
Under review as submission to TMLR

On the Importance of Uncertainty in Decision-Making with
Large Language Models

Anonymous authors
Paper under double-blind review

Abstract

We investigate the role of uncertainty in decision-making problems with natural language
as input. For such tasks, using Large Language Models as agents has become the norm.
However, none of the recent approaches employ any additional phase for estimating the
uncertainty the agent has about the world during the decision-making task. We focus on a
fundamental decision-making framework with natural language as input, which is the one of
contextual bandits, where the context information consists of text. As a representative of the
approaches with no uncertainty estimation, we consider an LLM bandit with a greedy policy,
which picks the action corresponding to the largest predicted reward. We compare this
baseline to LLM bandits that make active use of uncertainty estimation by integrating the
uncertainty in a Thompson Sampling policy. We employ different techniques for uncertainty
estimation, such as Laplace Approximation, Dropout, and Epinets. We empirically show
on real-world data that the greedy policy performs worse than the Thompson Sampling
policies. These findings suggest that, while overlooked in the LLM literature, uncertainty
improves performance on bandit tasks with LLMs.

1 Introduction

0 500 1000 1500 2000 2500 3000
Observed data points

0.150

0.175

0.200

0.225

0.250

0.275

0.300

0.325

0.350

Av
er

ag
e

re
gr

et

Greedy
Diag. LA TS
Last LA TS
Dropout TS
Epinet TS

Figure 1: Average regret obtained on toxic content
detection bandit task.

Large language models (LLMs) have emerged as
a dominant paradigm in natural language process-
ing (Ouyang et al., 2022; OpenAI, 2023), achiev-
ing state-of-the-art performance across a wide range
of tasks (Rae et al., 2021). To reach this progress,
LLMs have pushed model scale and dataset size to
unprecedented levels. By optimizing such immense
models exclusively to predict text, perhaps surpris-
ingly, LLMs have achieved strong performance on a
broad range of datasets and tasks (Bubeck et al.,
2023), including translation, question-answering,
and dialogue.

In parallel, many critical real-world systems are in-
creasingly relying on these models to make decisions
(Yang et al., 2023b), where the consequences of a
particular action are typically reflected by a reward
signal. This usually works by fine-tuning an LLM
to serve as a reward model, where we try to teach the network to predict the mean reward for each action.
A common way of using this model to make decisions is to use the predictions greedily (Riquelme et al.,
2018), taking the action with the greatest estimated reward. However, this approach ignores the fact that
reward estimates may be inaccurate, which can lead to never-ending pathological behavior (Russo et al.,
2018). On the other hand, the literature on contextual bandits (Wang et al., 2005) provides a principled
approach to deal with inaccurate reward estimates in a decision-making task. A popular modelling tool for
doing this in the Bayesian framework is to maintain a probabilistic reward model that relies on two separate

1

Under review as submission to TMLR

notions of uncertainty: epistemic and aleatoric. Epistemic uncertainty is the one that reflects the fact that
we have not yet seen enough fine-tuning data to estimate the mean reward well, while aleatoric uncertainty
reflects the irreducible noise associated with observing a reward. When such a reward model is coupled
with an action-selection algorithm like Thompson Sampling (Thompson, 1933), high-quality estimates of
epistemic uncertainty can be leveraged to produce a better balance between exploration and exploitation in
the decision-making task, evidenced by lower regret. In this paper, we want to investigate the importance
of employing epistemic uncertainty models in decision-making tasks with natural language and LLMs. In
particular, we focus on one of the most fundamental decision-making tasks with natural language as in-
put: contextual bandits. In a contextual bandit problem, the agent must continually take actions based on
observed context, which in our case is text, and observes the reward only for the chosen action. This frame-
work is applicable to a myriad of real-world scenarios. As a concrete example application, let us consider the
problem of automated content moderation on online platforms (Gorwa et al., 2020; Vaccaro et al., 2020; Ma
& Kou, 2021; Avadhanula et al., 2022). In this scenario, users post comments and the agent decides whether
to publish each comment. The user comments serve as the context, in text form. The agent takes an action
(e.g. “publish” or “not publish”) based on the context. After acting, the environment provides the reward
only for the selected action, which the agent uses to update its policy. For example, if the agent publishes
a toxic comment, it receives a large negative reward since other users will report the comment. Instead,
if the agent does not publish a comment, it receives a neutral reward regardless of the comment’s content,
since the comment is not seen. To learn effectively in this setting, the agent must balance exploration and
exploitation. In this paper, we study the contextual bandit scenario empirically, combining the insights
from the LLM and bandit communities. The greedy approach outlined above is our main baseline and was
chosen for its simplicity and ease of implementation. We benchmark it against approximate Bayesian models
coupled with the Thompson Sampling algorithm for action selection. Since Thompson Sampling requires
epistemic uncertainty to be of high quality to work well, we investigate several different approaches of doing
so. Specifically, we compare techniques for epistemic uncertainty estimation that can be scaled up to be
used with current LLMs. These are the Laplace Approximation (Daxberger et al., 2021), Dropout (Gal &
Ghahramani, 2016) and Epinets (Osband et al., 2023a). We show that all our TS policies significantly and
consistently outperform the greedy baseline on a real-world bandit benchmark. A preview of the results is
shown in Figure 1. These findings suggest that, while often overlooked in the LLM literature, epistemic
uncertainty improves performance on bandit tasks with LLMs.

