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Abstract

Evaluating Large Language Models (LLMs)001
free-form generated responses remains a chal-002
lenge due to their diverse and open-ended na-003
ture. Traditional automatic metrics fail to004
capture semantic equivalence or handle the005
variability of open-ended responses, while hu-006
man evaluation, though reliable, is resource-007
intensive. Leveraging LLMs as evaluators008
offers a promising alternative due to their009
strong language understanding and instruction-010
following capabilities. Taking advantage of011
these capabilities, we propose the Dynamic Ar-012
bitration Framework for Evaluation (DAFE),013
which employs two primary LLM-as-judges014
and engages a third arbitrator only in cases of015
disagreement. This selective arbitration mech-016
anism prioritizes evaluation reliability while017
reducing unnecessary computational demands.018
DAFE combines task-specific reference an-019
swers with dynamic arbitration to enhance judg-020
ment accuracy, resulting in significant improve-021
ments in evaluation metrics such as Macro F1022
and Cohen’s Kappa. Through experiments, in-023
cluding a comprehensive human evaluation, we024
demonstrate DAFE’s ability to provide con-025
sistent, scalable, and resource-efficient assess-026
ments, establishing it as a robust framework for027
evaluating free-form model outputs.028

1 Introduction029

The rapid advancements in Large Language Mod-030

els (LLMs) have propelled the field of natural lan-031

guage processing forward, yet their evaluation re-032

mains a challenge (Laskar et al., 2024). In par-033

ticular, free-form model responses are difficult to034

evaluate because their correctness depends on un-035

derstanding the broader context and underlying036

meaning (Si et al., 2021). Many benchmarks, such037

as MMLU (Hendrycks et al., 2021), often simplify038

evaluation by focusing on structured formats (e.g.,039

multiple-choice questions) (Chen et al., 2024). Al-040

though effective for certain tasks, such methods041

rely on log probabilities assigned to predefined042

options, where the model selects the most likely 043

answer, limiting the range of capabilities that can 044

be assessed (Thakur et al., 2024). This structured 045

approach fails to accommodate the complexity of 046

free-form responses, where multiple valid answers 047

exist (Chang et al., 2024). The rigid, predefined 048

options in such evaluations not only limit the scope 049

of assessment but also overlook the diversity of 050

potential correct responses in free-form tasks (Li 051

et al., 2023; Zhang et al., 2024). 052

Automatic metrics including lexical matching, n- 053

gram, and neural-based have been widely adopted 054

as scalable solutions for the evaluation of free-form 055

model outputs. Lexical matching methods such as 056

Exact Match (EM) evaluate model predictions by 057

assessing strict lexical alignment between gener- 058

ated outputs and reference answers. However, EM 059

fails to account for semantically equivalent varia- 060

tions in phrasing. For instance, despite their equiv- 061

alence, EM treats “nuclear weapon” and “atomic 062

bomb” as incorrect. Similarly, n-gram-based met- 063

rics (Papineni et al., 2002; Lin, 2004) primarily 064

assess surface-level similarity and often fail to cap- 065

ture semantic equivalence, particularly when lex- 066

ical or structural diversity conveys the same un- 067

derlying meaning (Zhu et al., 2023; Chen et al., 068

2021; Zhang et al., 2020). Neural-based metrics 069

like BERTScore (Zhang et al., 2020) address such 070

limitations by leveraging contextual embeddings to 071

evaluate semantic similarity. However, BERTScore 072

depends on reference quality (Liu et al., 2024) and 073

struggles with domain adaptation and length varia- 074

tions (Zhu et al., 2023). Furthermore, continuous 075

score provider metrics are difficult to interpret (Xu 076

et al., 2023). The limitations in automatic met- 077

rics become particularly evident when evaluating 078

instruction-tuned chat models (Doostmohammadi 079

et al., 2024), which tend to produce verbose and 080

diverse responses (Saito et al., 2023; Wang et al., 081

2024b). 082

Contrary to automatic metrics, human evalua- 083
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tion provides a more transparent assessment (Chi-084

