

000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

PLAN THEN ACTION: HIGH-LEVEL PLANNING GUIDANCE REINFORCEMENT LEARNING FOR LLM REASONING

Anonymous authors

Paper under double-blind review

ABSTRACT

Large language models (LLMs) have demonstrated remarkable reasoning abilities in complex tasks, often relying on Chain-of-Thought (CoT) reasoning. However, due to their autoregressive token-level generation, the reasoning process is largely constrained to local decision-making and lacks global planning. This limitation frequently results in redundant, incoherent, or inaccurate reasoning, which significantly degrades overall performance. Existing approaches, such as tree-based algorithms and reinforcement learning (RL), attempt to address this issue but suffer from high computational costs and often fail to produce optimal reasoning trajectories. To tackle this challenge, we propose **Plan-Then-Action Enhanced Reasoning with Group Relative Policy Optimization (PTA-GRPO)**, a two-stage framework designed to improve both high-level planning and fine-grained CoT reasoning. In the first stage, we leverage advanced LLMs to distill CoT into compact high-level guidance, which is then used for supervised fine-tuning (SFT). In the second stage, we introduce a guidance-aware RL method that jointly optimizes the final output and the quality of high-level guidance, thereby enhancing reasoning effectiveness. We conduct extensive experiments on multiple mathematical reasoning benchmarks, including MATH, AIME2024, AIME2025, and AMC23, across diverse base models such as Qwen2.5-7B-Instruct, Qwen3-8B, Qwen3-14B, and LLaMA3.2-3B. Experimental results demonstrate that *PTA-GRPO* consistently achieves stable and significant improvements across different models and tasks, validating its effectiveness and generalization.

1 INTRODUCTION

Large Language Models (LLMs) have recently demonstrated remarkable reasoning abilities across a wide range of complex tasks (Xu et al., 2025a; Plaat et al., 2024; Ke et al., 2025), such as mathematics (Zhang et al., 2024; Wu et al., 2024a; Liu et al., 2023) and programming (Jiang et al., 2024), by leveraging Chain-of-Thought (CoT) reasoning (Wei et al., 2022). Models with strong reasoning capabilities, including Qwen-3 (Yang et al., 2025), DeepSeek-R1 (Wu et al., 2024b), Seed-1.5 thinking (Seed et al., 2025) and GPT-5 thinking (OpenAI, 2025), adopt CoT as a central mechanism to structure their reasoning processes. However, CoT decoding in LLMs is still a token-level Markov Decision Process (MDP) (Ouyang et al., 2022; Wan et al., 2025; Liu et al., 2025): the output of each token is determined by the context sequence generated previously. Under this setting, mainstream decoding is both autoregressive (each decision conditions only on the prefix) and locally greedy (it optimizes short-horizon token likelihood, e.g., via greedy/low-temperature choices). This combination preserves local consistency but offers little global planning, often yielding redundant or drifting chains of thought and propagating early mistakes across long horizons (Yao et al., 2023; Qu et al., 2025; Wan et al., 2025).

Prior work augments LLM reasoning with tree-style algorithms (Zhang et al., 2024; Yao et al., 2023; Wang et al., 2024a) such as Monte Carlo Tree Search (Zhang et al., 2024) or heuristic generation tree (Li et al., 2025) to widen exploration beyond single-path decoding. While effective in some cases, these approaches hinge on repeated external queries to the LLM, incurring substantial time and compute (Wang et al., 2024a). Crucially, they do not strengthen the model’s internal reasoning: performance stems from outside search. When the model cannot verify intermediate steps, the search

Figure 1: (a) GRPO reasoning processing. (b) PTA-GRPO reasoning process. (c) Impact of analytic plan. In (c), the accuracy of different reasoning modes, where Qwen2.5-7B-Instruct is considered as the base model. Green indicates the base model using CoT reasoning, yellow indicates the base model reasoning with its own self-generated analytic plan, and blue indicates the base model reasoning with an analytic plan generated by GPT-01. More test cases of PTA-GRPO are shown in Appendix B.4.

simply amplifies bad branches and collapses (Feng et al., 2023). In parallel, recent works inject reflection or backtracking behaviors via RL (Wan et al., 2025; Wang et al., 2025; Gandhi et al., 2025). Such behaviors can, in principle, re-route trajectories and escape local optima (Gandhi et al., 2025). Yet when triggered on corrupted partial solutions, the model tends to reflect on its own errors, reinforcing them and drifting farther from the correct path. This occurs largely due to the absence of a global plan to guide self-reflection, leaving the model without a reliable mechanism to recover. These limitations motivate a new paradigm that improves internal planning rather than relying on external search or post-hoc self-correction.

Motivated by the way humans tackle complex problems (Kahneman, 2011), where first sketches are made and then executed, it is natural to consider whether LLM reasoning could benefit from a similar paradigm. Specifically, an LLM may first produce a compact and general analytic plan before generating a detailed CoT. Such a plan can provide concise and general global guidance (e.g., subgoal decomposition and task scheduling), and conditioning the CoT on this plan helps mitigate local myopia and reduce redundancy. However, certain weaker LLMs (e.g., Qwen-2.5-7B-Instruct (Bai et al., 2023)) lack the ability to generate high-quality analytic plans. As shown in Fig 1c, the analytic plans generated by Qwen-2.5-7B-Instruct are of insufficient quality, which actually degrades the performance of the resulting CoT and answers, whereas plans generated by the stronger model GPT-01 lead to significant improvements. These phenomena naturally suggest that a promising direction is to enhance the analytic planning ability of LLMs, as generating high-quality analytic plans can substantially improve their reasoning performance.

To cultivate strong analytic plans, a recent advanced strategy is to exploit the advantages of Reinforcement Learning (RL), e.g., trajectory-level, non-differentiable optimization, enhancing plan quality and alignment with downstream CoT, to achieve reliable, globally guided reasoning. However, under above reasoning paradigm for analytic plan, outcome-based RL with Verifiable Rewards (RLVR) strategies (Shao et al., 2024; Yu et al., 2025; Cui et al., 2025), such as Group Relative Policy Optimization (GRPO) (Shao et al., 2024) or Decoupled Clip and Dynamic Sampling Policy Optimization (DAPPO) (Yu et al., 2025), are not entirely suitable. This is because such approaches optimize only for the correctness of the final output while overlooking the quality of the analytic planning and intermediate CoT reasoning as the upper part of Fig 2. Consequently, even poorly planned and executed CoT may receive the same reward as well-structured ones, as long as both yield the correct answer. Such limitations underscore the necessity of developing new RL frameworks that can jointly optimize both the analytic planning and the detailed CoT reasoning processes.

Based on the above analysis, we propose **PTA-GRPO** (*plan-then-action enhanced reasoning with Group Relative Policy Optimization*), a novel two-stage plan-reasoning training framework designed to promote explicit higher-order planning and reasoning abilities. In the first stage, we propose a Planning-Structured Reasoning cold-start approach and leverage an advanced LLM to distill the ground-truth CoT into concise high-level guidance. Recent empirical studies (Gandhi et al., 2025;

108 Yue et al., 2025b; Li et al., 2025) have shown that the reasoning capabilities of pre-trained models
 109 are largely established during the initial pre-training phase, which implies that reasoning models
 110 are inherently constrained by their base models. These base models lack explicit or autonomous
 111 high-quality global planning ability. Therefore, it is necessary to cold-start and cultivate such an
 112 initial capability. To this end, the advanced LLM summarizes the CoT by extracting core concepts
 113 and generating a refined overview of the reasoning path and conclusions. This high-level guidance
 114 thinking, together with the CoT, forms a dataset for high-level guidance-based supervised fine-tuning
 115 (SFT), thereby providing a cold-start initialization for subsequent reinforcement learning. In the
 116 second stage, we propose a plan reason-guidance aware RL method based on the GRPO algorithm,
 117 which has shown strong capabilities in LLM reasoning. Unlike traditional GRPO, which rewards the
 118 model based solely on the final response, our method incorporates a sophisticated reward mechanism
 119 that evaluates the quality of the high-level guidance thinking generated during the reasoning process.
 120 This reward system not only encourages the model to generate accurate final responses but also
 121 strengthens its ability to produce effective and precise high-level guidance, thereby enhancing the
 122 model’s whole reasoning ability. Our main contributions are summarized as follows:
 123

- 124 • **A novel two-stage plan-reasoning framework:** We propose *PTA-GRPO*, a two-stage training
 125 framework, including high-level guidance planning and guidance-aware reinforcement learning, to
 126 foster explicit higher-order planning and reasoning abilities in LLMs.
- 127 • **High-level guidance as supervision signal:** In the supervised fine-tuning stage, we leverage an
 128 advanced LLM to transform raw chain-of-thought (CoT) into concise high-level guidance, which is
 129 combined with the original CoT, providing stronger initialization for reasoning.
- 130 • **Plan guidance-aware GRPO with refined reward design:** In the reinforcement learning stage,
 131 we extend GRPO with a reward mechanism that evaluates not only the correctness of the final
 132 response but also the quality of high-level guidance, significantly enhancing overall reasoning
 133 effectiveness and robustness.

134 2 PRELIMINARIES AND RELATED WORK

135 2.1 REASONING IN LARGE LANGUAGE MODELS

136 The reasoning of an LLM can be formalized as a token-level Markov Decision Process (MDP)
 137 (Ouyang et al., 2022; Wan et al., 2025; Liu et al., 2025), where the state is the context sequence, the
 138 action is the next token, and the policy is the model’s conditional distribution. Given a question q , a
 139 response $\mathbf{o} = [\mathbf{o}^1, \dots, \mathbf{o}^T]$ is sampled step by step from $\pi_\theta(\cdot | q, \mathbf{o}^{<t})$. Current inference typically
 140 relies on CoT, producing a reasoning chain c and final answer, but this purely autoregressive process
 141 lacks global planning, often leading to redundancy and incoherence (Wan et al., 2025).

142 2.2 GROUP RELATIVE POLICY OPTIMIZATION AND ITS EXTENSIONS

143 GRPO (Shao et al., 2024), proposed by DeepSeek, enhances LLM reasoning without value models by
 144 sampling multiple responses per prompt and using the group average reward as a baseline. This simple
 145 mechanism has proven effective in mathematical reasoning, code generation, and QA. Subsequent
 146 variants refine GRPO from different perspectives: SRPO (Zhang et al., 2025b) reuses samples via
 147 history resampling; DAPO (Yu et al., 2025) filters extreme cases with dynamic sampling; Dr.GRPO
 148 (Liu et al., 2025) mitigates length bias; EMPO (Zhang et al., 2025a) optimizes semantic entropy
 149 directly; and SEED-GRPO (Seed et al., 2025) integrates entropy as an uncertainty measure for more
 150 conservative updates. While these methods substantially improve mathematical reasoning, they do
 151 not explicitly target higher-order reasoning abilities.