Contributions

• We provide a comprehensive empirical study of LLM-based contextual bandits;

• We adapt existing neural epistemic uncertainty estimation techniques to LLMs. In particular, we
identify the best variant of the Laplace approximation and dropout to use, and we show one possible
epinet architecture that can also tackle this task;

• We empirically show on real-world data that the greedy policy is sub-optimal, and that epistemic
uncertainty is helpful in contextual bandit problems with text data.

To the best of our knowledge, this is the first time that such an empirical analysis on bandit learning with
LLMs has been provided. This empirical evaluation sheds light on critical aspects of LLMs, such as their
performance on decision-making tasks and the importance of epistemic uncertainty for those models.

2 Preliminaries

In this section, we describe the problem statement, and then we introduce the topic of uncertainty in Machine
Learning models.

2.1 Batch Contextual Bandit problem

The contextual bandit problem is a sequential decision-making framework where an agent interacts with
an environment over a number of time steps. In particular, we focus on the more general case where, for

2

Under review as submission to TMLR

each time step, we observe a batch of contexts and the agent has to select a batch of actions (Kandasamy
et al., 2018). Let us call the total number of time steps T . At each time step t = 1, 2, . . . , T , the agent
observes a batch of contexts, which we denote with x1

t , . . . , xB
t . Each context xb

t contains useful information
that should be used to solve the task. In this paper, we focus on decision-making problems driven by text.
Hence, in this case, each context xb

t consists of text information. The agent then uses the observed data
until now, which we call D, to select an action ab

t from a set A of K possible actions, conditioned on the
given context xb

t with b ∈ {1, . . . , B}. For each selected action ab
t , the agent receives a reward rb

t , that
depends on the context xb

t and action ab
t . At the end of the time step, we have observed a set of tuples

that we denote as Dt = {(x1
t , a1

t , r1
t), . . . , (xB

t , aB
t , rB

t)}. This set of tuples is added to the observed dataset
D ← D ∪ Dt. The aim of the agent is to learn a policy that minimizes the regret over the T time steps.
We define the average regret as the difference between the cumulative reward from the learned policy and
the cumulative reward from an optimal policy, all divided by the number of time steps. We define the
optimal policy π∗ as the policy that, within the considered policy space Π, maximizes the expected reward:
π∗ = arg maxπ∈Π ExEa∼π(·|x) [r(x, a)]. Let us call r∗

t the expected rewards obtained by the optimal policy
at any time step t. We can define the average regret as follows:

RT = 1
T

T∑
t=1

(
r∗

t −
1
B

B∑
b=1

rb
t

)
.

Since we focus on bandits with text information as contexts, we would like to use the state-of-the-art natural
language processing capabilities of pre-trained LLMs and build bandit policies based on these models. We
will explain in more detail how to design such deep bandits in Section 3.

2.2 Aleatoric and Epistemic Uncertainty in Machine Learning

In the field of machine learning, the concept of uncertainty plays a crucial role in both model interpretation
and reliability. A common framework to characterize uncertainty, given a particular model class, is to catego-
rize it into two types: aleatoric and epistemic. Aleatoric uncertainty arises from the inherent randomness in
the data or the environment. It represents the variability in the outcome that cannot be reduced even if more
data is provided. Hence, this type of uncertainty is irreducible and intrinsic to the current task or dataset.
On the other hand, epistemic uncertainty stems from the lack of knowledge. This type of uncertainty is
reducible by collecting more data. It reflects the uncertainty in the model parameters due to limited data
or limited model capacity.

As a concrete example, consider a contextual bandit setting with observed data D = {(x1, a1, r1), . . .} and
a parametric model fθ(x, a) that we wish to train to predict expected reward given context and action,
with parameters θ. In this regression setting, a common approach to model the aleatoric uncertainty is to
assume that there is additive noise in the rewards: r = E[r] + ϵ, where the noise is distributed according to
a generic distribution ϵ ∼ P (ϵ). A simple but effective choice is to set the noise distribution to be Gaussian:
ϵ ∼ N (0, σ2

obs), where σ2
obs is the observation variance. This kind of uncertainty is independent of the model,

so it is irreducible even with infinite data.

Epistemic uncertainty, instead, stems from uncertainty in the model parameters θ. A principled Bayesian
approach is to maintain a posterior distribution over the parameters, P (θ|D), that is updated as new data
arrives. The posterior covariance quantifies epistemic uncertainty. As the dataset grows, the posterior
distribution becomes more peaked, reducing the epistemic uncertainty.

Maintaining a posterior over θ allows the model to “know what it does not know”, critical for balancing explo-
ration and exploitation in bandits. We will expand on using Bayesian techniques for principled exploration
in Section 3.

3 Large Language Model Bandits

In this section, we describe how to build bandit agents with pre-trained Large Language Models.

3

Under review as submission to TMLR

Algorithm 1 Greedy
Require: Bandit model fθ.

1: Initialize D ← ∅
2: for time t = 1, . . . , T do
3: Observe contexts x1

t , . . . , xB
t .

4: for b = 1, . . . , B do
5: Select ab

t = arg maxa fθ(xb
t , a).

6: Observe reward rb
t .

7: end for
8: Create Dt = {(x1

t , a1
t , r1

t), . . . , (xB
t , aB

t , rB
t)}

9: Add to the observed dataset D ← {D1, . . . ,Dt}.
10: Update the parameters θ training on the observed data D minimizing Eq. 3.
11: end for

We approach the contextual bandit problem with a regression model. Specifically, we train a model to
predict the expected reward for each action, given the context. To leverage recent advances in large pre-
trained language models, we initialize our model with a pre-trained LLM. As these models are pre-trained
for next-token prediction, which is a classification task, we discard the final classification layer and append
a new linear regression output layer to predict expected rewards.

