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Abstract

Iterative self-improvement, a concept extending beyond per-
sonal growth, has found powerful applications in machine
learning, particularly in transforming weak models into
strong ones. While recent advances in natural language pro-
cessing have shown its efficacy through iterative preference
optimization, applying this approach to Video Large Multi-
modal Models (VLMMs) remains challenging due to modal-
ity misalignment. VLMMs struggle with this misalignment
during iterative preference modeling, as the self-judge model
often prioritizes linguistic knowledge over visual informa-
tion. Additionally, iterative preference optimization can lead
to visually hallucinated verbose responses due to length bias
within the self-rewarding cycle. To address these issues, we
propose Iterative Self-Retrospective Direct Preference Opti-
mization (ISR-DPO), a method that uses self-retrospection
to enhance preference modeling. This approach enhances the
self-judge’s focus on informative video regions, resulting in
more visually grounded preferences. In extensive empirical
evaluations across diverse video question answering bench-
marks, the ISR-DPO significantly outperforms the state of
the art. We are committed to open-sourcing our code, mod-
els, and datasets to encourage further investigation. https:
//github.com/snumprlab/ISR-DPO

1 Introduction
Progress is not achieved by luck or accident, but by
working on yourself daily.

— Epictetus

The human capacity for growth through consistent ef-
fort and repetition is a fundamental principle of personal
development (Dweck 2006). This concept of iterative self-
improvement extends beyond personal growth, finding pow-
erful applications in machine learning to transform weak
models into strong ones, without relying on additional
human-annotated training data (Schapire 1990; Yuan et al.
2024; Burns et al. 2023). Notably, recent advances in natural
language processing (NLP) have demonstrated the efficacy
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Figure 1: Illustration of the proposed ISR-DPO. During
iterative direct preference optimization (DPO) in VLMM,
we select preferences from responses based on not only
video content but also visual context ct, i.e., detailed video
description, to ensure preferences are grounded in video in-
formation. Specifically, we enhance the context in the self-
retrospective manner by leveraging context ct−1 generated
in previous iteration, a process we call self-retrospective
preference modeling. Red indicates irrelevant responses,
while blue indicates accurate, visually-grounded responses.

of iterative preference optimization in aligning Large Lan-
guage Models (LLMs) with human intentions (Yuan et al.
2024; Pang et al. 2024; Chen et al. 2024). This approach
involves constructing increasingly informative preferences
through iterative preference modeling, i.e., LLM-as-a-judge,
leading to progressively better-aligned models.

However, this iterative self-improvement principle for
LLMs poses specific challenges when applied to large mul-
timodal models, particularly Video Large Multimodal Mod-
els (VLMMs). VLMMs suffer from modality misalignment
during iterative preference modeling, where the self-judge
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Figure 2: Example of verbosity hallucination within it-
erative preference modeling cycle for VLMM. At the 1st
iteration, the response is concise and visually grounded (in
blue). By the 9th iteration, the response elaborates further,
referencing explicit text overlays in the video. However, it
starts to include irrelevant details and assumptions as well,
leading to verbosity hallucination highlighted in red.

model tends to rely more on their pre-existing linguistic
knowledge rather than the given visual information (Ahn
et al. 2024; Zhou et al. 2024). This leads to preference data
that are linguistically plausible but less grounded in visual
content. Moreover, iterative training exacerbates the visually
ungrounded verbose response in VLMMs due to the length
bias within the iterative preference modeling cycle, which
favors linguistically longer response during preference se-
lection (Prasann Singhal and Durrett 2023; Park et al. 2024).
As illustrated in Fig. 2, while somewhat longer responses
might enhance the quality of the predicted response, exces-
sively long responses can introduce content irrelevant to the
actual video or question, i.e., verbosity hallucination, with-
out necessarily improving quality.

To address these challenges, we argue that the self-judge
model, i.e., VLMM, should select preferences based on vi-
sual content, rather than being merely linguistically plau-
sible at each iteration. We achieve this visually grounded
self-judgment by drawing inspiration from cognitive science
on human perception (Bransford and Johnson 1972; Kintsch
1988; Anderson 1984), emphasizing the importance of con-
textual information in interpreting visual data. Specifically,
we provide the self-judge with additional video descriptions
generated through a self-retrospective manner as an addi-
tional visual context. This additional information acts as
a focusing mechanism, akin to attention in human cogni-
tion (Bransford and Johnson 1972), enabling the VLMM to
ground its responses more effectively in the video, reducing
the likelihood of generating irrelevant or hallucinated one.

To this end, we propose a simple yet effective itera-
tive self-improvement approach for VLMM: Iterative Self-

Retrospective Direct Preference Optimization (ISR-DPO)
as shown in Fig. 1. This approach helps the self-judge fo-
cus on more informative regions in the video when com-
paring responses, producing more visually grounded prefer-
ences at each iteration. Our empirical studies demonstrate
that our ISR-DPO exhibits superior performance compared
to state-of-the-art VLMMs on various video question an-
swering benchmarks.

We summarize our contributions as follows:

• We propose a novel modality alignment method for video
large multimodal models (VLMMs), utilizing iterative
direct preference optimization (DPO) to align video-text
modalities effectively.