152 2.3 MOTIVATION

153 To address the lack of global guidance in LLM reasoning, which often leads to redundancy or
 154 off-topic reasoning, inspired by human thinking habits for complex tasks or problems (Kahneman,
 155 2011; Kahneman & Tversky, 2013), we introduce a concise high-level plan t as an outline before
 156 generating the detailed CoT c and its corresponding answer. Formally, the model’s output can be
 157 represented as $\mathbf{o} = t, c$, where t provides the overall problem-solving direction without involving
 158 concrete computational steps, and c is then generated conditioned on both the question q and the
 159 plan t , i.e., $c = \pi_\theta(\cdot | q, t)$. The CoT c and its final answer are guided by the high-level plan t . This
 160 *plan-then-reason* mechanism equips the reasoning process with global guidance, leading to more
 161 concise, and accurate CoT generation.

Figure 2: Comparison between GRPO and *PTA-GRPO*. It is worth noting that, to ensure a fair comparison, we keep the number of rollout responses in the RL process the same for both GRPO and PTA-GRPO.

Therefore, in GRPO optimization (the formulas are shown in Appendix B.5) in our study, the objective goes beyond simply ensuring the correctness of the answer in σ . It also includes enhancing the quality of the high-level plan t , with the aim of producing t more accurately and effectively. By improving t , the model receives structured guidance that can better direct the generation of the CoT c and, consequently, the final answer. This dual focus ensures that the optimization process not only rewards correct answers but also reinforces the production of high-quality intermediate reasoning, leading to more robust and generalizable reasoning behavior.

3 APPROACH OF *PTA-GRPO*

In this section, we introduce the *PTA-GRPO* training framework, which consists of two key components. **(1) Plain Structured Reasoning Cold-Start (PSR-CS).** This module serves as a cold-start approach built upon supervised fine-tuning (SFT). Unlike conventional SFT datasets that contain only direct CoT and answers, we first construct a novel dataset that introduces a *general analytical plan* before detailed reasoning. This additional analytical plan provides higher-level guidance, enabling the model to abstract complex problem-solving strategies into concise forms and offering explicit guidance for answer generation. **(2) Planning Structure-Guided Reinforcement Learning (PSG-RL).** In this stage, we propose a GRPO-based Structure-Guided reinforcement learning algorithm to further enhance the structural reasoning capability of the model. The model is guided to generate general analytical content, whose quality is evaluated and converted into a reward function to determine whether it facilitates more accurate answer generation. This reward signal is then integrated into the GRPO reinforcement learning loop as an explicit optimization objective, thereby forming a closed cycle that continuously improves the effectiveness of the model’s reasoning.

3.1 PLANNING STRUCTURED REASONING COLD-START (PSR-CS)

Analytical-Guided SFT Dataset Construction. For LLMs, the ability to perform reasonable planning directly affects whether they can successfully solve a problem. However, existing SFT datasets typically focus only on detailed CoT reasoning and final answers, while neglecting the importance of conducting an overall analytical plan before solving the problem. To address this gap, we propose an analytical-guided dataset, which consists of three components: the problem, a general analytical plan, and the corresponding detailed CoT reasoning with the final answer. This dataset not only injects concise and effective general analytical knowledge into LLMs to provide an overall problem-solving perspective but also trains them to transform such general plans into concrete reasoning processes, thereby enhancing their overall reasoning capabilities. Formally, we define the dataset as $D_{PSR-CS} = \{q_i, t_i, c_i\}_{i=1}^n$, which contains n tuples, where each tuple comprises the problem q_i , the general analytical plan t_i , and the corresponding detailed reasoning with the final answer c_i . Different from directly producing a CoT (Wei et al., 2022), which may lack global guidance, SFT explicitly injects the high-level problem-solving plan t_i during training, enabling the model to leverage

216 this global information when generating the reasoning chain. Consequently, the model effectively
 217 learns the conditional distribution $c_i = \pi_\theta(\cdot | q_i, t_i)$ for producing detailed reasoning and the final
 218 answer, and the SFT process further strengthens this plan-to-reasoning guidance. In our constructed
 219 dataset, the general analytical plan t_i is enclosed within the `<plan>...</plan>` tags, which
 220 clearly distinguishes the high-level problem-solving idea. Meanwhile, the specific response c_i is
 221 further structured: the chain-of-thought (CoT) is wrapped in `<think>...</think>`, and the final
 222 answer is wrapped in `<answer>...</answer>`, thereby providing a hierarchical representation
 223 of planning, reasoning, and answering. **In contrast to prior approaches that require multi-turn**
 224 **interactions (Yao et al., 2022)** to obtain and follow high-level guidance, our design integrates the
 225 plan and the subsequent reasoning–answering process into a single compact response. This unified
 226 structure enables the model to complete planning and execution in a single pass and allows RLVR to
 227 efficiently optimize the plan–action components jointly.

228 In practice, we sampled 10K instances from the Openthoughts (Guha et al., 2025) dataset as our
 229 base. Openthoughts is a large-scale open reasoning dataset that covers a wide range of problems
 230 along with their detailed CoT reasoning processes. We then employed the powerful open-source
 231 reasoning model Qwen3-235B (Yang et al., 2025) as the teacher model. For each instance, we input
 232 the problem q_i and its detailed reasoning c_i into the advanced model to generate the corresponding
 233 general analytical plan t_i . Through this process, we distilled general analytical knowledge from a
 234 strong LLM and injected it into our target models to enhance their overall reasoning capability.

235 **SFT-based Cold-Start Initialization Optimization.** At this stage, we aim to inject structured
 236 reasoning capabilities into the initial policy model π_θ through SFT, which serves as an effective
 237 way to expand the knowledge and abilities of LLMs (Shah et al., 2025). Specifically, we optimize
 238 the model parameters by minimizing the discrepancy between the model outputs and the reference
 239 outputs provided in the analytical-guided dataset D_{SRCs} , thereby enabling the model to gradually
 240 acquire structured reasoning patterns. The fine-tuning process can be formulated as:

$$241 \quad \theta_{\text{SFT}} = \min_{\theta} \mathbb{E}_{(q_i, t_i, c_i) \in D_{\text{SRCs}}} \left[\sum_{i=1}^n \log (\pi_\theta(t_i, c_i | q_i)) \right]. \quad (1)$$

244 θ_{SFT} refers to the parameter set learned through supervised fine-tuning on the analytical-guided
 245 dataset. Based on these optimized parameters, $\pi_{\theta_{\text{SFT}}}$ denotes the resulting policy model that embodies
 246 structured reasoning capabilities. By explicitly injecting high-level analytical plans before detailed
 247 CoT reasoning, the policy model is guided to generate solutions in a more systematic and interpretable
 248 manner.

249 3.2 PLAN STRUCTURE-GUIDED REINFORCEMENT LEARNING (PSG-RL)

252 After obtaining the policy model $\pi_{\theta_{\text{SFT}}}$ from the SFT stage, the RL phase then focuses on improving
 253 the model’s planning capability and ensuring its effective execution. At this stage, we not only
 254 consider the correctness of CoT c and its answer as part of the reward signal, but also evaluate the
 255 quality of the analytical plan t , which is incorporated as another important aspect of the reward signal.

256 3.2.1 ANALYTICAL PLAN–GUIDED REWARD AUGMENTATION IN GRPO

258 In *PTA-GRPO*, we design a composite reward function that integrates three aspects: the analytical
 259 planning reward ($r_{\text{analytical}}$) to encourage structured reasoning plans, the outcome accuracy reward
 260 (r_{outcome}) to ensure correct final results, and the structured format reward (r_{format}) to enforce clear and
 261 consistent output. Together, these rewards are combined into the total reward R_{total} , which enhances
 262 the model’s planning capability, reasoning accuracy, and response reliability.

263 **Analytical Plan Reward.** Since directly evaluating the quality of an analytical plan t is difficult in
 264 practice, we instead use computable and optimizable surrogate objectives to measure the probability
 265 that it guides a specific CoT reasoning process toward the correct answer, where a higher probability
 266 intuitively reflects a higher-quality plan. Based on this insight, we design the reward for the analytical
 267 plan r_{analytic} , which is defined by the probability that the analytical plan can guide a CoT reasoning
 268 process toward the correct answer. To achieve the above goal, we construct a response group
 269 G through a two-step process. Given a question q , the policy model first samples a set of m
 candidate analytical plans $\{t_i\}_{i=1}^m$, where $t_i \sim \pi_\theta(\cdot | q)$ and each analytical plans t_i is a concise,

270 text-based outline of how to approach q . Then, for each analytical plan t_j , following (Lu et al.,
271 2025), we resample z detailed CoT $\{c_{i,k}\}_{k=1}^z$ under guidance of t_i , where each $c_{i,k}$ is drawn as
272 $c_{i,k} \sim \pi_\theta(\cdot | t_i, q)$. The response group G consists of m analytical plans, each associated with z CoT,
273 where $G = \left\{ \{(t_i, c_{i,k})\}_{k=1}^z \right\}_{i=1}^m$. For each response from G can be regarded as planning-CoT paris,
274 and the reward r_{analytic} assigned to t_i is defined as the empirical accuracy of its resampled outcomes:
275

$$r_{\text{analytic}}(t_i) = \text{Softmax} \left(\frac{1}{z} \sum_{k=1}^z \mathbb{I}[\hat{y}_{i,k} = y] \right), \quad (2)$$

276 where $\mathbb{I}[\cdot]$ is the indicator function, $\hat{y}_{i,k}$ denotes the final expected answer extracted from $c_{i,k}$, and
277 y is the ground-truth answer of q . Through the policy model driven by $r_{\text{analytic}}(\cdot)$, more accurate
278 analytic plans t can be generated, thereby improving the probability of obtaining the correct prediction
279 $\Pr(\hat{y} = y | t, q)$. In addition, we apply the Softmax to exponentially amplify the differences between
280 scores, making high-scoring planning more prominent while further suppressing low-scoring ones.
281

282 In contrast to traditional RLVR (Yu et al., 2025; Feng et al., 2025), which relies solely on outcome-
283 based supervision and cannot supervise the intermediate reasoning process, our analytic plan re-
284 ward r_{analytic} enables us to directly assess which intermediate reasoning trajectories are more valuable
285 and more likely to succeed, and to assign them higher rewards accordingly. Section 3.3 shows, both
286 theoretically and empirically, that optimizing the analytic plan reward r_{analytic} increases the mutual
287 information between y and \hat{y} , thereby enhancing reasoning ability.
288