ang and Lee, 2023). However, despite being the085

“gold standard”, human evaluation is not without its086

limitations. LLMs’ growing complexity and scale087

have made recruiting and coordinating multiple088

human raters increasingly resource-intensive and089

time-consuming (Mañas et al., 2024). Furthermore,090

the reliability of human evaluation is additionally091

challenged by variations in rater expertise and in-092

herent subjectivity that affect reproducibility (Clark093

et al., 2021; Chiang and Lee, 2023).094

Recently, a paradigm shift has emerged where095

LLMs are utilized to judge the candidate model096

generations for given tasks (Zheng et al., 2024).097

This model-based method leverages the instruction-098

following capabilities of LLMs through evaluation099

prompts or, in some cases, fine-tuned versions of100

LLMs that are specifically optimized for evaluation.101

In this new line of work, research primarily focuses102

on pairwise comparison (Zheng et al., 2024; Wang103

et al., 2023; Vu et al., 2024), such as instructing an104

LLM to judge “which assistant response is better”,105

and single-answer scoring (Verga et al., 2024) like106

evaluating summarization task based on predefined107

criteria (e.g., likability, relevance, etc.) (Chiang and108

Lee, 2023; Hu et al., 2024; Liu et al., 2023; Chan109

et al., 2024; Chu et al., 2024).110

Inspired by a recent study on self-correction111

where external feedback helps models identify112

and correct their mistakes (Gou et al., 2024a), we113

propose to guide LLM-as-a-judge with human-114

annotated task-specific reference answers in order115

to explore the potential of LLMs as an alternative116

to lexical matching (e.g., EM), neural-based (e.g.,117

BERTScore), and human evaluation for automatic118

evaluation of free-form model responses. Unlike119

traditional metrics, an LLM judge can leverage its120

language understanding and instruction-following121

capabilities to recognize the correctness of open-122

ended generations.123

We propose the Dynamic Arbitration Frame-124

work for Evaluation (DAFE), which employs LLM125

judges to evaluate free-form model responses. Us-126

ing a single LLM as a judge, while simple, often127

leads to inconsistent evaluations, undermining trust128

in the results. On the other hand, the common129

practice of using large, universally capable models130

such as GPT-4 as evaluators makes the evaluation131

process both slow and costly (Jung et al., 2024; Ad-132

lakha et al., 2024; Verga et al., 2024), further limit-133

ing its broader applicability. Relying on multiple134

judges for every evaluation, though more reliable, 135

exacerbates these computational challenges, mak- 136

ing such approaches impractical at scale. DAFE 137

offers a middle ground between these approaches 138

by utilizing two complementary primary judges to 139

perform the initial assessment. Only when these 140

judges disagree, is a third independent arbitrator 141

engaged to resolve the conflict. This selective ar- 142

bitration ensures evaluation reliability and fairness 143

while reducing computational overhead. Our ex- 144

periments reveal that DAFE achieves significant 145

improvements in metrics such as Macro F1 and 146

Cohen’s kappa. Our key contributions include: a 147

detailed analysis of limitations in conventional met- 148

rics for free-form QA, an evaluation of LLM judges 149

with insights into their strengths and errors, a com- 150

prehensive human evaluation for benchmarking, 151

and the introduction of DAFE—a scalable frame- 152

work that improves reliability while minimizing 153

the need for additional evaluators through selective 154

arbitration. 155

2 Methodology 156

Our methodology employs multiple judge mod- 157

els to evaluate outputs generated by the candidate 158

LLMs. In the case of disagreement among the 159

judges, our method employs an additional LLM 160

as an arbitrator. In the following, we describe our 161

methodology in detail. 162

2.1 Candidate LLMs 163

A candidate LLM Cllm generates output ȳ for the 164

given input x. We first utilized candidate LLMs 165

to obtain outputs for the given free-form question- 166

answering tasks. 167

2.2 LLMs-as-a-Judge 168

A judge Jllm LLM delivers evaluation or verdict 169

V on candidate LLMs Cllm outputs ȳ. The Jllm 170

evaluates output when prompted with x (i.e., x → 171

Allm) and ȳ. We utilized the reference answer r 172

and prompted P the Jllm as: 173

P = {x, ȳ, r} 174

Utilizing P , Jllm performs the evaluation and 175

delivers a decision as V = J(P ). The structure of 176

this V depends on the instructions provided in P . 177

For instance, if a binary V is required, J assesses 178

whether ȳ is aligned with r given the context x and 179

returns True if ȳ is deemed correct, or False if it 180

is not. The evaluation P may vary from zero-shot, 181
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Figure 1: Our proposed Dynamic Arbitration Framework for Evaluation (DAFE). Two primary judges, J1
and J2, first provide verdicts Vi1 and Vi2 for an instance i. If agree, that consensus Vi is the final decision Di. If
disagree, a tiebreaker model Jt independently produces a verdict Vt. The final decision Di is then determined via
majority voting among {Vi1 , Vi2 , Vt}.

where Jllm receives no prior examples, to few-shot,182

which includes several related examples, or a chain183

of thought, encouraging Jllm to reason stepwise184

through the problem.185

2.3 Dynamic Arbitration Framework for186

Evaluation (DAFE)187

In traditional human evaluation settings, when two188

annotators disagree on a judgment, a third expert189

is often called upon to resolve the dispute. Draw-190

ing inspiration from this efficient human arbitra-191

tion practice, we propose the Dynamic Arbitra-192

tion Framework for Evaluation (DAFE). Rather193

than immediately employing a large powerful or194

a closed-source LLMs-as-a-judge, DAFE adopts195

a cost-efficient approach by beginning with two196

complementary open-source models as primary197

judges based on their past performance (Kenton198

et al., 2024). When these judges reach a consen-199

sus, no further evaluation is needed. Only in cases200

of disagreement is the more powerful LLM en-201

gaged as an arbitrator, whose decision then creates202

a majority verdict. This dynamic approach main-203

tains evaluation quality while minimizing reliance204

on expensive models. The method also accounts205

for varying skill levels across different LLMs and206

tasks (Liang et al., 2024; Sun et al., 2024).207

Formally, let Vi1 and Vi2 denote the verdicts208

from the two primary judges for the i-th evalua-209

tion instance. We define the agreement status Ai210

as:211

Ai =

1 if Vi1 = Vi2 ,

0 otherwise.
212

If Ai = 1, the final decision Di is simply Vi,213

the agreed-upon verdict of the primary judges. If214

Ai = 0, a tiebreaker model provides an addi- 215

tional verdict Vt. The final decision Di is then 216

obtained via majority voting among {Vi1 , Vi2 , Vt}. 217

Formally: 218

Di =

Vi if Ai = 1,

majority({Vi1 , Vi2 , Vt}) if Ai = 0.
219

The majority operation selects the verdict that ap- 220

pears at least twice among {Vi1 , Vi2 , Vt}. Since 221

there are three votes, at least two must coincide for 222

a majority. 223

3 Experiments 224

We utilize the following settings to examine the per- 225

formance and reliability of individual LLM judges 226

and DAFE. 227

3.1 Models 228

We select open and closed-source instruct models 229

to serve as both candidates and judges in our exper- 230

iment. These models include Mistral 7B1 (Jiang 231

et al., 2023), Mixtral 8x7B2 (Jiang et al., 2024), 232

Llama-3.1 70B3 (Meta AI, 2024), and GPT-3.5- 233

turbo (Brown et al., 2020). To ensure the repro- 234

ducibility of our experiments, we set the tempera- 235

ture to 0 for all models under study, as the perfor- 236

mance of LLM-based evaluators has been shown 237

to drop when temperature increases (Hada et al., 238

1https://huggingface.co/mistralai/
Mistral-7B-Instruct-v0.3

2https://huggingface.co/mistralai/
Mixtral-8x7B-Instructv0.1

3https://huggingface.co/meta-llama/
Meta-Llama-3.1-70B-Instruct
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2024). For our proposed DAFE method, we uti-239