• We enhance AI’s feedback by proposing self-
retrospective preference modeling, which improves
clarity and comprehension in video through the use of
iteratively refined visual context for preference selection.

• We demonstrate the effectiveness of our proposed
ISR-DPO on various video question answering bench-
marks by a noticeable margin.

2 Related Work
Aligning large multimodal models for videos. VLMMs
have achieved notable success in various video comprehen-
sion tasks, such as video temporal understanding (Liu et al.
2023), question answering (Lin et al. 2023), and instruction-
following (Maaz et al. 2024). These models integrate pub-
licly available LLMs (Touvron et al. 2023a,b) with visual en-
coders (Radford et al. 2021) and additional learnable param-
eters (Hu et al. 2022), undergoing Supervised Fine-Tuning
(SFT) (Maaz et al. 2024; Lin et al. 2023; Li, Wang, and Jia
2023) and, more recently, preference optimization (Rafailov
et al. 2023; Zhang et al. 2024a; Ahn et al. 2024). Our work
builds upon these efforts by exploring the application of iter-
ative preference optimization to VLMMs and addressing the
unique challenges related to length bias and visual ground-
ing during preference modeling process.

Iterative preference optimization. Training LLMs with
preference optimization has proven to be an effective ap-
proach to align language models with human intention, im-
proving model performance and reliability. Build upon this
preference optimization, recent efforts have focused on it-
erative preference optimization techniques, which typically
involve iteratively generating feedback data with AI mod-
els themselves, i.e., self-rewarding. Many recent work in the
NLP domain concurrently propose this, where the aligned
model iteratively generates responses and judges its own
outputs to build feedback data and learn from this data with
DPO (Yuan et al. 2024; Pang et al. 2024; Chen et al. 2024).
While these iterative optimization techniques have shown
their effectiveness in LLMs, their application in the multi-
modal domain, particularly for video understanding tasks,
remains largely unexplored. Our work proposes an effective
iterative preference optimization method for VLMMs.

Verbosity bias in preference optimization. Preference
fine-tuning methods such as RLHF, RLAIF, and DPO are



Figure 3: Overview of self-retrospective Direct Preference Optimization (DPO). Each iteration of ISR-DPO involves three
stages: 1) After training iteration t, the latest updated VLMM (πθt ) generates two different responses y1 and y2 for the given
video V and instruction x. In addition, a visual description, i.e., visual context, is generated through self-retrospection, providing
the necessary input for the next stage, as indicated by the black dotted line. 2) Using the information generated in the previous
stage, the model (πθt ) compares its responses(y1 and y2) and classifies the preferred response yw and the rejected response yl.
3) Then, the VLMM (πθt ) is optimized using DPO to update the parameters to πθt+1 .

known to produce responses that are longer than those gen-
erated prior to preference optimization, known as length
bias. This phenomenon stems from a verbosity bias in pref-
erence data, where both human and AI judges tend to fa-
vor longer responses (Prasann Singhal and Durrett 2023;
Park et al. 2024; Saito et al. 2023). Despite minimal dif-
ferences in length between preferred and rejected responses,
the increase in verbosity is statistically significant (Park et al.
2024). In VLMMs, this length bias can be particularly prob-
lematic. It may result in verbose responses that are linguis-
tically comprehensible but not well-grounded in the visual
content. Addressing length bias in the multimodal setting of
VLMMs remains an open challenge.

3 Iterative Self-Retrospective DPO
To effectively align the multimodalities between video and
text, we propose to use an iterative self-improvement ap-
proach for VLMM. Figure 3 illustrates the overall training
pipeline of our proposed ISR-DPO for one cycle, which ex-
ecutes three stages: 1) generating self-retrospective context
and responses, 2) selecting preferences, and 3) optimization.

During iterative execution, we enhance our model’s abil-
ity to select preferences by conditioning not only the video
content, but also on the visual context generated through
self-retrospection. This additional visual context generates
preferences grounded in the video, improving the alignment
between visual and textual modalities.

3.1 Iterative DPO in VLMM
We denote the current VLMM at the t-th iteration as πθt .
This model generates responses and selects preferences by
itself, thereby constructing the preference data, Dpref

t . With
Dpref

t , we train the subsequent VLMM, denoted as πθt+1 , at
the t+ 1-th iteration.

Initial model. Given a seed preference data annotated
in Zhang et al. (2024a), we conduct preference fine-tuning
using DPO, starting from the SFT model provided from pre-

vious work (Zhang et al. 2024a). This preference fine-tuned
model is referred to as the initial model πθ1 .

Preference modeling. Given the current VLMM πθt , we
generate two different responses for the input video V and
question x using a high temperature hyper-parameter (e.g.,
0.7). This high temperature flattens the token sampling prob-
ability distribution, producing varied responses from the
same input in the current VLMM πθt :

y1 ∼ πθt(V, x), y2 ∼ πθt(V, x).

We then select a better response between two responses
by leveraging the current VLMM to evaluate its own re-
sponses, i.e., VLMM-as-a-judge. In particular, we provide
the VLMM with the visual context ct for enhanced visual
clarity (more detailed in Sec. 3.2). We can present this pref-
erence selection procedure as follows:

(yw, yl) ∼ πθt(V, x, ct, y1, y2),

where y1 and y2 are two sampled responses, yw is the chosen
response, and yl is the rejected response.