289 **Outcome Reward.** The outcome reward, defined as r_{outcome} , is a result-based terminal reward similar
290 to GRPO, used to evaluate whether the predicted answer aligns with the ground truth. For each
291 plan-CoT response $(t_i, c_{i,k})$, the outcome reward r_{outcome} is defined as follows:
292

$$r_{\text{outcome}} = \begin{cases} 1, & \hat{y}_{i,k} = y, \\ 0, & \text{else.} \end{cases} \quad (3)$$

293 The outcome reward r_{outcome} encourages the policy model to learn to follow the analytical plan t_i and
294 to develop the ability to generate answers that strive for correctness.
295

296 **Format Reward.** The format reward r_{format} is designed to regulate the overall structure of the
297 model response, ensuring both conformity to the desired format and control over the output length.
298 It consists of two components: $r_{\text{structure}}$ and r_{length} . Specifically, $r_{\text{structure}}$ enforces that the pol-
299 icy model's response adheres to the predefined structural template, i.e., $\langle \text{plan} \rangle \dots \langle / \text{plan} \rangle$,
300 $\langle \text{think} \rangle \dots \langle / \text{think} \rangle$, and $\langle \text{answer} \rangle \dots \langle / \text{answer} \rangle$. Meanwhile, r_{length} serves as an aux-
301 iliary reward that encourages the model to generate concise and efficient token sequences, thereby
302 reducing redundant or uninformative content.
303

304 To provide a clearer illustration of each reward, we present its detailed formulation as follows. We
305 begin with the format reward r_{format} , which is defined as:
306

$$r_{\text{format}} = \begin{cases} 0.2, & \text{if the response strictly follows the predefined template} \\ 0, & \text{otherwise.} \end{cases} \quad (4)$$

310 This function enforces a binary constraint on the output structure: a full reward is granted only
311 when the response strictly adheres to the predefined template, thereby ensuring the consistency and
312 parsability of the generated results.
313

314 For response length, the optimal number of tokens varies across different questions, making it difficult
315 to predefine a fixed target length. Therefore, for all responses generated for a given question, we
316 select the shortest correct response length as the reference length T , defined as:
317

$$T = \min\{ |\{t_i, c_{i,k}\}| \mid \hat{y}_{i,k} = y \}, \quad (5)$$

318 where $|\{t_i, c_{i,k}\}|$ denotes the token length of response $\{t_i, c_{i,k}\}$. Here, T represents the shortest
319 executable token length required to obtain the correct answer to a given question. It can be regarded
320 as the optimal reference length under current knowledge, toward which other correct responses
321 should converge in order to minimize redundancy while preserving correctness. For each response
322 $\{t_i, c_{i,k}\} \in G$, the length reward r_{length} can be expressed as:
323

$$r_{\text{length}}(\{t_i, c_{i,k}\}) = \alpha \cdot \exp\left(-\frac{|\{t_i, c_{i,k}\}| - T}{T_{\max} - T}\right), \quad (6)$$

324 where α is a hyperparameter, and T_{\max} does not denote the maximum output length set for the
 325 policy model. The reward becomes larger as the response length approaches the reference length T ,
 326 encouraging the model to generate concise yet correct responses.
 327

328 The format reward r_{format} , defined as $r_{\text{format}} = r_{\text{structure}} + r_{\text{length}}$, ensures that the output not only
 329 adheres to the required format, but also guarantees the conciseness of the output response.
 330

331 **Total Reward.** The above three rewards together constitute the total reward R_{total} for each response
 332 as:
 333

$$R_{\text{total}} = R_{\text{analytic}} + \beta \cdot R_{\text{outcome}} + R_{\text{format}}, \quad (7)$$

334 where β represents the hyperparameter. We first obtain a total reward set $\{\{r_{\text{total}}^{i,k}\}_{i=1}^m\}_{k=1}^z$, where
 335 $r_{\text{total}}^{i,k}$ denotes the total reward of the k -th CoT generated under the guidance of the i -th analytic.
 336 Based on this reward, we compute the corresponding advantage function $A_{i,k}$ using Eq. 10, and
 337 subsequently incorporate it into the update rule in Eq. 9 to optimize the model.
 338

339 Table 1: Performance comparison of different [post-training](#) methods using various base models. **Bold** is best
 340 per block.
 341

Method	MATH500	AIME24	AIME25	AMC23	Average
Qwen2.5-7B-Instruct	62.40	12.24	3.52	52.75	32.73
GRPO	82.74	27.52	22.33	63.59	49.04
DAPO	83.92	28.90	21.25	67.75	50.45
CPL (Wang et al., 2024b)	80.27	24.90	23.27	66.23	48.64
Full-Step-DPO (Xu et al., 2025b)	81.17	26.49	20.25	62.53	47.59
ORZ (Hu et al., 2025)	83.51	27.44	22.35	67.59	50.22
PTA-GRPO	85.57	30.26	25.97	70.24	53.01
LLaMA3.2-3B	34.27	3.33	2.74	18.75	14.77
GRPO	55.19	16.27	14.22	38.25	30.98
DAPO	54.27	18.35	16.53	38.25	31.85
PTA-GRPO	60.25	20.50	14.27	40.37	33.85
Qwen3-8B	90.27	66.67	51.53	90.05	74.63
GRPO	92.93	68.27	54.23	91.97	76.85
DAPO	91.27	66.39	50.08	91.33	74.77
CPL (Wang et al., 2024b)	90.75	67.77	51.44	90.77	75.18
Full-Step-DPO (Xu et al., 2025b)	91.95	67.29	52.39	91.15	75.70
ORZ (Hu et al., 2025)	92.09	65.67	53.55	90.98	75.57
PTA-GRPO	93.31	68.88	54.29	92.29	77.19
Qwen3-14B	91.27	72.65	70.03	94.33	82.07
GRPO	90.28	71.29	71.29	94.92	81.95
DAPO	91.07	72.33	70.92	95.20	82.38
PTA-GRPO	91.93	73.90	71.55	94.97	83.09

361 **Advantages Compared with Conventional GRPO.** Compared with standard GRPO, which pri-
 362 marily relies on sparse task-level accuracy supervision, our guidance-aware *PTA-GRPO* framework
 363 introduces several critical improvements. **First**, powered by the analytic-plan reward r_{analytic} , the
 364 model gains the ability to *evaluate* its intermediate reasoning process, which RLVR cannot achieve
 365 with purely outcome-based signals. This mechanism drives the model to construct higher-level ana-
 366 lytic plans and use them to guide more reliable CoT reasoning. **Second**, the outcome reward r_{outcome}
 367 encourages the policy model to follow the analytic plan and enhance its reasoning capability under
 368 such structured guidance. **Third**, format reward r_{format} encourages stable, standardized reasoning,
 369 pushing outputs to be both concise and correct. Together, these enhancements enable *PTA-GRPO*
 370 to achieve stronger high-level analytic planning and improved reasoning performance in complex
 371 tasks compared to standard GRPO. Besides, following (Gandhi et al., 2025), *PTA-GRPO* enhances
 372 *LLM self-reflection* in reinforcement learning by adjusting the prompt in Appendix B.4, allowing the
 373 model to correct later steps even when the initial plan is flawed; detailed examples are provided there.
 374

375 3.3 THEORETICAL PERFORMANCE ANALYSIS

376 In this section, we theoretically analyze the impact of optimizing r_{analytic} on the performance of the
 377 policy model on the probability of errors. Our theoretical findings are as follows.

378 **Theorem 3.1.** Let q denote the input question, t the analytic plan, \hat{y} the answer predicted by the
 379 policy model, and y the ground-truth answer. With error probability p_{error} , it holds that:
 380

$$381 \quad p_{\text{error}} \leq \frac{1}{2} [H(y) - I(\hat{y}, y \mid t, q)], \quad p_{\text{error}} = \Pr(y \neq \hat{y}),$$

382 where $H(\cdot)$ denotes the entropy, and $I(\cdot)$ denotes the mutual information.
 383

384 The proof can be seen in appendix B.6. Leveraging the conclusion from (Qian et al., 2025), since
 385 $H(y)$ depends solely on the fixed distribution of the answer and is independent of the model’s
 386 reasoning steps, it can therefore be regarded as a constant. In our Theorem 3.1, the upper bound of
 387 the error probability p_{error} is governed by the conditional mutual information $I(\hat{y}; y \mid t, q)$, which
 388 measures the statistical dependence between the predicted output \hat{y} and the true label y , given the
 389 auxiliary analytic plan t . In other words, the larger the shared information between \hat{y} and y under the
 390 guidance of the analytical plan t , the tighter the upper achievable limit on the probability of error.
 391

392 **Proposition 3.2.** Let t_1 and t_2 be any analytic plans, and let $r_{\text{analytic}}(t_1)$ and $r_{\text{analytic}}(t_2)$ denote
 393 their corresponding analytic rewards. Let \hat{y}_1 and \hat{y}_2 be the answers induced by executing t_1 and t_2 ,
 394 respectively. If $r_{\text{analytic}}(t_1) \geq r_{\text{analytic}}(t_2)$, it holds that

$$394 \quad H(y|\hat{y}_1, t_1, q) \leq H(y|\hat{y}_2, t_2, q). \quad (8)$$

395 **Remark 3.3.** By the definition of mutual information, $I(\hat{y}; y \mid q, t) = H(y \mid q, t) - H(y \mid \hat{y}, q, t)$.
 396 Note that $H(y \mid q, t)$ is solely determined by the underlying data distribution of (q, t, y) and is
 397 independent of the model’s prediction \hat{y} . Hence, $H(y \mid q, t)$ can be regarded as a constant with
 398 respect to the learning or inference process. As shown in Proposition 3.2, as the analytic plan reward
 399 r_{analytic} increases, the conditional entropy $H(y \mid \hat{y}, q, t)$ decreases, which in turn implies a larger
 400 mutual information $I(y; \hat{y} \mid q, t)$ between the prediction \hat{y} and the ground-truth y . In particular, we
 401 have $\max_t r_{\text{analytic}}(t) \iff \max_t I(y; \hat{y} \mid q, t)$. Therefore, optimizing the analytic plan reward term
 402 r_{analytic} can effectively enhance the model’s reasoning ability.
 403

404 **Empirical analysis.** To assess the reliability of the above theory, we further examine the relationship
 405 between mutual information and the plan reward. Following (Qian et al., 2025), we use the
 406 Hilbert–Schmidt Independence Criterion (HSIC) to estimate the mutual information between the
 407 predicted answer \hat{y} and the ground-truth answer y . As shown in Fig. 3, the plan reward and the
 408 mutual information exhibit similar increasing trends, which is consistent with our theoretical claim
 409 $\max_t r_{\text{analytic}}(t) \iff \max_t I(y; \hat{y} \mid q, t)$ and thus supports its validity.
 410