lized Mistral 7B and Llama 3.1 70B as primary240

judges with GPT-3.5-turbo as the tiebreaker.241

3.2 Datasets242

We focus on free-form question-answering (QA)243

since it has widespread practical applications and244

the critical importance of truthfulness in this do-245

main (Gou et al., 2024a; Evans et al., 2021). In our246

experiment, we utilize four free-form QA datasets:247

AmbigQA (Min et al., 2020), HotpotQA (Yang248

et al., 2018), Natural Questions (Kwiatkowski et al.,249

2019), and TriviaQA (Joshi et al., 2017). See Ap-250

pendix A for details.251

3.3 Prompts252

We designed generalized (i.e., with minimum253

instructions) zero-shot prompts with role-254

playing (Kong et al., 2024) for both candidates255

and judges. Initially, we prompt candidate LLMs256

with the role “You are a helpful assistant.” to elicit257

outputs for the given random samples associated258

with each dataset.259

To evaluate the outputs of candidate LLMs, we260

prompt judge LLMs for binary verdicts (i.e., True261

or False) using P = {x, ȳ, r} and instructed to262

provide a brief explanation for their verdicts (see263

Appendix E for examples). Binary verdicts ex-264

plicitly differentiate between correct and incorrect265

answers, minimize subjective interpretations, and266

simplify the evaluation process, thus facilitating au-267

tomatic evaluation. In addition to three key prompt268

components (i.e., x, ȳ, r), we define the role of the269

judge LLMs as “You are a helpful assistant acting270

as an impartial judge.” to mitigate biases in judg-271

ments (Zheng et al., 2024). We chose not to use272

few-shot or chain-of-thought prompting strategies273

to keep the solution robust to a variety of tasks. Pre-274

vious studies have also shown that in-context exam-275

ples do not significantly improve the performance276

of model-based evaluators (Hada et al., 2024; Min277

et al., 2022).278

3.4 Baselines279

We establish the following baselines.280

3.4.1 Exact Math281

For our selected datasets and also free-form QA282

tasks, Exact Match (EM) serves as a standard lex-283

ical matching metric to evaluate candidate LLM284

performance (Izacard and Grave, 2021; Lewis et al.,285

2020; Gou et al., 2024b). EM classifies an an- 286

swer as correct if the generated response precisely 287

matches one of the golden answers in the reference 288

set. Due to the verbose nature of LLM-generated re- 289

sponses, we adapt EM to classify an answer as cor- 290

rect if any golden answer ri ∈ R appears within the 291

generated response ȳ (i.e., ri ⊆ ȳ), rather than re- 292

quiring complete strict string equality (i.e., ȳ = ri). 293

3.4.2 BERTScore 294

BERTScore (Zhang et al., 2020) measures simi- 295

larity by comparing contextualized word embed- 296

dings derived from a pre-trained BERT model. This 297

enables the evaluation to focus on semantic cor- 298

rectness rather than exact lexical matches. As 299

BERTScore is based on continuous values between 300

-1 and 1, we set a threshold of τ = 0.5 to convert 301

continuous similarity scores into binary 0 and 1. 302

The purpose of this conversion is to allow direct 303

comparison with other evaluation methods. For 304

our implementation, we use the microsoft/deberta- 305

xlarge-mnli4 model (He et al., 2021). 306

3.4.3 Human Evaluation 307

Human evaluation remains the gold standard for as- 308

sessing the outputs of candidate LLMs. We recruit 309

three graduate students from our academic network, 310

all specialized in natural language processing, to 311

serve as annotators. We provide the input given 312

to the candidate LLMs, reference answers, and 313

candidate LLMs responses. This format, while 314

similar, is distinct from the judge LLMs prompts 315

which additionally require formatted decisions. We 316

anonymize the origin of model responses to reduce 317

potential bias linked to model familiarity or rep- 318

utation. The annotators were asked to score the 319

candidate LLMs outputs on a binary scale: ‘1’ for 320

‘True’ and ‘0’ for ‘False’ based on alignment with 321

the reference answer and contextual relevance. 322

We calculate Fleiss’ Kappa (κ) (Fleiss and Co- 323

hen, 1973) to assess inter-rater reliability among 324

human annotators. Table 1 shows the perfect agree- 325

ment among annotators across all models and tasks 326

(see Table 4 in Appendix B for detail). 327

4 Results 328

Figure 2 illustrates the raw performance of candi- 329

date LLMs obtained through various evaluators. 330

Unlike lexical matching and neural-based met- 331

rics, each LLM-as-a-judge shows overall perfor- 332

4https://huggingface.co/microsoft/
deberta-xlarge-mnli
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LLMs AmbigQA HotpotQA NQ-Open TriviaQA

Llama 0.945 0.973 0.985 0.935
GPT 0.989 0.982 0.990 0.948
Mixtral 0.981 0.996 0.977 0.936
Mistral 0.978 0.981 0.978 0.975

Table 1: Human annotators Fleiss’ Kappa scores across
models and given tasks

Figure 2: Raw accuracy of candidate LLMs across free-
form QA tasks using Exact Match (EM), BERTScore
(BS), and model-based evaluation. The Human Majority
(HM) serves as the ground truth for all evaluators. See
Table 5 in Appendix C for complete results.

mance close to the human majority. The proposed333

DAFE method consistently achieves comparable or334

slightly better alignment with the human majority335

corresponding to individual LLM judges. Con-336

ventional metrics such as EM severely underesti-337

mate the candidate LLMs’ performance. Contrarily,338

BERTScore tends to overestimate the performance339

except in some cases such as when evaluating can-340

didate Llama-3.1-70B on AmbigQA and NQ-Open341

(see Table 5 in Appendix C for additional results).342

4.1 Alignment with human evaluation343

We calculate Cohen’s kappa (McHugh, 2012) to344

find the agreement between each evaluator and345

the human majority (i.e., ground truth) to obtain346

instance-level comparison. Overall, DAFE is al-347

most perfectly aligned with human judgment than348

other evaluators (see Table 2). Similarly, individual349

LLM judges show substantial to a nearly perfect350

agreement with human judgments than EM and351

BERTScore.352

Due to the high class imbalance in TriviaQA,353

kappa scores can be misleadingly low despite high354

raw agreement - a known limitation called the355

“kappa paradox” (Cicchetti and Feinstein, 1990).356

Therefore, we treat the evaluation as a binary clas-357

Table 2: Cohen’s Kappa scores displaying the agree-
ment levels of various evaluators with human judgments
across candidate models and tasks. Higher scores indi-
cate better agreement with human judgments.

Evaluators

LLMs Tasks EM BS Llama GPT Mixtral Mistral DAFE

Llama

AmbigQA 0.518 0.283 0.888 0.844 0.824 0.858 0.911
HotpotQA 0.577 0.498 0.877 0.899 0.820 0.832 0.953
NQ-Open 0.381 0.437 0.833 0.793 0.816 0.738 0.927
TriviaQA 0.281 0.564 0.547 0.439 0.396 0.299 0.684

GPT

AmbigQA 0.561 0.252 0.944 0.897 0.861 0.853 0.967
HotpotQA 0.604 0.300 0.953 0.973 0.873 0.933 0.987
NQ-Open 0.453 0.218 0.884 0.824 0.824 0.829 0.956
TriviaQA 0.335 0.364 0.650 0.401 0.580 0.467 0.775

Mixtral

AmbigQA 0.546 0.337 0.896 0.781 0.909 0.887 0.951
HotpotQA 0.546 0.349 0.940 0.933 0.859 0.940 0.973
NQ-Open 0.371 0.301 0.879 0.728 0.899 0.815 0.913
TriviaQA 0.317 0.390 0.625 0.605 0.678 0.436 0.764

Mistral

AmbigQA 0.599 0.254 0.893 0.893 0.893 0.860 0.953
HotpotQA 0.605 0.383 0.937 0.902 0.895 0.937 0.958
NQ-Open 0.484 0.291 0.851 0.838 0.878 0.840 0.953
TriviaQA 0.467 0.239 0.758 0.725 0.645 0.470 0.854

sification task, where we consider each evaluator’s 358

predictions against the human majority and report 359

Macro-F1 scores which give equal weight to both 360

classes regardless of their frequency in the selected 361

random samples. 362

As evidenced by consistently high Macro F1 363

scores in Table 3, DAFE maintains a strong align- 364

ment with human judgment. This represents a sub- 365

stantial improvement over individual model perfor- 366

mance, where individual judges generally revealed 367

varying levels of agreement with human evaluation. 368

LLM-as-a-judge approach generally works better 369

with larger more powerful models. This is particu- 370

larly evident in Llama-3.1-70B and GPT-3.5-turbo 371

which achieve higher Macro-F1 scores (0.91-0.98) 372

across AmbigQA, HotpotQA, and NQ-Open com- 373

pared to smaller models. This reveals an important 374

scaling law in evaluation capability (Kaplan et al., 375

2020; Zheng et al., 2024; OpenAI et al., 2024). 376

However, we also found that the most advanced 377

models are not always guaranteed to be the best 378

evaluators. We observed slightly comparable per- 379

formance through small open-source Mistral-7B. 380

For instance, when evaluating candidate Mixtral- 381

8x7B on AmbigQA, Mistral-7B as-a-judge outper- 382

formed (0.944) judge GPT-3.5-turbo (0.891). Re- 383

gardless, we observe relatively lower Macro-F1 384

scores for all LLM judges in TriviaQA. 385

Interestingly, despite EM’s deviation from the 386

human majority (see Figure 2 and Table 5), lex- 387

ical matching EM typically accomplishes better 388

alignment with human evaluation on instance-level 389

in Table 3 than neural-based BERTScore. EM’s 390

strict and conservative nature leads to lower over- 391
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Table 3: Macro-F1 scores of various evaluators ap-
plied to different candidate LLMs and associated tasks.
Higher scores indicate better performance. DAFE con-
sistently achieves the highest Macro-F1 across all evalu-
ated settings.

