DimeNet (Klicpera et al., 2020b),
DimeNet++ (Klicpera et al., 2020a), PaiNN (Schütt et al., 2021), SphereNet (Liu et al., 2021),
and TorchMD-Net (Thölke & Fabritiis, 2022); and (2) pre-training methods, including Transformer-
M (Luo et al., 2023), SE(3)-DDM (Liu et al., 2023b), 3D-EMGP (Jiao et al., 2023), and Coord.

MolSpectra can be seamlessly plugged into any existing denoising method. To evaluate the enhance-
ment provided by our method compared to denoising alone, we select the representative coordinate
denoising (Coord) as our denoising sub-objective. This method also serves as our primary baseline.

4.2.1 PRE-TRAINING DATASET.

As described in Section 3.4, we first perform denoising pre-training on the PCQM4Mv2 (Nakata
& Shimazaki, 2017) dataset, followed by a second stage of pre-training on the QM9Spectra
(QM9S) (Zou et al., 2023) dataset, which includes multi-modal molecular energy spectra. In both
stages, we adopt the denoising objective provided by Coord (Zaidi et al., 2023), as defined in Eq. 2.

The QM9S dataset comprises organic molecules from the QM9 (Ramakrishnan et al., 2014) dataset.
The UV-Vis, IR, and Raman spectra of the molecules are calculated at the B3LYP/def-TZVP level
of theory, through frequency analysis and time-dependent density functional theory (TD-DFT).

Table 2: Performance (MAE ↓) on QM9 dataset. The compared methods are divided into two
groups: training from scratch and pre-training then fine-tuning. The best results are highlighted in
bold. MolSpectra results that surpass Coord are highlighted with a dark yellow background, while
results that are equal to Coord are highlighted with a light yellow background.

µ α homo lumo gap R2 ZPVE U0 U H G Cv

(D) (a3
0) (meV) (meV) (meV) (a2

0) (meV) (meV) (meV) (meV) (meV) ( cal
mol·K )

SchNet 0.033 0.235 41.0 34.0 63.0 0.070 1.70 14.00 19.00 14.00 14.00 0.033
EGNN 0.029 0.071 29.0 25.0 48.0 0.106 1.55 11.00 12.00 12.00 12.00 0.031
DimeNet++ 0.030 0.044 24.6 19.5 32.6 0.330 1.21 6.32 6.28 6.53 7.56 0.023
PaiNN 0.012 0.045 27.6 20.4 45.7 0.070 1.28 5.85 5.83 5.98 7.35 0.024
SphereNet 0.025 0.045 22.8 18.9 31.1 0.270 1.12 6.26 6.36 6.33 7.78 0.022
TorchMD-Net 0.011 0.059 20.3 17.5 36.1 0.033 1.84 6.15 6.38 6.16 7.62 0.026

Transformer-M 0.037 0.041 17.5 16.2 27.4 0.075 1.18 9.37 9.41 9.39 9.63 0.022
SE(3)-DDM 0.015 0.046 23.5 19.5 40.2 0.122 1.31 6.92 6.99 7.09 7.65 0.024
3D-EMGP 0.020 0.057 21.3 18.2 37.1 0.092 1.38 8.60 8.60 8.70 9.30 0.026
Coord 0.016 0.052 17.7 14.7 31.8 0.450 1.71 6.57 6.11 6.45 6.91 0.020
MolSpectra 0.011 0.048 15.5 13.1 26.8 0.410 1.71 5.67 5.45 5.87 6.18 0.021

4.2.2 QM9

The QM9 dataset is a quantum chemistry dataset comprising over 134,000 small molecules, each
consisting of up to 9 hydrogen (H), carbon (C), nitrogen (N), oxygen (O), and fluorine (F) atoms.
This dataset provides an equilibrium geometric conformation for each molecule along with 12 prop-
erty labels. The dataset is divided into a training set of 110k molecules, a validation set of 10k
molecules, and a test set containing the remaining over 10k molecules. Prediction errors are mea-
sured using the mean absolute error (MAE). The experimental results are presented in Table 2.
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The 3D molecular representations pre-trained using our method are fine-tuned and used for predic-
tion across various properties, achieving state-of-the-art performance in 8 out of 12 properties and
outperforms Coord in 10 out of 12 properties. In conjunction with the observations in Section 4.1,
the performance improvement can be attributed to our incorporation of an understanding of molec-
ular spectra and the knowledge they entail into the 3D molecular representations.

