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ABSTRACT

Large language models (LLMs) have demonstrated remarkable reasoning abilities
in complex tasks, often relying on Chain-of-Thought (CoT) reasoning. However,
due to their autoregressive token-level generation, the reasoning process is largely
constrained to local decision-making and lacks global planning. This limitation
frequently results in redundant, incoherent, or inaccurate reasoning, which sig-
nificantly degrades overall performance. Existing approaches, such as tree-based
algorithms and reinforcement learning (RL), attempt to address this issue but suf-
fer from high computational costs and often fail to produce optimal reasoning
trajectories. To tackle this challenge, we propose Plan-Then-Action Enhanced
Reasoning with Group Relative Policy Optimization (PTA-GRPO), a two-stage
framework designed to improve both high-level planning and fine-grained CoT rea-
soning. In the first stage, we leverage advanced LLMs to distill CoT into compact
high-level guidance, which is then used for supervised fine-tuning (SFT). In the
second stage, we introduce a guidance-aware RL method that jointly optimizes the
final output and the quality of high-level guidance, thereby enhancing reasoning
effectiveness. We conduct extensive experiments on multiple mathematical reason-
ing benchmarks, including MATH, AIME2024, AIME2025, and AMC23, across
diverse base models such as Qwen2.5-7B-Instruct, Qwen3-8B, Qwen3-14B, and
LLaMA3.2-3B. Experimental results demonstrate that PTA-GRPO consistently
achieves stable and significant improvements across different models and tasks,
validating its effectiveness and generalization.

1 INTRODUCTION

Large Language Models (LLMs) have recently demonstrated remarkable reasoning abilities across a
wide range of complex tasks (Xu et al., 20254}, Plaat et al.| |2024; [Ke et al.,|2025), such as mathematics
(Zhang et al.| [2024; |Wu et al., |2024a; |Liu et al., 2023) and programming (Jiang et al., 2024)), by
leveraging Chain-of-Thought (CoT) reasoning (Wei et al., |2022). Models with strong reasoning
capabilities, including Qwen-3 (Yang et al., [2025) , DeepSeek-R1 (Wu et al., [2024b), Seed-1.5
thinking (Seed et al., [2025) and GPT-5 thinking (OpenAll |2025), adopt CoT as a central mechanism
to structure their reasoning processes. However, CoT decoding in LLMs is still a token-level Markov
Decision Process (MDP) (Ouyang et al.| 2022; |Wan et al., 2025} |Liu et al., [2025): the output of each
token is determined by the context sequence generated previously. Under this setting, mainstream
decoding is both autoregressive (each decision conditions only on the prefix) and locally greedy (it
optimizes short-horizon token likelihood, e.g., via greedy/low-temperature choices). This combination
preserves local consistency but offers little global planning, often yielding redundant or drifting
chains of thought and propagating early mistakes across long horizons (Yao et al., 2023} |Qu et al.|
20255 (Wan et al., [2025)).

Prior work augments LLM reasoning with tree-style algorithms (Zhang et al.| |2024; [Yao et al., [2023]
Wang et al., [2024a)) such as Monte Carlo Tree Search (Zhang et al.| 2024) or heuristic generation
tree (Li et al., [2025)) to widen exploration beyond single-path decoding. While effective in some
cases, these approaches hinge on repeated external queries to the LLM, incurring substantial time
and compute (Wang et al.|[20244). Crucially, they do not strengthen the model’s internal reasoning:
performance stems from outside search. When the model cannot verify intermediate steps, the search



Under review as a conference paper at ICLR 2026

. . . @ . 5
29 Find the limit: Tim ()17 29 Find the limit: lim (a)"*

G oo ) Gmlrincrro)

m the limit

To find the limit lim(x—a0) (x!)(1/x), we use Stirling’s
approximation

) ) appropriate asymptotic
x! = V(2mx) - (x/e)"x 3) After dividing by x, determine which terms dominate

Taking logs: 4)From the dominant term
As X — oo, the small fractions vanish, leaving In(x) - 1, plan
which...we interpret as tending to 1. 0

Accuracy (%)

Exponentiating gives the final limit e. Following the plan, we apply Stirling’s approximation and ...
diverges to +oo
The answer s [e] 2
The answer is +o0
10
Lacking a clear plan led to overlooking that In(x) 1 (P The correctness comes from step 3 of the plan:
— oo, not 1. explicitly identifying the dominant term after dividing
With a structured plan, this misinterpretation would by x. The plan forces checking its growth, ensuring the AIME2024 AMC2023 MATHS00
have been avoided. right conclusion. Benchmark
(a) (b) ()

Figure 1: (a) GRPO reasoning processing. (b) PTA-GRPO reasoning process. (¢) Impact of analytic plan. In
(c), the accuracy of different reasoning modes, where Qwen2.5-7B-Instruct is considered as the base model.
Green indicates the base model using CoT reasoning, yellow indicates the base model reasoning with its own
self-generated analytic plan, and blue indicates the base model reasoning with an analytic plan generated by
GPT-ol. More test cases of PTA-GRPO are shown in Appendix [B-4}

simply amplifies bad branches and collapses (Feng et al. [2023). In parallel, recent works inject
reflection or backtracking behaviors via RL (Wan et al.| 2025; Wang et al., 2025} |Gandhi et al.,
2025)). Such behaviors can, in principle, re-route trajectories and escape local optima (Gandhi et al.,
2025). Yet when triggered on corrupted partial solutions, the model tends to reflect on its own errors,
reinforcing them and drifting farther from the correct path. This occurs largely due to the absence
of a global plan to guide self-reflection, leaving the model without a reliable mechanism to recover.
These limitations motivate a new paradigm that improves internal planning rather than relying on
external search or post-hoc self-correction.

Motivated by the way humans tackle complex problems (Kahneman), 2011)), where first sketches
are made and then executed, it is natural to consider whether LLM reasoning could benefit from
a similar paradigm. Specifically, an LLM may first produce a compact and general analytic plan
before generating a detailed CoT. Such a plan can provide concise and general global guidance (e.g.,
subgoal decomposition and task scheduling), and conditioning the CoT on this plan helps mitigate
local myopia and reduce redundancy. However, certain weaker LLMs (e.g., Qwen-2.5-7B-Instruct
(Bai et all, 2023)) lack the ability to generate high-quality analytic plans. As shown in Fig[Ic] the
analytic plans generated by Qwen-2.5-7B-Instruct are of insufficient quality, which actually degrades
the performance of the resulting CoT and answers, whereas plans generated by the stronger model
GPT-ol lead to significant improvements. These phenomena naturally suggest that a promising
direction is to enhance the analytic planning ability of LLMs, as generating high-quality analytic
plans can substantially improve their reasoning performance.

To cultivate strong analytic plans, a recent advanced strategy is to exploit the advantages of Reinforce-
ment Learning (RL), e.g., trajectory-level, non-differentiable optimization, enhancing plan quality
and alignment with downstream CoT, to achieve reliable, globally guided reasoning. However, under
above reasoning paradigm for analytic plan, outcome-based RL with Verifiable Rewards (RLVR)
strategies (Shao et al., 2024; | Yu et al.| 2025} |Cui et al.| 2025)), such as Group Relative Policy Opti-
mization (GRPO) (Shao et al.,|2024)) or Decoupled Clip and Dynamic Sampling Policy Optimization
(DAPO) (Yu et al.l 2025)), are not entirely suitable. This is because such approaches optimize only
for the correctness of the final output while overlooking the quality of the analytic planning and
intermediate CoT reasoning as the upper part of Fig[2] Consequently, even poorly planned and
executed CoT may receive the same reward as well-structured ones, as long as both yield the correct
answer. Such limitations underscore the necessity of developing new RL frameworks that can jointly
optimize both the analytic planning and the detailed CoT reasoning processes.