Evaluators

LLMs Tasks EM BS Llama GPT Mixtral Mistral DAFE

Llama

AmbigQA 0.744 0.641 0.944 0.922 0.912 0.929 0.955
HotpotQA 0.778 0.745 0.939 0.949 0.910 0.916 0.976
NQ-Open 0.653 0.718 0.916 0.896 0.907 0.869 0.964
TriviaQA 0.612 0.782 0.772 0.717 0.695 0.640 0.842

GPT

AmbigQA 0.792 0.622 0.972 0.949 0.930 0.927 0.984
HotpotQA 0.794 0.623 0.977 0.987 0.936 0.966 0.993
NQ-Open 0.703 0.606 0.942 0.911 0.911 0.914 0.978
TriviaQA 0.646 0.681 0.824 0.700 0.789 0.730 0.887

Mixtral

AmbigQA 0.760 0.666 0.948 0.891 0.955 0.944 0.975
HotpotQA 0.761 0.657 0.970 0.966 0.930 0.970 0.987
NQ-Open 0.650 0.649 0.939 0.863 0.950 0.908 0.956
TriviaQA 0.625 0.695 0.812 0.803 0.838 0.716 0.882

Mistral

AmbigQA 0.792 0.622 0.947 0.947 0.947 0.930 0.977
HotpotQA 0.796 0.673 0.969 0.951 0.947 0.969 0.979
NQ-Open 0.726 0.639 0.925 0.919 0.939 0.920 0.976
TriviaQA 0.718 0.608 0.879 0.863 0.822 0.735 0.927

all performance, but its high-precision character-392

istics ensure that when it identifies a match, it393

strongly aligns with human judgment. In contrast,394

BERTScore takes a more lenient approach to se-395

mantic matching. Although this leniency produces396

higher raw scores, it introduces more false posi-397

tives, consequently reducing instance-level agree-398

ment with human judgments. This pattern emerges399

clearly in many models and tasks such as when eval-400

uating Llama-3.1-70B on AmbigQA, EM shows401

a raw score of 42.3% but achieves a Macro-F1 of402

0.744, while BERTScore indicates a higher raw403

score of 63.0% but a lower Macro-F1 of 0.641.404

4.2 Analysis405

In our experiments, candidate LLMs generated406

4,800 outputs for the given tasks, with each eval-407

uator producing 4,800 corresponding evaluations.408

We randomly sampled 100 error cases (50 false409

positives and 50 false negatives) from each evalu-410

ator to understand their behavior. Given EM had411

only 10 false positives, we included all of them in412

our analysis. Due to space constraints, we moved413

the detailed analysis of EM and BERTScore to414

Appendix C and focus exclusively on the LLM-as-415

a-judge method here.416

LLM-based evaluators demonstrate strong abili-417

ties in recognizing semantic variations while main-418

taining the core meaning, especially when assess-419

ing responses that use different terminology or420

structural approaches to convey the same informa-421

tion. For instance, in the evaluation examples, eval-422

uators correctly identified that “Salma Hayek” and423

“Salma Hayek Pinault” refer to the same individual,424
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Figure 3: Heatmap illustrating the performance of LLM
judges on HotpotQA. Each cell value represents per-
centages (%). Rows represent predicted outcomes (P:
Positive, N: Negative), while columns represent actual
outcomes. See Appendix C for full results.

acknowledging the semantic equivalence despite 425

differences in phrasing. Similarly, when assess- 426

ing responses that use different terms for the same 427

entity, such as recognizing “Nick Fury, Agent of 428

S.H.I.E.L.D.” as part of the broader “Marvel” uni- 429

verse, the evaluators effectively maintain the core 430

meaning and contextual relevance. Their expla- 431

nations show systematic assessment patterns that 432

combine multiple evaluation criteria including fac- 433

tual accuracy, logical coherence, and contextual 434

relevance. Furthermore, LLM-as-judges excel at 435

identifying essential information within responses. 436

Answers that include correct and supplementary 437

details, LLM judges focus on the key components 438

necessary for evaluation and disregard non-critical 439

elements to ensure reliable assessments. 440

LLMs are prone to hallucination in justifica- 441

tion (Zhang et al., 2023), where they fabricate 442

reasoning to support their evaluations, produce 443

detailed but incorrect explanations, or reference 444

non-existent criteria or standards. In LLM judges, 445

false positives and negatives (e.g., see Figure 3) 446

often result from overlooking critical distinctions 447

between candidate LLM outputs and failing to ac- 448

count for the specificity required by the reference 449

answer. This pattern is particularly noticeable in 450

Mistral 7B, where the model disregards the ground 451

truth and provides evaluations influenced by un- 452

known factors. For example, when evaluating can- 453

didate GPT-3.5’s response “The foreign minister of 454

6



Germany who signed the Treaty of Versailles was455

Hermann Müller.” which is correct according to456

the reference answer “Hermann Müller” and hu-457

man evaluation, Mistral 7B as-a-judge incorrectly458

marked this response as false and fabricated rea-459

soning “Hermann Müller was the Chancellor of460

Germany, not the Foreign Minister. The Foreign461

Minister of Germany who signed the Treaty of Ver-462

sailles was Gustav Stresemann.” in support of its463

decision. The same problem can also be attributed464

to inconsistent evaluations. Because when Mistral465

7B acted as a candidate for the same question, its466

response to the question is completely different:467

“The Treaty of Versailles was signed by Matthias468

Erzberger, a German politician who served as the469

President of the German National Assembly at the470

time”. There are also alternative interpretations of471

this issue, such as ambiguity in the question, but472

we leave a deeper exploration of these aspects to473

future work.474

We observe a different pattern in some judges,475

specifically, GPT-3.5 and Mixtral 8x7B which fo-476

cuses more on specificity. This approach shifts477

the evaluation towards false negatives by missing478

semantically similar but structurally different an-479

swers. We found many cases when such evaluators480

failed to account for valid variations in phrasing or481

granularity, focusing instead on rigid adherence to482

the reference answer. Compounding these issues483

are reasoning errors within the evaluators’ own ex-484

planations, which often contain fabrications, circu-485

lar logic, or overconfident assertions. By insisting486

on correctness derived strictly from the reference,487

evaluators disregard valid alternative perspectives488

and can even mischaracterize or invert the facts in489

their attempts to justify their decisions. This dy-490

namic leaves little room for nuance or ambiguity,491

and it pushes the evaluation process away from492

fair, context-sensitive assessment toward rigid, and493

sometimes inaccurate, verdicts.494

Verbosity (Ye et al., 2024) emerges as a sub-495

tle source of bias, where more elaborate answers496

are sometimes overrated simply due to their detail497

and fluency, while concise yet correct responses498

are undervalued. This misplaced emphasis leads499

to irrelevant judgment criteria, such as praising500

the presence of irrelevant information or penaliz-501

ing perfectly valid but succinct answers. We also502

found that LLM-based judges encounter challenges503

in multiple reference answers and more open-ended504

questions. This confusion is especially pronounced505

Figure 4: Disagreement rates between the primary
judges (Llama-3.1 70B and Mistral 7B) across various
candidate LLMs (Llama, GPT, Mixtral, and Mistral)
and tasks.