Table 3: Performance (MAE ↓) on MD17 force prediction (kcal/mol/ Å). The methods are divided
into two groups: training from scratch and pre-training then fine-tuning. The best results are in bold.

Aspirin Benzene Ethanol Malonal
-dehyde

Naphtha
-lene

Salicy
-lic Acid Toluene Uracil

SphereNet 0.430 0.178 0.208 0.340 0.178 0.360 0.155 0.267
SchNet 1.350 0.310 0.390 0.660 0.580 0.850 0.570 0.560
DimeNet 0.499 0.187 0.230 0.383 0.215 0.374 0.216 0.301
PaiNN 0.338 - 0.224 0.319 0.077 0.195 0.094 0.139
TorchMD-Net 0.245 0.219 0.107 0.167 0.059 0.128 0.064 0.089

SE(3)-DDM* 0.453 - 0.166 0.288 0.129 0.266 0.122 0.183
Coord 0.211 0.169 0.0960 0.139 0.053 0.109 0.058 0.074
MolSpectra 0.166 0.197 0.094 0.158 0.051 0.108 0.056 0.078

4.2.3 MD17

The MD17 dataset contains molecular dynamics trajectories for eight organic molecules, including
aspirin, benzene, and ethanol. It offers 150k to nearly 1M conformations per molecule, with energy
and force labels. Unlike QM9, MD17 emphasizes dynamic behavior in addition to static properties.
We use a standard limited data split: models train on 1k samples, validate on 50, and test on the rest.
Performance is evaluated using MAE, with results in Table 3.

Our approach also results in the expected performance improvement on MD17. MD17 is a dataset
comprising a large number of non-equilibrium molecular structures and their corresponding force
fields, which serves to evaluate a model’s understanding of molecular dynamics. However, previ-
ous pre-training methods based solely on denoising have only learned force field patterns at static
equilibrium states, failing to adequately capture the dynamic evolution of molecular systems. In
contrast, our MolSpectra learns the dynamic evolution of molecules by understanding energy level
transition patterns, thereby outperforming denoising-based pre-training methods.

4.3 SENSITIVITY ANALYSIS OF PATCH LENGTH Pi, STRIDE Di, AND MASK RATIO α

Table 4: Sensitivity of patch length and stride.

patch length stride overlap ratio homo lumo gap

20 5 75% 15.9 13.7 28.0
20 10 50% 15.5 13.1 26.8
20 15 25% 16.1 13.6 28.1
20 20 0% 15.7 13.5 27.5
16 8 50% 16.0 13.4 27.6
30 15 50% 15.9 14.0 28.1

Table 5: Sensitivity of mask ratio.

mask ratio homo lumo gap

0.05 15.7 13.4 29.7
0.10 15.5 13.1 26.8
0.15 15.7 13.5 28.0
0.20 16.0 13.6 28.1
0.25 16.3 13.5 28.0
0.30 16.2 13.7 29.0

We conduct experiments to evaluate the impact of patch length Pi, stride Di, and mask ratio α.
Results are summarized in Table 4 and Table 5.

From Table 4, we observe that when consecutive patches have overlap (Di < Pi), the performance
of pre-training is superior compared to scenarios without overlap (Di = Pi). Specifically, the per-
formance is optimal when the stride is half of the patch length. This is because appropriate overlap
can better preserve and capture local features, particularly the information at the patch boundaries.
Additionally, we find that choosing an appropriate patch length further enhances performance. In
our experiments, the configuration of Pi = 20, Di = 10 yields the best results.
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Regarding the mask ratio, α = 0.10 is a preferable choice. A small mask ratio results in insufficient
MPR optimization, hindering SpecFormer training. Conversely, a large mask ratio causes excessive
spectral perturbation, degrading performance when aligning with the 3D representations with the
contrastive objective. An appropriate mask ratio strikes a balance between these two aspects.