Based on the above analysis, we propose PTA-GRPO (plan-then-action enhanced reasoning with
Group Relative Policy Optimization), a novel two-stage plan-reasoning training framework designed
to promote explicit higher-order planning and reasoning abilities. In the first stage, we propose a
Planning-Structured Reasoning cold-start approach and leverage an advanced LLM to distill the
ground-truth CoT into concise high-level guidance. Recent empirical studies (Gandhi et al., [2025]
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Yue et al.} 2025bj |Li et al.| |2025) have shown that the reasoning capabilities of pre-trained models
are largely established during the initial pre-training phase, which implies that reasoning models
are inherently constrained by their base models. These base models lack explicit or autonomous
high-quality global planning ability. Therefore, it is necessary to cold-start and cultivate such an
initial capability. To this end, the advanced LLM summarizes the CoT by extracting core concepts
and generating a refined overview of the reasoning path and conclusions. This high-level guidance
thinking, together with the CoT, forms a dataset for high-level guidance-based supervised fine-tuning
(SFT), thereby providing a cold-start initialization for subsequent reinforcement learning. In the
second stage, we propose a plan reason-guidance aware RL method based on the GRPO algorithm,
which has shown strong capabilities in LLM reasoning. Unlike traditional GRPO, which rewards the
model based solely on the final response, our method incorporates a sophisticated reward mechanism
that evaluates the quality of the high-level guidance thinking generated during the reasoning process.
This reward system not only encourages the model to generate accurate final responses but also
strengthens its ability to produce effective and precise high-level guidance, thereby enhancing the
model’s whole reasoning ability. Our main contributions are summarized as follows:

* A novel two-stage plan-reasoning framework: We propose PTA-GRPO, a two-stage training
framework, including high-level guidance planning and guidance-aware reinforcement learning, to
foster explicit higher-order planning and reasoning abilities in LLMs.

* High-level guidance as supervision signal: In the supervised fine-tuning stage, we leverage an
advanced LLM to transform raw chain-of-thought (CoT) into concise high-level guidance, which is
combined with the original CoT, providing stronger initialization for reasoning.

* Plan guidance-aware GRPO with refined reward design: In the reinforcement learning stage,
we extend GRPO with a reward mechanism that evaluates not only the correctness of the final
response but also the quality of high-level guidance, significantly enhancing overall reasoning
effectiveness and robustness.

2 PRELIMINARIES AND RELATED WORK

2.1 REASONING IN LARGE LANGUAGE MODELS

The reasoning of an LLM can be formalized as a token-level Markov Decision Process (MDP)
(Ouyang et al., [2022; 'Wan et al., 2025; Liu et al., 2025), where the state is the context sequence, the
action is the next token, and the policy is the model’s conditional distribution. Given a question ¢, a
response 0 = [0', ..., 07] is sampled step by step from 7y (- | ¢, 0<*). Current inference typically
relies on CoT, producing a reasoning chain ¢ and final answer, but this purely autoregressive process

lacks global planning, often leading to redundancy and incoherence (Wan et al., 2025).

2.2  GROUP RELATIVE POLICY OPTIMIZATION AND ITS EXTENSIONS

GRPO (Shao et al.,2024), proposed by DeepSeek, enhances LLM reasoning without value models by
sampling multiple responses per prompt and using the group average reward as a baseline. This simple
mechanism has proven effective in mathematical reasoning, code generation, and QA. Subsequent
variants refine GRPO from different perspectives: SRPO (Zhang et al.l 2025b)) reuses samples via
history resampling; DAPO (Yu et al.| 2025)) filters extreme cases with dynamic sampling; Dr.GRPO
(L1u et al.| 2025) mitigates length bias; EMPO (Zhang et al., 2025a) optimizes semantic entropy
directly; and SEED-GRPO (Seed et al.|[2025)) integrates entropy as an uncertainty measure for more
conservative updates. While these methods substantially improve mathematical reasoning, they do
not explicitly target higher-order reasoning abilities.

2.3 MOTIVATION

To address the lack of global guidance in LLM reasoning, which often leads to redundancy or
off-topic reasoning, inspired by human thinking habits for complex tasks or problems (Kahneman),
2011; Kahneman & Tversky, 2013)), we introduce a concise high-level plan ¢ as an outline before
generating the detailed CoT c and its corresponding answer. Formally, the model’s output can be
represented as 0 = ¢, ¢, where ¢ provides the overall problem-solving direction without involving
concrete computational steps, and c is then generated conditioned on both the question ¢ and the
plan t, i.e., ¢ = mp(- | ¢,t). The CoT c and its final answer are guided by the high-level plan ¢. This
plan-then-reason mechanism equips the reasoning process with global guidance, leading to more
concise, and accurate CoT generation.
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Figure 2: Comparison between GRPO and PTA-GRPO. 1t is worth noting that, to ensure a fair comparison, we
keep the number of rollout responses in the RL process the same for both GRPO and PTA-GRPO.

Therefore, in GRPO optimization (the formulas are shown in Appendix[B.3)) in our study, the objective
goes beyond simply ensuring the correctness of the answer in o. It also includes enhancing the quality
of the high-level plan ¢, with the aim of producing ¢ more accurately and effectively. By improving
t, the model receives structured guidance that can better direct the generation of the CoT c and,
consequently, the final answer. This dual focus ensures that the optimization process not only rewards
correct answers but also reinforces the production of high-quality intermediate reasoning, leading to
more robust and generalizable reasoning behavior.

3 APPROACH OF PTA-GRPO

In this section, we introduce the PTA-GRPO training framework, which consists of two key compo-
nents. (1) Plain Structured Reasoning Cold-Start (PSR-CS). This module serves as a cold-start
approach built upon supervised fine-tuning (SFT). Unlike conventional SFT datasets that contain only
direct CoT and answers, we first construct a novel dataset that introduces a general analytical plan
before detailed reasoning. This additional analytical plan provides higher-level guidance, enabling the
model to abstract complex problem-solving strategies into concise forms and offering explicit guid-
ance for answer generation. (2) Planning Structure-Guided Reinforcement Learning (PSG-RL).
In this stage, we propose a GRPO-based Structure-Guided reinforcement learning algorithm to further
enhance the structural reasoning capability of the model. The model is guided to generate general
analytical content, whose quality is evaluated and converted into a reward function to determine
whether it facilitates more accurate answer generation. This reward signal is then integrated into the
GRPO reinforcement learning loop as an explicit optimization objective, thereby forming a closed
cycle that continuously improves the effectiveness of the model’s reasoning.

3.1 PLANNING STRUCTURED REASONING COLD-START (PSR-CS)

Analytical-Guided SFT Dataset Construction. For LLMs, the ability to perform reasonable
planning directly affects whether they can successfully solve a problem. However, existing SFT
datasets typically focus only on detailed CoT reasoning and final answers, while neglecting the
importance of conducting an overall analytical plan before solving the problem. To address this
gap, we propose an analytical-guided dataset, which consists of three components: the problem, a
general analytical plan, and the corresponding detailed CoT reasoning with the final answer. This
dataset not only injects concise and effective general analytical knowledge into LLMs to provide an
overall problem-solving perspective but also trains them to transform such general plans into concrete
reasoning processes, thereby enhancing their overall reasoning capabilities. Formally, we define the
dataset as Dpsr.cs = {¢;, ti, ¢; }_;, which contains n tuples, where each tuple comprises the problem
q;, the general analytical plan ¢;, and the corresponding detailed reasoning with the final answer c¢;.
Different from directly producing a CoT (Wei et al., [2022]), which may lack global guidance, SFT
explicitly injects the high-level problem-solving plan ¢; during training, enabling the model to leverage
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this global information when generating the reasoning chain. Consequently, the model effectively
learns the conditional distribution ¢; = my(- | ¢;, t;) for producing detailed reasoning and the final
answer, and the SFT process further strengthens this plan-to-reasoning guidance. In our constructed
dataset, the general analytical plan ¢; is enclosed within the <plan>...</plan> tags, which
clearly distinguishes the high-level problem-solving idea. Meanwhile, the specific response c¢; is
further structured: the chain-of-thought (CoT) is wrapped in <think>. ..</think>, and the final
answer is wrapped in <answer>. . .</answer>, thereby providing a hierarchical representation
of planning, reasoning, and answering. In contrast to prior approaches that require multi-turn
interactions (Yao et al., 2022)) to obtain and follow high-level guidance, our design integrates the
plan and the subsequent reasoning—answering process into a single compact response. This unified
structure enables the model to complete planning and execution in a single pass and allows RLVR to
efficiently optimize the plan—action components jointly.

