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Abstract

Primary open-angle glaucoma (POAG) is one of the leading causes of irreversible blind-
ness in the United States and worldwide. Although deep learning methods have been
proposed to diagnose POAG, these methods all used a single image as input. Differently,
the glaucoma specialists compare the follow-up image with the baseline image to deter-
mine a glaucomatous eye. To simulate this process, we proposed a siamese network model,
POAGNet, to identify POAG from fundus photographs. The POAGNet consists of two
side-outputs for deep supervision. The POAGNet network was trained and evaluated on
two datasets: (1) 37,339 fundus photographs from 1,636 Ocular Hypertension Treatment
Study (OHTS) participants, and (2) 3,684 fundus photographs from the sequential fundus
images for glaucoma (SIG) dataset. Extensive experiments show that POAGNet performed
better on POAG diagnosis in the OHTS test set with an accuracy of 0.91, F-score of 0.5069,
and an AUC of 0.9081 than state-of-the-art (accuracy 0.8320; F-score 0.3864; AUC 0.8750).
It also outperformed the baseline in the SIG dataset (Accuracy 0.9176 vs 0.8690; F-score
0.1613 vs 0.1010; AUC 0.7518 vs 0.6434). These results highlight the potential of deep
learning to assist and enhance clinical POAG diagnosis. The proposed network will be
publicly available on https://github.com/bionlplab/poagnet.

Keywords: Deep learning, Primary open-angle glaucoma (POAG), Fundus photographs,
Siamese network.

1. Introduction

Primary open-angle glaucoma (POAG) is one of the leading causes of blindness worldwide
(Bourne et al., 2013). In the United States, POAG is the most common form of glaucoma
and is the leading cause of blindness among African-Americans (Sommer et al., 1991) and
Hispanics (Jiang et al., 2018). POAG is usually asymptomatic except it progresses to a late
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Figure 1: Longitudinal fundus images of a patient.

stage where visual field (VF) loss can happen which may cause a prompt blindness. However,
fortunately, it is possible to avoid the most blindness caused by POAG via early diagnosis
and treatment (Tatham et al., 2015). Therefore, accurately identifying individuals with
glaucoma is crucial to clinical decision-making, which can provide early notice for patient
monitoring and medical and surgical treatments (Doshi et al., 2008; Quigley et al., 1992).

Fundus photography is generally considered most helpful for diagnosing glaucoma in
eyes showing a classic glaucomatous appearance to expert graders. While it is convenient
and inexpensive, its low prevalence and screening limitations are confronted by inexperi-
enced clinicians, making it challenging to conduct daily screenings (Kolomeyer et al., 2021).
Therefore, it is important to develop an automatic model to assist clinicians in predict-
ing POAG with high accuracy from the fundus photographs and improve their photograph
interpretation skills.

Recently, deep learning methods have demonstrated promising results in biology and
medicine (Ching et al., 2018). In the ophthalmology domain, several method have been
proposed to detect POAG at its earliest stage (Chen et al., 2015; Li et al., 2019, 2018;
Thakur et al., 2020; Christopher et al., 2018). However, these approaches used a single
image as input, which might affect the performance of the model. In clinical practice, the
glaucoma specialists compare the follow-up image with the baseline image (the image taken
at the beginning of a study) to trace out the relevant features. In this paper, we proposed a
siamese network model with side output, POAGNet, to simulate this process by comparing
the differences between two input images. Different from previous siamese work, POAGNet
used a convolution operation, instead of the absolute Euclidean distance, to study the
feature difference between two outputs of the network instead of the absolute Euclidean
distance between the two outputs. In addition, the POAGNet also consists of side output
(Lin et al., 2021) to ease the vanishing gradient problems in training deep models and to
drive the hidden layers for favoring discriminative features. To the best of our knowledge,
it is the first time in the ophthalmology domain that two fundus images have been utilized
and compared for automated glaucoma detection via Siamese networks.

In addition, prior studies may not perform well over real-world problems due to small
datasets from a single institution. It makes the methods less generalizable to different
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populations and settings. In this paper, we assessed POAGNet on two independent datasets:
the Ocular Hypertension Treatment Study cohort (OHTS)(Kass et al., 2002) and Sequential
fundus Images for Glaucoma dataset (SIG)(Li et al., 2020).

Interpretability is also a broad topic in the medical image analysis domain. Taking
inspiration from the ERASER benchmark (DeYoung et al., 2020), we also curated a new
dataset to evaluate why models make POAG predictions. In this dataset, we focus on
rationales, i.e., optic disc, that support POAG diagnosis; therefore, mask optic disc over
fundus photography. Evaluation on this dataset showed that POAGNet provides rationales
aligned with human annotations.