4.4 ABLATION STUDY

To rigorously demonstrate the contributions of masked patches reconstruction, the incorporation of
molecular spectra, and each spectral modality, we conducted an ablation study on them.

Table 6: Ablation study of MolSpectra.

homo lumo gap

MolSpectra 15.5 13.1 26.8
w/o MPR 16.4 14.1 29.7
w/o MPR, Contrast 17.5 14.4 31.2

Ablation study of masked patches reconstruction.
We remove the MPR loss to analyze the impact of
masked patches reconstruction, referred to as “w/o
MPR” in Table 6. Removing the MPR objective
leads to performance deterioration. This is consis-
tent with the sensitivity analysis of the mask ratio α
in Section 4.3, as removing MPR is an extreme case
where α = 0. This decline is due to the lack of ef-
fective guidance in training SpecFormer. Using an undertrained SpecFormer for contrastive learning
with 3D encoder outputs limits performance improvement.

Ablation study of molecular spectra. We retain only the denoising loss, removing both the MPR
loss and contrastive loss, referred to as “w/o MPR, Contrast” in Table 6. The only difference between
this variant and MolSpectra is the incorporation of molecular spectra into the pre-training. The ”w/o
MPR, Contrast” results are inferior to those of MolSpectra, highlighting that incorporating molecular
spectra effectively enhances the quality and generalizability of molecular 3D representations.

Table 7: Ablation study of spectral modalities.

UV-Vis IR Raman homo lumo gap

! ! ! 15.5 13.1 26.8
- ! ! 15.8 13.3 27.1
! - ! 16.6 14.1 28.9
! ! - 16.1 13.9 28.3

Ablation study of each spectral modality. To
evaluate the contributions of each spectral modal-
ity to the performance, we conduct an ablation
study for each modality. The results are presented
in Table 7. It can be observed that each spectral
modality contributes differently, with the UV-Vis
spectrum having the smallest contribution and the
IR spectrum the largest, likely due to the varying
information content in each modality.

4.5 VISUALIZATION OF ATTENTION PATTERNS AND LEARNED SPECTRA REPRESENTATIONS
IN SPECFORMER

(a) Attention (Layer 2 Head 11) (b) Attention (Layer 2 Head 12) (c) Attention (Layer 2 Head 13) (d) Spectra Representations

Figure 4: (a-c) Attention maps from three attention heads in SpecFormer. Different heads model dis-
tinct dependencies. (d) t-SNE visualization of the spectra representations produced by SpecFormer.

We visualize the attention patterns and learned spectra representations in SpecFormer. Based on the
visualizations presented in Figure 4, we have made the following observations.

In Figure 4(a-c), we visualize attention maps from three attention heads in SpecFormer’s second
layer. The attention weights within the three blocks along the main diagonal indicate intra-spectrum
dependencies, while those outside reveal inter-spectrum dependencies, as explained in Section 3.1.
It can be observed that different attention heads model distinct dependencies: Head 11 focuses on
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intra-spectrum dependencies, Head 13 focuses on inter-spectrum dependencies, and Head 12 mod-
els both types simultaneously. In inter-spectrum dependencies, the interaction between IR spectra
and Raman spectra is relatively pronounced, which may be related to their mutual association with
vibrational modes. Additionally, because the intensity peaks and dependencies in molecular spectra
are sparse, the attention maps in SpecFormer are generally sparse as well.

In Figure 4(d), we use t-SNE to visualize the spectra representations produced by the final layer of
SpecFormer. It can be observed that the distribution of representations in the latent space is relatively
uniform and forms several potential clusters. This well-shaped distribution of representations reveals
effective spectra representation learning and supports the structure-spectrum alignment.