416 Figure 3: Trend plots of mutual information and plan reward across different models.
 417

4 EXPERIMENT

418 **Based Models.** To evaluate *PTA-GRPO*, we adopt four base models of varying scales and series:
 419 LLaMA3.2-3B (Dubey et al., 2024), Qwen2.5-7B-Instruct (Bai et al., 2025), Qwen3-8B, and Qwen3-
 420 14B (Yang et al., 2025), enabling a comprehensive assessment of its robustness across architectures.
 421 Training details are in Section B.8. For our vision-language model (VLM), we use Qwen2.5-7B-VL
 422 (Bai et al., 2025) as the base model to further extend our experiments.
 423

424 **Training Datasets and Benchmarks.** For SFT, we use 10K samples from OpenThoughts (Guha
 425 et al., 2025) with injected planning knowledge (Section 3.1). For RL, we sample 14K problems
 426 from DeeMath (He et al., 2025), which offers graded difficulty and is rigorously decontaminated to
 427 avoid benchmark leakage. We evaluate our method on AIME24, AIME25, MATH500, and AMC23,
 428 and report the average accuracy over 16 independent runs. In addition, we assess it on the general-
 429 purpose multimodal datasets MMMU-Pro (Yue et al., 2025a), MMMU (Yue et al., 2024), and EMMA
 430 (Standley et al., 2023), as well as the scientific benchmark dataset MMK-12 (Meng et al., 2025).
 431

Baseline. We compare *PTA-GRPO* with the base model and several RLVR like GRPO (Shao et al., 2024), and DAPO (Yu et al., 2025). In addition, we compare our method with several advanced reinforcement learning algorithms, including CPL (Wang et al., 2024b), Full-Step DPO (Xu et al., 2025b), and ORZ (Hu et al., 2025). For fairness, all methods use the same SFT and RL data (differing only in the improved SFT portion). For a fair comparison, we use the same number of sampled responses as all selected RLVR methods, so their time consumption is nearly the same.

4.1 PERFORMANCE OF *PTA-GRPO*

Table 2: Impact of data scale of RL on *PTA-GRPO*, where Qwen2.5-7B-Instruct is considered as base model. **Bold** is best per block.

Data scale	MATH500	AIME24	AIME25	AMC23	Average
4k	82.27	27.22	21.03	65.22	48.94
8k	83.59	28.23	22.29	68.29	50.60
11k	84.23	29.33	24.51	69.37	51.86
14k	85.57	30.26	25.97	70.24	53.01

Table 1 shows that our method (*PTA-GRPO*) consistently outperforms both the base models and other RLVR approaches across different model scales and evaluation benchmarks. For relatively weaker backbones such as Qwen2.5-7B-Instruct and LLaMA3.2-3B, *PTA-GRPO* delivers the most significant improvements, raising the average scores by over 20 points compared to the raw models and further surpassing GRPO and DAPO by clear margins.

For stronger base model such as Qwen3-8B and Qwen3-14B, the headroom for improvement is smaller, yet *PTA-GRPO* still yields consistent gains on nearly all benchmarks, setting new best average scores without any degradation. This robust generalization benefits both weaker and state-of-the-art models, and we further provide significance analysis in Appendix B.2.

4.2 IMPACT OF RL DATA SCALING

Table 2 shows how the performance of Qwen2.5-7B-Instruct on four math benchmarks changes as the RL data scale increases from 4k to 14k. Overall, all tasks steadily improve with larger data sizes, with the average score rising from 48.94 to 53.01, indicating consistent gains from more training data. Specifically, MATH500 remains the strongest across all scales (82.27→85.57), while AIME24 and AIME25, though starting lower, achieve the largest relative improvements, particularly AIME25, which increases from 21.03 to 25.97, a gain of over 23

4.3 ABLATION ANALYSIS

Table 3 shows that removing SFT sharply drops the average to 41.74, underscoring its necessity; removing the format reward slightly improves AIME24 but lowers the average to 52.34; and removing the analytic reward further reduces it to 49.86, confirming its importance for reasoning quality. Overall, the full *PTA-GRPO* (with SFT, format reward, and analytic reward) attains the best performance (53.01), indicating that all components are needed for maximum stability and accuracy.

4.4 IMPACT OF ANALYTIC PLAN ON SFT

Table 4 compares standard SFT (w/o planning) with SFT on $\mathcal{D}_{\text{SRCS}}$ augmented by analytic plans (w/ planning). Incorporating analytic plans consistently improves all tasks and models: for Qwen2.5-7B-Instruct, the average score rises from 45.03 to 47.43 (gains of 0.67–3.59), indicating a stronger dependence of smaller models on external planning signals; for Qwen3-8B, the average improves from 75.92 to 77.46 with gains of about 1–2 points. Overall, analytic plans provide structured reasoning supervision that substantially boosts smaller models while offering steady fine-grained gains for larger ones.

486
487
Table 4: The impact of datasets containing analytic planning on SFT. **Bold** is best per block.
488
489
490
491
492

Base Model	Method	MATH500	AIME24	AIME25	AMC23	Average
Qwen2.5-7B-Instruct	SFT w/o planning	78.28	21.66	19.66	60.53	45.03
	SFT w/ planning	80.40	25.25	20.33	63.75	47.43
Qwen3-8B	SFT w/o planning	91.02	70.03	50.25	92.39	75.92
	SFT w/ planning	92.53	71.97	51.77	93.55	77.46

493
494
495
496
497
498
499
500
4.5 ADDITIONAL EMPIRICAL EVALUATION ON GENERALIZATION
501
502
503
504

Beyond mathematics, we also evaluate on multimodal, general-domain, and scientific benchmarks, including MMMU-Pro (Yue et al., 2025a), MMMU (Yue et al., 2024), EMMA (Standley et al., 2023), and MMK-12 (Meng et al., 2025). Using MM-EKURA (Meng et al., 2025) and SRPO (Wan et al., 2025) as baselines and following SRPO’s SFT/RL data

505 for cold-start and training, PTA-GRPO with Qwen2.5-7B-VL consistently outperforms the Base
506 model, MM-EKURA, and SRPO on MMMU-Pro, MMMU, EMMA, and Phys/Chem/Bio benchmarks,
507 achieving uniformly better metrics and stronger generalization reasoning.

508
509
4.6 EFFECTIVENESS ON LARGE-SCALE DATASETS WITH STRONG MODELS
510

511 As shown in Table 1, using only a small amount of data brings little improvement for strong models
512 such as Qwen3-14B. To investigate whether this limitation is due to data scale, we expand the training
513 set to 60K examples from the same datasets (He et al., 2025); the corresponding results are presented
514 in Table 6 in Appendix. PTA-GRPO achieves consistently larger performance gains across all base
515 models and mathematical benchmarks, even on the strong LLM Qwen3-14B, demonstrating that our
516 method benefits substantially from a larger data scale and yields better overall results.

517
518
4.7 RESULTS OF SCALING TEST-TIME
519

We next examine the effectiveness of *PTA-GRPO* under multiple sampling at test time. As shown in Fig. 4, *PTA-GRPO* consistently outperforms GRPO on the AIME2025 dataset across Pass@1, Pass@4, Pass@8, and Pass@16. This demonstrates that *PTA-GRPO* maintains high precision under low-sample conditions, while further exhibiting stronger solution coverage as the number of samples increases.

520
521
522
523
4.8 TRAINING DYNAMICS OF *PTA-GRPO*
524

525 Appendix B.3 Fig. 5 and Fig. 6 illustrate the training dynamics of
526 QWEN3-8B and QWEN2.5-7B-Instruct, respectively. As shown
527 in the figures, our method outperforms GRPO in terms of accuracy
528 reward and response length, indicating the effectiveness of the intro-
529 duced component. It is worth noting that in Fig. 5 (b), our approach
530 achieves lower entropy compared to GRPO. This suggests that for
531 stronger models, our method encourages the development of more
532 reasonable analytic plans, enabling the model to complete a given trajectory with greater confidence
533 and ultimately achieving higher accuracy.

534
535
5. CONCLUSION
536

We propose Plan-Guide Enhanced Reasoning with Group Relative Policy Optimization (*PTA-GRPO*), which integrates high-level planning with fine-grained reasoning to alleviate the lack of global planning in traditional CoT reasoning. Experimental results show that *PTA-GRPO* achieves stable and significant improvements across multiple mathematical reasoning benchmarks and model scales, validating its effectiveness and generalizability.

493
494
495
496
497
498
499
500
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Table 5: Comparison between PTA-GRPO and other approaches on General-Benchmark and Science Benchmark, using Qwen2.5-7B-VL as the base model.

Method	MMMU-Pro	MMMU	EMMA	Phys	Chem	Bio
Base	36.9	54.3	21.5	45.4	56.4	54.0
MM-Eurek (Meng et al., 2025)	37.6	55.2	23.5	45.4	56.4	54.0
SRPO (Wan et al., 2025)	42.3	57.1	29.6	56.2	65.2	65.2
PTA-GRPO	44.7	59.0	31.9	58.5	68.7	66.8

520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
Figure 4: Effect of scaling test-time compute on AIME25 (Pass@K), with Qwen2.5-7B-Instruct as the base model.

540 **6 ETHICS STATEMENT**
541542 This research has been conducted in alignment with the ICLR Code of Ethics. We are committed to
543 responsible stewardship of machine learning research, ensuring that our work advances knowledge
544 while considering its potential societal impacts. In particular, we uphold high standards of scientific
545 rigor, transparency, and reproducibility, and we affirm that no data has been falsified, fabricated, or
546 misrepresented. Our study avoids harm by carefully considering possible negative consequences
547 and by respecting privacy, fairness, and inclusiveness in the use of data and methods. All data used
548 complies with relevant ethical approvals and license requirements, and precautions have been taken
549 to prevent re-identification or misuse. We respect the intellectual contributions of others and provide
550 appropriate credit where due. We believe this work contributes positively to human well-being by
551 addressing problems of scientific and social relevance in ways that are transparent, responsible, and
552 consistent with the principles of the ICLR Code of Ethics.
553554 **7 REPRODUCIBILITY STATEMENT**
555556 We have taken several steps to ensure the reproducibility of our work. The main experimental setup,
557 including model architectures, training procedures, and evaluation metrics, is described in detail
558 in the main paper and appendix. To facilitate reproducibility, we will release the majority of the
559 code with an anonymous code link (shown in the Appendix) during the review process. If the paper
560 is accepted, we commit to releasing the complete code base for all major experiments, along with
561 detailed documentation and instructions for reproducing the reported results.
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

594 REFERENCES
595

596 Jinze Bai, Shuai Bai, Shusheng Yang, Shijie Wang, Sinan Tan, Peng Wang, Junyang Lin, Chang
597 Zhou, and Jingren Zhou. Qwen-vl: A frontier large vision-language model with versatile abilities.
598 *arXiv preprint arXiv:2308.12966*, 1(2):3, 2023.