After constructing the preference data at t-th iteration as
Dpref

t = {V, x, yw, yl}, we use this dataset to perform pref-
erence optimization on the current VLMM πθt using DPO.
The DPO objective for the current VLMM πθt is represented
as follows:

LDPO(πθt ;πref,t) =

− E(V,x,yw,yl)∼Dpref
t−1

[
log σ

(
β log

πθt(yw | V, x)
πref,t(yw | V, x)

−β log
πθt(yl | V, x)
πref,t(yl | V, x)

)]
,

where πref,t is the current base reference model, β is a
hyper-parameter controlling the deviation from the current
base reference model and σ is the sigmoid function.

Iterative training. Our overall iterative training procedure
follows previous work (Yuan et al. 2024), where a series of



models πθ1 , . . . , πθT is trained sequentially. Each successive
model at iteration of t+ 1 uses preference data Dpref

t gener-
ated by the VLMM at iteration t, defined as follows:

πθt+1 : Training with Dpref
t initialized from πθt ,

where the t-th model πθt generates preference data Dpref
t

through self-judgment.

3.2 Self-Retrospective Preference Modeling
A key aspect of iterative DPO in VLMM involves using a
VLMM as a judge to iteratively select preferences that ac-
curately answer posed questions (Ahn et al. 2024). Specif-
ically, we provide the VLMM with detailed visual descrip-
tions as visual context, generated by the VLMM itself in ad-
dition to the video content for improved visual clarity. More-
over, inspired by humans learning process, we enhance the
visual context in a self-retrospective manner. Just as retro-
spection allows humans to make better decisions by reflect-
ing on the past (Simon 1962; Madaan et al. 2023), we lever-
age previously generated visual context to generate better
context, enhancing the accuracy and relevance of the prefer-
ence selection process, defined as follows:

ct ∼ πθt(V, ct−1),

where ct−1 is the previous visual context at time t− 1.
Using the generated context ct, question x, video V , and

responses {y1, y2}, we classify the chosen yw and rejected
data yl from responses using the current aligned VLMM
πθt , a process we call self-retrospective preference model-
ing, thereby constructing preference data Dpref

t at time t.

4 Experiments
4.1 Experimental Setup
Dataset details. Our training dataset utilizes a fixed set
of 17k video-instruction ({V, x}) pairs from (Zhang et al.
2024a), in contrast to previous works (Yuan et al. 2024;
Chen et al. 2024) that incremented their dataset across it-
erations. For all iterations beyond the initial VLMM πθ1 , we
generate preference dataset Dpref

t at each iteration by gener-
ating new responses and preferences. Following (Maaz et al.
2024; Zhang et al. 2024a), we evaluate our method on two
types of video question answering datasets: one that requires
concise responses, and the other that demands comprehen-
sive answers, across 7 video collections.

Training details. We perform full-parameter fine-tuning
using DPO with 9 total iterations, tripling the previous it-
erative preference optimization approach for LLMs align-
ment (Yuan et al. 2024). All generative processes use spe-
cific prompts. Training is conducted on 8×NVIDIA A100
GPUs (80G). We employ a 7B-sized model for fair compar-
ison with others.

4.2 Quantitative Analysis
In-domain video question answering. As shown in
Tab. 1, ISR-DPO demonstrates consistent performance
gains at each iteration up to the 9th iteration. Moreover, final

Figure 4: Length analysis of preference dataset during
iterative DPO. (a) Average (Avg.) word length of chosen
response |yw| in preference dataset Dpref

t across DPO itera-
tions. Self-rewarding results in longer responses compared
to the ISR-DPO. (b) Ratio of the word lengths of chosen
responses (|yw|) to rejected responses (|yl|). ISR-DPO con-
sistently maintains a lowered ratio compared to the self-
rewarding, indicating reduced response length after opti-
mized. ‘# DPO iteration’ means the number of DPO itera-
tions.

iterated model (πθ9 ), outperforms all previous work across
all video benchmarks in both accuracy and score by a no-
ticeable margin. We attribute this performance improvement
to the better alignment of video modality provided by the
proposed iterative retrospective judgment for VLMMs.

Out-domain video question answering. For evaluating
out-domain video question answering, we use two types of
datasets. Tables 2 and 3 show the comparative results for
datasets that require complex answers and concise keyword
answers, respectively. The final iterated model of ISR-DPO
(πθ9 ) outperforms the previous work by a large margin in
both cases, demonstrating its effectiveness in generating
both detailed and precise responses. This model also shows
consistent performance improvements at each iteration, as
shown in Tables 2 and 3.

4.3 Detailed Analysis
To evaluate the effectiveness of ISR-DPO, we address the
following research questions, specifically exploring the ef-
fect and design of visual context:
• RQ1: What are the effects and benefits of visual context

during iterative DPO?
• RQ2: How should the visual context be designed?

In particular, we compare ISR-DPO with self-
rewarding (Yuan et al. 2024), which serves as our
baseline for adopting iterative DPO in VLMMs without
self-retrospective context.

