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Abstract

Data selection for finetuning Large Language Models (LLMs) can be framed as1

a budget-constrained optimization problem: maximizing a model’s downstream2

performance under a strict training data budget. Solving this problem is generally3

intractable, and existing approximate approaches are pretraining-oriented and4

transfer poorly to the fine-tuning setting. We reformulate this problem as a tractable5

Markov Decision Process (MDP) and train agents using various Reinforcement6

Learning (RL) methods to learn optimal data selection policies, guided by an7

efficient, proxy-model-based reward signal. Across four datasets, training on a 5%8

subset selected by our approach matches or outperforms fine-tuning on the full9

dataset by up to 10.8 accuracy points, while cutting wall-clock training time by up10

to 2×, highlighting the promise of RL-guided data selection.11

1 Introduction12

Real-world datasets for LLM finetuning often contain noisy and redundant data points [8], which13

inflates computational costs and can degrade model performance [12]. Strategic data selection14

methods offer a solution by identifying a small, high-quality training subset [24, 23]. These methods15

solve a budget-constrained combinatorial optimization problem: maximize a model’s downstream16

performance while adhering to a strict data budget, typically a fixed fraction of the original dataset.17

Provably solving this optimization problem is intractable due to the exponential search space and18

prohibitive evaluation costs. While performant and approximate data selection methods have been19

developed for large-scale pre-training [24, 23], they are ill-suited to the finetuning regime. They are20

often prohibitively expensive for the smaller scales typical of finetuning datasets [23] and largely21

capture surface-level patterns rather than task-specific semantics [7].22

To bridge this gap, we introduce a framework that reformulates the problem of data selection as a23

tractable Markov Decision Process (MDP). We first group the training data into semantic clusters,24

defining a state space over subsets of these clusters. Actions are defined as sequentially adding new25

clusters to the training subset corresponding to the current state. An RL agent then learns a selection26

policy, guided by an efficient proxy of the downstream performance objective, derived from a smaller27

model’s validation loss on selected data subsets.28

Across four diverse tasks [9, 19, 17], training on a 5% subset selected by our approach matches or29

even significantly exceeds the performance of training on the full dataset and other heuristic baselines,30

while also cutting wall-clock times by up to 2×. Notably, on MetaHate [17], our approach boosts31

accuracy by 10.8 points over the full-data baseline, showing that it can filter out harmful, noisy and32

unreliable data. We conclude that RL-guided approaches achieve a good balance between downstream33

performance and training efficiency, demonstrating substantial potential for data subset selection in34

LLM fine-tuning.35
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2 Related Work36

The goal of data selection is to identify a subset of training data that preserves downstream perfor-37

mance while adhering to a data budget. In 11, a statistical theory is proposed for data subsampling38

under weak supervision across a variety of model classes. This is extended to frame data selection as39

an information-theoretic problem in 4. On the other hand, DSDM [6] and Influence Distillation [18]40

introduce model-aware approaches to analyze the influence of individual data points on specific target41

samples. Finally, 7 reformulates data selection as an optimal control problem solvable via Pontrya-42

gin’s Maximum Principle. In contrast, this work formalizes data selection as a budget-constrained43

combinatorial optimization problem, which is reduced to a tractable Markov Decision Process.44

Data selection for LLM training has also been extensively studied in recent literature, given the45

ever-growing scales of training datasets [2]. The LESS framework [23] quantifies the contributions of46

individual samples to model convergence by constructing gradient stores, but has high computational47

cost [26, 14]. In contrast, methods such as DSIR [24] utilize importance resampling to select48

examples that are statistically most beneficial for pre-training, while DoReMi [25] optimizes data49

mixtures to accelerate language model pretraining. Other strategies include data pruning [15] and50

deduplication methods like D4 [22] and SemDeDup [1] that aim to improve training efficiency by51

reducing redundancy. More recently, CLIMB [5] iteratively samples random data mixtures, evaluates52

them, and trains a predictor that guides subsequent mixture selection. RL has remained largely53

unexplored in the context of LLM fine-tuning in contemporary literature.54

3 Methodology55

3.1 Data Selection as a Constrained Optimization Problem56

Given a training dataset D, we seek to identify a subset S ⊆ D that minimizes the test loss of a57

model M trained on S as computed on a held-out test set Dtest, subject to a cardinality constraint58

|S| ≤ K. This can be formulated as the following optimization problem:59

S∗ = arg min
S⊆D,|S|≤K

LM (S|Dtest) (1)

where LM (S|Dtest) is the loss obtained on Dtest when M is trained on S. Solving this problem is60

intractable, since the objective function is non-differentiable with respect to S, and evaluation for any61

S requires model training on S. Therefore, we approximate the solution set S∗ as the solution to a62

tractable sequential MDP, described in the next section.63

3.2 A Tractable MDP Formulation64

We first cluster the training dataset D into a set of semantically coherent clusters C via K-Means65

clustering on sentence embeddings (more details in Appendix A). The MDP is then defined over66

the powerset of these clusters, S = P(C). A state st ⊆ C represents the subset of clusters selected67

up to time step t. From a state st, the agent can select any cluster not already in the current subset68

(Ast = C \ st). Transitions are deterministic, with st+1 = st ∪ {at}. Each episode proceeds for a69

fixed horizon H, terminating when the subset size |sH | reaches the budget defined by the selection70

fraction δ|C|. Each episode of the MDP corresponds to the sequential selection of a set of clusters to71

form a possible training data subset, while adhering to the data budget enforced by δ. This MDP is72

tractable for small |C|. We study the effect of varying |C| in Appendix E.73

3.3 Reward Function74

We define the reward function R(st, at) for the MDP as the change in validation loss from a proxy75

model M ′ when the cluster Ct (selected during the action at) is added to the training data subset76

represented by the state st. M ′ is typically a smaller model in the same model family as the target77

model M . To improve the efficiency of reward computation, we further subsample the data points in78

each cluster belonging to C using a subsampling function ξ(·). Formally:79

R(st, at) = f(LM ′(ξ(st) ∪ ξ({at})|ξ(Dval)))− f(LM ′(ξ(st)|ξ(Dval))) (2)
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where LM ′(Dt|Dv) is the loss on validation set Dv after training M ′ on training set Dt, and f(·) is a80

logarithmic transformation to amplify small loss variations. More details can be found in Appendix A.81