Specifically, let πθPT denote the pre-trained LLM with parameters θPT. Such a model is a function that maps
any sequence of tokens into a probability distribution over the vocabulary: πθPT(x) ∈ ∆(V), where ∆(V)
denotes the simplex over the vocabulary of tokens V . For our task, we do not need the final classification
head; hence, we consider only the features before the final layer, which we denote as π̃θPT(x) ∈ Rd. Now, for
each tuple (x, a, r) in our dataset D, we feed x into the pre-trained feature extractor π̃ and we pass those
features through a final linear layer to produce the expected reward for each a ∈ A. We call our model fθ,
which is defined as follows:

fθ(x) = linear(π̃θPT(x)) ∈ RK , (1)

where K = |A|. Also, we denote the a-th output of our model as fθ(x, a) ∈ R.

3.1 Greedy policy

As a representative approach with no additional uncertainty estimation phase, we consider the greedy policy.
The behavior of this policy is illustrated in Algorithm 1. In particular, in our case, we use a pre-trained LLM
as a feature extractor with a linear layer on top to create a regression model fθ, as described in Section 3.
Given a context, the greedy policy selects the action for which the model predicts the highest reward. Let
us consider a certain time step t. After the action selection phase, we observe the real reward for the batch
of actions the policy has selected. The dataset will be composed of t sets of tuples: D = {D1, . . . ,Dt}. We
can exploit the observed data to update the parameters of the regression model before the beginning of the
next time step. A typical way to do so is to compute a maximum-a-posteriori (MAP) estimate. This is done
by minimizing a loss corresponding to the negative log posterior:

L(θ;D) =
∑

(x,a,r)∈D

l(θ; x, a, r)

︸ ︷︷ ︸
negative log-likelihood

+ r(θ)︸︷︷︸
negative log-prior

. (2)

Usually, for regression task, it is assumed that there is Gaussian aleatoric noise with zero mean and fixed
variance σ2

obs. This implies that the negative log-likelihood part of the loss is a mean-squared error (MSE):
l(θ; x, a, r) = 1

2σ2
obs

(r − fθ(x, a))2. Regarding the prior, another typical assumption is to set the prior belief
on the parameters as indepentent Gaussians with 0 mean and σ2

p variance. However, in our case, it is
inconsistent to assume that all the weights have 0 prior since we initialize every weight (except for the last
layer) to have the same weight as a pre-trained LLM. Hence, we use a different prior mean: θp = [θPT, 0],

4

Under review as submission to TMLR

Algorithm 2 Thompson Sampling
Require: Bandit model fθ.
Require: Prior distribution on the parameters P (θ)← N (θp, Σp).

1: Initialize D ← ∅
2: for time t = 1, . . . , T do
3: Observe context x1

t , . . . , xB
t .

4: for b = 1, . . . , B do
5: Sample parameters θ̂ ∼ P (θ|D).
6: Select ab

t = arg maxa fθ̂(xb
t , a).

7: Observe reward rb
t .

8: end for
9: Create Dt = {(x1

t , a1
t , r1

t), . . . , (xB
t , aB

t , rB
t)}

10: Add to the observed dataset D ← D ∪Dt.
11: Update the posterior distribution P (θ|D).
12: end for

where with the notation [v1, v2] we denote the concatenation of vectors v1 and v2. Therefore, this means
that every weight (except for the last layer) has a prior centered in the pre-trained weight value, while the
last layer is regularized towards zero. The negative log-prior term hence becomes1 r(θ) = 1

2σ2
p
||θ − θp||22.

Minimizing the loss shown in Equation 2 at the end of each time step, however, can have some drawbacks in
a bandit task. Indeed, it can be highly expensive for large neural models, especially because the complete
dataset is constantly increasing at each time step. An alternative and more scalable loss to minimize is the
following, which considers only the data Dt observed at the current time step t:

L(θ(t);Dt) =
B∑

b=1
(rb

t − fθ(t)(xb
t , ab

t))2 + λ||θ(t) − θ(t−1)||22 , (3)

where λ = σ2
obs/σ2

p, and we set θ(0) = θp. This loss now only assumes that the data points in Dt are i.i.d.,
and we update the prior at each time step with the weights obtained at the previous time step. This will be
the loss we will use to optimize the greedy bandit in our experimental analysis in Section 5. Using this loss,
we are doing MAP inference many times, applying the Bayes rule anew for each new batch of data. In this
way, we perform MAP, which is a well-known established principle in deep learning, while avoiding looping
throughout the whole dataset. This loss is also present in the literature. For instance, (Daxberger et al.,
2021) use this same loss in their continual learning experiment (Daxberger et al. (2021), Appendix C.4.1).

