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Abstract

Contrastive learning has demonstrated great performance in breast cancer diagnosis. How-
ever, few existing works inspect label information in contrastive representation learning,
especially for multi-modality ultrasound scenes. In this work, a two-stage supervised multi-
modality contrastive representation classification network (TSMCR) is proposed for assist-
ing breast cancer diagnosis on the multimodality ultrasound. TSMCR consists of two-stage
supervised multimodality contrastive learning (SMCL) and deep support vector machine
(DSVM). By a novel contrastive loss, SMCL handles the consistency between modalities
and the sample separability. Further, two-stage SMCL learns expressive representation by
gradually pulling the similar samples of positive pairs closer and pushing the dissimilar sam-
ples of negative pairs apart in the projection space. Besides, on the fusion of the multi-level
contrastive representation, DSVM is to jointly learn the representation network and classi-
fier again in a unified framework to improve the generation performance. The experimental
results on the multimodality ultrasound dataset show the proposed TSMCR achieves su-
perior performance with an accuracy of 87.51%, sensitivity of 86.67%, and specificity of
88.36%.

Keywords: Multimodality breast ultrasound; Supervised contrastive learning; Represen-
tation learning; Deep support vector machine

1. Introduction

Breast cancer is the most commonly diagnosed cancer and the second leading cause of
cancer death among women worldwide Giaquinto et al. (2022). Multimodality ultrasound,
including B-mode ultrasound (BUS) and ultrasound elastography (USE) has become a main
tools in the clinic for breast cancer diagnosis Goswami et al. (2020). Representation learning
is a critical factor in designing a breast cancer diagnostic system. Some efforts of breast
cancer classification based on computer-aided diagnosis have been carried out to provide
effective decision supports Han et al. (2017); Yap et al. (2018); Wu et al. (2020); Lahoura
et al. (2021); Ding et al. (2022). However, learning the expressive representation remains
an challenge question.

In recent years, contrastive learning methods have attracted considerable attention in
representation learning for various tasks Chen et al. (2020); Radford et al. (2021); Zeng et al.
(2023); Tian et al. (2020), also including medical images analysis Azizi et al. (2021); Chen
et al. (2021); Muller et al. (2022); Hager et al. (2023). However, they all belong to the self-
supervised algorithms, so the label information cannot be used to guide the representation
learning and enhance the classification performance simultaneously. In addition, the typical
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contrastive losses, e.g. InfoNCE Oord et al. (2018); Hjelm et al. (2019), are originally
developed for data with a single modality. If a task requires a multimodality dataset, the
contrastive methods mentioned above feed the multimodality samples into two encoders
directly and then calculate the loss with the typical contrastive losses, e.g. InfoNCE used in
Hager et al. (2023). Therefore, the unexplored challenge in these methods is the correlation
between modalities and the separability of different categories.

In this work, we propose a two-stage supervised multi-modality contrastive representa-
tion classification method (TSMCR) to assist in the diagnosis of breast cancer on multi-
modality ultrasound (BUS and USE). TSMCR firstly trains a two-stage supervised multi-
modality contrastive learning (SMCL) for multi-level representation learning from BUS and
USE images, and then a DSVM for breast cancer diagnosis. Firstly, SMCL designs a novel
multimodality supervised contrastive loss intended to learn powerful and effective represen-
tation. Especially, according to the guidance of label information, 3 pairs (1 positive pair
and 2 negative pairs) are selected from different modalities, and then the contrastive loss is
calculated by optimizing the similarity measurement of pairs. Secondly, to fuse the rich in-
formation of multimodality data, multi-level representation is learned by a two-stage SMCL
with pseudo-siamese encoders (without weight-sharing) and siamese encoders (with weight-
sharing). Finally, DSVM integrates DNN (consist of two-stage contrastive encode networks)
and SVM classifier into the unified framework, which achieves better model training on the
limited dataset and enhances classification performance. Meanwhile, the objective function
fine-tunes the whole networks in a supervised manner, including encoder networks in the
two-stage SMCL.