This reward signal serves as a computationally efficient proxy for the downstream performance.82

3.4 Learning a Sequential Data Selection Policy83

We leverage our MDP formulation to learn a policy π(st) for selecting the next cluster to add to the84

current subset st. The final data subset is then constructed by starting with an empty set and iteratively85

applying the learned policy for a predefined number of steps corresponding to the desired selection86

fraction. We try several RL algorithms to learn the policy, including Deep Q-Networks (DQN) [16]87

and Proximal Policy Optimization (PPO) [20]. For PPO, we also tried a Warm-Start initialization by88

pre-training the critic model on a regression task over the rewards of single-cluster states. However, a89

naive exploration of the state space is intractable due to its exponential size (2|C|). To mitigate this,90

we augment the reward function with a bonus derived from Random Network Distillation (RND) [3],91

which incentizes the policy to visit novel state configurations.92

The computational cost of reward evaluation remains a bottleneck even with a proxy model. Therefore,93

we investigate model-based strategies for learning an explicit, lightweight reward function to be94

used for generating synthetic rollouts. Our first approach (DynaDQN) is inspired by Dyna [21] and95

integrates a learned reward model with DQN. The reward model is used to label synthetically generated96

state-action pairs, which are then added to the replay buffer to accelerate learning. Our second97

approach (CLIMB-Disc) is an adaptation of CLIMB [5] with discrete cluster selection. Specifically,98

it is a form of Bayesian search, where the trained reward model is used as a sampling prior. At each99

step, we sample a batch of unseen states, use the model to identify the top candidates, query their true100

rewards to update the model, and repeat. Further details are provided in Appendix B.101

4 Experiments102

4.1 Experimental Setup103

Datasets: We use the MMLU [9], ANLI [17], MetaHate [19] and GooglePlay datasets (more details104

in Appendix D). The MetaHate and GooglePlay datasets do not have an explicit test split, so we105

randomly sample 25K and 5K samples respectively to create one. We fix the data selection percentage106

to 5% of the full training dataset unless otherwise mentioned.107

Models: MobileLLM-600M [13] serves as the proxy model for reward computation, and108

MobileLLM-1.5B is used as the target model for final evaluation.109

Baselines: We compare against training the target model on (a) Full, the entire training dataset;110

(b) Random, a randomly selected 5% of the training dataset; (c) Top-Loss, the 5% of the dataset with111

the highest loss as computed by the proxy model; (d) Bottom-Loss, the 5% of the dataset with the112

lowest loss as computed by the proxy model; (e) Random-Search, performing random rollouts from113

our MDP, scoring them using our reward function, and selecting the rollout with the highest reward.114

We provide hyperparameters for our experiments in Appendix C.115

Evaluation: We report accuracy on a held-out test set for each dataset, for a target model trained116

on the data subsets selected by the different approaches.117

4.2 Results118

We present results for all approaches in Table 1. We find that RL-guided data selection significantly119

outperforms standard baselines across all tasks. In some cases, it even surpases the performance120

obtained by training on the full dataset, notably by 10.8 points for MetaHate and 0.3 points for121

GooglePlay. We conclude that our learned policies mitigate the deleterious effects of noisy data122

points for these datasets, by filtering them out. All RL policies also consistently outperform all123

random selection and heuristic baselines.124

We find that the Random-Search baseline improves upon Random, validating that our reward is125

a meaningful proxy for downstream performance. The superior performance of DQN, PPO and126
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(a) ANLI (b) GooglePlay (c) MMLU (d) MetaHate

Figure 1: UMAP projections of explored state (binary mask) encodings, colored by their subsampled
validation set accuracy.

Algorithm ANLI GooglePlay MetaHate MMLU

Full 64.76 68.10 83.20 49.38

Random 54.20 58.30 72.60 40.90
Top-Loss 57.40 21.90 84.00 37.34
Bottom-Loss 57.10 22.60 77.80 22.96

Random-Search 55.61 59.30 72.60 43.71

DQN 57.60 65.60 69.40 44.27
DQN + RND 35.30 63.76 70.91 44.18

PPO 54.20 62.32 60.85 44.80
PPO + Warm-Start 56.24 60.24 87.95 44.19
PPO + RND 55.80 56.52 59.50 45.68

DynaDQN 52.96 61.94 50.50 45.11
CLIMB-Disc 53.83 68.40 94.01 41.73

Table 1: Performance of MobileLLM-1.5B when trained using the different data selection strategies
discussed in Section 3.4. The best numbers across the approaches are highlighted.