3.2 Thompson Sampling

Thompson Sampling (TS) (Thompson, 1933; Russo et al., 2018) is a probabilistic algorithm for the contextual
bandit problem. The key idea of Thompson Sampling is to maintain an epistemic uncertainty estimate in the
form of a posterior distribution over the parameters of the model P (θ|D). Initially, this distribution is set to
a prior distribution P (θ) that represents the agent’s initial uncertainty. On each time step, for each observed
context, the agent samples a set of parameters θ̂ ∼ P (θ|D) from the posterior distribution, and selects the
action with the highest reward according to the sampled model. At the end of the time step, the agent
updates the posterior distribution of the parameters with the observed data. A high-level description of this
procedure is provided in Algorithm 2. This approach balances exploration and exploitation by sampling
from a posterior that quantifies the epistemic uncertainty. Actions with more uncertain estimates will be
explored, while actions that are currently believed to have higher rewards will be exploited. TS can be
thought as taking actions according to the (epistemic) probability that they are optimal, which leads to
a good balance between exploration and exploitation. The posterior distribution concentrates over time,
automatically adjusting the exploration-exploitation trade-off.

1This technique was also proposed in (Xuhong et al., 2018), and it has been shown to reduce the fine-tuning loss when using
pre-trained neural models.

5

Under review as submission to TMLR

This approach has been shown to be effective both in theory and in practice (Chapelle & Li, 2011). When the
Bayesian updates are exact, there are theoretical guarantees on the performance of TS agents (Agrawal &
Goyal, 2017). However, in our case, we are dealing with a complex bandit model that uses a pre-trained LLM.
Therefore, an exact Bayesian update is computationally infeasible, and we have to resort to approximations.
In Section 4, we will show different techniques to estimate posterior distribution of the parameters of a neural
network and how to adapt such techniques to our case of LLM bandits.

4 Epistemic uncertainty estimation for pre-trained LLMs

In order to use a Thompson Sampling policy, we need to estimate the epistemic uncertainty of our model.
This additional step is not required for a greedy policy. Also, it is not a trivial step for deep neural networks,
for which there is no (tractable) closed-form solution to update the posterior distribution of the parameters.

Crucially, for our particular task, the uncertainty estimation technique is required to scale to very large
models, which are typically pre-trained at great expense, such as LLMs. This means that we cannot employ
techniques that require us to change the training process (Graves, 2011), or ensembles (Lakshminarayanan
et al., 2017), which require us to run training multiple times. Instead, we rely on more scalable techniques,
such as Dropout, Laplace Approximation, and Epinets. In the following, we discuss these epistemic uncer-
tainty estimation techniques in further detail, and we show how to adapt them to LLM bandits.

4.1 Dropout

The dropout technique (Srivastava et al., 2014) consists of randomly setting a proportion p of neuron outputs
to zero at each forward pass through the network during training. This random “dropping out” of neurons
allows the network to sample and train on different (but overlapping) architectures. In standard supervised
learning, dropout is then deactivated during inference, and all dropout neurons are re-scaled to account for
the fact that all dropout neurons are active. However, in our case, we still apply dropout during the action
selection (Gal & Ghahramani, 2016; Riquelme et al., 2018). Using dropout in this phase, we randomly select
(according to the dropout probability) a set of parameters θ̂ to use. This procedure can be seen as sampling
parameters from an approximate posterior distribution: θ̂ ∼ P (θ|D). With such approximate posterior
distribution, we can apply Thompson Sampling. This technique is valuable for large models, such as our
LLM bandit, because it does not add any overhead to the procedure and does not require additional memory.

4.2 Laplace Approximation

The Laplace Approximation (LA) is a technique that can be used to approximate the posterior distribution
of the parameters of a neural model and does not require changing the training process or training multiple
models.

LA exploits the fact that, from a Bayesian point of view, minimizing a regularized loss can be seen as finding
a maximum-a-posteriori (MAP) estimate: θMAP = arg minθ L(D; θ).

Then, LA consists of replacing the loss with its second-order Taylor expansion around θMAP:

L(D; θ) ≈ L(D; θMAP) + 1
2(θ − θMAP)T H(θ − θMAP), H = ∇2L(D; θ)|θMAP (4)

Notice that the first-order term vanishes because we are expanding around θMAP, which is a point of minimum
of the loss. After some algebraic manipulations, it can be shown that the posterior distribution can be
expressed as2:

P (θ|D) = N (θMAP, H−1) , (5)

which means that, after training, the posterior distribution of the parameters is a Gaussian distribution,
centered on the parameters obtained with training (i.e., θMAP), and with the inverse Hessian as covariance
matrix. Therefore, to derive the approximate posterior in practice, we need first to identify the weights θMAP

2For a more detailed derivation, see Appendix B.

6

Under review as submission to TMLR

by training our LLM bandit regression model. Subsequently, the only additional step is the calculation of
the Hessian matrix H. This posterior distribution can be used to apply the Thompson Sampling policy by
sampling a set of parameters θ̂ ∼ P (θ|D) at each time step. Notice, however, that there are still significant
drawbacks in using LA with LLM bandits: (1) computing the Hessian requires looping through the whole
fine-tuning dataset, which is always increasing; (2) storing the Hessian is infeasible due to its size, which
is quadratic with the number of parameters; (3) computing the Hessian may be computationally infeasible,
and the Hessian may be indefinite. In the following, we show that there are many ways to cope with these
limitations.