The main contributions of our proposal are shown as follows:

1) We propose a novel SMCL algorithm for representation learning on the multimodality
breast ultrasound (BUS and USE). SMCL effectively learns powerful and effective
representation by increasing the consistency between modalities and handling the
sample separability well.

2) We develop the TSMCR framework by combining two-stage SMCL with DSVM to
improve the performance of representation learning and classification simultaneously.
In particular, the two-stage contrastive manner gradually improves the expressiveness
of representation by pulling the similar samples closer and pushing the dissimilar
samples apart, and then on the integrated multi-level representation, DSVM improves
the classification performance of the whole framework.

3) The experiments verify the feasibility of the proposed TSMCR framework. Addition-
ally, the evaluation of a real-world breast cancer dataset confirms that the proposed
method outperforms several existing algorithms.

2. Related Work

Representation learning in breast images. To design an effective breast cancer diag-
nostic system, representation learning is a critical factor. Han et al. (2017) exploited the
deep learning framework to classify breast lesions with ultrasound imaging. Yap et al. (2018)
conducted breast lesion detection by deep learning that is investigated from three aspects
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(Patch-based LeNet, U-Net, and Transfer Learning FCN-AlexNet). Wu et al. (2020) lever-
aged deep neural network (DNN) to learn the representation of breast images and classified
them according to breast imaging-reporting and data system (BI-RADS). Lahoura et al.
(2021) built a cloud-based system to conduct remote diagnosis, in which an extreme learn-
ing machine is applied for representation learning and classification. Ding et al. (2022) used
USE to improve the performance of the learned representation from BUS by their method
ResNet-GAP, which conducts localization and classification of breast lesions simultaneously.

Contrastive learning. Contrastive-based algorithms aim that the representation of
similar samples are mapped close together, while that of dissimilar samples are apart in
projection space. To improve the performance of representation learning, multiple effective
contrastive functions have been designed, such as vanilla contrastive loss by optimizing the
Euclidean distance of a pair to predict whether two inputs are similar or not Chopra et al.
(2005); Hadsell et al. (2006), triple loss by enforcing the difference between one positive pair
and one negative pair to be greater than a given margin Chechik et al. (2010), InfoNCE by
maximizing the mutual information estimation on one positive pair and multi-negative pairs
with cosine similarity Oord et al. (2018); Hjelm et al. (2019). Besides, various research works
in contrastive learning have been developed and applied to different tasks, e.g. language
prediction of a given image Radford et al. (2021), representation of language-image-point
cloud Zeng et al. (2023), and multiview contrastive method on image and video datasets
Tian et al. (2020).

Contrastive learning has also been applied for medical image analysis successfully Shurrab
and Duwairi (2022). Azizi et al. (2021) conducted dermatology and chest X-ray classifica-
tion by a SimCLR-based algorithm that introduced a multi-instance contrastive learning
to satisfy the scene of multiple images. Chen et al. (2021) classified a novel coronavirus on
the limited training samples of chest computed tomography (CT) imaging by momentum
contrastive algorithm that captures expressive feature representation with a pre-text task.
Muller et al. (2022) studied the relationship between local and global contrastive losses in
image-text contrastive learning so that the medical downstream tasks work well. Hager
et al. (2023) predicted risks of myocardial infarction and coronary artery disease on cardiac
MR images and corresponding tabular data by combining two contrastive learning strategies
SimCLR and SCARF.

DSVM. A unified framework combining DNN with SVM effectively improves the model
performance on a small-sample. Li and Zhang (2017) proposed the deep neural mapping
support vector machine (DNMSVM) for representation and classification successfully by
DNN explicit mapping instead of a traditional kernel mapping. Later, some variants have
also been successfully proposed to prove the effectiveness of the unified framework in differ-
ent applications Okwuashi and Ndehedehe (2020); Xie et al. (2023). These works indicate
that the unified framework is feasible to improve the representation learning and classifica-
tion performance even training on a limited dataset.