in the TriviaQA where the diversity and flexibil- 506

ity of valid responses present challenges for the 507

judges’ ability to consistently recognize and evalu- 508

ate a range of correct answers. 509

In addition to the stated issues, we found a few 510

temporal limitations in LLM-based evaluators. Al- 511

though most of our datasets are older and the eval- 512

uator models are relatively up-to-date, we still en- 513

counter a small number of instances where refer- 514

ences to recent events, new terminology, or shifting 515

contexts are misunderstood. This temporal bias 516

underscores the need for evaluation mechanisms 517

that can adapt to or acknowledge evolving informa- 518

tion landscapes, ensuring fair and context-sensitive 519

assessments over time. 520

4.3 Disagreements between primary judges 521

Figure 4 shows that disagreements between our 522

primary judges, Llama-3.1 70B and Mistral 7B, 523

mainly occur in the NQ-Open and TriviaQA, with 524

disagreement rates reaching 18.0% and 20.3%, re- 525

spectively. From the judges’ explanations, we in- 526

terpret that these elevated rates are likely due to the 527

judges’ focus on specific reference answers among 528

many possible options and the free-form nature of 529

responses. 530

4.4 Impact of arbitration 531

Our proposed arbitration approach significantly en- 532

hanced evaluation performance by resolving dis- 533

putes through an independent judge, GPT-3.5-turbo 534

(see Figure 5 and 7). Notably, in the TriviaQA task, 535

Macro F1 scores advanced from 77.2% to 84.2%, 536

and Cohen’s Kappa increased from 0.547 to 0.684. 537

These substantial improvements highlight the piv- 538

otal role of the arbitrator in ensuring reliable and 539
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Figure 5: Comparison of Macro F1 scores before and
after arbitration.

consistent evaluation outcomes, especially in com-540

plex and ambiguous tasks where primary judges541

are more likely to disagree. By leveraging GPT-542

3.5-turbo exclusively for contested cases, DAFE543

effectively maintains high evaluation standards and544

fosters better accuracy and fairness in the evalua-545

tion process (see Appendix C for more results).546

5 Related work547

Evaluation of natural language generation has tra-548

ditionally relied on metrics such as EM which549

evaluates the exact lexical match between gener-550

ated outputs and reference answers. Despite its551

simplicity and efficiency, EM overlooks semanti-552

cally equivalent variations, often penalizing accu-553

rate responses that use different phrasing (Wang554

et al., 2024a; Kamalloo et al., 2023). Other com-555

monly used metrics including BLEU (Papineni556

et al., 2002) and ROUGE (Lin, 2004) primarily557

focus on n-gram overlap with human written ref-558

erence texts. Despite their widespread use, these559

metrics have significant limitations in capturing se-560

mantic subtleties and contextual relevance (Zhang561

et al., 2020). To address the limitations of con-562

ventional metrics, various model-based methods563

such as BERTScore (Zhang et al., 2020) offer se-564

mantically informed evaluation. However, even565

BERTScore and similar embedding-based methods566

struggle to effectively evaluate open-ended genera-567

tion (Zheng et al., 2024; Sun et al., 2022).568

Recent advances in LLMs have unlocked new op-569

portunities for automatic and context-aware evalua-570

tion (Li et al., 2024b; Chiang and Lee, 2023; Zheng571

et al., 2024). A key strength of LLM-based eval-572

uators lies in their ability to operate in reference-573

free settings, where evaluation does not rely on574

pre-defined answers but instead leverages subjec-575

tive criteria such as helpfulness, relevance, and576

coherence. This capability makes LLM evaluators 577

particularly well-suited for assessing tasks where 578

multiple valid responses exist or where human-like 579

judgment is required (Li et al., 2024a). For instance, 580

LLMs are frequently used in subjective evaluations 581

such as pairwise comparison (“Which response is 582

better?”) or single-response scoring (“How good 583

is this response based on criteria X?” (Verga et al., 584

2024; Chan et al., 2024). LLM-based evaluators 585

are specifically effective for tasks like summariza- 586

tion, where subjective criteria are central to evalua- 587

tion (Liu et al., 2023). However, they are less effec- 588

tive for fact-based tasks such as free-form question- 589

answering, where responses are either correct or 590

incorrect and require explicit verification against 591

reference answers. 592

Furthermore, LLM-based evaluators face several 593

challenges, particularly in ensuring consistency and 594

fairness (Ye et al., 2024; Khan et al., 2024). In 595

reference-free settings, the absence of a definitive 596

ground truth increases the risk of bias in evalu- 597

ations (Ye et al., 2024; Kim et al., 2024; Huang 598

et al., 2024a). Common biases include positional 599

bias, where LLMs may favor responses based on 600

their order (Zheng et al., 2024; Khan et al., 2024), 601

verbosity bias, which favors longer or more de- 602

tailed responses (Huang et al., 2024b), and self- 603

enhancement bias, where models may dispropor- 604

tionately prefer their own outputs (Zheng et al., 605

2024). These biases can distort evaluations and 606

undermine the reliability of the results. 607

6 Conclusion 608

We present DAFE, a framework designed to eval- 609

uate free-form question-answering by leveraging 610

LLMs. Our findings demonstrate that individual 611

LLM judges are reliable alternatives to traditional 612

lexical and neural-based metrics, offering closer 613

alignment with human evaluations. However, re- 614

lying solely on individual judges poses challenges 615

including inherent biases and prompt sensitivity, 616

which can affect evaluation performance. DAFE ad- 617

dresses these challenges through a dynamic arbitra- 618

tion mechanism. This design achieves near-perfect 619

agreement with human evaluations, establishing 620

DAFE as a trustworthy and reliable framework for 621

evaluating open-ended language generation tasks. 622

In the future, we aim to explore DAFE by exclud- 623

ing reference answers and integrating LLM agents 624

with tools-interacting capabilities for evaluation. 625
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7 Limitations626

We acknowledge certain limitations in our study.627

The accuracy of evaluations depends on the qual-628

ity and clarity of reference answers, which serve629

as the basis for determining correctness. Inconsis-630

tent or ambiguous references could affect evalua-631

tion outcomes. Similarly, this study primarily uses632

binary verdicts which might overlook detailed as-633

pects of responses that could be captured through634

more comprehensive evaluation criteria.635

Another limitation is the sensitivity of LLM636

judges to prompt design which can lead to dif-637

ferent results as developing more robust prompts638

or standardizing prompt templates may help im-639

prove judges’ performance. Additionally, we em-640

ployed two primary judges — one small Mistral641

7B and one large Llama 3.1-70 —but did not ex-642

plore configurations involving two smaller models,643

with arbitration only invoked during disagreements.644

This could be an avenue for future work to reduce645

computational costs while maintaining evaluation646

reliability. Furthermore, we did not analyze the647

resource usage and cost-benefit trade-offs of our648

framework, which are important considerations for649

practical deployment. The high computational de-650

mand for running multiple LLMs may also limit the651

practicality of our method in resource-constrained652

settings (Badshah and Sajjad, 2024).653

Furthermore, while we conducted an error anal-654

ysis of LLM judges and automatic metrics, there655

may be error cases that were not identified dur-656

ing our manual review, leaving gaps in under-657

standing the full spectrum of evaluation inaccu-658

racies. Finally, our study focuses exclusively on659

English, and the applicability of our approach to660

other languages, particularly morphologically rich661

or resource-scarce ones, remains unexplored.662
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A Free-form Question-Answering 1141