Recursive computation of the Hessian By applying Bayesian reasoning, we notice that the Hessian
at a given time step t can be computed recursively, exploiting the Hessian computed at t− 1. Let us assume
that we are at time step t. Hence, the dataset will look like this: D = {D1, . . . ,Dt}, where each Di is
composed of i.i.d. data points. The posterior distribution of the parameters can be re-written as follows:

P (θ|D) ∝ P (Dt|θ) · . . . · P (D2|θ) · P (D1|θ) · P (θ)︸ ︷︷ ︸
∝P (θ|D1)︸ ︷︷ ︸

∝P (θ|D1,D2)

, (6)

where P (Dt|θ) =
∏B

b=1 P (rb
t |xb

t , ab
t , θ). This implies that:

P (θ|D1, . . . ,Dt) ∝ P (Dt|θ)P (θ|D1, . . . ,Dt−1). (7)

Hence, the Hessian of the negative log-posterior at time t, which we call H(1:t), can be re-written as:

H(1:t) = ∇2 − log P (Dt | θ)|
θ

(t)
MAP︸ ︷︷ ︸

neg. log-likelihood Hessian H
(t)
l

+
∑t−1

t′=1∇2 − log P (Dt′ | θ)|
θ

(t′)
MAP︸ ︷︷ ︸

previous neg. log-likelihood Hessians H
(t′)
l

+ ∇2 − log P (θ)|
θ

(t)
MAP︸ ︷︷ ︸

neg. log-prior Hessian Hp

. (8)

This means that, at the end of any time step t, we just need to compute the log likelihood Hessian H
(t)
l with

respect to the current data Dt and sum the previous Hessian: H(1:t) = H
(t)
l + H(1:t−1).

Furthermore, this formulation gives rise to a loss that uses only the current data when training at time t:

L(θ(t);Dt) = 1
2σ2

obs

∑
(x,a,r)∈Dt

(
r − f

(t)
θ (x, a)

)2

︸ ︷︷ ︸
neg. log likelihood: −log P (Dt|θ)

+ 1
2(θ(t) − θ

(t−1)
MAP)T H(1:t−1)(θ(t) − θ

(t−1)
MAP)︸ ︷︷ ︸

neg. log prior / updated posterior: −log P (θ|D1,...,Dt−1)

. (9)

If we are at time t = 1, we assume that θ
(0)
MAP are the initial weights, and H(1:0) = ∇2 log P (θ)|

θ
(t)
MAP

.

Diagonal approximation Even if computed recursively, storing the full Hessian may be infeasible even
for small neural networks. Hence, it is not a viable option for the case of LLM bandits. A practical
approximation is to consider only the diagonal of the matrix, which is equivalent to maintain a posterior
distribution for each parameter independently. This reduces the memory complexity from quadratic to linear
in the number of parameters.

Fisher Hessian approximation To further reduce the computational complexity, we can replace the
true Hessian by the expected Fisher3 matrix. If we assume a model where the aleatoric noise is Gaussian
with mean zero and fixed variance σ2

obs, we can compute this approximation of the Hessian as follows:

diag(Ĥ(t)
l) = 1

σ2
obs

∑
(x,a)∈Dt

(∇fθ(x, a))2 (10)

3We use the term expected Fisher to stress the fact that it is different from the empirical Fisher matrix (Kunstner et al.,
2019).

7

Under review as submission to TMLR

This approximation has the advantage of being positive semi-definite and (Kunstner et al., 2019) showed
that it is accurate when the regression residuals are small. For more details on this approximation, see
Appendix B.

4.3 Last-Layer Laplace Approximation

Alternatively, instead of using Hessian approximations, another way to scale LA for large models is to
compute the full Hessian but only for a subset of the parameters of the network, which typically is the last
layer of the model. In our case, this means that we will compute the Hessian for the randomly initialized final
layer, while the pre-trained LLM layers remain fixed during the sampling phase of TS (every parameter is
still fine-tuned during training). This approximation can reduce the exploration due to the fixed weights, but
at the same time it allows a full quadratic Hessian computation, leading to a better quality of exploration.
Last layer LA is also equivalent to Bayesian linear regression (Box & Tiao, 2011) on the features before the
last layer within a single batch. Also, with Gaussian likelihood, last-layer LA is exact within a single batch.

4.4 Epinets

A different approach to estimating epistemic uncertainty is the epinet (Osband et al., 2023a). An epinet
is a heuristic approach that tries to estimate the epistemic uncertainty with a separate neural network. It
consists of a neural network added to a base network, which, in our case, is the LLM bandit model. The
epinet takes as inputs both features π̃θ(x) derived from the base network and an epistemic index z, which
is a random vector sampled from a reference distribution PZ . In the case of our LLM bandit model, π̃θ(x)
denotes the feature vector extracted by the model before the final regression layer. The prediction is then
obtained by adding the predictions of the base network and the epinet:

gθ,η(x; z) = fθ(x) + epiη(sg[π̃θ(x)], z) ,

where with sg we denote the stop-gradient operator, and with η we denote the additional parameters of the
epinet.

The epinet epiη comprises two parts: a learnable network epiLη and a prior network epiP that represents prior
uncertainty. The prior network has no trainable parameters. This allows the epinet to adapt uncertainty
estimates to observed data. In principle, every network that takes features and epistemic index as inputs
could be an epinet. However, for our use case, we need to use a small epinet so that we do not add excessive
computational overhead to the LLM bandit model. In Section 5, we describe in further detail the epinet
architecture we selected for our experiments.

During training, the epinet model gθ,η is trained as a normal deep learning model, with the addition of a
sampling phase of an epistemic index z ∼ PZ for each data point. Also during the action selection phase, for
each action to select, an epistemic index z is sampled. While this is not a Bayesian approach, the sampling
phase can be seen as an approximate Thompson Sampling, as shown by Osband et al. (2023b).