3. Preliminaries

Vanilla Contrastive Learning. Given a dataset T = {(x;,¥;) }i=1,..y with N sample-
label pairs. x; € RP is the i-th sample corresponding label y; € {—1,1}. For convenience,
we further organize the input and the corresponding output by X = [z1,...,xy] and
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y = [y1,...,yn], respectively. Arbitrary x; selected from the dataset T is taken as an
anchor, and another sample x; (i # j) is termed as positive sample of x; if they are from
the same category (namely y; = y;), otherwise negative sample. The encoder function
f(-) generates an embedding vector f(x;) for &; € T'. According to the vanilla contrastive
functions Chopra et al. (2005); Hadsell et al. (2006), they train two encoder networks
of shared parameters to decrease the distance of the positive pair, namely tuple (anchor,
positive), and generate a large distance of the negative pair, namely tuple (anchor, negative).
Specifically, the loss is formularized as follows:

Ler (@i, j; f) =6(yi # yj) - [m — || (@) — f@)IF+0(yi = y5) - | f (i) = fla)] (1)
where m is a non-negative constant, which enforces the distance between samples of the
different categories to be greater than m as much as possible.

Supervised contrastive learning (SCL). Using the label information, SCL is capable
of handling the case where many samples have the same category rather than InfoNCE with
only one similar sample. By two random augmentations, the dataset T is transferred to
T = {(@i,¥i)};,—1_ on» Where &y, Toi—1 corresponds to x;, the label §2; = yoic1 = i
Let P(xz;) = {j : y] = y;} is a set of indices with the same label as y; in the dataset T,
and |P(x;)| is its cardinality. For a given anchor x;, it is combined with multiple positive
samples x; to construct positive pairs. According to the supervised contrastive learning
Khosla et al. (2020), the loss can be written as:

Lscr(a:) =
scrn(x;) | G

JEP(“"z)

where the denominator G =3, ,; exp(f(x;) - f(xy)/7). The temperature parameter 7 is a
non-negative constant.

4. Method

Two-stage SMCL » DSVM for [l »Prediction
for Representation [~ - - Classification [ -~ ¥

Figure 1: The overall architecture of multi-level supervised contrastive representation classi-
fication TSMCR. The supervised training manner are employed to learn TSMCR
with iterated forward (solid arrows) and backward (dashed arrows).

In this section, we describe the proposed algorithm TSMCR, as shown in Fig. 1. A novel
contrastive network, two-stage SMCL, is designed to extract multi-level representation with
rich and diverse information. Further, DSVM is used to fine-tune the whole network and
improve the generalization performance. The learning procedure of the TSMCR in detail
is given below.
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4.1. Supervised Multimodal Contrastive Learning

To learn powerful representation from multimodality samples, we design a supervised mul-
timodal contrastive learning SMCL, which includes two branches of encoder and projection
head (as shown in Fig. 2). In SMCL, a novel supervised contrastive loss is developed to
extract expressive representation, in which the loss is calculated on three pairs, including
1 postive pair and 2 negative pairs. In particular, given an anchor, positive pair is built
by the combination of the anchor and another sample (called as positive sample), which
is from another modality corresponding to the anchor. The sample of positive pair natu-
rally have the same category. Negative pair consists of anchor and another sample (called
as negative sample) with different categories, but the selection of the negative sample is
not constrained by the data modal. SMCL aims at pulling the similar samples (positive
pair) closer and pushing the dissimilar samples (negative pair) apart. SMCL uses a pseudo-
siamese architecture with two different encoders to meet the requirement of multimodality
data. After training, SMCL enhances the modal consistency effectively and handles the
sample separability well.

xt X?

Encoder-2
JAO) f'0)

h2
A 4

Head g(+)

1 Multimodality-based
Contrastive Loss

Figure 2: The architecture of supervised multimodal contrastive learning. The multimodal
data are fed into the different branches of encoder and head to obtain two corre-
lated representation.

Given a multimodal dataset T = {(z}, x?, Yi)i=1,.., N} with N sample-label tuples, the
right superscript v(= 1,2) is used to denote the v-th modality. The x} € RPv is the
feature of the i-th element corresponding the label y; € {—1,1}. The sample :1311, iB% are
fed into encoders f(-) and f’(-), resulting in a pair of representation vectors h; = f(z})
and h? = f'(x?). Further, the projection head with a single hidden layer maps the learned
representation h}, h? to a pair normalized vector zl = g(h}), 27 =¢ (h?), in which they
are used for calculating our contrastive loss.