CLIMB-Disc over Random-Search further indicates that these approaches learn meaningful, nuanced127

selection policies. However, we note that the best approach changes for each dataset. While the128

Warm-Start initialization for PPO improves performance on ANLI and MetaHate by up to 27.1129

points, the RND bonus did not yield meaningful benefits.130

We hypothesize that the comparative success of our method on MetaHate and GooglePlay is linked to131

the diversity of their reward landscape. As visualized in Figure 1, these datasets exhibit high reward132

variance across different clusters. In contrast, ANLI, which has the lowest reward variance, shows the133

largest remaining gap to the full-data baseline. This suggests that our MDP formulation is particularly134

potent for noisy datasets where the value of intelligent data selection is highest.135

Finally, our method offers a compelling trade-off between performance and efficiency. By training on136

a curated 5% of the training data, we achieve strong results in less than half the wall-clock time of137

full-dataset training, including the overhead of the data selection process (but excluding the overhead138

of hyperparameter search). Detailed results and ablations are provided in Appendix E.139

5 Conclusion140

We propose a RL-based framework for solving the budget-constrained optimization problem of data141

selection for LLM fine-tuning. We reformulate the task as the solving of a tractable MDP over clusters142

of the training data, and train RL agents to learn policies for sequentially constructing high-quality143

data subsets using an efficient proxy-based reward. We find that our approach is effective in practice144

across four diverse datasets. In fact, training on a 5% data subset selected using our approach often145

exceeds the performance obtained by training on the full dataset by filtering out unreliable, noisy146

or redundant data points, with significant training efficiency gains. We conclude that RL-based147

approaches are effective for approximately solving this important constrained optimization problem.148
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A Detailed Methodology237

Here we provide additional details on the MDP formulation, state representations, reward functions,238

and policy learning algorithms explored in this work.239

A.1 Clustering240

In addition to standard K-means clustering we also try to induce label information in the clusters, for241

this we tried a variant where we enforce a cluster to have data points corresponding to only one label242

(henceforth called Stratified-Kmeans)243

A.2 State Representations and Subsampling244

For a given state st, we explore different ways of computing a state encoding ϕ(st). The simplest245

encoding, denoted by Binary-Mask, is |C|-length binary vector with ϕi(st) = 1 ⇔ Ci ∈ st. In246

another case (Mean-Std), we use:247

ϕ(st) = [µ(st), σ
2(st)],

where µ(·) and σ2(·) are the mean and variance of the cluster-centroid embeddings in the currently248

selected set. Another variant (Concat) involves concatenating embeddings of representative samples249

from each cluster. We explore two approaches for selecting these representative samples choosing250

them at random from the cluster (Random) or choosing the furthest points from the cluster centroid251

(Furthest), capturing the spread of the cluster.252

A.3 Reward Functions253

In our experiments, we evaluated three distinct reward functions. All are computed using the proxy254

model, M ′, which is a smaller version of the target model, M . The primary reward signal as detailed255

in the main section is Rval
loss which is based on change in validation loss. Let Val-Acc(D) be the256

accuracy of the proxy model M ′ on the validation set after training on dataset D and LM ′(Dv|Dt)257

be the loss value for dataset Dv after training M ′ on Dt. (for clearness, we omit Dt if it is same as258

Dv, we also omit M ′ as all rewards are computed using the proxy model)259

Accuracy-based Reward (Racc): This reward function computes the improvement in validation260

accuracy when adding a new cluster to the selected data, thus capturing its impact on the downstream261

performance of the proxy model:262

Racc(st, at) = Val-Acc(st ∪ {at}) − Val-Acc(st). (3)

Although effective, measuring changes in validation accuracy entails retraining the proxy model from263

scratch after each action for a substantial number of training steps and performing evaluation, which264

is extremely expensive.265

Training Loss-based Reward (Rtrain
loss ): This reward function makes two assumptions — training266

losses on the same batches of data are correlated for the target and proxy model, and training loss for267

a model is negatively correlated with downstream performance. Then, the reward function measures268

changes in the proxy model’s training loss when the new cluster is added to the current state:269

f(x) = 5− 2 ln(2x) (4)

Rloss(st, at) = f
(
L(ξ(st) ∪ ξ({at})

)
− f

(
L(ξ(st))

)
. (5)

where ln(·) is the natural logarithm, and a subsampling function ξ(·) is used to select a fixed number270

of data points (set as a hyperparameter) from each cluster to estimate the training loss from the proxy271

model at the end of multiple epochs of training. The logarithmic transformation f(·) serves a dual272

purpose: it establishes a baseline of f(L(∅)) = 0 while also magnifying subtle loss variations in the273

low-loss regime of training on larger subsets of data. Rloss is much faster than Racc, which makes274

MDP rollouts more efficient.275
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Validation Loss-based Reward (Rval
loss): This reward function is similar to Rtrain

loss , except for using276

validation-set loss instead of training loss. Formally,277

Rval
loss(st, at) = f

(
L(ξval(Dval)|ξ(st) ∪ ξ({at})

)
− f

(
L(ξval(Dval)|ξ(st))

)
. (6)

where the subsampling function ξval(·) is used to select a fixed number of data points (set as a hyper-278

parameter) from the validation set, keeping the label proportion constant. f serves a similar purpose279

to that in Rloss. While Rval
loss is slower than Rtrain

loss ), it is much better correlated with downstream280

performance.281

Random Network Distillation (RND): For each of the reward approximations described above,282

Random Network Distillation [3] can be added to improve exploration of the policy. RND is283

implemented using a 4-layer MLP with MSE loss between the target and predictor network as284

intrinsic reward. The state and rewards are normalized using a running average to stabilize the285

intrinsic rewards.286

B Policy Learning Algorithms287

DQN: At each state st, we compute an embedding ϕ(st) using one of the state encoding methods.288

We then feed ϕ(st) into a function approximator fθ(·), either an MLP or a small Transformer, which289

outputs an |A|−dimensional vector where each component represents the estimated Q-value (or290

“goodness”) of taking action a ∈ A in the current state st. We then mask out actions corresponding291

to the clusters already in st and choose the action with the highest Q-value via ϵ-greedy sampling.292

The network parameters θ are then optimized through experience replay updates.293

PPO: We adopt a variant of PPO that supports the masking of invalid actions [10]. Both the actor294

and critic networks are 3-layer MLPs; for each state st, the actor outputs a probability distribution295

over available cluster actions, while the critic estimates the value of st. We investigate two variants of296

PPO as well. We first try training PPO from Scratch, initializing the actor and critic randomly. Next,297

we try to give PPO a Warm Start. We pre-train the critic using a regression task on rewards for298