Effect of visual context during iterative process Fig-
ure 4 demonstrates the effect of including visual con-
text during preference selection. As shown in Fig. 4-(a),
ISR-DPO generates shorter chosen responses compared
to self-rewarding as training iterations progress. Similarly,
Fig. 4-(b) shows a lower ratio of chosen to rejected response



Methods ActivityNet-QA VIDAL-QA WebVid-QA
Acc. Score Acc. Score Acc. Score

Video-ChatGPT (Maaz et al. 2024) 34.17 2.19 29.35 2.10 38.88 2.27
LLaMA-VID (Li, Wang, and Jia 2023) 36.54 2.27 30.58 2.15 36.99 2.24
Chat-UniVi (Jin et al. 2023) 39.35 2.32 31.40 2.16 40.05 2.31
Video-LLaVA (Lin et al. 2023) 41.35 2.38 34.30 2.24 42.47 2.39
VLM-RLAIF† (Ahn et al. 2024) 53.27 2.56 44.82 2.40 53.69 2.62
PLLaVA† (Xu et al. 2024) 48.44 2.50 42.45 2.39 53.55 2.59
LLaVA-NeXT-DPO† (Zhang et al. 2024b) 68.05 2.88 61.52 2.72 73.35 3.00
LLaVA-Hound-DPO (Zhang et al. 2024a) 76.62 3.18 70.06 3.04 79.82 3.29

ISR-DPO (πθ1 ) 75.58 3.14 70.07 3.02 80.74 3.28
ISR-DPO (πθ5 ) 81.62 3.25 77.33 3.10 86.92 3.39
ISR-DPO (πθ9 ) 82.99 3.26 79.00 3.13 88.11 3.40

Table 1: Quantitative comparison between different VLMMs on in-domain video question answering with detailed cap-
tions as supporting evidence proposed in Zhang et al. (2024a). Our final iterated model of ISR-DPO (πθ9 ) consistently
outperforms all other models in both accuracy and score across these benchmarks, demonstrating superior performance in in-
domain video question answering tasks. The best results are bold and the second-best results are underlined. †: reproduced by
the authors’ implementation. All results except † are directly sourced from Zhang et al. (2024a).

Methods MSVD-QA MSRVTT-QA TGIF-QA SSV2-QA
Acc. Score Acc. Score Acc. Score Acc. Score

Video-ChatGPT (Maaz et al. 2024) 34.06 2.20 25.65 1.98 31.35 2.09 19.36 1.75
LLaMA-VID (Li, Wang, and Jia 2023) 34.14 2.21 25.02 1.99 27.18 2.00 22.16 1.84
Chat-UniVi (Jin et al. 2023) 35.61 2.23 25.89 2.01 33.23 2.13 20.59 1.79
Video-LLaVA (Lin et al. 2023) 39.46 2.37 30.78 2.15 32.95 2.18 24.31 1.90
VLM-RLAIF† (Ahn et al. 2024) 51.16 2.55 41.44 2.30 46.52 2.41 29.78 1.94
PLLaVA† (Xu et al. 2024) 48.92 2.53 38.26 2.28 43.83 2.40 30.92 2.07
LLaVA-NeXT-DPO† (Zhang et al. 2024b) 65.08 2.82 59.12 2.65 60.80 2.70 40.14 2.24
LLaVA-Hound-DPO (Zhang et al. 2024a) 73.64 3.12 68.29 2.98 74.00 3.12 48.89 2.53

ISR-DPO (πθ1 ) 74.33 3.12 68.18 2.96 73.57 3.10 48.91 2.52
ISR-DPO (πθ5 ) 79.63 3.19 74.07 3.05 77.52 3.12 53.13 2.57
ISR-DPO (πθ9 ) 80.36 3.20 75.42 3.05 78.58 3.12 54.66 2.59

Table 2: Quantitative comparison between different VLMMs on out-domain video question answering with detailed
captions as supporting evidence proposed in Zhang et al. (2024a). Our final iterated model of ISR-DPO (πθ9 ) consistently
outperforms all other models in both accuracy and score across these benchmarks, demonstrating superior performance in out-
domain video question answering tasks. The best results are bold and the second-best results are underlined. †: reproduced by
the authors’ implementation. All results except † are directly sourced from Zhang et al. (2024a).

lengths in ISR-DPO. We posit that dual conditioning on
video content and visual context during preference selec-
tion enables the VLMM to select preferences based on video
information rather than length bias. This results in a lower
chosen-to-rejected preference ratio and shorter, more con-
cise responses from the VLMM, as illustrated in Fig. 5.

Moreover, we compare the 9th iteration model’s re-
sponses between self-rewarding and ISR-DPO to validate
the effectiveness of visual context, as in Yuan et al. (2024).
In particular, we use GPT-4 as the evaluator by selecting
the response closest to the ground truth, assessing win-
rates. Figure 6 shows the win-rate between self-rewarding
and ISR-DPO across all benchmarks, demonstrating the ef-
fectiveness of ISR-DPO. Notably, despite generating more

concise responses (Fig. 5), ISR-DPO consistently achieved
higher winning rates across all benchmarks. This provides
evidence of ISR-DPO’s effectiveness at conveying more
relevant and accurate information within concise responses,
mitigating verbosity hallucinations.