Under the guidance of label information, SMCL selects 4-tuple samples from multi-

modality samples to construct 3 pairs. We set a sample :cll with label y; as an anchor from
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the dataset T, while the positive sample ZB is selected from another modal , which has the
same label as the anchor x}. Let the set Y+ = {7lyr, = +1, 7 €1,...,N,g € 1,...,Q}
and Y~ = {7ply,, = -1,7,€1,...,N,pe1,..., P} (P+Q=N) are the 1ndex set. We select
aj € YTorY ™ randomly to satisfy Yi # Yi, and then the corresponding samples a:} and :133
are called negative. Finally, the tuple of the learned representation and head vectors are
denoted as {h},h?, h1 h2} and {z],2? z z2} To measure the similarity between posi-
tive/negative pairs, SMCL employs a Euchdean distance in the projection space following

as:

D(z%,zg) = HZ% - z?\l
D(z;,z)) = ||lz; — 2| 3)
D(z;,z]) = ||z} — 25|l

The contrastive loss requires decreasing the distance of the positive pair and increasing
the distance of the negative pairs, so it is formulated as:

Lyyer(zi) =D(z,2]) + |\ = D(zi, zj)[1+ % — D(=i, 2[5 (4)

where [|; denotes the hinge function, which keeps the inputs unchanged if the input is non-
negative, returns zero otherwise. A1, Ao are non-negative constants, defining a constrictive
radius so that the negative pairs contribute to the loss only if their measures are less
than the radius. For constraint consistency between different modalities, we use the same
margin value, i.e. A\; = Ao. In the Eq. (4), loss L}, treats the 1st modality as anchor.
Symmetrically, we can get L% mcor by anchoring at 2nd modality. Finally, we add them up
as our multimodality contrastive loss:

Lsycer(zi,27) = Lsyern(2)) + Layer(27) (5)

Algorithm 1 Supervised multimodal contrastive learning (SMCL)

Input: Dataset T = {(z},x?,y;)}; Hyper-parameters set A1, A2, Maz_iter.

Output: Weights of encoder f, f’ and head g, ¢’, denoted by 8 = [01, 02] and P = [p,, p,].
1: Initialize the parameters 8 and P randomly;

Generate an index set IV = {(anchor = i, postive = i,negativel = j, negative2 = j)},

ie{l,...,N})ve{l,2},and je Yt or Y~ (y; # vi);

3: for iter € {1,..., Max_iter} do

4: forie{l,...,N} do

5: h} = f(z};61) # representation

6: h = f'(x7;602)

7

8

9

»

z} =g(hl;py) # projection
=z} = g(hi, p,)
end for i
10:  Calculate the contrastive loss Lsascr, by Eq. (5) on the index set IY;
11:  Update encoders f, f’ and heads g, ¢’ to minimize Lgycr (Xl, X?);
12: end for Max_iter
13: Return parameters 8 and P.
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where it is worth noting that Li, ;- (2]) # L%,,01(27) because of the different negative
samples by generating j twice randomly. For the whole dataset, the contrastive loss can be
rewritten as:

N

1
Lsucr (X', X?) ZMZ;LSMCL(Z},Z%) (6)
1=
where X¥ = [z},...,2}%], v = 1,2. By minimizing the above loss function, the in-

crease/decrease of the similarity measurement of the positive/negative pairs in the pro-
jective space is done simultaneously. Algorithm 1 summarizes the process of the SMCL
training.

4.2. Two-stage Supervised Multi-modality Contrastive Representation
Classification

e X2

SMCL with Pseudo-Siamese | |
Network
—_— h12
—»I —>
DNN
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Network
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Figure 3: The architecture of our TSMCR network. Multimodality samples are fed into a
two-stage supervised contrastive network to generate the multi-level representa-
tion, which is then fused together and classify by DSVM.