599 Shuai Bai, Keqin Chen, Xuejing Liu, Jialin Wang, Wenbin Ge, Sibo Song, Kai Dang, Peng Wang,
600 Shijie Wang, Jun Tang, et al. Qwen2. 5-vl technical report. *arXiv preprint arXiv:2502.13923*,
601 2025.

602 Ganqu Cui, Lifan Yuan, Zefan Wang, Hanbin Wang, Wendi Li, Bingxiang He, Yuchen Fan, Tianyu
603 Yu, Qixin Xu, Weize Chen, et al. Process reinforcement through implicit rewards. *arXiv preprint
604 arXiv:2502.01456*, 2025.

605 Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha
606 Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, et al. The llama 3 herd of models.
607 *arXiv e-prints*, pp. arXiv–2407, 2024.

608 Lang Feng, Zhenghai Xue, Tingcong Liu, and Bo An. Group-in-group policy optimization for llm
609 agent training. *arXiv preprint arXiv:2505.10978*, 2025.

610 Xidong Feng, Ziyu Wan, Muning Wen, Stephen Marcus McAleer, Ying Wen, Weinan Zhang, and Jun
611 Wang. Alphazero-like tree-search can guide large language model decoding and training. *arXiv
612 preprint arXiv:2309.17179*, 2023.

613 Kanishk Gandhi, Ayush Chakravarthy, Anikait Singh, Nathan Lile, and Noah D Goodman. Cognitive
614 behaviors that enable self-improving reasoners, or, four habits of highly effective stars. *arXiv
615 preprint arXiv:2503.01307*, 2025.

616 Etash Guha, Ryan Marten, Sedrick Keh, Negin Raoof, Georgios Smyrnis, Hritik Bansal, Marianna
617 Nezhurina, Jean Mercat, Trung Vu, Zayne Sprague, et al. Openthoughts: Data recipes for reasoning
618 models. *arXiv preprint arXiv:2506.04178*, 2025.

619 Zhiwei He, Tian Liang, Jiahao Xu, Qiuzhi Liu, Xingyu Chen, Yue Wang, Linfeng Song, Dian
620 Yu, Zhenwen Liang, Wenxuan Wang, et al. Deepmath-103k: A large-scale, challenging, de-
621 contaminated, and verifiable mathematical dataset for advancing reasoning. *arXiv preprint
622 arXiv:2504.11456*, 2025.

623 Jingcheng Hu, Yinmin Zhang, Qi Han, Daxin Jiang, Xiangyu Zhang, and Heung-Yeung Shum.
624 Open-reasoner-zero: An open source approach to scaling up reinforcement learning on the base
625 model. *arXiv preprint arXiv:2503.24290*, 2025.

626 Juyong Jiang, Fan Wang, Jiasi Shen, Sungju Kim, and Sunghun Kim. A survey on large language
627 models for code generation. *arXiv preprint arXiv:2406.00515*, 2024.

628 Daniel Kahneman. Thinking, fast and slow. *Farrar, Straus and Giroux*, 2011.

629 Daniel Kahneman and Amos Tversky. Prospect theory: An analysis of decision under risk. In
630 *Handbook of the fundamentals of financial decision making: Part I*, pp. 99–127. World Scientific,
631 2013.

632 Zixuan Ke, Fangkai Jiao, Yifei Ming, Xuan-Phi Nguyen, Austin Xu, Do Xuan Long, Minzhi Li,
633 Chengwei Qin, Peifeng Wang, Silvio Savarese, et al. A survey of frontiers in llm reasoning:
634 Inference scaling, learning to reason, and agentic systems. *arXiv preprint arXiv:2504.09037*, 2025.

635 Yizhi Li, Qingshui Gu, Zhoufutu Wen, Ziniu Li, Tianshun Xing, Shuyue Guo, Tianyu Zheng, Xin
636 Zhou, Xingwei Qu, Wangchunshu Zhou, et al. Treepo: Bridging the gap of policy optimiza-
637 tion and efficacy and inference efficiency with heuristic tree-based modeling. *arXiv preprint
638 arXiv:2508.17445*, 2025.

639 Yixin Liu, Avi Singh, C Daniel Freeman, John D Co-Reyes, and Peter J Liu. Improving large
640 language model fine-tuning for solving math problems. *arXiv preprint arXiv:2310.10047*, 2023.

648 Zichen Liu, Changyu Chen, Wenjun Li, Penghui Qi, Tianyu Pang, Chao Du, Wee Sun Lee, and Min
 649 Lin. Understanding r1-zero-like training: A critical perspective. *arXiv preprint arXiv:2503.20783*,
 650 2025.

651

652 Fanbin Lu, Zhisheng Zhong, Shu Liu, Chi-Wing Fu, and Jiaya Jia. Arpo: End-to-end policy
 653 optimization for gui agents with experience replay. *arXiv preprint arXiv:2505.16282*, 2025.

654

655 Fanqing Meng, Lingxiao Du, Zongkai Liu, Zhixiang Zhou, Quanfeng Lu, Daocheng Fu, Tiancheng
 656 Han, Botian Shi, Wenhui Wang, Junjun He, et al. Mm-eureka: Exploring the frontiers of multimodal
 657 reasoning with rule-based reinforcement learning. *arXiv preprint arXiv:2503.07365*, 2025.

658

659 OpenAI. Gpt-5 system card. Technical report, 2025. URL <https://cdn.openai.com/gpt-5-system-card.pdf>. Accessed: 2025-08-13.

660

661 Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll Wainwright, Pamela Mishkin, Chong
 662 Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, et al. Training language models to follow
 663 instructions with human feedback. *Advances in neural information processing systems*, 35:27730–
 27744, 2022.

664

665 Aske Plaat, Annie Wong, Suzan Verberne, Joost Broekens, Niki van Stein, and Thomas Bäck.
 666 Reasoning with large language models, a survey. *CoRR*, 2024.

667

668 Chen Qian, Dongrui Liu, Haochen Wen, Zhen Bai, Yong Liu, and Jing Shao. Demystifying reasoning
 669 dynamics with mutual information: Thinking tokens are information peaks in llm reasoning. *arXiv
 670 preprint arXiv:2506.02867*, 2025.

671

672 Xiaoye Qu, Yafu Li, Zhaochen Su, Weigao Sun, Jianhao Yan, Dongrui Liu, Ganqu Cui, Daizong
 673 Liu, Shuxian Liang, Junxian He, et al. A survey of efficient reasoning for large reasoning models:
 674 Language, multimodality, and beyond. *arXiv preprint arXiv:2503.21614*, 2025.

675

676 John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
 677 optimization algorithms. *arXiv preprint arXiv:1707.06347*, 2017.

678

679 ByteDance Seed, Jiaze Chen, Tiantian Fan, Xin Liu, Lingjun Liu, Zhiqi Lin, Mingxuan Wang,
 680 Chengyi Wang, Xiangpeng Wei, Wenyuan Xu, et al. Seed1. 5-thinking: Advancing superb
 681 reasoning models with reinforcement learning. *arXiv preprint arXiv:2504.13914*, 2025.

682

683 Darsh J Shah, Peter Rushton, Somanshu Singla, Mohit Parmar, Kurt Smith, Yash Vanjani, Ashish
 684 Vaswani, Adarsh Chaluvvaraju, Andrew Hojel, Andrew Ma, et al. Rethinking reflection in pre-
 685 training. *arXiv preprint arXiv:2504.04022*, 2025.

686

687 Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Xiao Bi, Haowei Zhang,
 688 Mingchuan Zhang, YK Li, Yang Wu, et al. Deepseekmath: Pushing the limits of mathematical
 689 reasoning in open language models. *arXiv preprint arXiv:2402.03300*, 2024.

690

691 Trevor Standley, Ruohan Gao, Dawn Chen, Jiajun Wu, and Silvio Savarese. An extensible multi-modal
 692 multi-task object dataset with materials. In *International Conference on Learning Representations*,
 693 2023.

694

695 Zhongwei Wan, Zhihao Dou, Che Liu, Yu Zhang, Dongfei Cui, Qinjian Zhao, Hui Shen, Jing
 696 Xiong, Yi Xin, Yifan Jiang, et al. Srpo: Enhancing multimodal llm reasoning via reflection-aware
 697 reinforcement learning. *arXiv preprint arXiv:2506.01713*, 2025.

698

699 Ante Wang, Linfeng Song, Ye Tian, Baolin Peng, Dian Yu, Haitao Mi, Jinsong Su, and Dong Yu.
 700 Litesearch: Efficacious tree search for llm. *arXiv preprint arXiv:2407.00320*, 2024a.

701

Haozhe Wang, Chao Qu, Zuming Huang, Wei Chu, Fangzhen Lin, and Wenhui Chen. Vl-rethinker:
 702 Incentivizing self-reflection of vision-language models with reinforcement learning. *arXiv preprint
 703 arXiv:2504.08837*, 2025.

Tianlong Wang, Junzhe Chen, Xuetong Han, and Jing Bai. Cpl: Critical plan step learning boosts llm
 704 generalization in reasoning tasks. *arXiv preprint arXiv:2409.08642*, 2024b.

702 Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny
 703 Zhou, et al. Chain-of-thought prompting elicits reasoning in large language models. *Advances in*
 704 *neural information processing systems*, 35:24824–24837, 2022.

705 Yiran Wu, Feiran Jia, Shaokun Zhang, Hangyu Li, Erkang Zhu, Yue Wang, Yin Tat Lee, Richard
 706 Peng, Qingyun Wu, and Chi Wang. Mathchat: Converse to tackle challenging math problems with
 707 llm agents. *ICLR 2024 Workshop on LLM Agents*, 2024a.

708 Zhiyu Wu, Xiaokang Chen, Zizheng Pan, Xingchao Liu, Wen Liu, Damai Dai, Huazuo Gao, Yiyang
 709 Ma, Chengyue Wu, Bingxuan Wang, et al. Deepseek-vl2: Mixture-of-experts vision-language
 710 models for advanced multimodal understanding. *arXiv preprint arXiv:2412.10302*, 2024b.

711 Fengli Xu, Qianyue Hao, Zefang Zong, Jingwei Wang, Yunke Zhang, Jingyi Wang, Xiaochong Lan,
 712 Jiahui Gong, Tianjian Ouyang, Fanjin Meng, et al. Towards large reasoning models: A survey of
 713 reinforced reasoning with large language models. *arXiv preprint arXiv:2501.09686*, 2025a.