5 Experiments

In this section, we provide a comprehensive empirical study of LLM-based contextual bandits on real-world
data. We show how to adapt the epistemic uncertainty estimation techniques we described to bandits with
pre-trained LLMs. In particular, we identify the best variant of the Laplace approximation and dropout to
use, in addition to a proposed Epinet architecture that we show works well for TS with LLM bandits. Finally,
we empirically show that the greedy policy is sub-optimal, shedding light on the importance of epistemic
uncertainty for LLM bandits.

5.1 Experimental Methodology

Tasks We evaluate the bandit policies on various real-world tasks. These tasks consist of:

8

Under review as submission to TMLR

• An open-source dataset, called “measuring hate speech”, which is openly available on HuggingFace
Datasets4. This dataset consists of around 136,000 comments. Each of them is associated with a
continuous score, called the “hate speech score”, provided for each comment. Comments with a score
> 0.5 are considered “toxic” (around 36% of the comments are labeled as toxic, while the others are
not toxic). We will refer to this task as toxic.

• An open-source dataset, called “IMDb” (Maas et al., 2011), which is also openly available on Hug-
gingFace Datasets5. This dataset consists of 50,000 movie reviews. Each of them is associated with
a class, which can be “positive” or “negative”, according to the sentiment expressed in the review.
The dataset consists of exactly 50% “positive” reviews and 50% “negative” reviews. We will refer
to this task as imdb.

• An open-source dataset, called “Offensive Language Identification” (Zampieri et al., 2019), which
is also openly available on HuggingFace Datasets6. This dataset consists of over 14,000 English
tweets. Each of them is classified as “non-offensive” or “offensive”. The dataset consists of 66.9%
“non-offensive” tweets and 33.1% “offensive” tweets. We will refer to this task as offensive.

• An open-source dataset, called “HatEval” (Basile et al., 2019), which is also openly available on
HuggingFace Datasets7. This dataset consists of 13,000 English and Spanish tweets, where some of
them contain hate speech against immigrants and women. Each of them is classified as “non-hateful”
or “hateful”. The dataset consists of 58% “non-hateful” tweets and 42% “hateful” tweets. We will
refer to this task as hate.

These tasks are framed as a contextual bandit problem as follows. The context is the text input, and the
actions available to the agent are “not publish” or “publish”. For each time step, the agent will observe a
batch of B = 32 comments. The reward function is the following: if the agent decides not to publish a
comment, a reward of 0.5 is observed regardless of the actual toxicity of the comment. If the agent publishes
a non-toxic comment, a reward of 1 is observed. If the agent publishes a toxic comment, a reward of -0.5
is observed. This asymmetric reward function represents a possible example suitable for this real-world
scenario. The goal of the agent is to minimize the regret (compared to a clairvoyant optimal publishing
policy) over time by learning to make optimal publish/not publish decisions based on the text content.
For the imdb task, we consider “negative” reviews as toxic content; for the offensive task, we consider
“offensive” tweets as toxic content; for the hate task, we consider “hateful” tweets as toxic content.

Bandit models To investigate the role of uncertainty in LLM bandits, we compare different TS variants
with the greedy baseline. Every bandit model is initialized as in Eq. 1, with a pre-trained GPT2 model with
124M parameters (Radford et al., 2019). We also include additional experiments with GPT2-XL (1.5B) in
order to investigate if our findings generalize to larger models.

As TS variants, we include dropout, Diagonal Fisher LA (which we will call Diag. LA), LA with full Hessian
on the last layer (which we will call Last LA), and Epinet TS. Regarding the epinet architecture, we follow
prior work on epinets (Osband et al., 2023a;b) and select an architecture with a multi-layer perceptron h
which is multiplied with a dot product with the epistemic index: epiη(x; z) = hη([sg(π̃θ(x)), z])T z. For more
details on the architecture, see Appendix C. Every model is trained with regularized MSE loss as in Eq. 3,
except for Diag. LA, which updates the prior with the new posterior at each time step, as shown in Eq. 9.
All the parameters are updated during training. We train each model at the end of each time step for 50
epochs with the Adam optimizer (Kingma & Ba, 2014), with learning rate set to 3 · 10−5. For each model,
hyperparameters are tuned on 10 random runs (with different seeds than the testing ones) with T = 50 on
the toxic task. We did not tune the dropout probability because we wanted to exploit the fact that GPT2
was pre-trained with dropout p = 0.1 and use the same p. We investigate the effectiveness of this choice in
the results section. We describe the training phase and the hyperparameter tuning procedure in more detail
in Appendix C.

4https://huggingface.co/datasets/ucberkeley-dlab/measuring-hate-speech
5https://huggingface.co/datasets/imdb
6https://huggingface.co/datasets/tweet_eval/viewer/offensive
7https://huggingface.co/datasets/tweet_eval/viewer/hate

9

https://huggingface.co/datasets/ucberkeley-dlab/measuring-hate-speech
https://huggingface.co/datasets/imdb
https://huggingface.co/datasets/tweet_eval/viewer/offensive
https://huggingface.co/datasets/tweet_eval/viewer/hate

Under review as submission to TMLR

0 500 1000 1500 2000 2500 3000
Observed data points

0.150

0.175

0.200

0.225

0.250

0.275

0.300

0.325

0.350
Av

er
ag

e
re

gr
et

Greedy
Diag. LA TS
Last LA TS
Dropout TS
Epinet TS

Figure 2: Average regret (± std. err.) obtained on
the toxic bandit task.