“single-cluster” states. Specifically, for each cluster ci ∈ A, we compute the average reward obtained299

when taking action ci on the state containing the empty set to reach state si. We then regress the300

critic network on the (s0,ci,si,ri) tuples, where s0 = ∅ and ri corresponds to the average reward for301

each single-cluster addition. This setup encourages the critic to produce, for the start state, outputs302

that rank clusters in proportion to their individual expected returns.303

Reward Model Based Strategies304

These strategies approximate the true reward function in order to accelerate policy learning by305

generating additional, “synthetic” rollouts. Concretely, we train a proxy reward model r̂ϕ(s, a) on306

true reward signals r(s, a) and then use r̂ϕ to label transitions sampled under the current policy, and307

mix these synthetic transitions with real ones when updating the agent. Real rollouts are given higher308

weight. Based on the agent, we have two strategies: DynaDQN and CLIMB-Disc.309

DynaDQN: The proxy reward r̂ϕ is implemented as an ensemble of four independently initialized,310

5-layer MLPs. Each ensemble member is trained on real transitions using mean-squared error (MSE)311

loss with ℓ2 regularization. MLP variant of DQN is used as the policy. At each environment step,312

we sample a batch of 32 state–action pairs, compute their proxy rewards by averaging the ensemble313

outputs, and then only insert those synthetic transitions into the replay buffer if the ensemble standard314

deviation falls below a fixed threshold σmax. Synthetic transitions are retained for at most four315

episodes, and during learning, they are weighted by an importance factor of 0.5 relative to real316

transitions.317

CLIMB-Disc: Drawing inspiration from [5], we implemented CLIMB-Disc for discrete states. For318

this strategy, the reward function r(s) is the absolute value instead of the increment from the previous319

state. The proxy reward model r̂ϕ(s) is a single 3-layer MLP trained with MSE loss. In each iteration,320

we uniformly sample M previously unseen states, rank them by their estimated reward r̂ϕ, then query321

the environment for the true reward of the top-K states and use these K new labels to update r̂ϕ.322

After T epochs, we re-evaluate all seen states under r̂ϕ and select the highest-scoring one as the final323

best state.324
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C Hyperparameters and Experimental Settings325

BAAI/bge-small-en-v1.5 is used to obtain semantic embeddings for the training datasets and326

K-Means or stratified K-Means clustering is used to cluster the resulting embeddings into 64 (or 128)327

clusters. We use a batch size of 16 with 4 gradient accumulation steps to train the proxy model for 2328

epochs with a learning rate of 1e-5. For each cluster, 64 data points are sampled for proxy-model329

training.330

For the DQN, we use a 5-layer MLP of size 256 to learn the Q-function, with Mean-Std state encodings331

and Furthest subsampling. We use γ = 0.99 and decaying ϵ starting from 1 with a decay of 0.99332

per episode and a minimum of 0.01. A replay buffer is used and steps are sampled in batches of 32 to333

train the model. A learning rate of 10−4 is used to train the DQN network and the target network is334

updated every 10 steps. The DQN is trained for 500 episodes. PPO is trained with a learning rate335

of 3 · 10−4, for 500 episodes. For the linear bandits approach, we train for 1000 steps with a UCB336

coefficient of 2 and learning rate of 10−4. In DynaDQN, the reward model has a hidden dimension of337

256, and the same configuration as DQN is used for policy. Learning rate of 5 · 10−4 is used with338

no training for first 5 episodes. CLIMB-Disc is trained with 50 iterations, sampling 128 states and339

selecting top 32 states finally at each step. The hidden dimension is set to 128, and learning rate of340

10−4 is used with the reward model trained for 2 epochs per iteration.341

We train the target model for 4 epochs on the selected data subsets, with a batch size of 4 and 8342

gradient accumulation steps, and use a cosine annealing schedule for the learning rate from 1e-5 to343

1e-6 and linear warmup for the first 5% of training steps. Checkpoints are chosen based on highest344

validation accuracy for all settings to compute downstream performance.345

D Tasks346

Dataset Task Train Size Test Size # Labels
ANLI Natural Language 162,400 3,200 3

Inference
MetaHate Hate Speech 1,051,165 25,000 2

Detection
GooglePlay Sentiment 98,836 5,000 5

Classification
MMLU MCQ Answering 99,842 14042 4

Table 2: Summary of datasets used in our experiments with their respective tasks, training sizes, test
sizes, and number of labels.

E Additional Results and Ablations347

E.1 Number of Clusters348

We evaluate Random-Search algorithm over a range of cluster counts C ∈ {64, 256, 1024, 4096},349

with results shown in Figure 2. As C increases, we observe a consistent improvement in the350

downstream performance. However, the total runtime grows approximately quadratically in C, since351

both the number of episodes and the number of proxy sub-samples per reward evaluation increase352

with the cluster count. Balancing this trade-off between solution quality and computational cost, we353

fix C = 64 and proxy subsamples to 64.354

E.2 Clustering Strategy355

The Stratified-Kmeans method exhibits suboptimal performance when the number of clusters356

is small and the number of class labels is large. This is primarily due to its inability to ensure357

representation of all labels in the selected subset, which leads to label imbalance. However, as the358

number of clusters increases, its performance improves, as shown in Figure 2. This improvement is359

attributed to the greater flexibility in selecting samples with more diverse label distributions across an360

increased number of clusters.361
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Figure 2: Downstream performance vs. number
of clusters for ANLI with Random-Search and
stratified k-means.

Figure 3: Histogram of label ratios across clus-
ters using K-means in the GooglePlay dataset.