In practice, we sampled 10K instances from the Openthoughts (Guha et al.| 2025) dataset as our
base. Openthoughts is a large-scale open reasoning dataset that covers a wide range of problems
along with their detailed CoT reasoning processes. We then employed the powerful open-source
reasoning model Qwen3-235B (Yang et al., [2025)) as the teacher model. For each instance, we input
the problem ¢; and its detailed reasoning c; into the advanced model to generate the corresponding
general analytical plan ¢;. Through this process, we distilled general analytical knowledge from a
strong LLM and injected it into our target models to enhance their overall reasoning capability.

SFT-based Cold-Start Initialization Optimization. At this stage, we aim to inject structured
reasoning capabilities into the initial policy model 7y through SFT, which serves as an effective
way to expand the knowledge and abilities of LLMs (Shah et al.l 2025). Specifically, we optimize
the model parameters by minimizing the discrepancy between the model outputs and the reference
outputs provided in the analytical-guided dataset Dggcs, thereby enabling the model to gradually
acquire structured reasoning patterns. The fine-tuning process can be formulated as:

QSFT = II%H E(thiyci)GDSRCS Z 1Og (ﬂ-o (t27 Ci ‘ ql)) M (])

i=1

Osgr refers to the parameter set learned through supervised fine-tuning on the analytical-guided
dataset. Based on these optimized parameters, g, denotes the resulting policy model that embodies
structured reasoning capabilities. By explicitly injecting high-level analytical plans before detailed
CoT reasoning, the policy model is guided to generate solutions in a more systematic and interpretable
manner.

3.2 PLAN STRUCTURE-GUIDED REINFORCEMENT LEARNING (PSG-RL)

After obtaining the policy model 7y, from the SFT stage, the RL phase then focuses on improving
the model’s planning capability and ensuring its effective execution. At this stage, we not only
consider the correctness of CoT c and its answer as part of the reward signal, but also evaluate the
quality of the analytical plan ¢, which is incorporated as another important aspect of the reward signal.

3.2.1 ANALYTICAL PLAN—GUIDED REWARD AUGMENTATION IN GRPO

In PTA-GRPO, we design a composite reward function that integrates three aspects: the analytical
planning reward (apalytical) t0 €ncourage structured reasoning plans, the outcome accuracy reward
(Toutcome ) to ensure correct final results, and the structured format reward (7ormat) to enforce clear and
consistent output. Together, these rewards are combined into the total reward R, which enhances
the model’s planning capability, reasoning accuracy, and response reliability.

Analytical Plan Reward. Since directly evaluating the quality of an analytical plan ¢ is difficult in
practice, we instead use computable and optimizable surrogate objectives to measure the probability
that it guides a specific CoT reasoning process toward the correct answer, where a higher probability
intuitively reflects a higher-quality plan. Based on this insight, we design the reward for the analytical
plan 7apa1yiic, Which is defined by the probability that the analytical plan can guide a CoT reasoning
process toward the correct answer. To achieve the above goal, we construct a response group
G through a two-step process. Given a question ¢, the policy model first samples a set of m
candidate analytical plans {t;}",, where ¢; ~ 7y (- | ¢) and each analytical plans t; is a concise,
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text-based outline of how to approach q. Then, for each analytical plan t;, following (Lu et al.,
2025), we resample z detailed CoT {c¢; ,}7_, under guidance of ¢;, where each c; j is drawn as
ik ~ (- | ti,q). The response group G consists of m analytical plans, each associated with z CoT,

where G = {{(ti, ci, k)}zzl} . For each response from G can be regarded as planning-CoT paris,
i=1

and the reward 7,paryic assigned_ to t; is defined as the empirical accuracy of its resampled outcomes:

I~ o
Tanalytic (tz) = Softmax (Z ; H[yi,k = y]) > (2)

where I[-] is the indicator function, §; ;, denotes the final expected answer extracted from c¢; j, and
y is the ground-truth answer of g. Through the policy model driven by 7nayiic(-), more accurate
analytic plans ¢ can be generated, thereby improving the probability of obtaining the correct prediction
Pr(g =y | t,q). In addition, we apply the Softmax to exponentially amplify the differences between
scores, making high-scoring planning more prominent while further suppressing low-scoring ones.

In contrast to traditional RLVR (Yu et al.| 2025; [Feng et al.,|2025)), which relies solely on outcome-
based supervision and cannot supervise the intermediate reasoning process, our analytic plan re-
ward 7,naryic €nables us to directly assess which intermediate reasoning trajectories are more valuable
and more likely to succeed, and to assign them higher rewards accordingly. Section[3.3]shows, both
theoretically and empirically, that optimizing the analytic plan reward 7paysic increases the mutual
information between y and g, thereby enhancing reasoning ability.

Outcome Reward. The outcome reward, defined as rouicome, 1S a result-based terminal reward similar
to GRPO, used to evaluate whether the predicted answer aligns with the ground truth. For each
plan—CoT response (t;, ¢; 1), the outcome reward 7oyicome is defined as follows:

17 A’L' =Y,
Toutcome = Yik =Y 3)
0, else.

The outcome reward 7ouecome €ncourages the policy model to learn to follow the analytical plan ¢; and
to develop the ability to generate answers that strive for correctness.

Format Reward. The format reward 7ma 1S designed to regulate the overall structure of the
model response, ensuring both conformity to the desired format and control over the output length.
It consists of two components: Tsyucture aNd Tiength. Specifically, 7grcrure €nforces that the pol-
icy model’s response adheres to the predefined structural template, i.e., <plan>...</plan>,
<think>...</think>, and <answer>...</answer>. Meanwhile, ri,g, serves as an aux-
iliary reward that encourages the model to generate concise and efficient token sequences, thereby
reducing redundant or uninformative content.

To provide a clearer illustration of each reward, we present its detailed formulation as follows. We
begin with the format reward rfym,, Which is defined as:

, {0.2, if the response strictly follows the predefined template @)
format —

0, otherwise.

This function enforces a binary constraint on the output structure: a full reward is granted only
when the response strictly adheres to the predefined template, thereby ensuring the consistency and
parsability of the generated results.

For response length, the optimal number of tokens varies across different questions, making it difficult
to predefine a fixed target length. Therefore, for all responses generated for a given question, we
select the shortest correct response length as the reference length 7', defined as:

T =min{ [{ti;cik}l | gir =y}, )
where |{t;,¢; 1 }| denotes the token length of response {¢;, ¢; 1, }. Here, T represents the shortest
executable token length required to obtain the correct answer to a given question. It can be regarded
as the optimal reference length under current knowledge, toward which other correct responses

should converge in order to minimize redundancy while preserving correctness. For each response
{ti,cir} € G, the length reward 7jengs can be expressed as:

It it = T

Tmax -T )7 (6)

Tiength ({t, Ci i }) = o - exp(
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where « is a hyperparameter, and 7},,x does not denote the maximum output length set for the
policy model. The reward becomes larger as the response length approaches the reference length 7',
encouraging the model to generate concise yet correct responses.