Effect of visual context on human alignment. To eval-
uate the impact of visual context on judgment quality, we
assess the correspondence between AI models’ preferences
and those of human annotators, following Lee et al. (2023).
As shown in Tab. 4, ISR-DPO demonstrates a higher human
alignment accuracy (75.0 %) compared to self-rewarding
(59.0 %), suggesting that the incorporation of visual con-
text enhances the model’s ability to make human-like as-
sessments.



Methods MSVD-QA MSRVTT-QA TGIF-QA
Acc. Score Acc. Score Acc. Score

Video-ChatGPT (Maaz et al. 2024) 68.6 3.8 58.9 3.4 47.8 3.2
Chat-UniVi (Jin et al. 2023) 70.0 3.9 53.1 3.1 46.1 3.1
VideoChat2 (Li et al. 2024) 70.0 3.9 54.1 3.3 - -
Video-LLaVA (Lin et al. 2023) 71.8 3.9 59.0 3.4 48.4 3.2
LLaMA-VID (Li, Wang, and Jia 2023) 72.6 3.9 58.7 3.4 49.2 3.3
PLLaVA† (Xu et al. 2024) 78.8 4.0 65.6 3.4 57.9 3.5
LLaVA-NeXT-DPO† (Zhang et al. 2024b) 78.6 4.0 63.4 3.1 58.2 3.4
VLM-RLAIF† (Ahn et al. 2024) 81.0 4.2 69.2 3.7 62.3 3.5
LLaVA-Hound-DPO (Zhang et al. 2024a) 80.7 4.1 70.2 3.7 61.4 3.5
ISR-DPO (πθ1 ) 80.1 4.1 69.8 3.6 61.0 3.4
ISR-DPO (πθ5 ) 84.8 4.3 76.0 3.8 66.8 3.5
ISR-DPO (πθ9 ) 85.8 4.3 78.7 3.9 67.8 3.5

Table 3: Comparison of different VLMMs on out-domain video question answering benchmark (Maaz et al. 2024).
ISR-DPO (πθ9 ) outperforms previous work across three video question answering datasets. Best results in bold, second-best
underlined. †: reproduced with the authors’ implementation. eOther results are directly sourced from Zhang et al. (2024a).

Figure 5: Average (Avg.) response word length between self-rewarding and ISR-DPO on various video question answer-
ing benchmarks. ISR-DPO yields compact and concise responses at the same iteration compared to self-rewarding.

Figure 6: Head-to-head performance comparison at 9th
iteration. ISR-DPO consistently outperforms the self-
rewarding across benchmarks.

Various design choices for visual context. We examine
various design choices for visual context in Tab. 5: (1) with-
out context (‘N/A’), (2) Fixed context from the first itera-

Task Human Alignment Accuracy (%)
Self-rewarding ISR-DPO

Preference selection 59.0 75.0

Table 4: Human annotator alignment accuracy for pref-
erence selection. We measure human alignment accuracy
to evaluate the amount of correlation between human and
aligned models, i.e., self-rewarding vs. ISR-DPO.

tion (‘Fixed’), (3) New context at each iteration (‘Renew’)
and (4) Self-retrospective context (‘Self-retro.’). The ‘Self-
retro.’ consistently performs the best, leveraging and refin-
ing previous context while adding details with improved
video understanding (Fig. 7). Interestingly, ‘Fixed’ outper-
forms ‘Renew’ in most benchmarks, except for MSRVTT.
For SSv2 and WebVid, ‘Renew’ even performs worse than
‘N/A’. We hypothesize that ‘Renew’ may introduce incon-



Context
Design

Out-of-domain Video QA Benchmark In-domain Video QA Benchmark
MSVD MSRVTT TGIF SSV2 ActivityNet VIDAL WebVid

Acc. Score Acc. Score Acc. Score Acc. Score Acc. Score Acc. Score Acc. Score

N/A 78.73 3.14 73.42 3.00 77.10 3.09 54.34 2.56 81.96 3.23 76.71 3.09 87.24 3.39
Fixed 79.17 3.15 74.35 3.02 77.88 3.09 54.29 2.57 82.25 3.24 77.90 3.12 87.49 3.39
Renew 79.49 3.19 74.04 3.04 77.63 3.12 53.03 2.56 82.03 3.26 77.73 3.12 86.68 3.38
Retrospective 80.36 3.20 75.42 3.05 78.58 3.12 54.66 2.59 82.99 3.26 79.00 3.13 88.11 3.40

Table 5: Quantitative comparison of various designs for generating visual context. ‘N/A’ indicates no use of context,
‘Fixed’ uses context generated in the first iteration for all subsequent iterations, ‘Renew’ generates new context each iteration,
and ‘Retrospective.’ employs a self-retrospective context.

Figure 7: Visualization of predicted context over it-
eration. Generated context becomes increasingly well-
grounded over iteration. Red indicates irrelevant responses,
while blue indicates accurate, visually-grounded responses.

sistent focus in the video across iterations, potentially caus-
ing attention to irrelevant details. These findings suggest that
a methodical approach to context renewal, such as our ‘Self-
retro.’, is crucial for maintaining focus on relevant content,
thereby improving proper preference modeling.