5 RELATED WORK

3D molecular pre-training. The molecular 3D structures provide geometric information, which
is crucial for understanding their physicochemical properties (Musaelian et al., 2023; Batatia et al.,
2022), and cannot be directly observed from 2D graphs or SMILES. However, designing strategies
for pre-training 3D molecular representations is challenging due to the geometric symmetries of 3D
structures and their close relationship with physical knowledge, like the potential energy function.

Denoising the geometric structure has been demonstrated as an effective strategy for 3D representa-
tion pre-training (Liu et al., 2023b; Jiao et al., 2023; Kim et al., 2023; Zhou et al., 2023). Coordinate
denoising (Coord) (Zaidi et al., 2023) first theoretically proves that the denoising objective is equiv-
alent to learning the force field. Building on this work, fractional denoising (Frad) (Feng et al.,
2023) introduces dihedral angle noise to optimize the sampling of low-energy structures. Further,
SliDe (Ni et al., 2024) incorporates a more rigorous potential energy from classical mechanics. An-
other line of research simultaneously leverages both 2D and 3D structures for pre-training molecular
representations, addressing the complementarity of the two modalities (Li et al., 2022; Zhu et al.,
2022; Liu et al., 2023a; Du et al., 2023a; Yu et al., 2024) or the computational complexity of 3D
structure determination (Liu et al., 2022; Stärk et al., 2022; Wang et al., 2023a).

Although these studies elucidate the relationship between molecular 3D structures and their energy
states, they remain limited to the description of molecular energy states within classical mechanics,
without considering the quantized energy level structures as described by quantum mechanics.

Molecular spectroscopy. Molecular spectroscopy studies interactions between molecules and
electromagnetic radiation. Analyzing spectra provides valuable insights into molecular structure,
composition, and dynamics (Lancaster et al., 2024). When encountering unknown substances, re-
searchers conduct spectroscopic measurements on samples and compare the observed spectra with
libraries for identification. To expand library coverage, machine learning methods are widely used
to predict molecules’ spectra (Zou et al., 2023; Wei et al., 2018; Zong et al., 2024).

Some studies incorporate physical principles into spectra prediction models as inductive biases,
including molecular dynamics simulations via equivariant message passing (Schütt et al., 2021),
fragmentation (Dührkop et al., 2020; Cao et al., 2020; Goldman et al., 2023a), motifs (Park et al.,
2023), and long-distance atomic interactions (Young et al., 2024). Another line of research approach
bypasses spectral library comparison and directly performs de novo structure elucidation from spec-
tra (Stravs et al., 2021; Goldman et al., 2023b; Tao et al., 2024).

Since different spectroscopic techniques offer complementary advantages, the joint analysis of mul-
tiple spectra can provide comprehensive information (Alberts et al., 2024). In this study, we encodes
multiple spectra, and introduce them into molecular representation pre-training for the first time.

6 CONCLUSION

In this study, we explore pre-training molecular 3D representations beyond classical mechanics.
By leveraging the correlation between molecular energy level structures and molecular spectra in
quantum mechanics, we introduce molecular spectra for pre-training molecular 3D representations
(MolSpectra). By aligning the 3D encoder trained with a denoising objective and the spectrum
encoder trained with a masked patch reconstruction objective, we enhance the informativeness and
transferability of the resulting 3D representations.
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A PROOF OF THEORETICAL RESULTS

Theorem A.1 (Equivalence between the denoising objective and the learning of molecular force
fields (Zaidi et al., 2023)). Assume the conformation distribution is a mixture of Gaussian distribu-
tion centered at the equilibriums:

p(x) =

∫
p(x|x0)p(x0), p(x|x0) ∼ N (x0, τ

2I3N ) (A1)

x0, x ∈ R3N are equilibrium and noisy conformation respectively, N is the number of atoms in the
molecule. It relates to molecular energy by Boltzmann distribution p(x) ∝ exp(−E(x)).

