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Abstract. Multiplexed immunofluorescence provides an unprecedented
opportunity for studying specific cell-to-cell and cell-microenvironment
interactions. Noise, imaging artifacts, and the variation in protein ex-
pression make this a particularly challenging problem. We employ graph
neural networks to combine features obtained from tissue morphology
with measurements of protein expression to identify communities of cells
related to tumour stage. Our framework presents a new approach to
analysing and processing these complex multi-dimensional datasets.
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· Digital Pathology · Colorectal Cancer.

1 Introduction

Novel tissue multiplexing imaging platforms [20, 1] allow the analysis of a broad
range of cell types in the tissue architecture context. These approaches open
up new opportunities for improving our understanding of disease, monitoring
therapeutic response, and the development of high-dimensional clinical tests.
Here, we are interested in predicting tumour progression which is strongly de-
pendent on the tumour microenvironment (TME) and the complex interaction
between the developing tumour and the immune system. While current cancer
classification highly relies on the extent of the primary tumour (T), lymph node
involvement (N) and metastatic presence (M), visualising multiple protein tar-
gets in the same tissue allows us to interrogate the involvement of and the role
of adaptive immune cell infiltration in colorectal cancer (CRC) prognosis.

The analysis of multiplexing data requires the combination of spatial infor-
mation that captures the changes in tissue architecture with measurements of
protein expression. When compared to standard digital pathology, multiplexing
datasets are typically much smaller. While techniques developed for cytometry
have been applied to these datasets, the inherently complex statistics pose chal-
lenges that require a more principled approach. Building on recent success of
applying graph neural networks (GNNs) to histopathology, we introduce a novel
framework for analysing multiplexed immunofluorescence images using GNNs
that involves selecting regions of interest, combining cell and tile level features,
and augmenting the size of the training data. To further investigate immune-cell
interactions, we introduce a set of network metrics.
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In summary, we propose a GNN model to predict tumour stage in an explain-
able setting that allows us to discover which parts of the tissue contribute to the
prediction. To the best of our knowledge, this is the first attempt at predicting
tumour stage from multiplexed images using graph-based neural networks.

2 Methods

The two-layer graph described in Section 2.1 is constructed to abstract the
key parameters of the underlying tissue. It captures the locations of cells, cer-
tain morphological measurements, protein expression, and selected immune-
interaction features. Rather than performing a global analysis of the graph, we
perform a local analysis in selected regions of interest (RoIs). A GNN is used to
predict tumour stage for a given RoI-level-graph. Finally, post-hoc explainability
methods, presented in Section 2.4 are utilised to visualise the relationship be-
tween immune interaction profiles and prediction. Figure 1 provides a summary
of the overall approach.

2.1 Graph representation

We define an undirected graph G = (V,E), with vertices V and edges E. The
graph topology is represented by an adjacency matrix A ∈ RN×N , and node
features are represented by the matrix X ∈ RN×D, with N = |V | and feature
dimension D. Similar to Pati et al. [14] we employ a two-layer graph represen-
tation, with (1) cell-graphs [4] constructed on small randomly sampled tiles, in
order to quantify local patterns of immune interaction, and (2) a tile-level graph
able to aggregate information from the multiple tissue regions. We construct A
based on a distance threshold as follows:

Aij =

{
1 if d(i, j) < k
0 otherwise,

(1)

where the threshold k which determines whether two nodes are connected or
not is selected so as to ensure a small average node degree (the number of edges
connected to each node) as well as a small number of disconnected nodes to
reduce graph complexity and facilitate metric computation.

2.2 Network metric computation

Network metrics are used to investigate the distribution of each cell population
of interest. These metrics can be applied at the cell-graph level, to acquire infor-
mation about the general distribution of the nodes, or to subgraphs, where only
nodes of a specific target of interest (e.g. helper T-cells) and their respective
edges are selected, keeping their original node positions intact. The metrics in-
clude the average clustering and square clustering coefficients, the assortativity,
radius, density, transitivity, and the closeness of each cell type population, as de-
fined by Kerem et al. [18]. The ratios between each pair of immune cell densities,
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Fig. 1. Overview of the proposed method.

a known prognostic factor for cancer progression [19, 7, 5] are also computed. To
measure the degree of mixing between tumour and immune cells, we additionally
compute the ratio of immune-tumour to immune-immune interactions [9].