4.4 Qualitative Analysis
Enhanced visual context over iteration. To show the im-
proving nature of self-retrospective context, we visualize the
generated context as shown in Fig. 7. As training iterations
progress, the context adds more and more detailed visual in-
formation about the video, such as specific species of gold-
fish. This improved context aids the overall understanding of
the video content to improve preference selection process.

Comparison of self-rewarding vs. ISR-DPO. Figure 8
compares the responses of self-rewarding, i.e., ISR-DPO
w/o visual context, and ISR-DPO for 9th iterated models.
The self-rewarding tends to produce longer responses, but as
sentences progress, they become less relevant to the question
and visual content. Also, it fails to recognize the athlete’s

Figure 8: Qualitative comparison of self-rewarding vs.
ISR-DPO. The figure contrasts descriptions generated
without visual context, i.e., self-rewarding (upper), against
those with visual context, i.e., ISR-DPO (bottom), at the
9th iteration. Visual context results in more accurate, con-
cise, and relevant descriptions. Red indicates irrelevant re-
sponses, while blue indicates well-grounded responses.

jumping motion accurately. In contrast, ISR-DPO generates
more concise and accurate responses that are well-grounded
in the video content.

5 Conclusion
We present ISR-DPO, a novel iterative direct preference
optimization for VLMMs that enhances the instruction-
following ability for videos. In particular, we propose self-
retrospective preference modeling to improve VLMM’s ca-
pability to judge visually grounded preferences. By doing
so, ISR-DPO mitigates the model’s problematic inclination
for visually ungrounded verbosity in judging preferred re-
sponse, leading to more concise and visually grounded re-
sponses. Empirical evaluations across various video ques-
tion answering benchmarks demonstrate ISR-DPO’s supe-
rior performance compared to the state of the art VLMMs.
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7 Additional Input Prompts for Preference
Dataset Generation

In the process of generating our preference dataset, we em-
ploy specific additional input prompts for each stage. Figure
9 illustrates three types of input prompts used in this process:
1) response generation, 2) self-retrospective context genera-
tion, and 3) preference judgment. The ‘Prompt (response)’
defines the guideline for VLMM’s responses and is used
consistently throughout all stages of data generation. The
‘Prompt (context)’ demonstrates the prompt used to generate
a context based on the previous context. Lastly, the ‘Prompt
(judge)’ presents the prompt used for preference judgment
using the current Video Large Multimodal Model (VLMM).

8 Details on Head-to-Head Comparison with
GPT-4 Evaluator

We evaluate the generated response quality of the ISR-DPO
compared to self-rewarding (Yuan et al. 2024) through a
head-to-head comparison (Yuan et al. 2024). Specifically,

we prompted GPT-4 to determine which of the two re-
sponses is superior across in-domain and out-of-domain
video question answering benchmarks. The evaluation fo-
cused on two key aspects: 1) the relevance of model’s an-
swer to the provided instruction, and 2) the accuracy of the
response in relation to the ground-truth answer. We visualize
a detailed prompt in Fig. 10.

9 Details on Human Evaluation for Human
Preference Alignment

We conduct a human evaluation to measure how well the
AI-generated preferences align with human preferences, fol-
lowing the approach of Lee et al. (2023). We randomly sam-
ple 100 questions from the validation set of video question-
answering dataset (Xu et al. 2017). We then recruit 15 anno-
tators per question through the Amazon Mechanical Turk
platform. Annotators are presented with a video, an in-
struction, and two versions of responses generated from our
ISR-DPO. Specific instructions and examples of the ques-
tions given to the annotators can be found in Fig. 11.

10 More Qualitative Results
In Fig. 12, we present additional examples comparing re-
sponses generated by self-rewarding and our ISR-DPO.
Well-grounded phrases are highlighted in blue, while mis-
aligned or irrelevant phrases are marked in red. Compared to
self-rewarding, our approach reduces the occurrence of mis-
aligned and overly verbose sentences. For instance, in the
beach soccer example, our method accurately identifies the
team colors as blue and orange without unnecessary elabo-
ration. These examples demonstrate how our ISR-DPO re-
duces verbosity hallucination, generating more concise and
relevant responses.

11 Performance Over Training Iterations
In Fig. 13, we demonstrate the effectiveness of ISR-DPO
across training iterations using various video question an-
swering benchmarks for evaluation. Overall, the perfor-
mance improves as we increase the number of training itera-
tions, with the exception of the MSR-VTT dataset at the 7th
iteration. However, we can observe that the performance re-
covers and improves again in subsequent training iterations
up to the 9th iteration.



Prompt (context) 
Given the provided video and the previously predicted description of the video, your task is to generate an 
enhanced description of the video clip. The generated description should provide a comprehensive 
understanding of the video's content while forming a coherent story. 
Note that the previous description might include irrelevant or inappropriate words. Thus, you don't have to 
include all the contents in the previous description. Focus on generating new description with improved 
accuracy and detail, while it concise as possible and comprehensive. 
-------------------------------------------------- 
Consider the following aspects while generating the description: 
(1) Unwavering Accuracy: The AI must consistently provide accurate and verifiable information in its 
responses. 
(2) Consistent Calibration: The AI should ensure that its confidence assertions align with its actual 
accuracy, reflecting genuine knowledge estimation. 
(3) Transparent Uncertainty Expression: When uncertain, the AI should transparently express its level of 
uncertainty, ensuring users are never misled by vague or overly confident statements. 
(4) Honest Self-representation: The AI must be forthright about its own capabilities and should not feign 
expertise or knowledge it doesn't possess. 
(5) Additional guidelines: 

  1) Clarify the predicted answer by avoiding issues such as repetition, unclear descriptions, or any 
grammatical errors that could hinder understanding. 