The overall architecture of TSMCR is shown in Fig. 3. By the pseudo-siamese and
siamese encoder networks, two-stage SMCL learns the multi-level contrastive representation,
in which DSVM is then used for classification based on the fused representation. First, 1st
stage encoder is capable of extracting representation from the original inputs, in which
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using a pseudo-siamese network provides a feasible manner so that the inputs can be fed
into SMCL, even if inputs have a different dimensional structure. Second, 2nd stage encoder
is capable of further extracting effective representation based on the learned representation
from the 1st stage SMCL. Finally, DSVM classification refines the whole network again
and makes good use of the fused multi-level representation to improve the generalization
performance, rather than the direct representation from contrastive learning only once. By
getting together them, the TSMCR builds a framework of original features (input layer) —
primary contrastive representation — high-level contrastive representation — classification,
in which the supervised manner is employed in the TSMCR training. The detailed procedure
of TSMCR. construction is followed as:

Given dataset T' = {(9311, m?, Yi)i=1,..N }, the SMCL with pseudo siamese network is first
used to learn the primary contrastive representation h}' = f!(x}) and h}? = fV(x?). In the
2nd stage, the hi11 and hiu are fed into the SMCL with siamese network to generate high-
level representation h?!' = f2(h}') and h?? = f%(h!?), in which f(-) = f?(-). Next, the
all learned representation is fused with concatenation, denoted as hlf = [h}l; h}2; h2t h?]
Further, the fused representation is fed into a small neural network with a single hidden
layer that maps it to the space where margin-based L2-SVM is applied. The mapping and
predictive output are given by

hi—a<(Wf>Th{+bf> (7)

G = (w) hi+b (8)

where o is the activation function 1/(1 + exp(—=x)). Meanwhile, we use a symbol f(-) to
denote the subpart network with weights W7, b’ ,w,b . Therefore, the objective function
is formalized as

Lop; (X', X?;60) = IIwH2+CZ —yidils (9)

where C' is a non-negative trade-off parameter, 8 denote the weights of two-stage encode
networks and fused network, including f', f¥, f2, f%, f. Therefore, DSVM consists of the
combination of two-stage contrastive networks and SVM classification.

The whole procedure of the TSMCR is summarized in Algorithm 2. After the TSMCR
has been trained, the predictive label could be achieved for a testing sample by calculating
the sign on Eq. (8).

4.3. Relationship with Previous Contrastive Loss

Our supervised multimodality contrastive loss Lgpsor is an extend of the vanilla contrastive
loss on multimodality samples. On Eq. (1), the indicative function §(-) could be removed
when the inputs are from multimodality samples, since the similar and dissimilar pairs exist
simultaneously. Meanwhile, our loss Lgaror, has a 3rd term, which constrains the loss of a
new negative pair from the new modality and is similar to the 2nd term on Eq. (1).

Lsyeor is also closely related to the supervised contrastive loss Lgor on Eq. (4). If
Lgcr is used to multimodality samples with one positive and two negatives, the connection
of between Lgp;cr, and Lgor could be given by Lsaror «x Lscor.
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Algorithm 2 Training with Two-stage Supervised Multi-modality Contrastive Represen-
tation (TSMCR)
Input: Dataset T'; Hyper-parameters set {C, A\, Ao, [ter}.
Output: Weights of 1st, 2nd-stage contrastive encoders and classification network, denoted
by 075 = (077, 017], 05 = [07,63], 6°.
1: Initialization: randomly initialize 87°, °, and 6°.
2: for iter € {1,...,Iter} do
3. Stage-1 SMCL: Update network f!, f to minimize Lgycr (X1, X?) according to
Algorithm 1;
. Generate the stage-1 representation H'', H'?:
5. Stage-2 SMCL: Update network f2, f¥ to minimize Lgyror(H', H'?) according to
Algorithm 1;
6:  Generate the stage-2 representation H 21, H 22;
7. Calculate the final objection Loy; according to Eq. (9);
8:  Use the optimizer to minimize Lop; to update all parameters of the TSMCR;
9: end for iter
~PS A4S
10: Return parameters 8 , 6

, and éo.