Then given a sampled molecule M, the denoising loss on the conformation coordinates is an equiv-
alent optimization target to force field prediction:

LDenoising(M) = Ep(x|x0)p(x0)||GNNθ(x)− (x− x0)||2 (A2)

≃ Ep(x)||GNNθ(x)− (−∇xE(x))||2, (A3)

where GNNθ(x) denotes a graph neural network with parameters θ which takes conformation x as
an input and returns node-level noise predictions, ≃ denotes equivalence.

Proof. According to Boltzmann distribution, Eq. A3 is equal to Ep(x)||GNNθ(x)−∇x log p(x)||2.
By using a conditional score matching lemma (Vincent, 2011), the equation above is further equal
to Ep(x|x0)p(x0)||GNNθ(x) − ∇x log p(x|x0)||2 + T1, where T1 is constant independent of θ.
Then with the Gaussian assumption, it becomes Ep(x|x0)p(x0)||GNNθ(x)− x0−x

τ2
c

||2 + T1. Finally,
since coefficients − 1

τ2 do not rely on the input x, it can be absorbed into GNNθ, thus obtaining
Eq. A2.

B VISUALIZATION AND ANALYSIS OF SPECTRA
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Figure A1: Randomly sampled examples of molecular energy spectra.
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In this section, we visualize the three types of spectra we utilize (UV-Vis, IR, Raman) and standard-
ize the initial spectral data based on data analysis. In Figure A1, we visualize 20 randomly sampled
spectra from QM9S for each type of spectrum. A notable pattern observed is that, although each
spectrum consists of numerous absorption peaks, there are significant differences in the heights (ab-
sorption intensities) of these peaks. For instance, in the IR spectra, the absorption intensity at most
peaks is around 200, but a few peaks reach an intensity of 800. However, in qualitative analysis,
the position and shape of the peaks are more critical than their heights. Therefore, the differences in
peak absorption intensities can interfere with model training under the MSE loss metric. To address
this issue, we pre-process the absorption intensities of the spectra by applying a log10 transformation
to mitigate the interference caused by peak intensity differences.

C IMPLEMENTATION DETAILS

C.1 HARDWARE AND SOFTWARE

Our experiments are conducted on Linux servers equipped with 184 Intel Xeon Platinum 8469C
CPUs, 920GB RAM, and 8 NVIDIA H20 96GB GPUs. Our model is implemented in PyTorch
version 2.3.1, PyTorch Geometric version 2.5.3 (https://pyg.org/) with CUDA version 12.1, and
Python 3.10.14.

C.2 MODEL CONFIGURATION

The SpecFormer is implemented using a 3-layer Transformer with 16 attention heads. Following
previous works, we set both d and dk as 256. TorchMD-Net (Thölke & Fabritiis, 2022) is adopted
as the 3D molecular encoder. We tune the mask ratio (i.e., α) in {0.05, 0.10, 0.15, 0.20, 0.25, 0.30},
tune the “stride/patch length” pair (i.e., Di/Pi) in {5/20, 10/20, 15/20, 20/20, 8/16, 15/30}, and
tune the weights of sub-objectives (i.e., βDenoising, βMPR, and βContrast ) in {0.01, 0.1, 1, 10}. Since
our goal is to align the 3D representations and spectra representations of molecules during the pre-
training phase, and not rely on molecular spectra data during downstream fine-tuning, these hyper-
parameters related to molecular spectra are tuned on the pre-training dataset. Based on the results of
hyper-parameter tuning, we adopt α = 0.10, Di = 10, Pi = 20, βDenoising = 1.0, βMPR = 1.0, and
βContrast = 1.0.

Following SimCLR (Chen et al., 2020), the contrastive loss in our Eq. 7 is implemented using
in-batch contrastive loss, where positive and negative pairs are constructed within each data batch.
Therefore, for each anchor representation in a batch, there is one positive sample and bs−1 negative
samples, where bs is the batch size. In our method, bs = 128.