714 Huimin Xu, Xinnian Mao, Feng-Lin Li, Xiaobao Wu, Wang Chen, Wei Zhang, and Luu Anh Tuan.
 715 Full-step-dpo: Self-supervised preference optimization with step-wise rewards for mathematical
 716 reasoning. In *Findings of the Association for Computational Linguistics: ACL 2025*, pp. 24343–
 717 24356, 2025b.

718 An Yang, Anfeng Li, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chang
 719 Gao, Chengan Huang, Chenxu Lv, et al. Qwen3 technical report. *arXiv preprint arXiv:2505.09388*,
 720 2025.

721 Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak Shafran, Karthik R Narasimhan, and Yuan
 722 Cao. React: Synergizing reasoning and acting in language models. In *The eleventh international*
 723 *conference on learning representations*, 2022.

724 Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran, Tom Griffiths, Yuan Cao, and Karthik Narasimhan.
 725 Tree of thoughts: Deliberate problem solving with large language models. *Advances in neural*
 726 *information processing systems*, 36:11809–11822, 2023.

727 Qiying Yu, Zheng Zhang, Ruofei Zhu, Yufeng Yuan, Xiaochen Zuo, Yu Yue, Tiantian Fan, Gaohong
 728 Liu, Lingjun Liu, Xin Liu, et al. Dapo: An open-source llm reinforcement learning system at scale.
 729 *arXiv preprint arXiv:2503.14476*, 2025.

730 Xiang Yue, Yuansheng Ni, Kai Zhang, Tianyu Zheng, Ruoqi Liu, Ge Zhang, Samuel Stevens, Dongfu
 731 Jiang, Weiming Ren, Yuxuan Sun, et al. Mmmu: A massive multi-discipline multimodal under-
 732 standing and reasoning benchmark for expert agi. In *Proceedings of the IEEE/CVF Conference on*
 733 *Computer Vision and Pattern Recognition*, pp. 9556–9567, 2024.

734 Xiang Yue, Tianyu Zheng, Yuansheng Ni, Yubo Wang, Kai Zhang, Shengbang Tong, Yuxuan Sun,
 735 Bota Yu, Ge Zhang, Huan Sun, et al. Mmmu-pro: A more robust multi-discipline multimodal
 736 understanding benchmark. In *Proceedings of the 63rd Annual Meeting of the Association for*
 737 *Computational Linguistics (Volume 1: Long Papers)*, pp. 15134–15186, 2025a.

738 Yang Yue, Zhiqi Chen, Rui Lu, Andrew Zhao, Zhaokai Wang, Shiji Song, and Gao Huang. Does
 739 reinforcement learning really incentivize reasoning capacity in llms beyond the base model? *arXiv*
 740 *preprint arXiv:2504.13837*, 2025b.

741 Di Zhang, Jianbo Wu, Jingdi Lei, Tong Che, Jiatong Li, Tong Xie, Xiaoshui Huang, Shufei Zhang,
 742 Marco Pavone, Yuqiang Li, et al. Llama-berry: Pairwise optimization for o1-like olympiad-level
 743 mathematical reasoning. *arXiv preprint arXiv:2410.02884*, 2024.

744 Qingyang Zhang, Haitao Wu, Changqing Zhang, Peilin Zhao, and Yatao Bian. Right question
 745 is already half the answer: Fully unsupervised llm reasoning incentivization. *arXiv preprint*
 746 *arXiv:2504.05812*, 2025a.

747 Xiaojiang Zhang, Jinghui Wang, Zifei Cheng, Wenhao Zhuang, Zheng Lin, Minglei Zhang, Shaojie
 748 Wang, Yinghan Cui, Chao Wang, Junyi Peng, et al. Srpo: A cross-domain implementation of
 749 large-scale reinforcement learning on llm. *arXiv preprint arXiv:2504.14286*, 2025b.

756 A THE USE OF LARGE LANGUAGE MODELS
757758 In preparing this manuscript, we used a Large Language Model (LLM) solely to assist with minor
759 language polishing and improvements in readability. The LLM did not contribute to research ideation,
760 analysis, or substantive writing. All scientific content and conclusions are entirely the responsibility
761 of the authors.
762763 B APPENDIX
764765 B.1 EXPERIMENT RESULTS ON LARGER-SCALE DATA
766767 Table 6: Performance comparison of RLVR methods using various base models with 60K training samples.
768 **Bold** indicates best per block.
769

Method	MATH500	AIME24	AIME25	AMC23	Average
Qwen2.5-7B-Instruct	65.10	13.43	3.56	54.79	34.22
GRPO	90.65	29.98	25.00	70.21	53.96
DAPO	92.21	31.64	22.80	74.12	55.19
PTA-GRPO	94.27	34.38	28.47	77.78	58.72
Qwen3-8B-Instruct	91.46	68.31	52.34	91.26	75.84
GRPO	94.04	69.68	55.42	93.51	78.16
DAPO	93.12	68.36	51.61	92.87	76.49
PTA-GRPO	94.04	70.51	56.10	94.14	78.70
Qwen3-14B-Instruct	91.34	72.22	72.36	95.70	82.91
GRPO	92.53	73.68	72.27	96.14	83.66
DAPO	93.03	73.54	72.56	96.58	83.93
PTA-GRPO	94.38	75.20	73.49	97.56	85.15

784
785 B.2 ANALYSIS OF STATISTICAL SIGNIFICANCE
786787 Table 7: Performance comparison of RLVR methods using various base models. Results reported as mean \pm std
788 over 32 seeds. **Bold** indicates best per block.
789

Method	MATH500	AIME24	AIME25	AMC23	Average
Qwen2.5-7B-Instruct	61.94 ± 3.35	12.45 ± 4.07	3.32 ± 4.34	52.25 ± 3.88	32.49
GRPO	82.47 ± 2.26	27.00 ± 2.91	22.31 ± 3.47	64.26 ± 3.89	49.01
DAPO	83.70 ± 2.31	29.59 ± 3.43	20.12 ± 3.29	67.43 ± 3.33	50.21
PTA-GRPO (Ours)	85.29 ± 1.55	30.27 ± 2.19	25.20 ± 2.24	70.46 ± 2.83	52.81
LLaMA3.2-3B-Instruct	34.24 ± 4.35	3.37 ± 5.91	2.10 ± 4.74	19.24 ± 4.53	14.74
GRPO	55.16 ± 2.78	16.70 ± 3.01	13.77 ± 3.93	38.18 ± 4.45	30.95
DAPO	54.48 ± 3.91	18.90 ± 3.07	16.46 ± 4.01	38.72 ± 3.63	32.14
PTA-GRPO (Ours)	60.60 ± 1.43	20.75 ± 2.86	14.16 ± 2.10	40.53 ± 2.45	34.01
Qwen3-8B-Instruct	90.09 ± 2.09	66.89 ± 3.19	51.22 ± 2.80	90.38 ± 2.83	74.65
GRPO	92.86 ± 1.66	68.02 ± 2.28	54.83 ± 2.47	92.33 ± 2.59	77.01
DAPO	91.49 ± 1.92	66.99 ± 2.60	49.85 ± 2.42	90.92 ± 2.67	74.81
PTA-GRPO (Ours)	93.28 ± 1.46	69.92 ± 1.77	54.74 ± 1.85	92.38 ± 1.43	77.58
Qwen3-14B-Instruct	90.53 ± 2.14	70.61 ± 2.92	68.55 ± 2.42	93.65 ± 2.82	80.84
GRPO	90.71 ± 1.04	71.44 ± 1.95	70.56 ± 1.94	94.87 ± 1.84	81.89
DAPO	90.89 ± 1.36	72.22 ± 1.88	71.04 ± 2.03	95.26 ± 1.67	82.35
PTA-GRPO (Ours)	92.11 ± 1.39	73.34 ± 1.63	71.63 ± 1.80	95.56 ± 1.65	83.16

807 To more accurately quantify the reliability of our results, we increased the number of independent
808 runs for the remaining experiments from 16 to 32 (Table 7) and conducted t-tests for significance
809 analysis (Table 8). As shown in Table 8, compared with the existing DAPO and GRPO methods, our
810 approach achieves a significant improvement in performance.
811

810
811 B.3 TRAINING DYNAMICS
812
813
814
815
816
817

(a) Accuracy Reward

(b) Policy Entropy

(c) Response Length

826 Figure 5: Training Dynamics of *PTA-GRPO* with Qwen3-8B.
827
828
829
830
831
832
833
834

(a) Accuracy Reward

(b) Policy Entropy

(c) Response Length

844 Figure 6: Training Dynamics of *PTA-GRPO* with Qwen2.5-7B-Instruct.
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863B.4 TEST CASE OF *PTA-GRPO*Generated Samples in Real Test cases of *PTA-GRPO* (Sample 1)

Question: Determine the interval of convergence for the series

$$1 + \frac{x}{2} + \frac{2!x^2}{3^2} + \frac{3!x^3}{4^3} + \dots$$

<plan>

1. Identify the general term of the series.
2. Apply the Ratio Test to find the radius of convergence.
3. Check the endpoints of the interval separately to determine convergence or divergence there.
4. State the final interval of convergence.

864

865

866

867

868

869

870

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

<think>

We start by writing down the general term of the series. The pattern is clear: the n -th term looks like

$$\frac{n!}{(n+1)^n} x^n.$$

To test for convergence, the Ratio Test is natural. Taking the ratio a_{n+1}/a_n , most factors cancel, and it reduces to

$$|x| \left(\frac{n+1}{n+2} \right)^{n+1}.$$

As $n \rightarrow \infty$, the power term tends to e^{-1} . So the limit is $|x|/e$. By the Ratio Test, convergence requires $|x|/e < 1$, which means $|x| < e$. That gives us the radius of convergence $R = e$.

Now check the endpoints. At $x = e$, the terms are $\frac{n!}{(n+1)^n} e^n$. Stirling's formula shows that $n! \sim (n/e)^n \sqrt{2\pi n}$, so the terms behave like \sqrt{n} times a constant. They don't go to zero, so the series diverges. At $x = -e$, the alternating sign doesn't help because the size of the terms again grows like \sqrt{n} . They still don't go to zero, so the series diverges there as well. Therefore, the series converges only strictly inside the interval, and the interval of convergence is

$$(-e, e).$$

Answer:

$$(-e, e)$$

Generated Samples in Real Test cases of PTA-GRPO (Sample 2)

Question: What is the least possible value of the sum $|x - 1| + |x - 1.5| + |x - 2|$?

<plan>

1. Recognize that this is a minimization problem involving sums of absolute values.
2. Recall that for a sum of absolute values of linear functions, the minimum occurs at a median of the points.
3. Identify the points: 1, 1.5, and 2.
4. Determine the median of these three points.
5. Calculate the sum at the median point to find the minimum value.