In contrast, K-means tends to preserve the overall label distribution more consistently, making it362

more effective when the number of clusters is limited. This distinction is illustrated in Figure 3, which363

presents the distribution of label proportions across clusters for the GooglePlay dataset. The figure364

demonstrates how label representation varies between the two methods and supports the superior365

performance of K-means in scenarios with fewer clusters.366

E.3 Comparison for Different State Encoders367

Dataset State Representation Subsampling DQN Model 600M Proxy 125M Proxy
Accuracy (↑) Accuracy (↑)

ANLI

Mean-Std Furthest MLP 57.6 57.2
Mean-Std Random MLP 52.9 54.6
Concat Furthest Transformer 56.0 56.6
Concat Random Transformer 54.9 53.2

MetaHate

Mean-Std Furthest MLP 69.4 63.4
Mean-Std Random MLP 67.0 36.0
Concat Furthest Transformer 60.9 61.6
Concat Random Transformer 67.4 66.0

GooglePlay

Mean-Std Furthest MLP 65.6 60.6
Mean-Std Random MLP 65.1 62.3
Concat Furthest Transformer 61.8 59.4
Concat Random Transformer 63.3 64.9

Table 3: Performance of MobileLLM-1.5B when trained on data selected using various DQN variants
and two different proxy models. All strategies are discussed in Section 3.4. The best numbers for the
data selection approaches are highlighted.

DQN : We present results for DQN methods with various state encoding methods, subsampling368

strategies, and DQN models across three datasets and two proxy models in Table 3. Our findings369

indicate that the Furthest subsampling strategy outperforms the Random strategy in nearly all cases,370

except for the 125M proxy model on GooglePlay and the Transformer-based DQNs on MetaHate371

and GooglePlay. Notably the additional expressive power provided by the Transformer does not372

generally lead to better performance compared to the MLP-based approach, except for the 125M proxy373

model on MetaHate and GooglePlay. Overall, using the 600M proxy model tends to yield better374

results for DQN-based approaches across all datasets. While there are no clear winners, using the375

Mean-Std state encoding with Furthest sampling and a MLP-based DQN results in generally strong376

performance across datasets.377

CLIMB-Disc : We present the results for running CLIMB-Disc for multiple configurations of378

environments with Furthest subsampling in Table 4. Note that Stratified-Kmeans is run with379

128/32 to allow for representation of all (5) labels in chosen clusters. From the numbers, we find that380

Racc with Binary-Mask performs the best in all configurations and 600M performs better than 125M.381
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Clustering Type # clusters/subsamples Proxy Model State encoder Racc Rtrain
loss Rval

loss

Kmeans 64/64 125M Binary-Mask 65.50% 62.12% 65.36%
Mean-Std 65.04% 64.40% 61.88%

Kmeans 64/64 600M Binary-Mask 68.40% 64.40% 65.58
Mean-Std 62.62% 63.84% 59.42%

Stratified Kmeans 128/32 125M Binary-Mask 61.38% 46.90% 46.16%
Mean-Std 55.36% 56.28% 46.76%

Table 4: Performance of MobileLLM-1.5B for GooglePlay dataset when trained on 1/16 data selected
using CLIMB-Disc with different state encodings and different reward functions.

Dataset Variant 600M Proxy 125M Proxy
Accuracy (↑) Accuracy (↑)

ANLI Scratch 54.2 53.7
Warm Start 55.8 54.9

MetaHate Scratch 60.9 45.9
Warm Start 73.1 88.0

GooglePlay Scratch 62.3 61.7
Warm Start 55.8 60.2

MMLU Scratch 44.8 -
Warm Start 44.19 -

Table 5: Performance of MobileLLM-1.5B when trained on data selected using PPO with and without
warm starts and two different proxy models. The best numbers are highlighted.

Also, Rtrain
loss performs better with Mean-Std, while Rval

loss performs better with Binary-Mask. These382

results suggest that the semantic information presented in state by Mean-Std is not meaningful in case383

of validation set based rewards. Given the much higher time taken by Racc, Rval
loss with Binary-Mask384

is the most suitable choice.385

E.4 Strategy Specific Comparisons386

PPO Warm Start We present results for PPO with and without the Warm Start in Table 5 for all387

four datasets and two proxy models. The Warm Start is beneficial to the performance of PPO for388

both ANLI and MetaHate, but worsens performance slightly on GooglePlay and MMLU. Notably,389

the Warm Start nearly doubles downstream performance for MetaHate with the 125M proxy model.390

RND: We evaluate the performance of the RND environment using Rval
loss as the base reward signal391

with DQN-MLP and PPO policies. The corresponding results are presented in Table 6. It indicates that392

RND yields only marginal improvements in performance for the MetaHate task with DQN-MLP and the393

MMLU task with PPO, while substantially degrading performance across all other task–algorithm394

combinations. These results suggest that RND does not provide meaningful benefits for this MDP.395

Dataset Variant DQN PPO
Accuracy (↑) Accuracy (↑)

ANLI Val-Loss 57.6 56.24
RND 35.3 55.8

MetaHate Val-Loss 69.4 87.95
RND 70.91 59.5

GooglePlay Val-Loss 65.6 60.24
RND 63.76 56.52

MMLU Val-Loss 44.27 44.19
RND 44.18 45.68

Table 6: Performance of MobileLLM-1.5B when trained on data selected using PPO and DQN with
and without RND exploration reward. The best numbers are highlighted.

11

https://huggingface.co/datasets/facebook/anli
https://huggingface.co/datasets/irlab-udc/metahate
https://huggingface.co/datasets/Mariaaaaa/Googleplay_sentiment
https://huggingface.co/datasets/cais/mmlu
https://huggingface.co/datasets/facebook/anli
https://huggingface.co/datasets/irlab-udc/metahate
https://huggingface.co/datasets/Mariaaaaa/Googleplay_sentiment
https://huggingface.co/datasets/cais/mmlu


Figure 4: Downstream Performance vs Training Times for the Random and Full baselines, along with
two DQN-based approaches.