In our experiment, we include AmbigQA (Min 1142

et al., 2020), HotpotQA (Yang et al., 2018), Natural 1143

Questions (Kwiatkowski et al., 2019), and Trivi- 1144

aQA (Joshi et al., 2017). 1145

• TriviaQA: Features approximately 650K 1146

trivia questions, with evidence sourced from 1147

Wikipedia and web searches. These questions 1148

often require reasoning across multiple docu- 1149

ments for complex answer synthesis. 1150

• HotpotQA: Contains 113K questions based 1151

on Wikipedia. It is designed to test multi- 1152

hop reasoning, requiring connections across 1153

multiple paragraphs, and includes annotated 1154

supporting facts for evaluation. 1155

• Natural Questions (NQ): Consists of real 1156

user queries from Google Search, paired with 1157

Wikipedia articles. The dataset includes 307K 1158

training examples annotated with both long 1159

(paragraph) and short (entity-level) answers. 1160

• AmbigQA: Focuses on 14K ambiguous ques- 1161

tions derived from NQ, requiring systems to 1162

identify multiple valid interpretations and gen- 1163

erate disambiguated questions alongside cor- 1164

responding answers. 1165

We utilize the validation splits across multiple 1166

datasets: the standard validation split for Am- 1167

bigQA and Natural Questions, the “distractor” sub- 1168

set’s validation split for HotpotQA, and the “unfil- 1169

tered.nocontext” subset’s validation split for Triv- 1170

iaQA. We randomly sampled 300 examples from 1171

each dataset using Seed 42. 1172

B Human evaluation 1173

This section provides detailed guidelines for human 1174

annotators responsible for evaluating the outputs of 1175

candidate LLMs. The goal is to ensure consistency 1176
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and objectivity across all evaluations. These guide-1177

lines provide clear instructions for assessing each1178

model’s response based on its alignment with the1179

reference answer and contextual relevance.1180

B.1 Guidelines1181

Dear Evaluator,1182

Thank you for your valuable contribution to this1183

evaluation process. These guidelines outline the1184

process for evaluating Large Language Model1185

(LLM) outputs for the given tasks. As annotators,1186

you will receive three components for each eval-1187

uation instance: the input question, reference an-1188

swer(s), and the model’s response. Your task is1189

to evaluate the responses independently and score1190

them on a binary scale: ‘1’ for ‘True’ (correct) and1191

‘0’ for ‘False’ (incorrect).1192

A response warrants a score of ‘1’ when it demon-1193

strates semantic equivalence with the reference an-1194

swer, even if expressed through alternative phrasing1195

or structure. This includes acceptable variations1196

such as synonym usage and structural variations.1197

Additional contextual information is acceptable as1198

long as it doesn’t introduce errors.1199

Responses receive a score of ‘0’ when they con-1200

tain factual errors, miss crucial elements from the1201

reference answer, or demonstrate contextual mis-1202

alignment. Partial answers that omit essential in-1203

formation should be marked incorrect, regardless1204

of the accuracy of included content. When multi-1205

ple reference answers are provided, a response is1206

correct if it fully aligns with at least one reference.1207

You are encouraged to use internet resources when1208

needed to verify specific facts, terminology, or po-1209

tential synonyms that may affect your evaluation1210

decision. However, the reference answer should1211

remain the primary basis for evaluation. Focus on1212

whether the model’s response conveys the same1213

core information as the reference answer. To main-1214

tain reliability, document any challenging cases1215

requiring further discussion with other annotators.1216

B.2 Inter human annotator agreement1217

We calculate Fleiss’ Kappa (κ) to assess inter-rater1218

reliability among human annotators. The results1219

demonstrate exceptionally high reliability, with1220

Fleiss’ Kappa scores consistently above 0.93 and1221

perfect agreement rates exceeding 96%. The high-1222

est agreement is observed in GPT-3.5 evaluations1223

on NQ-Open (κ = 0.990, 99.3% perfect agreement)1224

and Mixtral-8x7B on HotpotQA (κ = 0.996, 99.7%1225

perfect agreement). Even for traditionally challeng- 1226

ing tasks like TriviaQA, annotators maintain strong 1227

consensus with κ values between 0.935-0.975 and 1228

perfect agreement rates of 98.3-99.0%, indicating 1229

robust and reliable human evaluation across all ex- 1230

perimental conditions. 1231

LLMs AmbigQA HotpotQA NQ-Open TriviaQA

Llama 96.3% 98.0% 99.0% 99.0%
GPT 99.3% 98.7% 99.3% 99.0%
Mixtral 98.7% 99.7% 98.3% 98.3%
Mistral 98.3% 98.7% 98.3% 99.0%

Table 4: Human annotators percent agreement scores
across candidate models and tasks.

C Additional results 1232

This section provides further results and analysis 1233

of conventional metrics and LLM-based evalua- 1234

tors. Table 5 illustrates the overall performance of 1235

candidate LLMs obtained through various evalu- 1236

ators. Unlike lexical matching and neural-based 1237

metrics, each LLM-as-a-judge indicates overall per- 1238

formance close to the human majority. Automatic 1239

metrics like EM severely underestimate the can- 1240

didate LLMs’ performance. On the other hand, 1241

BERTScore tends to overestimate the performance. 1242

1243

C.1 Impact of arbitration on dispute 1244

resolution 1245

Figure 6 illustrates the impact of arbitration on 1246

resolving disagreements between primary judges. 1247

Arbitration, facilitated by GPT-3.5 as the tiebreaker, 1248

consistently improves performance across all tasks, 1249

particularly on TriviaQA and NQ-Open, where im- 1250

provements of up to 7.0% are observed. For tasks 1251

like AmbigQA and HotpotQA, where initial perfor- 1252

mance was already high, arbitration yields smaller 1253

but still notable gains. This highlights the criti- 1254

cal role of arbitration in enhancing agreement and 1255

achieving closer alignment with ground truth, espe- 1256

cially in cases of significant disagreement among 1257

primary judges. 1258

We observed substantial enhancements in Co- 1259

hen’s Kappa scores across several tasks. For in- 1260

stance, in the AmbigQA Cohen’s Kappa increased 1261

from 0.881 to 0.911. Similarly, the NQ-Open Co- 1262

hen’s Kappa from 0.833 to 0.927. In the TriviaQA, 1263

the scores increased from 0.547 to 0.684. These im- 1264

provements demonstrate that the arbitration mecha- 1265

nism effectively enhances the reliability and consis- 1266
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LLMs Tasks Evaluators