2.3 Graph Neural Networks

We employ Graph Neural Networks (GNNs) to obtain a graph representation
H ∈ RN×P from our initial embedding H0 = X ∈ RN×D, where P is the number
of output features. Using the notation from [10] and [23], we first perform a
number of message passing steps to obtain the node embeddings hv for each
node v ∈ G, which we then combine into a global graph embedding HG by
means of a readout layer. The message passing consists of an aggregation and
combination of the neighbouring nodes features. For the kth GNN layer:

a(k)v = AGG(k)
({
h(k−1)u : u ∈ N (v)

})
, h(k)v = COMBINE(k)

(
h(k−1)v , a(k)v

)
(2)

hG = READOUT
({
h(k)v | v ∈ G

})
, (3)

where N (v) denotes the set of neighbours of v. For the message passing step, we
will use the graph convolution operator defined in [13], which preserves central
node information and improves the characterisation of real-world networks [3]:

h(k)v = W
(k)
1 h(k−1)v +W

(k)
2

∑
u∈N (v)

h(k−1)u . (4)

Following the nuclei feature message passing in the cell-graphs Gt, we employ a
mean readout layer. Combined node features and selected network metrics mt
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listed in the previous sub-section are then concatenated for each tile t:

h
(0)
t = CONCAT (mt, hGt) . (5)

For the RoI-level tile-graph, we apply Eq. 4 again for each RoI, with nodes
corresponding to the individual tiles. We compare the results using mean, sum,
and max global pooling.

2.4 Post-hoc explainability

We employ Integrated Gradients (IG) [21, 8] to understand the significance of
each tile node in predicting tumour stage. We do so by computing the IG at-
tribution of each edge and aggregating the attributions of the edges connecting
each node. The IG edge attribution is computed by comparing each edge mask
with a baseline of edge weights set to zero. Since we use unweighted graphs, the
initial edge weights are all one. The IG for each edge ei is computed as follows:

IGei =

∫ 1

α=0

∂F (xα)

∂wei
dα, (6)

where xα corresponds to the original input graph but with all edge weights set to
α, wei denotes the current edge weight, and F (x) is the output of the model for
an input x. The integral can be approximated using Gauss-Legendre quadrature.

In order to identify the key features impacting the prediction, we further run
the GNN Explainer model [24], which maximises the mutual information MI
between the prediction of the trained model and that of the simplified explainer
model given by a subgraphGS and a subset of features T : maxGS ,T MI(Y, (GS , T )).

3 Experiments

Dataset and marker panel. Paraffin-embedded tissue samples of 41 rectal
primary tumours were used to investigate the risk of disease progression and re-
currence. All samples were processed on the Perkin-Elmer Vectra platform using
an immune panel of 6 fluorescent markers. DAPI is used for nuclei segmentation.
Cytokeratin (Opal 650) is used to delineate epithelial cells. A further four mark-
ers are included to visualise immune cells: CD4 (Opal 520) for helper T-cells,
CD8 (Opal 570) for cytotoxic T-cells, CD20 (Opal 540) for B-cells, and Foxp3
(Opal 620) for regulatory T-cells. The system also provides a seventh channel
corresponding to the imaging system’s autofluorescence isolation capacity which
improves signal-to-noise ratio [22].

Specialist GI pathologists reported tumour stage on matching H&E slides:
28 of these samples were assigned a pT1 tumour stage, while 16 samples were
considered to be more advanced (13 pT2, 3 pT3). Specific regions of interest such
as those shown in Fig. 2 were provided by a pathologist for the tumour centre,
invasive tumour front, background mucosa, and peritumoural stroma, guided by
the matched H&E image. Annotation areas correspond to the standard 1mm
diameter disk size used for biopsies and tissue microarrays (TMAs), allowing for
a future integrative analysis with TMA cohorts.
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Fig. 2. Example of a WSI with annotations for the tumour centre (purple and yellow),
invasive front (red), background mucosa (orange), and peritumoural stroma (blue).

Nuclei segmentation and cell phenotyping. Before segmentation, a back-
ground and shading correction [15] was performed to improve the stitching of in-
dividual image tiles. Moreover, contrast limited adaptive histogram equalisation
(CLAHE) was used to improve contrast in the DAPI channel. The segmentation
network employed to identify cell nuclei consists of a 3-class (cell inside, cell
boundary, background) modified U-Net architecture comprised of the original
U-Net [16] decoder and a ResNet [6] encoder, where downblocks are replaced
by residual blocks. The model was pre-trained on the fluorescence samples from
the publicly available BBBC038v1 dataset (Broad Institute Bioimage Bench-
mark Collection) [2, 12]. On average, the network identified a total of 1.3M cells
per sample. Segmentation masks were projected onto the remaining channels
to measure the average nuclei protein expression. Cells were then assigned to
the cell type corresponding to the validated marker with the highest percentile
allocation by applying quantile normalisation.