5. Experiments

To validate the performance of the proposed TSMCR algorithm, a real-world multimodality
breast ultrasound dataset with the diagnostic label is used to conduct the experiments. After
the description of the dataset, we report and analyze the experimental results in detail.

Dataset. The multimodality ultrasound (BUS and USE) dataset of breast cancer was
collected from the Nanjing Drum Tower Hospital, China. By the Mindray Resona 7 ultra-
sound scanner with the L11-3 probe, the BUS and USE images were acquired by experienced
sonologists. The dataset of breast cancer consists of 264 pairs of BUS and USE images from
129 patients with benign tumors and 135 patients with malignant cancers. All the malig-
nant cancers have been proved by the pathological diagnosis. Therefore, it could ensure the
label validity for all the BUS and USE images. Moreover, this study was approved by the
Research Ethics Board, and all patients had signed informed consent.

Experiment Design. In order to demonstrate the effectiveness and efficiency of our
TSMCR, extensive experiments are conducted from the following aspects.

Firstly, our proposed TSMCR is compared with several classical and state-of-the-art
algorithms by the three group experiments: a) SVM and DNMSVM: the primary SVM
and a method Li and Zhang (2017) by combining DNN with SVM are used for breast
cancer diagnosis on concatenated feature of BUS and USE. b) Kernel-based multimodal
methods, including SM-MKL Xu et al. (2013), Simple-MKL Rakotomamonjy et al. (2008),
where they conduct classification directly on the multimodality ultrasound. ¢) Contrastive
learning methods: Vanilla CL Hadsell et al. (2006), Triplet Chechik et al. (2010), SimCLR
Chen et al. (2020), CLIP Radford et al. (2021), and SupCon Khosla et al. (2020), where the
different ultrasound modalities are taken as the different augmented views to feed into the
encoders of the contrastive methods. In addition, Vanilla CL, Triplet, SimCLR, and CLIP
belong to self-supervised learning, while SupCon trains a model in a supervised manner.
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Secondly, we conducted an ablation experiment to verify the effectiveness of TSMCR by
comparing it with the following algorithm: 1) SMCL: our TSMCR uses only 1st contrastive
learning. Specially, our supervised contrastive loss directly is used to train encode network to
extracts representation on multimodality samples and then classify with DSVM; 2) TSMCR-
CE: the classifier based cross-entropy is used to replace SVM classifier.

Thirdly, we investigate the convergence of TSMCR and whether our supervised con-
trastive loss handle the similarity of positive/negative pairs effectively.

Finally, in order to investigate the multi-level contrastive representation learning, we
provide a more intuitive evaluation by representation visualization in low-dimensional em-
bedding space. All feature representation was mapped to 2-dimensional space by t-SNE.

Implementation. The code of the proposed TSMCR algorithm was implemented
in Pytorch with Python 3.6. The compared algorithms, including SVM, SM-MKL, and
Simple-MKL, were conducted with Matlab R2018b (MathWorks company). The rest of the
comparison methods were conducted similarly to the TSMCR. All the experiments were
performed using an NVIDIA Geforce 1080Ti GPU and an Intel Xeon Silver 4116 CPU on
Winl0. The code is available in: https://github.com/351ghm/TSMCR-ACML.

Evaluation. The variety of indices are calculated to evaluate the comprehensive perfor-
mance, including classification accuracy (ACC), sensitivity (SEN), specificity (SPE), pos-
itive predictive value (PPV), and negative predictive value (NPV). Moreover, the receiver
operating characteristic (ROC) curve and the area under the ROC curve (AUC) are also
used for evaluation. Results were given by the format of the mean + SD (standard devia-
tion) and boldface means significantly better than other algorithms.

6. Experimental Results

In this section, we demonstrate the results of experiments designed above to investigate the
effectiveness of TSMCR in the task of breast cancer diagnosis.