Reward Model Based Strategies: Comparing the performance of various reward model based396

strategies in table 1, we find that CLIMB-Disc demonstrates consistently strong performance, out-397

performing all other strategies for GooglePlay and MetaHate. In contrast, while DynaDQN slightly398

surpasses DQN on MMLU, it underperforms significantly on ANLI, GooglePlay, and MetaHate. This399

suggests that the synthetic rollouts generated by reward model are not helpful, possibly due to400

inaccurate reward model leading to noisy rewards.401

E.5 Varying Selection Fractions402

To obtain a better estimate of the trade-offs between training time and performance improvements,403

we vary the selection fraction in [ 1
32 ,

1
16 ,

1
8 ] and present results for two DQN configurations with404

the 125M proxy model: (1) DQN with Mean-Std state encodings, Furthest subsampling, and405

an MLP (DQN (F)), and (2) DQN with Concat state encodings, Furthest subsampling, and a406

Transformer (DQN-T (F)) in Figure 4. For comparison, we also include results for the Random407

and Full baselines. The reported wall-clock times account for the combined duration of training the408

DQN and subsequently training the target model on the selected data subsets, while the wall-clock409

times for the random baseline include only the target model’s training time.410

Our results show that with a 1
32 selection fraction, the DQN-based approaches do not outperform the411

random baseline and take longer to run. However, for selection fractions 1
16 and 1

8 , the DQN-based412

approaches outperform the random baseline, with an additional hour of training time. Although413

training on the full dataset yields the best performance, it requires more than twice the time needed414

for the DQN-based approaches with a 1
8 selection fraction. Notably, while Transformer-based415

DQNs take slightly longer to train, they outperform MLP-based DQNs for the 1
8 selection fraction.416
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NeurIPS Paper Checklist417

1. Claims418

Question: Do the main claims made in the abstract and introduction accurately reflect the419

paper’s contributions and scope?420

Answer: [Yes]421

Justification: The main claims made in the abstract and introduction accurately reflect the422

paper’s contributions and scope.423

Guidelines:424

• The answer NA means that the abstract and introduction do not include the claims425

made in the paper.426

• The abstract and/or introduction should clearly state the claims made, including the427

contributions made in the paper and important assumptions and limitations. A No or428

NA answer to this question will not be perceived well by the reviewers.429

• The claims made should match theoretical and experimental results, and reflect how430

much the results can be expected to generalize to other settings.431

• It is fine to include aspirational goals as motivation as long as it is clear that these goals432

are not attained by the paper.433

2. Limitations434

Question: Does the paper discuss the limitations of the work performed by the authors?435

Answer: [No]436

Justification: This paper is preliminary work submitted to a workshop.437

Guidelines:438

• The answer NA means that the paper has no limitation while the answer No means that439

the paper has limitations, but those are not discussed in the paper.440

• The authors are encouraged to create a separate "Limitations" section in their paper.441

• The paper should point out any strong assumptions and how robust the results are to442

violations of these assumptions (e.g., independence assumptions, noiseless settings,443

model well-specification, asymptotic approximations only holding locally). The authors444

should reflect on how these assumptions might be violated in practice and what the445

implications would be.446

• The authors should reflect on the scope of the claims made, e.g., if the approach was447

only tested on a few datasets or with a few runs. In general, empirical results often448

depend on implicit assumptions, which should be articulated.449

• The authors should reflect on the factors that influence the performance of the approach.450

For example, a facial recognition algorithm may perform poorly when image resolution451

is low or images are taken in low lighting. Or a speech-to-text system might not be452

used reliably to provide closed captions for online lectures because it fails to handle453

technical jargon.454

• The authors should discuss the computational efficiency of the proposed algorithms455

and how they scale with dataset size.456

• If applicable, the authors should discuss possible limitations of their approach to457

address problems of privacy and fairness.458

• While the authors might fear that complete honesty about limitations might be used by459

reviewers as grounds for rejection, a worse outcome might be that reviewers discover460

limitations that aren’t acknowledged in the paper. The authors should use their best461

judgment and recognize that individual actions in favor of transparency play an impor-462

tant role in developing norms that preserve the integrity of the community. Reviewers463

will be specifically instructed to not penalize honesty concerning limitations.464

3. Theory assumptions and proofs465

Question: For each theoretical result, does the paper provide the full set of assumptions and466

a complete (and correct) proof?467

Answer: [NA]468
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Justification: We do not have any theoretical results in the paper.469

Guidelines:470

• The answer NA means that the paper does not include theoretical results.471

• All the theorems, formulas, and proofs in the paper should be numbered and cross-472

referenced.473

• All assumptions should be clearly stated or referenced in the statement of any theorems.474

• The proofs can either appear in the main paper or the supplemental material, but if475

they appear in the supplemental material, the authors are encouraged to provide a short476

proof sketch to provide intuition.477

• Inversely, any informal proof provided in the core of the paper should be complemented478

by formal proofs provided in appendix or supplemental material.479

• Theorems and Lemmas that the proof relies upon should be properly referenced.480

4. Experimental result reproducibility481

Question: Does the paper fully disclose all the information needed to reproduce the main ex-482

perimental results of the paper to the extent that it affects the main claims and/or conclusions483

of the paper (regardless of whether the code and data are provided or not)?484

Answer: [Yes]485

Justification: Hyperparameters are provided in Appendix C.486

Guidelines:487

• The answer NA means that the paper does not include experiments.488

• If the paper includes experiments, a No answer to this question will not be perceived489

well by the reviewers: Making the paper reproducible is important, regardless of490

whether the code and data are provided or not.491

• If the contribution is a dataset and/or model, the authors should describe the steps taken492

to make their results reproducible or verifiable.493

• Depending on the contribution, reproducibility can be accomplished in various ways.494