  2) Address inconsistencies to ensure accuracy and alignment with the video's content. 

  3) Generate a description concisely. 
-------------------------------------------------- 
Previous description: 

-------------------------------------------------- 
Now, generate the improved description below. 
Improved description:

<PREVIOUS CONTEXT> 

Prompt (response)

A chat between a curious human and an artificial intelligence assistant. 

The assistant gives helpful, detailed, and polite answers to the human's questions.

Prompt (judge) 
Considering given video, question and description about the video, select the most preferred (least 
wrong) answer for the question.  

Inputs: 
 1. Question, the question queried to the AI system 
 2. Answer1, the first answer prediction from the AI system 
 3. Answer2, the second answer prediction from the AI system 
 4. Video description, the overall description about the given video in the form of a paragraph 
           
Based on the provided definition, please select the preferred answer (Answer1 or Answer2) for the 
given instruction (Question) and provide a concise explanation for choosing it as the correct one. 
When generating the explanation, please provide valid justifications without simply mentioning the 
answer itself.  

Your answer should be formatted as: 
Choice: 
Explanation:  

Now provide your answer in this situation: 
Question: 
Answer1: 
Answer2: 
Description: 
 When generating output, you should consider the visual situation provided and include either 
'Answer1' or 'Answer2' in your generated output.

<QUESTION> 
<PREDICTION A> 
<PREDICTION B> 

<RETRO CONTEXT> 

Figure 9: Various input prompts for constructing preference dataset. This shows various input prompts: the upper part for
generating two responses, the center part for context generation based on previous context, and the bottom part for preference
judgment using the VLMM from the latest iteration.



Given the following inputs:



1. **Question Related to the Caption**: 
2. **Ground Truth Answer**: 
3. **Response1**: 
4. **Response2**: 

Your task is to evaluate which of two model's outputs is better, based on 
the ground truth answer and the question. Consider the following criteria 
for evaluation:

You must choose either Response1 or Response2 as better than the other.



- **Relevance**: Does the predicted answer directly address the question 
posed? The response should not contain uncorrelated sentences with 
respect to the question. For example, if the question asks about the man in 
the video, only describe about the object and not the background, 
atmosphere, etc.

- **Accuracy**: Compare the predicted answer to the ground truth answer. 
Does the prediction accurately reflect the information given in the ground 
truth answer without introducing factual inaccuracies?

Note: For answering Choice, you should respond with either Response1, 
Response2 or Tie. DO NOT PROVIDE ANY EXPLANATION. Except when 
unavoidable, please avoid using Tie and choose either Response1 or 
Response2.



**Output Format**:

Choice: <choice of better response: 1 for Response1, 2 for Response2 and 
3 for Tie>

{Question}

{Answer}


{Prediction1}

{Prediction2}



Figure 10: Evaluation criteria provided to GPT-4. To compare the generated responses of self-rewarding and ISR-DPO, we
prompted GPT-4 to choose better response regrading two criteria: Relevance and precision.



Task: 

As an annotator, your task is to evaluate two AI-generated responses to a question related to a specific video and 
its caption. You must choose the response in relation to the question asked and the information available in the 
video,  that better fulfills the criteria described below. Use the information available in the visualized video frames 
and the provided ground-truth answer to assess the response.  



Criteria for Evaluation: 

1. Accuracy: Assess whether the response accurately answers the question, adhering closely to the content and 
context provided by the video. The ideal response should precisely reflect the intent and factual content of the 
ground-truth answer. Avoid selecting responses that introduce information not present in the video and ground-
truth. The response should not speculate, assume, or create unfounded details, regardless of their plausibility. 
Conciseness  



2. Relevance: The response should directly address the question without including unnecessary sentences or 
digressions. Check that the response maintains relevance to the question throughout. Responses should not only 
start relevantly but should also maintain this focus until the end. 	- e.g.) If the question concerns "What is the 
man’s attire?", penalize responses that wander into discussing irrelevant details such as the overall atmosphere 
of the video, weather conditions, etc., unless these elements are quite relevant to the question.  



3. Sentence Structure: The response should be well-structured and easy to understand. It should use clear 
language and logical sequencing of ideas. Avoid responses that are ambiguous or poorly constructed, as these 
can lead to misinterpretation of the information.   



Procedure (FYI): 

- Read the question provided. 

- Read the ground-truth answer and understand the specific focus of the question. 

- Review both AI-generated responses. 

- If there are additional information that is hard to fact-check with ground-truth caption, check the visualized 
video frames to decide wheter the information is correct. 

- Review both AI-generated responses. 

- Select the response that best meets the criteria overall.  