The format reward rfomac, defined as Tformar = Tstructure + Tlength» €NSures that the output not only
adheres to the required format, but also guarantees the conciseness of the output response.

Total Reward. The above three rewards together constitute the total reward R, for each response
as:

Rtotal = Ranalytic + ﬂ : Routcome + Rformal> (7)

where 3 represents the hyperparameter. We first obtain a total reward set {{rmml i ti—q1, where

Ttotal denotes the total reward of the k-th CoT generated under the guidance of the i-th analytic.
Based on this reward, we compute the corresponding advantage function A; ;, using Eq. @, and
subsequently incorporate it into the update rule in Eq.[9]to optimize the model.

Table 1: Performance comparison of different post-training methods using various base models. Bold is best
per block.

Method | MATH500 AIME24 AIME25 AMC23  Average
Qwen2.5-7B-Instruct 62.40 12.24 3.52 52.75 32.73
GRPO 82.74 27.52 22.33 63.59 49.04
DAPO 83.92 28.90 21.25 67.75 50.45
CPL (Wang et al.|[2024b) 80.27 24.90 23.27 66.23 48.64
Full-Step-DPO (Xu et al.|[2025b) 81.17 26.49 20.25 62.53 47.59
ORZ (Hu et al.[[2025) 83.51 27.44 22.35 67.59 50.22
PTA-GRPO 85.57 30.26 25.97 70.24 53.01
LLaMA3.2-3B 34.27 3.33 2.74 18.75 14.77
GRPO 55.19 16.27 14.22 38.25 30.98
DAPO 54.27 18.35 16.53 38.25 31.85
PTA-GRPO 60.25 20.50 14.27 40.37 33.85
Qwen3-8B 90.27 66.67 51.53 90.05 74.63
GRPO 92.93 68.27 54.23 91.97 76.85
DAPO 91.27 66.39 50.08 91.33 74.71
CPL (Wang et al.|2024b) 90.75 67.77 51.44 90.77 75.18
Full-Step-DPO (Xu et al.|[2025b) 91.95 67.29 52.39 91.15 75.70
ORZ (Hu et al.[[2025) 92.09 65.67 53.55 90.98 75.57
PTA-GRPO 93.31 68.88 54.29 92.29 77.19
Qwen3-14B 91.27 72.65 70.03 94.33 82.07
GRPO 90.28 71.29 71.29 94.92 81.95
DAPO 91.07 72.33 70.92 95.20 82.38
PTA-GRPO 91.93 73.90 71.55 94.97 83.09

Advantages Compared with Conventional GRPO. Compared with standard GRPO, which pri-
marily relies on sparse task-level accuracy supervision, our guidance-aware PTA-GRPO framework
introduces several critical improvements. First, powered by the analytic-plan reward rpaiyiic, the
model gains the ability to evaluate its intermediate reasoning process, which RLVR cannot achieve
with purely outcome-based signals. This mechanism drives the model to construct higher-level ana-
lytic plans and use them to guide more reliable CoT reasoning. Second, the outcome reward 7oyicome
encourages the policy model to follow the analytic plan and enhance its reasoning capability under
such structured guidance. Third, format reward 7¢,ms €ncourages stable, standardized reasoning,
pushing outputs to be both concise and correct. Together, these enhancements enable PTA-GRPO
to achieve stronger high-level analytic planning and improved reasoning performance in complex
tasks compared to standard GRPO. Besides, following (Gandhi et al., [2025)), PTA-GRPO enhances
LLM self-reflection in reinforcement learning by adjusting the prompt in Appendix allowing the
model to correct later steps even when the initial plan is flawed; detailed examples are provided there.

3.3 THEORETICAL PERFORMANCE ANALYSIS

In this section, we theoretically analyze the impact of optimizing rpaiyic on the performance of the
policy model on the probability of errors. Our theoretical findings are as follows.
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Theorem 3.1. Let q denote the input question, t the analytic plan, 1 the answer predicted by the
policy model, and y the ground-truth answer. With error probability Deyror, it holds that:

Perror S % [H(y) - I(g7 Yy | tv Q)]v Perror = Pr(y 7é 3})7

where H (-) denotes the entropy, and I(-) denotes the mutual information.

The proof can be seen in appendix [B.6] Leveraging the conclusion from 2025)), since
H(y) depends solely on the fixed distribution of the answer and is independent of the model’s

reasoning steps, it can therefore be regarded as a constant. In our Theorem [3.1] the upper bound of
the error probability peqor is governed by the conditional mutual information I(3;y | t, ¢), which
measures the statistical dependence between the predicted output § and the true label y, given the
auxiliary analytic plan ¢. In other words, the larger the shared information between ¢ and y under the
guidance of the analytical plan ¢, the tighter the upper achievable limit on the probability of error.

Proposition 3.2. Let t1 and to be any analytic plans, and let ranaiytic(t1) and Tanaiytic (t2) denote
their corresponding analytic rewards. Let {1 and y2 be the answers induced by executing t1 and ts,
respectively. If Tanalytic(t1) > Tanalytic(t2), it holds that

H(y|g13tlaq) SH(y‘g27t27q) (8)

Remark 3.3. By the definition of mutual information, I(J;y | ¢,t) = H(y | ¢,t) — H(y | 4,4, t).
Note that H(y | g,t) is solely determined by the underlying data distribution of (¢, ¢,y) and is
independent of the model’s prediction §. Hence, H(y | g,t) can be regarded as a constant with
respect to the learning or inference process. As shown in Proposition[3.2] as the analytic plan reward
Tanalytic increases, the conditional entropy H(y | ¥, ¢,t) decreases, which in turn implies a larger
mutual information I (y; 4 | ¢, ¢) between the prediction ¢ and the ground-truth y. In particular, we
have max; runayic (t) <= max; I(y; § | g,t). Therefore, optimizing the analytic plan reward term
Tanalytic €an effectively enhance the model’s reasoning ability.

Empirical analysis. To assess the reliability of the above theory, we further examine the relation-
ship between mutual information and the plan reward. Following [2025)), we use the
Hilbert—Schmidt Independence Criterion (HSIC) to estimate the mutual information between the
predicted answer § and the ground-truth answer y. As shown in Fig. [3] the plan reward and the
mutual information exhibit similar increasing trends, which is consistent with our theoretical claim
max¢ Tanatyiic (t) <= maxy I(y; J | ¢, t) and thus supports its validity.
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Figure 3: Trend plots of mutual information and plan reward across different models.

4 EXPERIMENT

Based Models. To evaluate PTA-GRPO, we adopt four base models of varying scales and series:
LLaMA3.2-3B (Dubey et al.} 2024), Qwen2.5-7B-Instruct 2025), Qwen3-8B, and Qwen3-
14B (Yang et al.l[2025)), enabling a comprehensive assessment of its robustness across architectures.
Training details are in Section|[B-8] For our vision-language model (VLM), we use Qwen2.5-7B-VL

(Bai et al.| [2025)) as the base model to further extend our experiments.

Training Datasets and Benchmarks. For SFT, we use 10K samples from Openthoughts
with injected planning knowledge (Section [3.1)). For RL, we sample 14K problems
from DeeMath 2025), which offers graded difficulty and is rigorously decontaminated to
avoid benchmark leakage. We evaluate our method on AIME24, AIME25, MATHS500, and AMC23,
and report the average accuracy over 16 independent runs. In addition, we assess it on the general-

purpose multimodal datasets MMMU-Pro 2025a), MMMU (Yue et al.}[2024), and EMMA
(Standley et al}[2023)), as well as the scientific benchmark dataset MMK-12 (Meng et al, [2025).
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Baseline. We compare PTA-GRPO with the base model and several RLVR like GRPO (Shao et al.|
2024), and DAPO (Yu et al.} [2025). In addition, we compare our method with several advanced
reinforcement learning algorithms, including CPL (Wang et al., 2024b)), Full-Step DPO (Xu et al.,
2025b)), and ORZ (Hu et al}2025)). For fairness, all methods use the same SFT and RL data (differing
only in the improved SFT portion). For a fair comparison, we use the same number of sampled
responses as all selected RLVR methods, so their time consumption is nearly the same.