For example, if the contribution is a novel architecture, describing the architecture fully495

might suffice, or if the contribution is a specific model and empirical evaluation, it may496

be necessary to either make it possible for others to replicate the model with the same497

dataset, or provide access to the model. In general. releasing code and data is often498

one good way to accomplish this, but reproducibility can also be provided via detailed499

instructions for how to replicate the results, access to a hosted model (e.g., in the case500

of a large language model), releasing of a model checkpoint, or other means that are501

appropriate to the research performed.502

• While NeurIPS does not require releasing code, the conference does require all submis-503

sions to provide some reasonable avenue for reproducibility, which may depend on the504

nature of the contribution. For example505

(a) If the contribution is primarily a new algorithm, the paper should make it clear how506

to reproduce that algorithm.507

(b) If the contribution is primarily a new model architecture, the paper should describe508

the architecture clearly and fully.509

(c) If the contribution is a new model (e.g., a large language model), then there should510

either be a way to access this model for reproducing the results or a way to reproduce511

the model (e.g., with an open-source dataset or instructions for how to construct512

the dataset).513

(d) We recognize that reproducibility may be tricky in some cases, in which case514

authors are welcome to describe the particular way they provide for reproducibility.515

In the case of closed-source models, it may be that access to the model is limited in516

some way (e.g., to registered users), but it should be possible for other researchers517

to have some path to reproducing or verifying the results.518

5. Open access to data and code519

Question: Does the paper provide open access to the data and code, with sufficient instruc-520

tions to faithfully reproduce the main experimental results, as described in supplemental521

material?522
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Answer: [No]523

Justification: This paper is preliminary work submitted to a workshop.524

Guidelines:525

• The answer NA means that paper does not include experiments requiring code.526

• Please see the NeurIPS code and data submission guidelines (https://nips.cc/527

public/guides/CodeSubmissionPolicy) for more details.528

• While we encourage the release of code and data, we understand that this might not be529

possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not530

including code, unless this is central to the contribution (e.g., for a new open-source531

benchmark).532

• The instructions should contain the exact command and environment needed to run to533

reproduce the results. See the NeurIPS code and data submission guidelines (https:534

//nips.cc/public/guides/CodeSubmissionPolicy) for more details.535

• The authors should provide instructions on data access and preparation, including how536

to access the raw data, preprocessed data, intermediate data, and generated data, etc.537

• The authors should provide scripts to reproduce all experimental results for the new538

proposed method and baselines. If only a subset of experiments are reproducible, they539

should state which ones are omitted from the script and why.540

• At submission time, to preserve anonymity, the authors should release anonymized541

versions (if applicable).542

• Providing as much information as possible in supplemental material (appended to the543

paper) is recommended, but including URLs to data and code is permitted.544

6. Experimental setting/details545

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-546

parameters, how they were chosen, type of optimizer, etc.) necessary to understand the547

results?548

Answer: [Yes]549

Justification: Provided in Section 4 and Appendix C.550

Guidelines:551

• The answer NA means that the paper does not include experiments.552

• The experimental setting should be presented in the core of the paper to a level of detail553

that is necessary to appreciate the results and make sense of them.554

• The full details can be provided either with the code, in appendix, or as supplemental555

material.556

7. Experiment statistical significance557

Question: Does the paper report error bars suitably and correctly defined or other appropriate558

information about the statistical significance of the experiments?559

Answer: [No]560

Justification: This paper is preliminary work submitted to a workshop.561

Guidelines:562

• The answer NA means that the paper does not include experiments.563

• The authors should answer "Yes" if the results are accompanied by error bars, confi-564

dence intervals, or statistical significance tests, at least for the experiments that support565

the main claims of the paper.566

• The factors of variability that the error bars are capturing should be clearly stated (for567

example, train/test split, initialization, random drawing of some parameter, or overall568

run with given experimental conditions).569

• The method for calculating the error bars should be explained (closed form formula,570

call to a library function, bootstrap, etc.)571

• The assumptions made should be given (e.g., Normally distributed errors).572

• It should be clear whether the error bar is the standard deviation or the standard error573

of the mean.574
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• It is OK to report 1-sigma error bars, but one should state it. The authors should575

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis576

of Normality of errors is not verified.577

• For asymmetric distributions, the authors should be careful not to show in tables or578

figures symmetric error bars that would yield results that are out of range (e.g. negative579

error rates).580

• If error bars are reported in tables or plots, The authors should explain in the text how581

they were calculated and reference the corresponding figures or tables in the text.582

8. Experiments compute resources583

Question: For each experiment, does the paper provide sufficient information on the com-584

puter resources (type of compute workers, memory, time of execution) needed to reproduce585

the experiments?586

Answer: [Yes]587

Justification: Experimental details are provided in Section 4 and Appendix C. We will588

provide more detailed information in a conference submission.589

Guidelines:590

• The answer NA means that the paper does not include experiments.591

• The paper should indicate the type of compute workers CPU or GPU, internal cluster,592

or cloud provider, including relevant memory and storage.593

• The paper should provide the amount of compute required for each of the individual594

experimental runs as well as estimate the total compute.595

• The paper should disclose whether the full research project required more compute596

than the experiments reported in the paper (e.g., preliminary or failed experiments that597

didn’t make it into the paper).598

9. Code of ethics599

Question: Does the research conducted in the paper conform, in every respect, with the600

NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?601

Answer: [Yes]602

Justification: The research conducted in the paper conforms, in every respect, with the603

NeurIPS Code of Ethics.604

Guidelines:605

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.606

• If the authors answer No, they should explain the special circumstances that require a607

deviation from the Code of Ethics.608

• The authors should make sure to preserve anonymity (e.g., if there is a special consid-609

eration due to laws or regulations in their jurisdiction).610

10. Broader impacts611

Question: Does the paper discuss both potential positive societal impacts and negative612

societal impacts of the work performed?613

Answer: [No]614

Justification: We do not anticipate this work to have substantial first-order societal impact.615