EM BS HM Llama-3.1-70B GPT-3.5 Mixtral-8x7B Mistral-7B DAFE

Llama-3.1-70B

AmbigQA 42.3 63.0 67.0 65.3 64.7 63.0 66.0 64.7
HotpotQA 34.3 67.7 56.3 58.3 54.0 50.7 52.7 55.3
NQ-Open 31.7 61.7 66.3 62.7 60.0 59.0 66.7 63.0
TriviaQA 74.3 94.0 94.7 90.3 90.0 88.7 84.7 93.0

GPT-3.5

AmbigQA 49.7 78.0 71.7 70.0 68.0 65.7 71.0 71.0
HotpotQA 33.7 80.0 54.0 53.0 52.7 51.7 54.0 53.3
NQ-Open 36.3 74.0 65.3 62.7 59.0 59.0 67.0 63.3
TriviaQA 74.3 95.3 93.0 89.3 90.7 89.7 86.3 92.7

Mixtral-8x7B

AmbigQA 37.7 70.3 61.7 57.3 62.0 59.3 61.7 60.7
HotpotQA 25.0 69.7 47.0 45.3 45.7 44.7 46.0 45.7
NQ-Open 23.7 63.7 56.7 52.7 47.7 52.3 59.7 52.3
TriviaQA 64.7 91.3 90.7 86.3 89.7 86.0 85.3 90.7

Mistral-7B

AmbigQA 31.0 61.7 49.7 46.3 47.7 46.3 53.3 48.7
HotpotQA 23.7 64.7 40.0 39.0 38.0 37.0 39.0 38.0
NQ-Open 22.7 60.0 46.0 40.0 43.3 41.3 50.0 43.7
TriviaQA 62.0 94.3 83.7 81.3 81.0 79.7 85.0 83.7

Table 5: Raw performance of candidate LLMs across free-form QA tasks evaluated through various methods. HM
represents Human Majority and BS denotes BERTScore.

Figure 6: Impact of arbitration on disagreements be-
tween primary judges. Note that we used Llama-3.1-
70B and Mistra 7B as primary judges. GPT-3.5-turbo
is only utilized when disagreements are found. The
models given in the figure are candidate LLMs which
generate outputs for the given tasks and are then evalu-
ated through DAFE.

tency of evaluations, particularly in complex and1267

ambiguous tasks where primary judges are more1268

likely to disagree.1269

C.2 Analysis of automatic metrics1270

Figures 8, 9, 10, and 11 illustrate the fundamental1271

trade-offs in automatic metrics. In TriviaQA, where1272

multiple normalized reference answers exist, EM1273

achieves impressive true positives (61.7-74.3%)1274

compared to HotpotQA (23.0-34.3%) which con-1275

tains single reference answers. EM’s near-zero1276

false positives across tasks (0-0.7%) stem from1277

its strict string matching – it only flags matches1278

when answers are identical to references. Our er-1279

Figure 7: Comparison of Cohen’s kappa scores before
and after arbitration (GPT-3.5-turbo as arbitrator). The
performance is illustrated across candidate LLMs and
tasks.

ror analysis found three primary causes of such 1280

rare false positives including preprocessing errors, 1281

where character normalization removes crucial dis- 1282

tinctions, and reference ambiguities, where incom- 1283

plete or ambiguous references lead to incorrect 1284

matches. Additionally, a semantic mismatch oc- 1285

curs when the EM incorrectly labels a prediction as 1286

true by matching text without considering its con- 1287

text. For instance, despite their different contextual 1288

meanings, EM wrongly marks a match between a 1289

model prediction of “1944” (describing the start of 1290

a war) and a reference answer containing “1944” 1291

(representing the end of the war). 1292

EM string-matching guarantees high precision 1293
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and makes EM particularly effective when exact1294

wording is crucial, such as mathematical problems.1295

However, its rigid criteria also result in substantial1296

false negatives (17.0-34.7%). These false negatives1297

primarily occur when the candidate LLM generates1298

semantically correct responses that differ from ref-1299

erences in format or expression. Common cases1300

include synonym usage and paraphrases, structural1301

variations in phrasing (e.g., “School of Medicine1302

at Harvard” vs. “Harvard Medical School”), granu-1303

larity discrepancies where answers differ in levels1304

of detail from references (e.g., answering “British1305

writer” instead of “William Shakespeare”), and par-1306

tial matches that contain valid information but don’t1307

exactly mirror the reference.1308

Unlike EM, BERTScore offers advantages in1309

capturing semantic similarities. In TriviaQA,1310

it gains high true positive rates (81.3-92.0%)1311

with relatively low false positives (2.0-13.0%).1312

BERTScore’s performance varies significantly1313

across tasks and is influenced by its sensitivity to1314

the threshold setting. In HotpotQA, where answers1315

require multi-hop reasoning, true positives reach1316

36.0-50.3%, with an increase in false positives1317

(17.7-29.7%). A similar pattern appears in NQ-1318

Open, with true positives of 43.3-53.0% and false1319

positives of 10.7-21.0%. Its tendency toward false1320

positives indicates that relying solely on embedding1321

similarity often accepts answers that are contextu-1322

ally related but factually incorrect. The false posi-1323

tives emerge through semantic drift (where similar1324

embeddings yield false matches), contextual mis-1325

alignment (where word meanings shift based on1326

context), and threshold instability (where similarity1327

cutoffs fail to distinguish subtle semantic differ-1328

ences). Additionally, false positives emerge due1329

to the verbose responses where additional content1330

artificially increases similarity scores.1331

D LLM-as-a-judge in reference-free1332

settings1333

We investigate the capability of LLM-as-a-judge in1334

reference-free settings. In this setting, we modify1335

the evaluation prompt by excluding the reference1336

answer r and directly prompted the evaluator model1337

as P = {x, ȳ} along with instructions.1338

The performance of LLM-as-a-judge drastically1339

changes in reference-free settings. Without ac-1340

cess to the ground truth references, we observe1341

a stark decline in evaluation capability across all1342

models (see Table 6 and 7 values in blue). This1343

systematic deterioration spans all tasks and model 1344

combinations, though its severity varies by con- 1345

text. HotpotQA, with its demands for complex 1346

reasoning, exemplifies this challenge most clearly. 1347

The substantial gap between reference-based and 1348

reference-free evaluation underscores the crucial 1349

role of reference answers in reliable assessment. 1350

E Prompting 1351

In our main experiment, we performed zero-shot 1352

prompting in the following two stages. 1353

E.1 Prompting Candidate LLMs 1354

We prompted candidate LLMs (see Figure 12) to 1355

record generations for each task. We set the same 1356

role and prompt structure for each candidate model 1357

to ensure the reproducibility of our results. Figure 1358

13 shows the candidate GPT-3.5-turbo response at 1359

zero temperature for the input given in Figure 12. 1360

E.2 Prompting LLM Judges 1361

We prompted LLMs-as-judges to perform the eval- 1362

uation (see Figure 14). In Figure 15, judge Llama- 1363

3.1-70B evaluating candidate GPT-3.5-turbo. 1364
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Task: AmbigQA

Figure 8: Confusion matrices comparing the performance of automatic metrics (EM, BERTScore) and individual
LLM judges on AmbigQA.
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Figure 9: Confusion matrices comparing the performance of automatic metrics (EM, BERTScore) and individual
LLM judges on HotpotQA.
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Task: NQ-Open