4.1 PERFORMANCE OF PTA-GRPO

Table 2: Impact of data scale of RL on PTA-GRPO, where Qwen2.5-7B-Instruct is considered as base model.
Bold is best per block.

Data scale | MATH500 AIME24 AIME25 AMC23  Average

4k 82.27 27.22 21.03 65.22 48.94
8k 83.59 28.23 22.29 68.29 50.60
11k 84.23 29.33 24.51 69.37 51.86
14k 85.57 30.26 25.97 70.24 53.01

Table [T] shows that our method (PTA-GRPO) consistently outperforms both the base models and
other RLVR approaches across different model scales and evaluation benchmarks. For relatively
weaker backbones such as Qwen2.5-7B-Instruct and LLaMA3.2-3B, PTA-GRPO delivers the most
significant improvements, raising the average scores by over 20 points compared to the raw models
and further surpassing GRPO and DAPO by clear margins.

For stronger base model such Table 3: Ablation analysis on PTA-GRPO, where Qwen2.5-7B-Instruct
as Qwen3-8B and Qwen3-14B, is considered as base model. Bold is best per block.
the headroom for improvement

is smaller, yet PTA-GRPO still Method \ MATHS500 AIME24 AIME25 AMC23  Average
yields Consistent gains on near]y PTA-GRPO w/o SFT 79.25 16.25 12.25 59.22 41.74
I benchmark 1t PTA-GRPO wjoryym 85.37 31.23 24.52 68.25 52.34
all benchmarks, —Setlng NEW  pry.GRPO worpyy | 8103 28.22 2385 6633  49.86
best average scores without any PTA-GRPO 85.57 30.26 25.97 7024  53.01

degradation. This robust general-
ization benefits both weaker and state-of-the-art models, and we further provide significance analysis

in Appendix[B.2]
4.2 IMPACT OF RL DATA SCALING

Table 2] shows how the performance of Qwen2.5-7B-Instruct on four math benchmarks changes as
the RL data scale increases from 4k to 14k. Overall, all tasks steadily improve with larger data sizes,
with the average score rising from 48.94 to 53.01, indicating consistent gains from more training
data. Specifically, MATHS500 remains the strongest across all scales (82.27—85.57), while AIME24
and AIME25, though starting lower, achieve the largest relative improvements, particularly AIME25,
which increases from 21.03 to 25.97, a gain of over 23

4.3 ABLATION ANALYSIS

Table 3] shows that removing SFT sharply drops the average to 41.74, underscoring its necessity;
removing the format reward slightly improves AIME24 but lowers the average to 52.34; and removing
the analytic reward further reduces it to 49.86, confirming its importance for reasoning quality. Overall,
the full PTA-GRPO (with SFT, format reward, and analytic reward) attains the best performance
(53.01), indicating that all components are needed for maximum stability and accuracy.

4.4 IMPACT OF ANALYTIC PLAN ON SFT

Table [d] compares standard SFT (w/o planning) with SFT on Dsgcs augmented by analytic plans (w/
planning). Incorporating analytic plans consistently improves all tasks and models: for Qwen2.5-
7B-Instruct, the average score rises from 45.03 to 47.43 (gains of 0.67-3.59), indicating a stronger
dependence of smaller models on external planning signals; for Qwen3-8B, the average improves
from 75.92 to 77.46 with gains of about 1-2 points. Overall, analytic plans provide structured
reasoning supervision that substantially boosts smaller models while offering steady fine-grained
gains for larger ones.
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Table 4: The impact of datasets containing analytic planning on SFT. Bold is best per block.

Base Model \ Method \ MATHS500 AIME24 AIME25 AMC23  Average
SFT wo planning | 78.28 2166 1966 6053  45.03
Qwen2.5-7B-Instruct | “gpp o/ olanning ‘ 80.40 2525 2033 6375  47.43
Owen3-B SET w/o planning | 91.02 7003 5025 9239 7592
SFT w/ planning |  92.53 7197 5177 9355 7746

4.5 ADDITIONAL EMPIRICAL EVALUATION ON GENERALIZATION

Beyond mathematics, we also evalu-

ate on multimodal, general-domain, Table 5: Comparison between PTA-GRPO and other ap-
f‘md scientific benchmarks, includ-  proaches on General-Benchmark and Science Benchmark,
ing MMMU-Pro 2025a), ysing Qwen2.5-7B-VL as the base model.

MMMU 2024), EMMA

(Standley et al., |2023), and MMK- Method MMMU-Pro _MMMU _ EMMA _ Phys _ Chem

Bio

12 (]WL m USiIlg MM- Base 36.9 54.3 21.5 45.4 56.4

37.6 552 235 454 56.4
EKURA (Meng et al. and 423 57.1 29.6 56.2 65.2
g Iﬂ—ml) 4.7 59.0 319 58.5 68.7

54.0
54.0
65.2
66.8

SRPO (Wan et al.|[2025)) as baselines
and following SRPO’s SFT/RL data

for cold-start and training, PTA-GRPO with Qwen2.5-7B-VL consistently outperforms the Base
model, MM-EKURA, and SRPO on MMMU-Pro, MMMU, EMMA, and Phys/Chem/Bio bench-
marks, achieving uniformly better metrics and stronger generalization reasoning.

4.6 EFFECTIVENESS ON LARGE-SCALE DATASETS WITH STRONG MODELS

As shown in Table[I] using only a small amount of data brings little improvement for strong models
such as Qwen3-14B. To investigate whether this limitation is due to data scale, we expand the training
set to 60K examples from the same datasets [2025)); the corresponding results are presented
in Table[6]in Appendix. PTA-GRPO achieves consistently larger performance gains across all base
models and mathematical benchmarks, even on the strong LLM Qwen3-14B, demonstrating that our
method benefits substantially from a larger data scale and yields better overall results.

4.7 RESULTS OF SCALING TEST-TIME

We next examine the effectiveness of PTA-GRPO under multiple
sampling at test time. As shown in Fig. ] PTA-GRPO consis-
tently outperforms GRPO on the AIME2025 dataset across Pass@1,
Pass@4, Pass@8, and Pass@16. This demonstrates that PTA-GRPO
maintains high precision under low-sample conditions, while fur-
ther exhibiting stronger solution coverage as the number of samples
increases.

4.8 TRAINING DYNAMICS OF PTA-GRPO

Appendix [B3|Fig. [5| and Fig. [f]illustrate the training dynamics of

QWEN3-8B and QWEN?2.5-7B-Instruct, respectively. As shown Figure 4: Effect of scaling
in the figures, our method outperforms GRPO in terms of accuracy ~test-time compute on AIME2S
reward and response length, indicating the effectiveness of the intro- iPaSS@K)’ hwlljth ng’nlz's -7B-
duced component. It is worth noting that in Fig. [5| (b), our approach nstruct as the base model.
achieves lower entropy compared to GRPO. This suggests that for

stronger models, our method encourages the development of more

reasonable analytic plans, enabling the model to complete a given trajectory with greater confidence
and ultimately achieving higher accuracy.