<think>

We want to minimize

$$f(x) = |x - 1| + |x - 1.5| + |x - 2|.$$

General fact: For $|x - a_1| + \dots + |x - a_n|$, the minimum occurs when x is the median of the a_i .

Here, the three points are 1, 1.5, 2. Ordered: $1 < 1.5 < 2$. So the median is 1.5.

Evaluate at $x = 1.5$:

$$|1.5 - 1| + |1.5 - 1.5| + |1.5 - 2| = 0.5 + 0 + 0.5 = 1.$$

Check at neighbors:

* At $x = 1$: $0 + 0.5 + 1 = 1.5$. * At $x = 2$: $1 + 0.5 + 0 = 1.5$. * At $x = 1.25$: $0.25 + 0.25 + 0.75 = 1.25$. * At $x = 1.75$: $0.75 + 0.25 + 0.25 = 1.25$.

All larger than 1. Thus, the minimum occurs uniquely at $x = 1.5$, with value 1.

Answer:

918

919

920

921

922

923

924

925

926

927

Generated Samples in Real Test cases of PTA-GRPO (Sample 3)

Question: Find the range of p for which the stability condition $|\xi| \leq 1$ holds, given that

$$|\xi|^2 = 1 - 4p^2(1 - p^2)s^4, \quad s = \sin\left(\frac{\omega}{2}\right) \in [0, 1].$$

931

932

933

934

935

936

937

<plan>

1. Understand the stability condition: $|\xi| \leq 1$.
2. Substitute the given expression for $|\xi|^2$.
3. The stability condition $|\xi| \leq 1$ is equivalent to $|\xi|^2 \leq 1$.
4. Since $|\xi|^2$ is expressed as $1 - 4p^2(1 - p^2)s^4$, ensure it is non-negative (≥ 0) to avoid complex values.
5. Analyze the sign of $p^2(1 - p^2)$.
6. Determine the condition on p such that $|\xi|^2 \in [0, 1]$ for all $s \in [0, 1]$.
7. Conclude the range of p .

938

939

940

941

942

943

944

945

946

947

<think>

We have

$$|\xi|^2 = 1 - 4p^2(1 - p^2)s^4, \quad s \in [0, 1].$$

For stability, we need $|\xi| \leq 1$, i.e., $|\xi|^2 \leq 1$. That means

$$1 - 4p^2(1 - p^2)s^4 \leq 1.$$

This simplifies to

$$-4p^2(1 - p^2)s^4 \leq 0 \Rightarrow p^2(1 - p^2) \geq 0.$$

Since $p^2 \geq 0$, this requires $1 - p^2 \geq 0 \Rightarrow p^2 \leq 1$. Thus $|p| \leq 1$.

Additionally, we must ensure $|\xi|^2 \geq 0$. For $|p| \leq 1$, the term $4p^2(1 - p^2)s^4 \geq 0$, so $|\xi|^2 = 1 - (nonnegative) \in [0, 1]$. This guarantees both realness and the upper bound condition.

If $|p| > 1$, then $1 - p^2 < 0$, so $p^2(1 - p^2) < 0$. In this case the subtracted term becomes negative, effectively making $|\xi|^2 > 1$ for some s , which breaks stability.

Hence the stability condition holds exactly when

$$p \in [-1, 1].$$

956

957

958

959

960

961

962

963

964

965

966

967

Answer:

$$[-1, 1]$$

Example of an LLM correcting an incorrect plan through self-reflection.

968

969

970

971

Question: Six points A, B, C, D, E , and F lie in a straight line in that order. Suppose that G is a point not on the line and that $AC = 26$, $BD = 22$, $CE = 31$, $DF = 33$, $AF = 73$, $CG = 40$, and $DG = 30$. Find the area of $\triangle BGE$.

972
973
974
975
976
977
978
979
980
981
982

<plan>

1. Assign coordinates to points A through F on the x-axis with A at 0. 2. Use the given segment lengths (AC, BD, CE, DF, AF) to set up equations and solve for all individual segment lengths AB, BC, CD, DE, EF. 3. Determine the coordinates of B, C, D, E, F. 4. Use distances CG and DG to locate point G by solving a system of equations from the distance formula. 5. Calculate area of triangle BGE using the shoelace formula with coordinates B, G, E. **\Wrong plan**

983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

<think>

Wait, I notice the plan is incorrect in its approach to finding point G. The plan says to use distances CG and DG to locate G, but this will only give us the x-coordinate of G, not both coordinates. Let me revise this. **\Revise it by LLM self-reflection**

Looking more carefully at the problem, I need to find the area of triangle BGE. The points B, G, and E form a triangle where: - B and E are on the x-axis - G is somewhere in the plane. The area of triangle BGE can be calculated as $\frac{1}{2} \times |BE| \times \text{height from } G \text{ to line BE}$. Since BE is horizontal (both B and E on x-axis), the height is simply the y-coordinate of G.

So the revised approach should be: 1. Find coordinates of B and E 2. Find the y-coordinate of G 3. Area = $\frac{1}{2} \times |BE| \times |y_G|$.

Let me implement this revised plan.

First, let's find all segment lengths as in the original plan: Let AB = a, BC = b, CD = c, DE = d, EF = e

From AC = 26: $a + b = 26$ From BD = 22: $b + c = 22$ From CE = 31: $c + d = 31$ From DF = 33: $d + e = 33$ From AF = 73: $a + b + c + d + e = 73$

From $a + b = 26$ and $a + b + c + d + e = 73$, we get $c + d + e = 47$ From $c + d = 31$ and $c + d + e = 47$, we get $e = 16$ From $d + e = 33$ and $e = 16$, we get $d = 17$ From $c + d = 31$ and $d = 17$, we get $c = 14$ From $b + c = 22$ and $c = 14$, we get $b = 8$ From $a + b = 26$ and $b = 8$, we get $a = 18$

So: AB = 18, BC = 8, CD = 14, DE = 17, EF = 16

Place A at (0,0), then: B = (18, 0) C = (26, 0) D = (40, 0) E = (57, 0) F = (73, 0)

Now, to find the y-coordinate of G: We know CG = 40 and DG = 30 Let G = (x,y)

$$CG^2 = (x-26)^2 + y^2 = 1600 \quad DG^2 = (x-40)^2 + y^2 = 900$$

$$\text{Subtract: } (x-26)^2 - (x-40)^2 = 700 \quad (x^2 - 52x + 676) - (x^2 - 80x + 1600) = 700 \quad 28x - 924 = 700 \quad 28x = 1624 \quad x = 58$$

$$\text{Now use } (x-26)^2 + y^2 = 1600: (58-26)^2 + y^2 = 1600 \quad 32^2 + y^2 = 1600 \quad 1024 + y^2 = 1600 \quad y^2 = 576 \quad y = 24 \text{ (taking positive)}$$

$$\text{So } G = (58, 24)$$

Now triangle BGE: B = (18, 0), E = (57, 0), G = (58, 24) BE = 57 - 18 = 39 Height = 24 (y-coordinate of G)

$$\text{Area} = \frac{1}{2} \times 39 \times 24 = 468$$

468

Answer:**PTA-GRPO prompt**

```
{ { content | trim } }
```

Begin by outlining a high-level plan wrapped in <plan></plan> tags.

- This plan should capture only the major phases, strategic choices, and conditional branches.
- Avoid low-level steps, calculations, or detailed reasoning here. Next, reason step by step within <think></think>.
- During reasoning, critically evaluate the initial plan. If you find any errors, inconsistencies, or improvements needed,

1026
 1027 revise your plan mentally and continue reasoning based on the
 1028 revised plan.
 1029 - Explicitly state if you are revising the plan and describe
 1030 the changes.
 1031 - This is your detailed chain-of-thought: work through
 1032 assumptions, intermediate steps, and logical derivations until
 1033 the solution is reached.
 1034 Finally, provide the final answer enclosed within
 1035 $\boxed{\quad}$
 1036
 1037

1038 B.5 GROUP RELATIVE POLICY OPTIMIZATION (GRPO)

1039
 1040 Group Relative Policy Optimization (GRPO) is a state-of-the-art Reinforcement Learning with
 1041 Verifiable Rewards (RLVR) algorithm that simplifies Proximal Policy Optimization (PPO) (Schulman
 1042 et al., 2017) by removing the need for a value model to estimate the baseline advantage, and has
 1043 demonstrated remarkable success in enhancing the reasoning abilities of LLM. Formally, let Q
 1044 denote the set of questions, $\pi_{\theta_{\text{old}}}$ be the current policy model, and $\{\mathbf{o}_i\}_{i=1}^N$ represent a collection of N
 1045 candidate responses sampled for a question $q \in Q$. We also define $\pi_{\theta_{\text{ref}}}$ as a fixed reference model.
 1046 The training objective of GRPO is expressed as:

$$1047 \\ 1048 J_{\text{GRPO}}(\theta) = \mathbb{E}_{q \sim Q, \{\mathbf{o}_i\}_{i=1}^N \sim \pi_{\theta_{\text{old}}}} \\ 1049 \left[\frac{1}{N} \sum_{i=1}^N \sum_{t=1}^{|\mathbf{o}_i|} \min \left(\frac{\pi_{\theta}(\mathbf{o}_i^t | q)}{\pi_{\theta_{\text{old}}}(\mathbf{o}_i^t | q)} A_i, \text{clip} \left(\frac{\pi_{\theta}(\mathbf{o}_i^t | q)}{\pi_{\theta_{\text{old}}}(\mathbf{o}_i^t | q)}, 1 - \epsilon, 1 + \epsilon \right) A_i \right) - \beta D_{\text{KL}}(\pi_{\theta} \| \pi_{\text{ref}}) \right] \quad (9)$$

1050 where ϵ controls the clipping range and β weights the KL regularization term. The normalized
 1051 advantage A_i assigned to each response \mathbf{o}_i is computed from group-based rewards:

$$1052 \\ 1053 A_i = \frac{r_i - \mu}{\sigma}, \quad \text{with } \mu = \frac{1}{N} \sum_{j=1}^N r_j, \quad \sigma = \sqrt{\frac{1}{N} \sum_{j=1}^N (r_j - \mu)^2}, \quad (10)$$

1054 where $\{r_1, r_2, \dots, r_N\}$ are the scalar rewards associated with the response group $\{\mathbf{o}_i\}_{i=1}^N$.

1055 In GRPO, each response $\mathbf{o} \in \{\mathbf{o}_i\}_{i=1}^N$ consists of a CoT c together with its final answer. As noted in
 1056 Section 2.1, token-level MDPs lack global planning and often yield redundant steps, while GRPO
 1057 rewards r corresponding to \mathbf{o} focus only on final answer correctness, overlooking reasoning quality
 1058 and enabling reward hacking through superficial or verbose CoTs.