Graph construction RoIs of the size of 2048x2048 pixels corresponding to the
bounding box of the disk annotations are selected to investigate immune-cell
interactions across samples and regions. From each RoI, 200 potentially over-
lapping 256x256 tiles are randomly chosen to construct cell-graphs. A minimum
threshold of 50 cells per tile is set to avoid sampling from predominantly back-
ground tiles. The total number of tiles available for each RoI is shown in Table
1, together with the median number of cells per tile.

Cell-graph networks for each tile are constructed using NetworkX [18] with
nodes centered at the centroid of each nucleus. The adjacency matrix is built
based on the distance between nuclei. We choose a threshold of 30 pixels, which
leads to a node degree of 8.1 and 76% of the nodes in the largest connected
component on average. For each node, we record the average marker expres-
sion for the five markers of interest, the area occupied by the cell, and the cell
solidity. These seven features are inserted as node features. We subsequently
perform three message-passing steps to update the node features by encompass-
ing information from nearby cells, which are aggregated using mean pooling and
transformed into a vector of length 16. Additionally, for each tile, we compute
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the set of 68 hand-crafted immune-interaction features enumerated in Section
2.2. Nuclei and cell-interaction features are then concatenated into a vector of
length 84 per tile. The second set of graphs are constructed at the RoI level, with
nodes representing the 200 sampled tiles positioned at their tile centre coordi-
nates. Each tile incorporates the selected 84 attributes as node features. These
RoI-level graphs are then fed into the model for pT stage prediction.

Table 1. Number of RoI images, tiles sampled, and number of cells (median and
interquantile range) available from each region and tumour stage.

Region / Stage # Tiles # RoIs Median # Cells per tile Median # Cells per RoI

Centre 16,400 82 123; IQR: (92, 158) 7232 (6387, 9377)
Front 8,200 41 108; IQR: (80, 142) 6185 (4717, 8065)
Mucosa 6,200 31 109; IQR: (82, 140) 5433 (4156, 7032)
Stroma 7,800 39 76; IQR: (61, 103) 3293 (2652 , 4627)

pT1 23,600 118 112; IQR: (79,152) 6619 (4239, 8325)
pT2 12,200 61 106; IQR: (78, 137) 6394 (4371, 7425)
pT3 2,800 14 90; IQR: (68, 125) 5240 (3889, 6561)

All - - 108; IQR: (77, 145) 6385 (4229, 7923)

Total 38,600 193 1,207,505 1,207,505

Data augmentation. For each RoI in the training set, a 150x pre-batching
augmentation strategy is employed to reduce over-fitting. The augmented set is
obtained by constructing the networks using a subsample of 80% of the nodes
at each step (160 tiles) and by varying the threshold that needs to be surpassed
for an edge to be included between two neighbours by sampling a value in the
range {150, 175, 200, 225, 250}, resulting in a variety of tighter and sparser
graphs. The node subsampling and edge modifications ensure that networks in
the training set are sufficiently different to avoid over-fitting. For the test set,
only a single network is constructed per RoI using the default distance threshold
of 200 pixels for adjacency construction and the full set of tile nodes in the RoI
(200 tiles).

Implementation. The model consists of three GraphConv [13, 3] layers with
ReLu activation and global pooling aggregation. Experiments are conducted
in PyTorch 1.7.0 using PyTorch Geometric [3] on a local machine with 16GB
RAM on CPU-only mode. Data is split into training and testing at the patient
level. Due to the limited sample size, a pseudo-validation set is constructed by
randomly sampling (with pT stratification) 10% of the pre-augmented data, and
used for hyperparameter grid-search. Models performance is measured according
to their weighted F1-scores on the test set.