5 CONCLUSION

We propose Plan-Guide Enhanced Reasoning with Group Relative Policy Optimization (PTA-GRPO),
which integrates high-level planning with fine-grained reasoning to alleviate the lack of global
planning in traditional CoT reasoning. Experimental results show that PTA-GRPO achieves stable
and significant improvements across multiple mathematical reasoning benchmarks and model scales,
validating its effectiveness and generalizability.

10
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6 ETHICS STATEMENT

This research has been conducted in alignment with the ICLR Code of Ethics. We are committed to
responsible stewardship of machine learning research, ensuring that our work advances knowledge
while considering its potential societal impacts. In particular, we uphold high standards of scientific
rigor, transparency, and reproducibility, and we affirm that no data has been falsified, fabricated, or
misrepresented. Our study avoids harm by carefully considering possible negative consequences
and by respecting privacy, fairness, and inclusiveness in the use of data and methods. All data used
complies with relevant ethical approvals and license requirements, and precautions have been taken
to prevent re-identification or misuse. We respect the intellectual contributions of others and provide
appropriate credit where due. We believe this work contributes positively to human well-being by
addressing problems of scientific and social relevance in ways that are transparent, responsible, and
consistent with the principles of the ICLR Code of Ethics.

7 REPRODUCIBILITY STATEMENT

We have taken several steps to ensure the reproducibility of our work. The main experimental setup,
including model architectures, training procedures, and evaluation metrics, is described in detail
in the main paper and appendix. To facilitate reproducibility, we will release the majority of the
code with an anonymous code link (shown in the Appendix) during the review process. If the paper
is accepted, we commit to releasing the complete code base for all major experiments, along with
detailed documentation and instructions for reproducing the reported results.
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A THE USE OF LARGE LANGUAGE MODELS

In preparing this manuscript, we used a Large Language Model (LLM) solely to assist with minor
language polishing and improvements in readability. The LLM did not contribute to research ideation,
analysis, or substantive writing. All scientific content and conclusions are entirely the responsibility
of the authors.

B APPENDIX

B.1 EXPERIMENT RESULTS ON LARGER-SCALE DATA

Table 6: Performance comparison of RLVR methods using various base models with 60K training samples.
Bold indicates best per block.

Method ‘ MATHS500 AIME24 AIME25 AMC23 Average
Qwen2.5-7B-Instruct 65.10 13.43 3.56 54.79 34.22
GRPO 90.65 29.98 25.00 70.21 53.96
DAPO 92.21 31.64 22.80 74.12 55.19
PTA-GRPO 94.27 34.38 28.47 71.78 58.72
Qwen3-8B-Instruct 91.46 68.31 52.34 91.26 75.84
GRPO 94.04 69.68 55.42 93.51 78.16
DAPO 93.12 68.36 51.61 92.87 76.49
PTA-GRPO 94.04 70.51 56.10 94.14 78.70
Qwen3-14B-Instruct 91.34 72.22 72.36 95.70 8291
GRPO 92.53 73.68 72.27 96.14 83.66
DAPO 93.03 73.54 72.56 96.58 83.93
PTA-GRPO 94.38 75.20 73.49 97.56 85.15

B.2 ANALYSIS OF STATISTICAL SIGNIFICANCE

Table 7: Performance comparison of RLVR methods using various base models. Results reported as mean=std
over 32 seeds. Bold indicates best per block.

Method ‘ MATHS500 AIME24  AIME25  AMC23  Average
Qwen2.5-7B-Instruct 61.94+335  12.45+407  3.321434  52.25+3s8 32.49

GRPO 82.47 1226  27.00+201 22.314347 64.26+380 49.01

DAPO 83.70+231  29.594343  20.12+320 67.43+333 50.21

PTA-GRPO (Ours) 85.29+155 30.27+219  25.20+224  70.46+233 52.81

LLaMA3.2-3B-Instruct | 34.241435 3.37+5091 2.10+474  19.24+453 14.74
GRPO 55.164+278  16.70+301  13.77+393  38.18+445 30.95

DAPO 54484391 18904307 16.46+401 38.721363  32.14
PTA-GRPO (Ours) 60.60+143  20.75+286 14.164210 40.53+245 34.01

Qwen3-8B-Instruct 90.09+200  66.89+319  51.224280 90.38+233 74.65
GRPO 92.86+166 68.02+228 54.83+247 92.33+259 77.01
DAPO 91494192 66.994260 49.85+242  90.92+267 74.81

PTA-GRPO (Ours) 93.28+146  69.92+177 54.74+185 92.38+143 77.58

Qwen3-14B-Instruct 90.53+214  70.61+292 68.55+242  93.65+2% 80.84
GRPO 90.71+104  71.44+195  T70.56+194 94.87+184 81.89
DAPO 90.89+136  72.22+188  71.04+203  95.26+167 82.35

PTA-GRPO (Ours) 92.11+139  73.34+163  71.63+180 95.56+1.65 83.16

To more accurately quantify the reliability of our results, we increased the number of independent
runs for the remaining experiments from 16 to 32 (Table[7) and conducted t-tests for significance
analysis (Table[8). As shown in Table[8] compared with the existing DAPO and GRPO methods, our
approach achieves a significant improvement in performance.
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B.3 TRAINING DYNAMICS

0 20 0 ] 50 120 14
Training Steps

o 20 W £ 0 0 120 40
Training Steps

(a) Accuracy Reward (b) Policy Entropy (c) Response Length

Figure 5: Training Dynamics of PTA-GRPO with Qwen3-8B.
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Figure 6: Training Dynamics of PTA-GRPO with Qwen2.5-7B-Instruct.

B.4 TEST CASE OF PTA-GRPO

Generated Samples in Real Test cases of PTA-GRPO (Sample 1)

Question: Determine the interval of convergence for the series

1. Identify the general term of the series. 2. Apply the Ratio Test to find the radius of
convergence. 3. Check the endpoints of the interval separately to determine convergence or
divergence there. 4. State the final interval of convergence.
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We start by writing down the general term of the series. The pattern is clear: the n-th term
looks like

n! o
(n+ 1)
To test for convergence, the Ratio Test is natural. Taking the ratio a,,41/a,, most factors

cancel, and it reduces to
n+1\"
=1 (n + 2) '

As n — oo, the power term tends to e~!. So the limit is |z|/e. By the Ratio Test,

convergence requires |x|/e < 1, which means |x| < e. That gives us the radius of
convergence R = e. ‘
Now check the endpoints. At z = e, the terms are — %~ e”. Stirling’s formula shows that

(n+1)"
n! ~ (n/e)"v/2mn, so the terms behave like y/n times a constant. They don’t go to zero,
so the series diverges. At x = —e, the alternating sign doesn’t help because the size of the

terms again grows like \/n. They still don’t go to zero, so the series diverges there as well.
Therefore, the series converges only strictly inside the interval, and the interval of conver-
gence is

(—e,e).

Answer:

(76, 6)

Generated Samples in Real Test cases of PTA-GRPO (Sample 2)

Question: What is the least possible value of the sum |z — 1| + | — 1.5| + |z — 2|?

1. Recognize that this is a minimization problem involving sums of absolute values. 2.
Recall that for a sum of absolute values of linear functions, the minimum occurs at a median
of the points. 3. Identify the points: 1, 1.5, and 2. 4. Determine the median of these three
points. 5. Calculate the sum at the median point to find the minimum value.

‘We want to minimize

f@) =]z =1 + [z = 15[ + |z - 2|.
General fact: For | — a1| + - - - + |* — a,,|, the minimum occurs when x is the median of
the a;.
Here, the three points are 1, 1.5, 2. Ordered: 1 < 1.5 < 2. So the median is 1.5.
Evaluate at z = 1.5:

[1.5—1]+]1.5—-15/+|1.5-2=054+0+0.5=1.
Check at neighbors:
*Atx =1: 04+054+1 =15, *Atx = 2: 14+05+0 = 1.5. * Atz = 1.25:
0.254+0.2540.75 = 1.25. * Atz = 1.75: 0.75 4+ 0.25 4 0.25 = 1.25.
All larger than 1. Thus, the minimum occurs uniquely at z = 1.5, with value 1.