0 500 1000 1500 2000 2500 3000
Observed data points

0.200

0.225

0.250

0.275

0.300

0.325

0.350

0.375

Av
er

ag
e

re
gr

et

Greedy
Diag. LA TS
Last LA TS
Dropout TS
Epinet TS

Figure 3: Average regret (± std. err.) obtained on
the imdb bandit task.

0 500 1000 1500 2000 2500 3000
Observed data points

0.22

0.24

0.26

0.28

0.30

0.32

0.34

Av
er

ag
e

re
gr

et

Greedy
Diag. LA TS
Last LA TS
Dropout TS
Epinet TS

Figure 4: Average regret (± std. err.) obtained on
the offensive bandit task.

0 500 1000 1500 2000 2500 3000
Observed data points

0.22

0.24

0.26

0.28

0.30

0.32

0.34

0.36

Av
er

ag
e

re
gr

et

Greedy
Diag. LA TS
Last LA TS
Dropout TS
Epinet TS

Figure 5: Average regret (± std. err.) obtained on
the hate bandit task.

5.2 Results

We show the experimental results (20 random runs, T = 100) for the toxic task (Figure 2), imdb task (Figure
3), offensive task (Figure 4), and hate task (Figure 5) with GPT2 (124M) LLM bandits. These results
empirically exhibit the importance of actively using epistemic uncertainty in contextual bandit problems
with Large Language Models. Overall, we notice how the approaches leveraging epistemic uncertainty tend
to achieve lower regret compared to the greedy policy in all the considered tasks.

Analyzing the results in more detail, we observe that Dropout TS exhibits strong performance on the toxic
and hate tasks, achieving lower regret compared to the greedy policy. However, its performance is comparable
to the greedy approach on the imdb and offensive tasks. This behavior is expected, as Dropout TS and the
greedy policy are very similar, with the only distinction being the activation of dropout during inference in
Dropout TS. It is important to notice that we did not tune the dropout probability, using the same one used
during the pre-training of the base LLM. The performance of Dropout TS may possibly improve after tuning
the dropout probability. In Appendix C, we investigated the effect of changing the dropout probability.
Also, Dropout TS incurs no additional computational cost, requiring only a single forward pass, akin to the
greedy method.

Diag. LA TS demonstrates excellent results on the toxic task and attains lower regret than the greedy
policy on the offensive and hate tasks. However, its performance on the imdb task is comparable to the

10

Under review as submission to TMLR

0 500 1000 1500 2000 2500 3000
Actions taken

0.0

0.2

0.4

0.6

0.8

1.0

0 500 1000 1500 2000 2500 3000
Actions taken

0.0

0.2

0.4

0.6

0.8

1.0 Greedy
Diag. LA TS

Action selection ratio for action "publish"

Figure 6: Action selection ratio for the action “publish” for two particular sample runs (toxic task).

greedy approach. This may be attributed to the fact that hyperparameter selection was performed on the
toxic task, and it may not generalize well to the imdb task.

Both Last LA TS and Epinet TS consistently achieve lower regret compared to the greedy policy across all
four tasks, albeit with some distinctions. Last LA TS emerges as the best-performing method in all cases,
but it requires computing the full Hessian on the last layer, which can be computationally expensive. On
the other hand, Epinet TS, while slightly inferior to Last LA TS, offers a more computationally efficient
alternative by employing an additional small neural network. These results confirm previous findings in the
literature (Osband et al., 2022; 2023b). Also, we conjecture that the choice of the epinet architecture may
influence results. Indeed, epinets are a very broad class of neural networks, and exploring epinet design was
not the focus of this work. Hence, we did not perform an extensive architecture search, but we believe that
our work can shed light on the potential of epinets, and we will leave further investigation to future work.

Moreover, we notice that the confidence interval of the greedy policy is generally large. This suggests that
there is a high variance in the results obtained by the greedy policy. To further investigate the cause of this
finding, let us define the action selection ratio as sT (a) = 1

T

∑T
t=1 I(at = a). We selected two sample runs

for the toxic task and plotted the action selection ratio for the action “publish” during these two sample
runs in Figure 6. Notice that the action “publish” is a risky action, meaning that it can lead to a strongly
negative reward if toxic content is published, while the action “not publish” is safer and gives a constant
reward. Figure 6 clearly shows that there are cases where the greedy policy suffers from under-exploration
and persists in choosing a suboptimal arm, while Thompson Sampling (in this case, Diag. LA) exhibits a
more balanced behavior. Due to this issue, the greedy algorithm will incur constant regret in the random
runs which require more balanced exploration. This issue makes the greedy policy perform worse than TS
policies in our experiments.

Experiments with 1.5B LLM To further investigate if our findings generalize to larger models, we
performed additional experiments using GPT2-XL, a larger language model with 1.5B parameters. For this
set of experiments, we train our models for 5 epochs for each batch of data. We perform this new set of
experiments on the hate task. The results of these experiments (20 random runs, T = 100) are shown
in Figure 7. These results confirm our findings, showing how TS policies generally achieve a lower regret
compared to the greedy policy. In particular, we again see how Last LA TS achieved the lowest regret
among the TS variants. These results further highlight the importance of leveraging epistemic uncertainty
in contextual bandit problems, even when scaling up to larger language models.

Additional ablation study on model dimension and pre-training We also performed an additional
ablation study to investigate the effect of using large pre-trained models to initialize the bandit policies in

11

Under review as submission to TMLR

our experiments. We conduct those studies by running a bandit algorithm using a smaller transformer model
with weights initialized from scratch. We report those experiments in Appendix C.4.