The model is trained using Adam optimiser and cross entropy loss, using the
weight argument to account for the class imbalance. The output dimension is 3,
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which corresponds to the number of pT stages. To prevent overfitting, we use
L2 regularisation in the optimiser (weight decay parameter) and early stopping
based on the pseudo-validation dataset. We tune the following hyperparameters
using a grid search: dropout ratio {0, 0.5}, learning rate {10e-4, 10e-5, 10e-
6}, weight decay {10e-4, 10e-5}, number of hidden layers {16,32,64}, and batch
size {32, 64}. The values that provide the best performance in terms of class-
weighted F1 score correspond to a dropout ratio of 0.5, a learning rate of 10e-5,
a weight decay of 10e-5, 32 hidden layers, and a batch size of 64. The baseline
model consists of a multilayer perceptron which takes as input the individual
nuclei features (size, shape and marker expression) without taking the network
topology into consideration. The latent representations of these node features
are concatenated before the final layer to form a tile representation before the
final prediction.

Post-hoc explainability We compute Integrated Gradients [21] using the
model interpretability library for PyTorch Captum [11] to obtain an importance
score of individual edges and nodes for the pT stage prediction of each instance
in the test set. We can then compare areas of predictive importance across the
different selected RoI regions. The GNN Explainer model (implemented using
PyTorch Geometric) is used to obtain feature importances across all tiles in the
test set.

Fig. 3. An example of an invasive front RoI for a pT0 sample classified correctly. (Left)
Tile-graph of 200 256x256 tiles overlaid on DAPI. (Centre) Cell-graph corresponding to
the 2048x2048 RoI: blue - epithelial, green - T-helper, red: cytotoxic T-cell, magenta:
T-reg, yellow: B-cell. (Right) Top ten tiles classified as important using integrated
gradients for predicting tumour stage from immune interaction features.

Results and discussion As shown in Table 2, in the majority of the ex-
periments the invasive front was the region with the highest predictive power,
followed by the peritumoural stroma, known to have a high prognostic impact.
Moreover, all the graph-based models present an improvement over the baseline
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model: this result suggests that the network topology plays an important role in
tumour stage classification. Among the graph-based models, global max-pooling
performed better than average pooling, as seen in [17]. Due to the limited num-
ber of samples with pT3, we were not able to correctly classify any of the pT3
RoIs. However, front pT3 RoIs were predicted to have pT2 stage, demonstrating
that the model has learned to identify immune features related to an advanced
cancer state. The proportion of interactions between FOXP3 positive and ep-
ithelial cells and the average expression of CD20 were found to be the top two
features affecting tumour stage classification. Fig. 3 shows an example of tiles
selected by IG as important in an invasive front RoI: it can be observed that
the network considers a large cluster of regulatory T-cells as the most significant
area for the prediction.

Table 2. Mean and standard deviation of RoI-level accuracies and class-weighted F1-
scores measured on the test set and averaged over three distinct train-test splits.

Model GCN - Mean pool GCN - Add pool GCN - Max pool MLP baseline

Region Acc. (%) F1(%) Acc.(%) F1(%) Acc.(%) F1(%) Acc.(%) F1(%)

All 60.4±1.6 58.4±1.7 64.4±3.5 61.6±4.2 66.6±3.6 61.6±3.2 61.8±0.8 49.0±0.7

Centre 55.2±7.8 53.8±6.4 64.6±6.4 60.7±8.9 63.5±1.5 58.0±0.1 61.5±1.1 49.2±0.8

Front 68.8±5.1 63.6±8.5 66.7±5.9 60.4±9.9 72.9 ±7.8 67.8 ±9.0 62.4±0.3 48.9±0.7

Mucosa 49.8±11.4 47.5±12.6 56.3±5.9 50.2±8.1 63.1±9.6 60.8±9.9 62.1±2.7 48.4±1.9

Stroma 63.4±4.8 56.6±7.4 66.0±3.8 58.9±8.5 68.1±2.9 61.6±6.5 61.7±1.7 48.4±1.2

4 Conclusion

Our experiments demonstrate that the proposed two-layer GNN opens up new
possibilities for interrogating multiplexed immuno-fluorescence images. As the
model is capable of predicting tumour stage with a mean accuracy of well over
65%, we conclude that the model captures disease relevant information at a
local level. The improvement with respect to the baseline model, which consid-
ers marker expressions and nuclei properties in isolation without accounting for
their distribution and interaction, suggests that the network topology plays an
important role in the tumour stage classification. Finally, in any given RoI, the
post-hoc explainability method, together with the multi-tile strategy, allowed us
to identify specific areas and features that contributed the most to the predic-
tion. This will enable a follow up analysis to identify novel features that are of
biological and clinical interest.
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