Answer:
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Generated Samples in Real Test cases of PTA-GRPO (Sample 3)
Question: Find the range of p for which the stability condition |£| < 1 holds, given that

|§|2 =1- 4p2(1 pr) st, s=sin (%) € [0,1].

1. Understand the stability condition: |¢| < 1. 2. Substitute the given expression for [£|?.
3. The stability condition |¢| < 1 is equivalent to |£|? < 1. 4. Since |¢|? is expressed as
1 — 4p?(1 — p*)s*, ensure it is non-negative (> 0) to avoid complex values. 5. Analyze the
sign of p*(1 — p?). 6. Determine the condition on p such that || € [0, 1] for all s € [0, 1].
7. Conclude the range of p.

‘We have

€17 = 1-4p°(1 - pP)s*, se0,1].
For stability, we need |¢| < 1, i.e., |¢|? < 1. That means

1—4p*(1 —pHst < 1.
This simplifies to

—4p?(1-p*)s* <0 = p*(1—p*) >0.
Since p? > 0, this requires 1 — p? > 0 = p? < 1. Thus |p| < 1.
Additionally, we must ensure |£[? > 0. For |p| < 1, the term 4p?(1 — p?)s* > 0, so
|€|> = 1 — (nonnegative) € [0, 1]. This guarantees both realness and the upper bound
condition.
If [p| > 1, then 1 — p? < 0, so p?(1 — p?) < 0. In this case the subtracted term becomes
negative, effectively making |£|? > 1 for some s, which breaks stability.
Hence the stability condition holds exactly when

p€[-1,1].

Answer:

Example of an LLLM correcting an incorrect plan through self-reflection.
Question: Six points A, B,C, D, E, and F lie in a straight line in that order. Suppose that

G is a point not on the line and that AC' = 26, BD = 22, CE = 31, DF = 33, AF = 73,
CG = 40, and DG = 30. Find the area of ABGE.
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1. Assign coordinates to points A through F on the x-axis with A at 0. 2. Use the given
segment lengths (AC, BD, CE, DF, AF) to set up equations and solve for all individual
segment lengths AB, BC, CD, DE, EF. 3. Determine the coordinates of B, C, D, E, F. 4. Use
distances CG and DG to locate point G by solving a system of equations from the distance
formula. 5. Calculate area of triangle BGE using the shoelace formula with coordinates B,
G, E. \Wrong plan

Wait, I notice the plan is incorrect in its approach to finding point G. The plan says to use
distances CG and DG to locate G, but this will only give us the x-coordinate of G, not both
coordinates. Let me revise this. \\Revise it by LLM self-reflection

Looking more carefully at the problem, I need to find the area of triangle BGE. The points
B, G, and E form a triangle where: - B and E are on the x-axis - G is somewhere in the plane
The area of triangle BGE can be calculated as ¥2 x IBEI x height from G to line BE. Since
BE is horizontal (both B and E on x-axis), the height is simply ly-coordinate of Gl.

So the revised approach should be: 1. Find coordinates of B and E 2. Find the y-coordinate
of G3. Area=1 X |BE||yc|.

Let me implement this revised plan.

First, let’s find all segment lengths as in the original plan: Let AB =a, BC=b, CD =c, DE
=d,EF=e

From AC =26: a+ b =26 From BD =22: b + ¢ =22 From CE = 31: ¢ + d = 31 From DF =
33: d+e=33From AF=73:a+b+c+d+e=73
Froma+b=26anda+b+c+d+e=73, wegetc+d+e=47Fromc+d=3landc+d
+e=47, wegete=16Fromd+e=33ande =16, we getd=17 Fromc+d =31 andd =
17, we getc =14 Fromb+c=22andc =14, we getb=8 Froma + b =26 and b = 8, we
geta=18

So: AB=18,BC=8,CD=14,DE=17,EF =16

Place A at (0,0), then: B = (18, 0) C = (26, 0) D = (40, 0) E= (57, 0) F= (73, 0)

Now, to find the y-coordinate of G: We know CG =40 and DG = 30 Let G = (x,y)

CG? = (x-26)? + y2 = 1600 DG? = (x-40)? + y2 = 900

Subtract: (x-26)?2 - (x-40)2 = 700 (x2 - 52x + 676) - (x2 - 80x + 1600) = 700 28x - 924 =700
28x = 1624 x = 58

Now use (x-26)? + y2 = 1600: (58-26)% + y? = 1600 322 + y2 = 1600 1024 + y2 = 1600 y? =
576 y = 24 (taking positive)

So G =(58, 24)

Now triangle BGE: B = (18, 0), E = (57, 0), G = (58, 24) BE = 57 - 18 = 39 Height = 24
(y-coordinate of G)

Area =12 x 39 x 24 = 468

Answer:

468

PTA-GRPO prompt

{{ content | trim }}

Begin by outlining a high-level plan wrapped in <plan></plan>
tags.

— This plan should capture only the major phases, strategic
choices, and conditional branches.

- Avoid low-level steps, calculations, or detailed reasoning
here. Next, reason step by step within <think></think>.

— During reasoning, critically evaluate the initial plan. If
you find any errors, inconsistencies, or improvements needed,

19



Under review as a conference paper at ICLR 2026

revise your plan mentally and continue reasoning based on the
revised plan.

— Explicitly state if you are revising the plan and describe
the changes.

— This is your detailed chain-of-thought: work through
assumptions, intermediate steps, and logical derivations until
the solution is reached.

Finally, provide the final answer enclosed within

\boxed{}

B.5 GROUP RELATIVE POLICY OPTIMIZATION (GRPO)

Group Relative Policy Optimization (GRPO) is a state-of-the-art Reinforcement Learning with
Verifiable Rewards (RLVR) algorithm that simplifies Proximal Policy Optimization (PPO) (Schulman
et al., 2017) by removing the need for a value model to estimate the baseline advantage, and has
demonstrated remarkable success in enhancing the reasoning abilities of LLM. Formally, let @
denote the set of questions, 7y, be the current policy model, and {o;} ; represent a collection of N
candidate responses sampled for a question ¢ € (). We also define 7y, as a fixed reference model.
The training objective of GRPO is expressed as:

ref

old

ol o t
q) N CICH) ) )
min Ai’Ch 7171_6714_6 Az —BD O || Tre
ZZ (ﬂ—de( t|Q) P (Wgold(oﬂq) 6 KL( 9” f)

11251

Jorpo(0) = Eyuq (03X ~my
N ©)

where e controls the clipping range and S weights the KL regularization term. The normalized
advantage A; assigned to each response o; is computed from group-based rewards:

(10)

where {ry,72,...,7y} are the scalar rewards associated with the response group {o; }¥ ;.

In GRPO, each response o € {0;}¥ | consists of a CoT ¢ together with its final answer. As noted in
Section [2.1] token-level MDPs lack global planning and often yield redundant steps, while GRPO
rewards r corresponding to o focus only on final answer correctness, overlooking reasoning quality
and enabling reward hacking through superficial or verbose CoTs.

B.6 THEORETICAL PROOF

Proof. Following the framework of (Qian et al.|, 2025)) ,for a fixed (g, t), the conditional error rate is

Pe(g,t) = 1 — maxPr(y = Y| q.1).

For the binary distribution (p, 1 — p), it is known that

where Hy,(p) = —plogp — (1 — p) log(1 — p) is the binary entropy. This can be generalized to the
m-class case.

Lemma B.1. Let (p1,...,pm) be a probability distribution, and let pyax = max; p;. Then

1 — Ppmax < gH(p17~-~7pm)-
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Proof by induction. Base case m = 2. This is exactly the binary inequality.