Our work has the following contributions: (1) We leveraged the siamese network to find
the differences between two fundus photographs. We then propose a novel POAGNet to
jointly fuse two image representations for glaucoma analysis. (2) Our approach achieves
superior POAG diagnosis results (90.81% and 75.18% in AUC) against several competitive
baselines on two large-scale, multi-institutional benchmarks. Notably, POAGNet actually
relies on particular rationales to make predictions. (3) We make codes, models, and pre-
processed data publicly available.

The rest of the paper is organized as follows. We describe the POAGNet in Section 2,
followed by ourexperimental setup, results, and discussion in Section 3. We conclude with
future work in the last section.

2. Methods

2.1. POAGNet architecture

POAGNet comprises two convolutional blocks that share the weight and are followed by
seven layers (Figure 2). In the beginning, two fundus image x1 and x2 are passed through the
convolutional neural network, DenseNet-201 (Huang et al., 2017), respectively. We used the
output of last (Fd1 and Fd2) and second last Dense Blocks (Fd1n and Fd2n). For each output,
we concatenated two outputs, followed by use 1×1 convolution, a batch normalization (BN),
and rectified linear units (ReLU). In the end, a global average pooling and a fully connected
layer with softmax activation is attached.

2.2. Loss function

In this study, we use the binary cross-entropy as the loss function in the POAGNet. While
state-of-the-art Siamese networks tend to use contrasting loss or triplet loss when training,
our preliminary study found that they were not suited in this task. In addtion, to overcome
the severe class imbalance for the POAG classification, we apply the weighted cross-entropy,
a commonly used loss function in classification. The adopted weighted cross-entropy was
as follow:

L = − 1

N

N∑
n=1

[βyn log(ŷn(xn, θs)) + (1− β)(1− yn) log(1− ŷn(xn, θs))] (1)

N is the number of training examples. β is the balancing factor between positive and
negative samples. Here, we used inversely proportional to POAG frequency in the training
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Figure 2: The architecture of the proposed POAGNet.

data. yn is the ground truth, and ŷ is the likelihood predicted by the classifier, and θs
represents the parameters of the neural network.

The overall loss function is the average of the losses associated with the prediction from
the last two blocks:

Ls = αL(1) + (1− α)L(2), (2)

2.3. Evaluation of the model’s rationales

In this work, we constructed a new dataset to assess the plausibility of rationales by measur-
ing rationale faithfulness – rationales ought to have meaningfully influenced its prediction
(Yu et al., 2019). Specifically, we constructed a contrasting example for a fundus photo-
graph xi with the bounding box of optic disc ri masked (Figure 3). Let m(xi) be the original
prediction provided by a model m. We consider the predicted class from the model once
the supporting bounding box is stripped. Intuitively, the model should generate a less “cor-
rect” class. We then measure this as 1

N

∑
n(m(xi)−m(xi/ri)). In particular, if we selected

glaucomatous images where their labels were predicted by the model correctly (m(xi) = 1),
a score of 1.0 indicates that the rationales are indeed influential in the prediction, while 0.0
indicates that the rationales are not the reasons for the prediction.
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Figure 3: Examples of fundus photographs and their corresponding masked images: (a)
POAG due to VF only and (b) POAG due to GON.

3. Results

3.1. Datasets

In this study, we include two independent datasets (Table 1). These two databases are
large-scale, cross-sectional, longitudinal, and population-based studies.

The first dataset is obtained from the Ocular Hypertension Treatment Study (OHTS).
OHTS is one of the largest longitudinal clinical trials in POAG (1,636 participants and
37,399 images) from 22 centers in the United States. The study protocol was approved
by an independent Institutional Review Board at each clinical center (Kass et al., 2002).
The participants in this dataset were selected according to both eligibility and exclusion
criteria. The gold standard POAG labels were graded at the Optic Disc Reading Center.
In brief, two masked certified readers were arranged to detect the optic disc deterioration
independently. If there is a disagreement between two readers, a senior reader reviewed it
in a masked fashion. The POAG diagnosis in a quality control sample of 86 eyes (50 normal
eyes and 36 with progression) showed test-retest agreement at κ = 0.70 (95% confidence
interval [CI], 0.55-0.85). More details of the reading center workflow has been described
in Kass et al. (2002). For the OHTS dataset, we split the entire dataset randomly at the
patient level. We take one group (20% of total subjects) as the hold-out test set and the
remaining as the training set.

The second dataset is obtained from the Sequential fundus Images for Glaucoma (SIG)
dataset 1. SIG contains 3,684 fundus images, of which 153 (4.15%) have POAG. In the SIG
dataset, all fundus images are annotated with binary labels of glaucoma, i.e., positive or
negative glaucoma. The samples are labeled to positive glaucoma when they satisfy any of
the three criteria, i.e., retinal nerve fibre layer defect, rim loss, and optic disc hemorrhage(Li
et al., 2020). We used the official training, validation, and testing split in this study.