6.1. Performance Comparison

Table 1 shows the classification results of different algorithms on the BUS and USE datasets.
The proposed TSMCR with the best results of breast diagnosis outperforms the others com-
pared algorithms, as shown in the last row of Table 1. The best values of classification ACC,
SEN, SPE, PPV, and NPV are 87.51 + 2.51%, 86.67 & 6.01%, 88.36 4 2.43%, 88.72 + 1.83%),
86.76 + 4.90%, respectively. In addition, it can be observed that 1) our TSMCR outper-
forms better compared with the single-modality classification methods SVM and DNMSVM,
indicating that TSMCR, benefits from rich information extracted by multi-level contrastive
learning on multimodality ultrasound. 2) compared to the typical multimodality methods
(SM-MKL, Simple-MKL), our TSMCR exhibit better results, which suggests that the effec-
tiveness of representation learning in the unified framework by combining DNN and SVM.
3) SupCon and our TSMCR achieve better performance compared to other self-supervised-
based contrastive methods, indicating that the supervised contrastive manner is conducive
to learning expressive representation. Meanwhile, due to multimodality-specific contrastive
and multi-level representation manner, our TSMCR further outperforms SupCon. Summar-
ily, these facts demonstrate that the fused multi-level contrastive representation learned by
TSMCR has a better power to enhance the classification performance.
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Table 1: Classification results of the proposed method and existing algorithms. The best
classification results are highlight in boldface. (Unit: %)

METHOD ACC SEN SPE PPV NPV
SVM 83.33 + 3.07 81.48 + 4.54 85.29 4+ 9.92 86.14 + 7.91 81.69 + 2.67
DNMSVM 8485 + 514  85.02 & 6.63_ 83.75 £ 10.27 _85.33 + T.67 8538 & 5.65
SM-MKL 84.09 + 4.12 86.66 + 6.19  81.41 4+ 8.72 83.43 + 6.23 85.82 £+ 6.02
SiMPLE-MKL 8448 + 4.03 8592 £ 6.08  82.08 + 634 _84.25 £ 4.81 8523 + 536
VANILLA CL 84.48 + 4.33 81.48 + 6.19 87.66 £+ 7.42 87.84 + 6.75 82.18 + 5.24
TRIPLET 84.48 + 2.98 84.44 + 6.37 84.52 + 7.64 85.61 + 4.97 84.37 £+ 4.75
SiMCLR 84.85 + 3.35 82.96 4+ 5.02 86.83 + 3.89 86.89 + 3.59 83.14 £+ 4.11
CLIP 84.48 + 2.73 86.67 4+ 3.77 82.21 +£4.49 83.72 + 3.59 85.63 £+ 3.67
SupCoN  85.99 + 2.54  86.67+ 444  85.32 + 430 _86.21 4 3.68 8613+ 4.01
SMCL 86.75 + 2.62 88.14 + 4.32 85.35 +£ 7.80 86.82 + 5.91 87.67 £+ 3.95
TSMCR-CE _86.37 + 2.98 85.18 & 5.23  87.63 % 2.78 _87.82+2.62 85.10 & 4.52
TSMCR 87.51 + 2.51 86.67 + 6.01 88.36 + 2.43 88.72 + 1.83 86.76 + 4.90
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Figure 4: ROC curves and AUC values of different algorithms with the best results in each
group experiments.

Fig. 4 and Table 2 show the ROC curves and the corresponding values of AUC, in
which the ROC curve of TSMCR is drawn by the solid red line. For clarity, Fig. 4 only
presents four ROC curves with the best performance from three group experiments, namely
DNMSVM, Simple-MKL and SupCon, and the corresponding AUC is exhibited on the
bottom-right. It can be found that our proposed TSMCR achieves the AUC value of 0.9199,
which is superior to all the examined algorithms.

6.2. Ablation Studies

The last second and third rows of Table 1 also show the classification results of ablation
studies, namely SMCL and TSMCR-CE. Compared to the contrastive methods, including
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Table 2: AUC value of all experimental algorithms.

METHOD AUC  METHOD AUC
SVM 0.8721 SM-MKL 0.8935
DNMSVM i (7).§970§ i SIMPLE-MKL i Q.§972§ i
VANILLA 0.8748 SmMCLR 0.8670
TRIPLET 0.8698 SuprCoN - 0.8876
CLIP 0.8670 TSMCR 0.9199

Vanilla CL, Triplet, SimCLR, and SupCon, the results of ablation experiments demonstrate
that the supervised contrastive strategy is successful with better classification performance
on multimodality dataset.