In both pre-training stages, we use the noise generation method and denoising objective provided by
Coord (Zaidi et al., 2023), specifically energy function I as described in Section 2.2. The noise is
added to atom positions as scaled mixture of isotropic Gaussian noise, with a scaling factor of 0.04.
The denoising objective is defined in Eq. 2.

For baselines, we follow their recommended settings.

D LIMITATIONS AND POTENTIAL FUTURE DIRECTIONS

One limitation of our method is the availability, scale, and diversity of molecular spectral data. Our
current dataset comprises geometric structures of 134,000 molecules, each with three types of spec-
tra (UV-Vis, IR, Raman). To effectively explore the scaling laws of pre-training methods, larger and
more diverse molecular spectral datasets are necessary. Encouragingly, molecular spectroscopy has
been gaining increasing attention in the research community, with larger and more diverse datasets
being released, such as the recent multimodal spectroscopic dataset (Alberts et al., 2024). This
development supports advancements in molecular representation learning and other related tasks.

Another limitation is that our proposed SpecFormer can currently only handle one-dimensional
molecular spectra. For higher-dimensional spectra, such as two-dimensional NMR and two-
dimensional correlation spectra, further development of sophisticated spectrum encoder is needed.

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

Looking ahead, we envision several future directions in this field. First, there is potential in in-
vestigating the scaling laws of pre-training on larger and more diverse molecular spectral datasets.
Second, expanding the scope of molecular spectrum encoding to include a wider range, such as
NMR, mass spectra, and two-dimensional spectra, could be highly beneficial. Third, while a pre-
trained spectral encoder has been developed in our method, we have so far only applied the pre-
trained 3D encoder to downstream tasks. Exploring the use of the pre-trained spectral encoder
for molecular spectrum-related downstream tasks, such as automated molecular structure elucida-
tion from spectra, represents an promising opportunity. Finally, current molecular 3D pre-training
methods are designed based on TorchMD-Net (Thölke & Fabritiis, 2022). With the development
of equivariant message passing neural networks, more expressive backbone architectures, such as
Allegro (Musaelian et al., 2023) and MACE (Batatia et al., 2022) have been proposed, improving
the prediction of molecular properties when trained from scratch. Extending pre-training strategies
to these state-of-the-art architectures holds the promise of further advancing downstream tasks.

E MORE EXPERIMENTAL RESULTS AND DISCUSSIONS

In addition to Coord, we evaluate the effect of incorporating SliDe into our MolSpectra. SliDe (Ni
et al., 2024) is also a denoising-based pre-training method, utilizing the TorchMD-Net (Thölke &
Fabritiis, 2022) as its encoder backbone, consistent with previous pre-training work (Zaidi et al.,
2023; Feng et al., 2023). The results are presented in Table A1.

Table A1: Performance (MAE ↓) on QM9 dataset. The better result between the two variants of
each pretraining method, w/ and w/o MolSpectra, is highlighted in bold. MolSpectra results that
surpass w/o MolSpectra are highlighted with a dark yellow background, while results that are equal
to w/o MolSpectra are highlighted with a light yellow background.

µ homo lumo gap H G Cv

(D) (meV) (meV) (meV) (meV) (meV) ( cal
mol·K )

Coord 0.016 17.7 14.7 31.8 6.45 6.91 0.020
Coord w/ MolSpectra 0.011 15.5 13.1 26.8 5.87 6.18 0.021

SliDe 0.015 18.7 16.2 28.7 4.26 5.37 0.022
SliDe w/ MolSpectra 0.010 16.2 15.9 28.7 3.27 5.01 0.021

Integrating our method with SliDe effectively reduces the error in property prediction on the QM9
dataset. Given that our method enhances both Coord and SliDe, this suggests that our approach is
broadly effective across various denoising-based pretraining strategies. Furthermore, incorporating
molecular spectra can guide the pre-trained model to acquire knowledge beyond what denoising
objectives can offer, which proves beneficial for downstream property prediction.
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