Figure 10: Confusion matrices comparing the performance of automatic metrics (EM, BERTScore) and individual
LLM judges on NQ-Open.
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Figure 11: Confusion matrices comparing the performance of automatic metrics (EM, BERTScore) and individual
LLM judges on TriviaQA.
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Candidate LLMs Tasks Evaluators

EM BERTScore Human Majority Llama-3.1-70B GPT-3.5-turbo Mixtral-8x7B Mistral-7B

Llama-3.1-70B

AmbigQA 42.3 63.0 67.0 65.3 [83.3] 64.7 [84.7] 63.0 [76.0] 66.0 [80.3]
HotpotQA 34.3 67.7 56.3 58.3 [81.0] 54.0 [81.0] 50.7 [67.3] 52.7 [69.3]
NQ-Open 31.7 61.7 66.3 62.7 [89.0] 60.0 [89.3] 59.0 [81.0] 66.7 [81.0]
TriviaQA 74.3 94.0 94.7 90.3 [90.3] 90.0 [90.3] 88.7 [89.0] 84.7 [84.0]

GPT-3.5

AmbigQA 49.7 78.0 71.7 70.0 [79.0] 68.0 [81.0] 65.7 [79.0] 71.0 [84.3]
HotpotQA 33.7 80.0 54.0 53.0 [85.3] 52.7 [85.7] 51.7 [82.3] 54.0 [86.3]
NQ-Open 36.3 74.0 65.3 62.7 [83.7] 59.0 [90.7] 59.0 [87.0] 67.0 [89.7]
TriviaQA 74.3 95.3 93.0 89.3 [89.0] 90.7 [88.7] 89.7 [90.3] 86.3 [84.3]

Mixtral-8x7B

AmbigQA 37.7 70.3 61.7 57.3 [74.7] 62.0 [82.3] 59.3 [79.7] 61.7 [80.7]
HotpotQA 25.0 69.7 47.0 45.3 [80.0] 45.7 [84.7] 44.7 [72.0] 46.0 [78.0]
NQ-Open 23.7 63.7 56.7 52.7 [81.7] 47.7 [90.3] 52.3 [85.7] 59.7 [89.7]
TriviaQA 64.7 91.3 90.7 86.3 [85.7] 89.7 [89.0] 86.0 [86.7] 85.3 [86.0]

Mistral-7B

AmbigQA 31.0 61.7 49.7 46.3 [61.0] 47.7 [78.7] 46.3 [74.7] 53.3 [85.0]
HotpotQA 23.7 64.7 40.0 39.0 [64.3] 38.0 [83.3] 37.0 [62.0] 39.0 [77.0]
NQ-Open 22.7 60.0 46.0 40.0 [72.3] 43.3 [85.7] 41.3 [78.0] 50.0 [92.3]
TriviaQA 62.0 94.3 83.7 81.3 [80.7] 81.0 [81.0] 79.7 [80.7] 85.0 [84.7]

Table 6: Overall performance of candidate LLMs across free-form QA tasks. Values [in blue] represent LLM-as-a-
judge in the reference-free mood.

Candidate LLMs Tasks Evaluators

EM BERTScore Llama-3.1-70B GPT-3.5-turbo Mixtral-8x7B Mistral-7B

Llama-3.1-70B

AmbigQA 0.744 0.641 0.944 [0.629] 0.922 [0.604] 0.912 [0.669] 0.929 [0.631]
HotpotQA 0.778 0.745 0.939 [0.628] 0.949 [0.574] 0.910 [0.665] 0.916 [0.640]
NQ-Open 0.653 0.718 0.916 [0.606] 0.896 [0.560] 0.907 [0.639] 0.869 [0.622]
TriviaQA 0.612 0.782 0.772 [0.772] 0.717 [0.628] 0.695 [0.678] 0.640 [0.633]

GPT-3.5

AmbigQA 0.792 0.622 0.972 [0.686] 0.949 [0.603] 0.930 [0.596] 0.927 [0.553]
HotpotQA 0.794 0.623 0.977 [0.566] 0.987 [0.521] 0.936 [0.543] 0.966 [0.494]
NQ-Open 0.703 0.606 0.942 [0.671] 0.911 [0.544] 0.911 [0.601] 0.914 [0.536]
TriviaQA 0.646 0.681 0.824 [0.817] 0.700 [0.690] 0.789 [0.760] 0.730 [0.701]

Mixtral-8x7B

AmbigQA 0.760 0.666 0.948 [0.704] 0.891 [0.636] 0.955 [0.654] 0.944 [0.622]
HotpotQA 0.761 0.657 0.970 [0.587] 0.966 [0.470] 0.930 [0.582] 0.970 [0.577]
NQ-Open 0.650 0.649 0.939 [0.652] 0.863 [0.517] 0.950 [0.590] 0.908 [0.529]
TriviaQA 0.625 0.695 0.812 [0.800] 0.803 [0.754] 0.838 [0.818] 0.716 [0.725]

Mistral-7B

AmbigQA 0.792 0.622 0.947 [0.730] 0.947 [0.627] 0.947 [0.628] 0.930 [0.523]
HotpotQA 0.796 0.673 0.969 [0.649] 0.951 [0.478] 0.947 [0.680] 0.969 [0.578]
NQ-Open 0.726 0.639 0.925 [0.652] 0.919 [0.515] 0.939 [0.597] 0.920 [0.433]
TriviaQA 0.718 0.608 0.879 [0.881] 0.863 [0.840] 0.822 [0.846] 0.735 [0.744]

Table 7: Performance of various evaluators across candidate LLMs and tasks. Values [in blue] represent LLM-as-a-
judge in the reference-free mode.

You are a helpful assistant. Which comic
book was also written by the writer of
Crossed?

Figure 12: Prompting candidate GPT-3.5-turbo to elicit
outputs for HotpotQA.
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Crossed was written by Garth Ennis. The Boys is a comic book series also written by Garth Ennis.
So the comic book that was also written by the writer of Crossed is The Boys.

Figure 13: Candidate GPT-3.5-turbo response to the input given in Figure 12.

You are a helpful assistant acting as an impartial judge. You will be given a Question and a
Proposed Answer. Your task is to judge whether the Proposed Answer is correct by comparing it to
the Reference Answer. If the Proposed Answer is correct, choose ’True’, otherwise choose ’False’.
Provide a brief explanation for your decision.
Question: Which comic book was also written by the writer of Crossed?
Provided Answer: Crossed was written by Garth Ennis. The Boys is a comic book series also
written by Garth Ennis. So the comic book that was also written by the writer of Crossed is The
Boys. So the answer is: The Boys.
Reference Answer: the Vertigo series “Preacher”
Evaluation:
Provide your response in the following format:
Decision: [True/False]
Explanation: [Your brief explanation]

Figure 14: Prompting judge Llama-3.1-70B for evaluating candidate GPT-3.5-turbo.

Decision: False
Explanation: The Proposed Answer incorrectly identifies "The Boys" as the comic book written by
the writer of Crossed. While it is true that Garth Ennis wrote Crossed, the Proposed Answer fails
to consider other works written by Garth Ennis. The Reference Answer, "Preacher", is indeed
another comic book series written by Garth Ennis, specifically for the Vertigo imprint.

Figure 15: Llama-3.1-70B-Judge verdict on the candidate GPT-3.5-turbo output.
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