The experiment results also illustrate the effectiveness of the proposed TSMCR from two
aspects: multi-level contrastive representation and classifier. Firstly, benefiting from multi-
level contrastive representation with rich information, the classification performance by
TSMCR has been improved compared with SMCL with only 1st contrastive representation.
Secondly, compared with TSMCR-CE calculated the loss by cross-entropy, our TSMCR
combining DNN with SVM obtains superior performance, because the manner of the margin
measurement in SVM is more related to the Euclidean distance-based loss in our supervised
contrastive loss rather than probability-based measurement of cross-entropy. Therefore, by
combining two-stage SMCL and DSVM, our TSMCR can be trained better in a supervised
manner and generate representation with more expressiveness to improve the classification
performance.

051

— — — - Stage-2
Stage-1

Loss

0 50 100 150 200 250 300 350 400 450 500
Iter

Figure 5: Training curve of TSMCR.

6.3. Convergence and Distance of Pairs

We provide the training curves in Fig. 5 to observe the effects of two-stage manner on con-
vergence. From the figure, we can see that our TSMCR is trained well with small iterations
and the contrastive loss on 2nd stage converges much faster than 1st stage learning.
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The distance distribution of positive/negative pairs is explored in Fig. 6. Both of two
subfigures show that the distance distribution of 2st stage contrastive learning (with brown)
is more compact than 1nd stage (with blue) , demonstrating that the two-stage contrastive
manner effectively handles the similarity of positive/negative pairs. Beside, in the two-stage
manner, Fig. 6(a) shows that the distance of positive pairs decreases gradually while Fig.
6(b) shows that that of negative pairs rises. Therefore, our TSMCR effectively increases
the modal consistency by selecting the positive pairs from the same category of different
modalities. Meanwhile, our TSMCR, handles sample separability well, since the negative
pairs are chosen from different categories.

Frequency(%)

]
0 002 004 006 008 01 012 014 016 018 02 0 0.5 1 1.5 2 25 3 35 4
Distance Distance

(a) Positive pairs (b) Negative pairs

Figure 6: The distance distribution of pairs. (a) positive pairs. (b) negative pairs.

(a) Original features

(¢) Stage-2

Figure 7: Visualization of representation learning is obtained by t-SNE. Subfigure (a) is
from the original features of the multimodality ultrasound. Subfigure (b) and (c)
present the t-SNE projection of the contrastive representation from the 1st and
2nd stages in our TSMCR.

6.4. Visualization of Feature Representation

Fig. 7 shows the visualization results of representation learning, in which t-SNE maps the
representation to 2D space. Fig. 7 (a) is the original features mapping, which indicates
that the positive and negative instances, corresponding to malignant and benign breast
lesions, are hardly separated on a 2D projection plane. As shown in Fig. 7 (b), in the 1st
stage of contrastive learning, the mapping outputs with different categories are pushed in the
opposite direction, namely black ‘ x 'to the left and red * * 'to the right. Further, through the
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2nd stage of contrastive learning (Fig. 7 (c)), the significant separability of representation
is achieved. These results demonstrate that the multi-level supervised contrastive manner
in TSMCR effectively enhances the expressiveness of representation in the feature mapping
space.

7. Conclusion

A two-stage contrastive classification algorithm TSMCR is proposed to assist breast can-
cer diagnosis on the multimodality ultrasound. TSMCR makes full use of the two-stage
contrastive learning to gradually enhance the expressiveness of representation, in which the
multimodality supervised contrastive loss is designed to meet the multimodal scene. On
the limited dataset, TSMCR uses the unified framework by combining DNN and SVM to
conduct classification well on the fused multi-level contrastive representation. Experimental
results show that the proposed TSMCR outperforms all the comparative algorithms on a
real-world dataset of breast cancer. It indicates that TSMCR has the potential to aid breast
diagnosis on the scene of multimodality ultrasound.
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