Notes: 

In cases where both responses seem equally valid, consider subtle differences in tone, the precision of language, 
and the logical flow of ideas. Remember that the ultimate goal is to select the response that best serves a user 
seeking information about the video and question posed, reflecting both the content and spirit of the source 
material. Your careful analysis and selections are crucial in helping improve the accuracy and usability of AI-
generated content. Thank you for your diligent efforts in this task.

Figure 11: Evaluation criteria provided to Amazon Mechanical Turk annotators. We carefully instructed the annotators
to penalize the outputs that include unaligned contents with the provided video, or the answer that contains overly verbose
sentences that deviates from the question’s purposes.



The individual in the video is wearing 
 during 

such operations. The protective gear suggests that the individual is 
taking necessary precautions to shield themselves from the intense 

. The gear is 
typical for welding tasks, ensuring the individual's safety while 
performing the work.

protective gear, including a 
welding helmet and gloves, which are essential for safety

light and potential hazards of the welding process

Question:   What is the attire of the teams playing in the 
beach soccer match?

Self-Rewarding (Yuan et al., 2024)

Self-Rewarding (Yuan et al., 2024)

Self-Rewarding (Yuan et al., 2024)

ISR-DPO (Ours)

The teams playing in the beach soccer match are dressed in 
, making it easy to 

distinguish between the two sides. The players are wearing team 
uniforms that are typically 

 and the physical nature of the sport. The colors of the 
uniforms are vibrant and likely represent their respective teams, 
with one team wearing lighter colors and the other in darker hues. 

.

distinctive attire that contrasts with each other

shorts and jerseys, suitable for the beach 
environment

The attire is appropriate for the sport and the setting, allowing for 
ease of movement and comfort during the match

The teams are wearing two distinct kits, with one team in blue and 
the other in orange.

Ground-Truth

The teams playing in the beach soccer match are dressed in 
distinctive team colors, with 

. Their attire is appropriate for beach sports, consisting 
of , which allow for agility and 
comfort during the game. The players' uniforms are vibrant and 

, making it easy to distinguish between the two teams.

one team wearing blue and the other 
in orange

shorts and T-shirts or jerseys

contrasting

The individual in the video is wearing a welding helmet and gloves 
as protective gear.

The individual in the video is wearing 
 with a darkened visor to shield their face 

from the intense light and sparks,  to protect their hands, and 
a long-sleeved shirt to safeguard their skin from burns. The gear is 
designed to protect the welder from the hazards of the welding 
process. 

The helmet is 
also equipped with a face shield to ensure the welder's face is fully 
protected.

protective gear appropriate for 
welding, including a helmet

gloves

The protective clothing is primarily dark in color, likely 
chosen for its durability and ability to absorb heat. 

Question:   What kind of protective gear is the individual 
wearing in the video?

ID : v__4oBeoCuU7M-Scene-005_0 

ISR-DPO (Ours)

Ground-Truth

The weight of the discus being thrown is 1.5kg according to visible 
text annotations.

The weight of the discus being thrown is prominently 
, with text overlays indicating the weight of the discus at 

various points during the throw. The discus is thrown with a specific 
weight in mind, which is crucial for the performance and technique 
of the athlete. The 

. These weights 
are significant as they provide context for the athlete's strength and 
the technical requirements of the throw.

displayed in 
the video

weight of the discus being thrown is 5 kg, 5.5 kg, 
and 6 kg, as shown in the text overlays in the video

The weight of the discus being thrown is
 

These details provide viewers with information about the weight of 
the discus being used in the throw.

 indicated by text overlays 
in the video, which specify the weight of the discus as "1.5kg".

Question:   What is the weight of the discus being 
thrown?

ISR-DPO (Ours)

Ground-Truth

Triangular yellow tortilla chips are arranged in a circular pattern on 
the white round plate in the video.

The chips arranged on the white round plate in the video are 
, which are commonly known for their crisp texture and 

mildly salty flavor. They are typically made from cornmeal and 
appear to be of a standard size and shape, commonly found in 
snack bags or served at casual dining establishments. 

yellow 
corn chips

The chips 
are arranged in a way that suggests they are ready to be dipped or 
eaten with the cheese sauce.

The chips arranged on the white round plate in the video appear to be 
, which are commonly used as a dipping medium for such 

sauces. They have a  hue, 
indicative of being fried and seasoned. These chips are typically made 
from cornmeal and are a popular accompaniment to dips and sauces.

tortilla chips
triangular shape and a golden-yellow

Question:   What kind of chips are arranged on the 
white round plate in the video?

Self-Rewarding (Yuan et al., 2024)

ISR-DPO (Ours)

Ground-Truth

Figure 12: More qualitative example of prediction from self-rewarding vs. ISR-DPO. We compare responses generated at
the 9th iteration for both models. Integrating visual context leads to more accurate, concise, and relevant descriptions that align
more closely with the ground-truth answer. Red indicates irrelevant or wrong responses, while blue indicates well-grounded
responses.



SSv2TGIFMSR-VTTMSVD

WebVidVIDALActivityNet

Figure 13: Accuracy of ISR-DPO over iterations on video question answering benchmarks. Overall, our ISR-DPO con-
sistently improves its performance over DPO iteration. In-domain datasets: Activity-Net, VIDAL and WebVid, Out-domain
datasets: MSVD, MSR-VTT, TGIF and SSv2 used in Zhang et al. (2024a).