Induction step. Suppose the inequality holds for (m — 1) classes. Consider an m-class distribution
with maximum element p;, and let s = 1 — p;. Merge the last two categories into one, obtaining an
(m — 1)-class distribution p. By the grouping property of Shannon entropy,

H(pi,... Pm—2,Pm—1,Pm) = H(D) + (Pm-1 +pm)Hb(p’”7*1> > H(p).

Pm—1+Pm
By the induction hypothesis,
s=1—-p1 < %H(ﬁ) < %H(pl,...,pm).
Thus the lemma holds for all m. O

For the conditional distribution Pr(y | ¢, t), the lemma implies

pe(q,t) < 2H(y | q,t).

Taking expectation over (g, t),
Perror = Eq t[pe(q,t)] < %H(y | q,1).

By the chain rule,
1@y la.t) =H(y | q,t) — H(y | §,4,1),
which implies
H(ylqt)>H(y |9 q1)
Also,
H(y [ q,t) = H(y) — I(y; g, 1).
Combining these gives

Perror < 2H(y | ¢,t) < 3[H(y) — I(y;9 | ¢,1)].

The theorem is proved. O

B.7 PROOF OF PROPOSITION[3.2]

Proof. Let p; = Pr(§; = y | ti, q) denote the probability that the final answer generated under plan
t; is correct. The analytic reward ranaiytic(¢;) is @ monotonic function of the empirical estimate of p;.
Therefore, the condition ranatytic(t1) > Tanalytic (f2) implies:

p1 = P2 ey

The conditional entropy H (y | ¥, ti, ¢) measures the remaining uncertainty about the true answer
y after observing the predicted answer ¢j; generated under plan ¢;. We decompose this entropy by
conditioning on whether ; is correct:

If the predicted answer g; is correct (i.e., the event §; = y occurs), then the posterior distribution
Pr(y | 9i,ti, q) collapses to a point mass on the value §;, resulting in zero conditional entropy:

H(y |9 =y, ti,q) = 0.

Let C; = E[H(y | 9i,ti,q) | 9i # y] denote the expected conditional entropy when the predicted
answer is wrong. Substituting into the equation above yields:

H(y | §itivq) =pi- 0+ (1 —p;) - C; = (1 = p;)Ci. )
We now compare the entropies for the two plans:

H(y | j1,t1,9) = (1 =p1)C1,  H(y | 92,t2,q9) = (1 — p2)Co.
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From (1), we have 1 — p; <1 — po.

We now introduce the core assumption: a plan with a higher analytic reward provides more informative
guidance, leading to a posterior distribution over y that is more concentrated even when the predicted
answer is incorrect. Formally, this means:

Cy < Cs. 3)

This is reasonable because a high-quality plan constrains the reasoning path more effectively, reducing
the set of plausible wrong answers and resulting in lower uncertainty upon observing an incorrect
prediction.

Since (1 — p1) < (1 — p2) and C; < Cy, and all terms are non-negative, it follows that:
(I —=p1)C < (1 =p2)Co.

Therefore, by (2):
H(y ‘ glatlaq) S H(y | Q27t27Q),

which completes the proof. O

B.8 EXPERIMENTAL PARAMETER SETUP

We conducted all experiments on eight H200 GPUs. In the supervised fine-tuning (SFT) stage, we
trained Qwen2.5-7B-Instruct for 3 epochs. In the reinforcement learning (RL) stage, we adopted
the GRPO algorithm, with a global batch size of 128 and a micro batch size of 4 per GPU. During
rollout, the model generated 12 samples per step, including 4 analytic plans, each corresponding
to 3 Chain-of-Thought (CoT) reasoning trajectories. For generation, we set temperature = 1.0 and
top-p = 1.0, while for validation we used temperature = 0.6, top-p = 0.95. The number of RL training
steps was configured as follows: LLaMA3.2-3B and Qwen2.5-7B-Instruct were trained for 350
steps, Qwen3-8B for 150 steps, and Qwen3-14B for 50 steps, with other hyperparameters kept the
same across models. In addition, the learning rate (1r) was set to 1.0 x 107%, the weight decay
(weight_decay) was 1.0 X 1072, the optimizer was adamw (choices: adamw or adamw_bf16),
the learning-rate warmup ratio (1r_warmup_ratio) was 0. For all Qwen3-8b, max token is 4.5k
and for Qwen2.5-7B-Instrct , the max token is 3.5K.
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Table 8: Pairwise significance tests between PTA-GRPO and each baseline (Instruct, GRPO, DAPO). Each row
shows: improvement A (percentage points), p-value, and significance level. *, *x, and * * * denote p < 0.05,
p < 0.01, and p < 0.001; "ns" = not significant.

Model | Baseline | Task | Aty | plsig
Instruct | MATHS00 | +23.35 | 0.0000%**
Instruct | AIME24 | +17.82 | 0.0000%**
Instruct | AIME25 | +21.88 | 0.0000%**
Instruct | AMC23 | +18.21 | 0.0000%**
GRPO | MATHS00 | +2.82 | 0.0000%**
GRPO | AIME24 | +327 | 0.0000%**
Qwen2.5-7B | GRPO | AIME25 | +2.88 | 0.00007**
GRPO | AMC23 +6.20 | 0.0000%**
DAPO | MATHS00 | +1.59 | 0.0003***
DAPO | AIME24 | +0.68 | 0.2454ns
DAPO | AIME25 | +5.08 | 0.0000%**
DAPO | AMC23 +3.03 | 0.0000%**
Instruct MATHS500 | +26.36 | 0.0000***
Instruct | AIME24 | +17.38 | 0.0000%**
Instruct | AIME25 | +12.06 | 0.0000%**
Instruct | AMC23 | +21.29 | 0.0000%**
GRPO | MATHS00 | +5.44 | 0.0000***
GRPO | AIME24 | +4.05 | 0.0000%**
LLaMA3.2-3B | cppo | AIME2S | 4039 | 046517
GRPO | AMC23 +2.34 | 0.00017*
DAPO | MATHS00 | +6.12 | 0.0000***
DAPO | AIME24 | +1.86 | 0.0006***
DAPO | AIME25 | 229 | 0.0000%**
DAPO | AMC23 +1.81 | 0.0028**
Instruct | MATHS00 | +3.19 | 0.0000%**
Instruct | AIME24 | +3.03 | 0.0000%**
Instruct | AIME25 | +3.52 | 0.0000%**
Instruct | AMC23 +2.00 | 0.0023**
GRPO | MATHS500 | +0.42 | 034777
GRPO | AIME24 | +1.90 | 0.0024**
Qwen3-8B GRPO | AIME25 | -0.10 | 0.8679"
GRPO | AMC23 +0.05 | 0.93077¢
DAPO | MATHS500 | +1.79 | 0.0001***
DAPO | AIME24 | +2.93 | 0.0000%**
DAPO | AIME25 | +4.88 | 0.0000%**
DAPO | AMC23 +146 | 0.0162*
Instruct | MATHS00 | +1.58 | 0.0003***
Instruct | AIME24 | +2.73 | 0.0000%**
Instruct | AIME25 | +3.08 | 0.0000%**
Instruct AMC23 +1.90 0.0034**
GRPO | MATHS500 | +1.40 | 0.0000%**
GRPO | AIME24 | +1.90 | 0.0000%**
Qwen3-14B | -ppo | AIME2S | +1.07 | 0.0003°
GRPO | AMC23 +0.68 | 0.0266
DAPO | MATHS00 | +1.22 | 0.0000***
DAPO | AIME24 | +1.12 | 0.0002***
DAPO | AIME25 | +059 | 0.0656"
DAPO | AMC23 +0.29 | 0.32037s
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