1059 B.6 THEORETICAL PROOF

1060 *Proof.* Following the framework of (Qian et al., 2025), for a fixed (q, t) , the conditional error rate is

$$1061 \quad p_e(q, t) = 1 - \max_{y'} \Pr(y = y' | q, t).$$

1062 For the binary distribution $(p, 1 - p)$, it is known that

$$1063 \quad \min(p, 1 - p) \leq \frac{1}{2} H_b(p),$$

1064 where $H_b(p) = -p \log p - (1 - p) \log(1 - p)$ is the binary entropy. This can be generalized to the
 1065 m -class case.

1066 **Lemma B.1.** Let (p_1, \dots, p_m) be a probability distribution, and let $p_{\max} = \max_i p_i$. Then

$$1067 \quad 1 - p_{\max} \leq \frac{1}{2} H(p_1, \dots, p_m).$$

1080

Proof by induction. Base case $m = 2$. This is exactly the binary inequality.

1081

1082

1083

1084

Induction step. Suppose the inequality holds for $(m - 1)$ classes. Consider an m -class distribution with maximum element p_1 , and let $s = 1 - p_1$. Merge the last two categories into one, obtaining an $(m - 1)$ -class distribution $\tilde{\mathbf{p}}$. By the grouping property of Shannon entropy,

1085

1086

$$H(p_1, \dots, p_{m-2}, p_{m-1}, p_m) = H(\tilde{\mathbf{p}}) + (p_{m-1} + p_m) H_b\left(\frac{p_{m-1}}{p_{m-1} + p_m}\right) \geq H(\tilde{\mathbf{p}}).$$

1087

By the induction hypothesis,

1088

1089

$$s = 1 - p_1 \leq \frac{1}{2} H(\tilde{\mathbf{p}}) \leq \frac{1}{2} H(p_1, \dots, p_m).$$

1090

Thus the lemma holds for all m . \square

1091

1092

For the conditional distribution $\Pr(y | q, t)$, the lemma implies

1093

1094

$$p_e(q, t) \leq \frac{1}{2} H(y | q, t).$$

1095

Taking expectation over (q, t) ,

1096

1097

$$p_{\text{error}} = \mathbb{E}_{q, t}[p_e(q, t)] \leq \frac{1}{2} H(y | q, t).$$

1098

By the chain rule,

1099

$$I(\hat{y}; y | q, t) = H(y | q, t) - H(y | \hat{y}, q, t),$$

1100

which implies

1101

$$H(y | q, t) \geq H(y | \hat{y}, q, t).$$

1102

Also,

1103

$$H(y | q, t) = H(y) - I(y; q, t).$$

1104

Combining these gives

1105

1106

$$p_{\text{error}} \leq \frac{1}{2} H(y | q, t) \leq \frac{1}{2} [H(y) - I(y; \hat{y} | q, t)].$$

1107

The theorem is proved. \square

1109

1110

B.7 PROOF OF PROPOSITION 3.2

1111

1112

Proof. Let $p_i = \Pr(\hat{y}_i = y | t_i, q)$ denote the probability that the final answer generated under plan t_i is correct. The analytic reward $r_{\text{analytic}}(t_i)$ is a monotonic function of the empirical estimate of p_i . Therefore, the condition $r_{\text{analytic}}(t_1) \geq r_{\text{analytic}}(t_2)$ implies:

1113

1114

$$p_1 \geq p_2. \tag{1}$$

1115

1116

The conditional entropy $H(y | \hat{y}_i, t_i, q)$ measures the remaining uncertainty about the true answer y after observing the predicted answer \hat{y}_i generated under plan t_i . We decompose this entropy by conditioning on whether \hat{y}_i is correct:

1117

1118

1119

$$\begin{aligned} H(y | \hat{y}_i, t_i, q) &= \Pr(\hat{y}_i = y | t_i, q) \cdot H(y | \hat{y}_i = y, t_i, q) \\ &\quad + \Pr(\hat{y}_i \neq y | t_i, q) \cdot \mathbb{E}[H(y | \hat{y}_i, t_i, q) | \hat{y}_i \neq y]. \end{aligned}$$

1120

1121

1122

1123

If the predicted answer \hat{y}_i is correct (i.e., the event $\hat{y}_i = y$ occurs), then the posterior distribution $\Pr(y | \hat{y}_i, t_i, q)$ collapses to a point mass on the value \hat{y}_i , resulting in zero conditional entropy:

1124

1125

$$H(y | \hat{y}_i = y, t_i, q) = 0.$$

1126

1127

1128

1129

Let $C_i = \mathbb{E}[H(y | \hat{y}_i, t_i, q) | \hat{y}_i \neq y]$ denote the expected conditional entropy when the predicted answer is wrong. Substituting into the equation above yields:

1130

1131

$$H(y | \hat{y}_i, t_i, q) = p_i \cdot 0 + (1 - p_i) \cdot C_i = (1 - p_i)C_i. \tag{2}$$

1132

1133

We now compare the entropies for the two plans:

$$H(y | \hat{y}_1, t_1, q) = (1 - p_1)C_1, \quad H(y | \hat{y}_2, t_2, q) = (1 - p_2)C_2.$$

1134 From (1), we have $1 - p_1 \leq 1 - p_2$.
 1135

1136 We now introduce the core assumption: a plan with a higher analytic reward provides more informative
 1137 guidance, leading to a posterior distribution over y that is more concentrated even when the predicted
 1138 answer is incorrect. Formally, this means:

$$1139 \quad C_1 \leq C_2. \quad (3)$$

1140

1141 This is reasonable because a high-quality plan constrains the reasoning path more effectively, reducing
 1142 the set of plausible wrong answers and resulting in lower uncertainty upon observing an incorrect
 1143 prediction.

1144 Since $(1 - p_1) \leq (1 - p_2)$ and $C_1 \leq C_2$, and all terms are non-negative, it follows that:
 1145

$$1146 \quad (1 - p_1)C_1 \leq (1 - p_2)C_2.$$

1147 Therefore, by (2):

$$1148 \quad H(y | \hat{y}_1, t_1, q) \leq H(y | \hat{y}_2, t_2, q),$$

1149 which completes the proof. \square

1150

1151

1152 B.8 EXPERIMENTAL PARAMETER SETUP

1153 We conducted all experiments on eight H200 GPUs. In the supervised fine-tuning (SFT) stage, we
 1154 trained Qwen2.5-7B-Instruct for 3 epochs. In the reinforcement learning (RL) stage, we adopted
 1155 the GRPO algorithm, with a global batch size of 128 and a micro batch size of 4 per GPU. During
 1156 rollout, the model generated 12 samples per step, including 4 analytic plans, each corresponding
 1157 to 3 Chain-of-Thought (CoT) reasoning trajectories. For generation, we set temperature = 1.0 and
 1158 top-p = 1.0, while for validation we used temperature = 0.6, top-p = 0.95. The number of RL training
 1159 steps was configured as follows: LLaMA3.2-3B and Qwen2.5-7B-Instruct were trained for 350
 1160 steps, Qwen3-8B for 150 steps, and Qwen3-14B for 50 steps, with other hyperparameters kept the
 1161 same across models. In addition, the learning rate (lr) was set to 1.0×10^{-6} , the weight decay
 1162 (weight_decay) was 1.0×10^{-2} , the optimizer was adamw (choices: adamw or adamw_bf16),
 1163 the learning-rate warmup ratio (lr_warmup_ratio) was 0. For all Qwen3-8b, max token is 4.5k
 1164 and for Qwen2.5-7B-Instrct, the max token is 3.5K.
 1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

1188
1189
1190
1191
1192Table 8: Pairwise significance tests between PTA-GRPO and each baseline (Instruct, GRPO, DAPO). Each row shows: improvement Δ (percentage points), p -value, and significance level. *, **, and *** denote $p < 0.05$, $p < 0.01$, and $p < 0.001$; "ns" = not significant.1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Model	Baseline	Task	Δ (pt)	p / sig
Qwen2.5-7B	Instruct	MATH500	+23.35	0.0000***
	Instruct	AIME24	+17.82	0.0000***
	Instruct	AIME25	+21.88	0.0000***
	Instruct	AMC23	+18.21	0.0000***
	GRPO	MATH500	+2.82	0.0000***
	GRPO	AIME24	+3.27	0.0000***
	GRPO	AIME25	+2.88	0.0000***
	GRPO	AMC23	+6.20	0.0000***
	DAPO	MATH500	+1.59	0.0003***
	DAPO	AIME24	+0.68	0.2454 ^{ns}
	DAPO	AIME25	+5.08	0.0000***
	DAPO	AMC23	+3.03	0.0000***
LLaMA3.2-3B	Instruct	MATH500	+26.36	0.0000***
	Instruct	AIME24	+17.38	0.0000***
	Instruct	AIME25	+12.06	0.0000***
	Instruct	AMC23	+21.29	0.0000***
	GRPO	MATH500	+5.44	0.0000***
	GRPO	AIME24	+4.05	0.0000***
	GRPO	AIME25	+0.39	0.4651 ^{ns}
	GRPO	AMC23	+2.34	0.0001***
	DAPO	MATH500	+6.12	0.0000***
	DAPO	AIME24	+1.86	0.0006***
	DAPO	AIME25	-2.29	0.0000***
	DAPO	AMC23	+1.81	0.0028**
Qwen3-8B	Instruct	MATH500	+3.19	0.0000***
	Instruct	AIME24	+3.03	0.0000***
	Instruct	AIME25	+3.52	0.0000***
	Instruct	AMC23	+2.00	0.0023**
	GRPO	MATH500	+0.42	0.3477 ^{ns}
	GRPO	AIME24	+1.90	0.0024**
	GRPO	AIME25	-0.10	0.8679 ^{ns}
	GRPO	AMC23	+0.05	0.9307 ^{ns}
	DAPO	MATH500	+1.79	0.0001***
	DAPO	AIME24	+2.93	0.0000***
	DAPO	AIME25	+4.88	0.0000***
	DAPO	AMC23	+1.46	0.0162*
Qwen3-14B	Instruct	MATH500	+1.58	0.0003***
	Instruct	AIME24	+2.73	0.0000***
	Instruct	AIME25	+3.08	0.0000***
	Instruct	AMC23	+1.90	0.0034**
	GRPO	MATH500	+1.40	0.0000***
	GRPO	AIME24	+1.90	0.0000***
	GRPO	AIME25	+1.07	0.0003***
	GRPO	AMC23	+0.68	0.0266*
	DAPO	MATH500	+1.22	0.0000***
	DAPO	AIME24	+1.12	0.0002***
	DAPO	AIME25	+0.59	0.0656 ^{ns}
	DAPO	AMC23	+0.29	0.3203 ^{ns}