Guidelines:616

• The answer NA means that there is no societal impact of the work performed.617

• If the authors answer NA or No, they should explain why their work has no societal618

impact or why the paper does not address societal impact.619

• Examples of negative societal impacts include potential malicious or unintended uses620

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations621

(e.g., deployment of technologies that could make decisions that unfairly impact specific622

groups), privacy considerations, and security considerations.623
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• The conference expects that many papers will be foundational research and not tied624

to particular applications, let alone deployments. However, if there is a direct path to625

any negative applications, the authors should point it out. For example, it is legitimate626

to point out that an improvement in the quality of generative models could be used to627

generate deepfakes for disinformation. On the other hand, it is not needed to point out628

that a generic algorithm for optimizing neural networks could enable people to train629

models that generate Deepfakes faster.630

• The authors should consider possible harms that could arise when the technology is631

being used as intended and functioning correctly, harms that could arise when the632

technology is being used as intended but gives incorrect results, and harms following633

from (intentional or unintentional) misuse of the technology.634

• If there are negative societal impacts, the authors could also discuss possible mitigation635

strategies (e.g., gated release of models, providing defenses in addition to attacks,636

mechanisms for monitoring misuse, mechanisms to monitor how a system learns from637

feedback over time, improving the efficiency and accessibility of ML).638

11. Safeguards639

Question: Does the paper describe safeguards that have been put in place for responsible640

release of data or models that have a high risk for misuse (e.g., pretrained language models,641

image generators, or scraped datasets)?642

Answer: [NA]643

Justification: Our paper does not release data or models with high risk of misuse.644

Guidelines:645

• The answer NA means that the paper poses no such risks.646

• Released models that have a high risk for misuse or dual-use should be released with647

necessary safeguards to allow for controlled use of the model, for example by requiring648

that users adhere to usage guidelines or restrictions to access the model or implementing649

safety filters.650

• Datasets that have been scraped from the Internet could pose safety risks. The authors651

should describe how they avoided releasing unsafe images.652

• We recognize that providing effective safeguards is challenging, and many papers do653

not require this, but we encourage authors to take this into account and make a best654

faith effort.655

12. Licenses for existing assets656

Question: Are the creators or original owners of assets (e.g., code, data, models), used in657

the paper, properly credited and are the license and terms of use explicitly mentioned and658

properly respected?659

Answer: [Yes]660

Justification: All citations have been provided in the References.661

Guidelines:662

• The answer NA means that the paper does not use existing assets.663

• The authors should cite the original paper that produced the code package or dataset.664

• The authors should state which version of the asset is used and, if possible, include a665

URL.666

• The name of the license (e.g., CC-BY 4.0) should be included for each asset.667

• For scraped data from a particular source (e.g., website), the copyright and terms of668

service of that source should be provided.669

• If assets are released, the license, copyright information, and terms of use in the670

package should be provided. For popular datasets, paperswithcode.com/datasets671

has curated licenses for some datasets. Their licensing guide can help determine the672

license of a dataset.673

• For existing datasets that are re-packaged, both the original license and the license of674

the derived asset (if it has changed) should be provided.675
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• If this information is not available online, the authors are encouraged to reach out to676

the asset’s creators.677

13. New assets678

Question: Are new assets introduced in the paper well documented and is the documentation679

provided alongside the assets?680

Answer: [NA]681

Justification: We do not release new assets.682

Guidelines:683

• The answer NA means that the paper does not release new assets.684

• Researchers should communicate the details of the dataset/code/model as part of their685

submissions via structured templates. This includes details about training, license,686

limitations, etc.687

• The paper should discuss whether and how consent was obtained from people whose688

asset is used.689

• At submission time, remember to anonymize your assets (if applicable). You can either690

create an anonymized URL or include an anonymized zip file.691

14. Crowdsourcing and research with human subjects692

Question: For crowdsourcing experiments and research with human subjects, does the paper693

include the full text of instructions given to participants and screenshots, if applicable, as694

well as details about compensation (if any)?695

Answer: [NA]696

Justification: We do not do research with human subjects.697

Guidelines:698

• The answer NA means that the paper does not involve crowdsourcing nor research with699

human subjects.700

• Including this information in the supplemental material is fine, but if the main contribu-701

tion of the paper involves human subjects, then as much detail as possible should be702

included in the main paper.703

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,704

or other labor should be paid at least the minimum wage in the country of the data705

collector.706

15. Institutional review board (IRB) approvals or equivalent for research with human707

subjects708

Question: Does the paper describe potential risks incurred by study participants, whether709

such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)710

approvals (or an equivalent approval/review based on the requirements of your country or711

institution) were obtained?712

Answer: [NA]713

Justification: The paper does not involve crowdsourcing nor research with human subjects.714

Guidelines:715

• The answer NA means that the paper does not involve crowdsourcing nor research with716

human subjects.717

• Depending on the country in which research is conducted, IRB approval (or equivalent)718

may be required for any human subjects research. If you obtained IRB approval, you719

should clearly state this in the paper.720

• We recognize that the procedures for this may vary significantly between institutions721

and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the722

guidelines for their institution.723

• For initial submissions, do not include any information that would break anonymity (if724

applicable), such as the institution conducting the review.725

16. Declaration of LLM usage726
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Question: Does the paper describe the usage of LLMs if it is an important, original, or727

non-standard component of the core methods in this research? Note that if the LLM is used728

only for writing, editing, or formatting purposes and does not impact the core methodology,729

scientific rigorousness, or originality of the research, declaration is not required.730

Answer: [NA]731

Justification: The core method development in this research does not involve LLMs as any732

important, original, or non-standard components.733

Guidelines:734

• The answer NA means that the core method development in this research does not735

involve LLMs as any important, original, or non-standard components.736

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)737

for what should or should not be described.738
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