We compare the baseline image with each follow-up image and they compromise pairs
separately. In each pair, the follow-up image and the baseline image come from the same
eye.

1. https://github.com/XiaofeiWang2018/DeepGF
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Dataset OHTS SIG

Train Val Test Train Val Test

Participants 2503 115 654 300 35 70
Images

POAG 1774 89 492 110 15 28
Normal 26871 1215 6927 2646 337 701

Pairs
POAG 1723 86 478 110 15 28
Normal 23620 1068 6289 22236 287 561

Table 1: Characteristics of the OHTS and SIG datasets.

3.2. Evaluation metrics

To evaluate the performance of POAG diagnosis, we compute accuracy, precision, sensitivity
(also called recall), specificity, F1-score, and AUC (Area Under the ROC curve).

3.3. Experimental settings

We first trained DenseNet-201 on POAG detection using a single image as input. Then we
initialized the subnets in the POAGNet using the DenseNet-201 and fine-tune the entire
network in an end-to-end manner.

All images are resized to 224×224×3 as input of the proposed model. The models were
implemented by Keras with a backend of Tensorflow. The proposed network was optimized
using the Adam optimizer method (Kingma and Ba, 2014). The learning rate is 5× 10−5.
α is 0.8. The experiments were performed on Intel Core i9-9960 X 16 cores processor and
NVIDIA Quadro RTX 6000 GPU.

3.4. Results and Discussion

3.4.1. POAG diagnosis on the OHTS dataset

We compare our method with three models on POAG diagnosis on the OHTS dataset,
including the DenseNet-201 with a single image as input, the traditional Siamese network
with Euclidean distance, and POAGNet using the last DenseNet Block (POAGNet w/o side
output).

Table 2 shows the performance comparison. Our model achieved the best results, with
an accuracy of 0.9100, a precision of 0.4135, a recall of 0.6548, a specificity of 0.9294,
an F1-score of 0.5069, and an AUC of 0.9081. Compared to the model with a single
image as input (DenseNet-201), POAGNet has higher accuracy (7.80%), precision (15.07%),
specificity(9.110%), F1-score (12.23%), and AUC (3.31%).

When compared POAGNet with and without side output, results demonstrated that
the side output mechanism could boost the performance of POAGNet.
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Method Accuracy Precision Recall Specificity F1-score AUC

DenseNet-201 0.8320 0.2628 0.7291 0.8383 0.3864 0.8750
Siamese network (euclidean distance) 0.8394 0.2581 0.6799 0.8515 0.3740 0.8536
POAGNet w/o side output 0.9372 0.5702 0.4498 0.9742 0.5029 0.8997
POAGNet 0.9100 0.4135 0.6548 0.9294 0.5069 0.9081

Table 2: Comparisons on the test set of OHTS dataset.

3.4.2. POAG diagnosis on the SIG dataset

Table 3 compares the results of POAGNet with DenseNet-201 on the SIG dataset. Our
model obtained the better results, with an accuracy of 0.9176, a precision of 0.1471, a
recall of 0.1786, an F1-score of 0.1613, and an AUC of 0.7518. Compared to the base-
line (DenseNet-201), POAGNet has higher accuracy (5.86%), precision (7.67%), speci-
ficity(6.14%), F1-score (6.03%), and AUC (10.84%).

Method Accuracy Precision Recall Specificity F1-score AUC

DenseNet-201 0.8590 0.0704 0.1786 0.8905 0.1010 0.6434
POAGNet 0.9176 0.1471 0.1786 0.9519 0.1613 0.7518

Table 3: Comparisons on the test set of the SIG dataset.

3.4.3. Evaluation on the model’s rationales

To evaluate the model’s rationales, we randomly selected 100 “correctly predicted” fundus
photographs from the OHTS dataset. We then manually masked the disc of these pho-
tographs and applied POAGNet to the masked images. POAGNet can achieve a score of
97%, suggesting that optic discs are needed to make the POAG diagnosis.

4. Conclusions

In conclusion, this study proposed a new end-to-end deep learning network that simulates
the process for automatic POAG detection from fundus photographs. Two datasets were
used to evaluate the proposed model. The results demonstrated that the proposed network
has a good performance on POAG diagnosis. Although deep learning models are often
considered “black-box” entities, we aimed to improve the transparency of our algorithm by
constructing a new dataset by masking the optic disc on the fundus photography. These
“contrasting” examples help us understand if the rationales (optic disc) are indeed influential
in the POAG diagnosis. These efforts to demystify deep learning models may help improve
levels of acceptability to patients and adoption by ophthalmologists.
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