6 Conclusion

0 500 1000 1500 2000 2500 3000
Observed data points

0.28

0.30

0.32

0.34

0.36

0.38

Av
er

ag
e

re
gr

et

Greedy
Diag. LA TS
Last LA TS
Dropout TS
Epinet TS

Figure 7: Average regret (± std. err.) obtained on the
hate bandit task with 1.5B LLM bandits.

In this paper, we investigated the role of epis-
temic uncertainty estimation in decision-making
tasks that use natural language as input. For such
tasks, using Large Language Models as agents has
become the norm. However, none of the recent
approaches estimates the epistemic uncertainty of
the agent. We focused on a fundamental decision-
making task: the contextual bandit problem, where
context consists of text. We approached the bandit
task with a deep regression model initialized with
a pre-trained LLM. As a representative of the ap-
proaches with no uncertainty estimation, we con-
sidered an LLM bandit with a greedy policy, which
picks the action corresponding to the largest pre-
dicted reward. We compared the greedy baseline
with various approaches integrating uncertainty es-
timates into the decision process via Thompson
Sampling. We adapted several epistemic uncertainty estimation techniques to LLMs, such as dropout,
Laplace Approximation, and epinets. Finally, we provided an empirical analysis of bandit learning with
LLMs on real-world data. Our experiments showed that using uncertainty information leads to greatly
improved performance over the greedy approach. These improvements highlight the benefits of modeling
uncertainty for exploration in bandit problems with text and Large Language Models. Our work suggests
that uncertainty should play a more central role in developing LLM-based agents for decision-making. As
future work, a natural extension would be to use our study on LLM bandits as a stepping stone to more
complex settings like text-based reinforcement learning. Another interesting direction would be to study the
scaling behavior of LLM bandits in a systematic way.

References
Shipra Agrawal and Navin Goyal. Near-optimal regret bounds for thompson sampling. Journal of the ACM

(JACM), 64(5):1–24, 2017.

Vashist Avadhanula, Omar Abdul Baki, Hamsa Bastani, Osbert Bastani, Caner Gocmen, Daniel Haimovich,
Darren Hwang, Dima Karamshuk, Thomas Leeper, Jiayuan Ma, et al. Bandits for online calibration: An
application to content moderation on social media platforms. arXiv preprint arXiv:2211.06516, 2022.

Valerio Basile, Cristina Bosco, Elisabetta Fersini, Debora Nozza, Viviana Patti, Francisco Manuel
Rangel Pardo, Paolo Rosso, and Manuela Sanguinetti. SemEval-2019 task 5: Multilingual detection of
hate speech against immigrants and women in Twitter. In Proceedings of the 13th International Workshop
on Semantic Evaluation, pp. 54–63, Minneapolis, Minnesota, USA, 2019. Association for Computational
Linguistics. doi: 10.18653/v1/S19-2007. URL https://www.aclweb.org/anthology/S19-2007.

George EP Box and George C Tiao. Bayesian inference in statistical analysis. John Wiley & Sons, 2011.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are few-shot learners.
Advances in neural information processing systems, 33:1877–1901, 2020.

Sébastien Bubeck, Varun Chandrasekaran, Ronen Eldan, Johannes Gehrke, Eric Horvitz, Ece Kamar, Peter
Lee, Yin Tat Lee, Yuanzhi Li, Scott Lundberg, et al. Sparks of artificial general intelligence: Early
experiments with gpt-4. arXiv preprint arXiv:2303.12712, 2023.

12

https://www.aclweb.org/anthology/S19-2007

Under review as submission to TMLR

Thomas Carta, Clément Romac, Thomas Wolf, Sylvain Lamprier, Olivier Sigaud, and Pierre-Yves Oudeyer.
Grounding large language models in interactive environments with online reinforcement learning. In
Andreas Krause, Emma Brunskill, Kyunghyun Cho, Barbara Engelhardt, Sivan Sabato, and Jonathan
Scarlett (eds.), International Conference on Machine Learning, ICML 2023, 23-29 July 2023, Honolulu,
Hawaii, USA, volume 202 of Proceedings of Machine Learning Research, pp. 3676–3713. PMLR, 2023.
URL https://proceedings.mlr.press/v202/carta23a.html.

Olivier Chapelle and Lihong Li. An empirical evaluation of thompson sampling. Advances in neural infor-
mation processing systems, 24, 2011.

Liting Chen, Lu Wang, Hang Dong, Yali Du, Jie Yan, Fangkai Yang, Shuang Li, Pu Zhao, Si Qin, Saravan
Rajmohan, et al. Introspective tips: Large language model for in-context decision making. arXiv preprint
arXiv:2305.11598, 2023.

Aakanksha Chowdhery, Sharan Narang, Jacob Devlin, Maarten Bosma, Gaurav Mishra, Adam Roberts,
Paul Barham, Hyung Won Chung, Charles Sutton, Sebastian Gehrmann, et al. Palm: Scaling language
modeling with pathways. Journal of Machine Learning Research, 24(240):1–113, 2023.

Erik Daxberger, Agustinus Kristiadi, Alexander Immer, Runa Eschenhagen, Matthias Bauer, and Philipp
Hennig. Laplace redux-effortless bayesian deep learning. Advances in Neural Information Processing
Systems, 34:20089–20103, 2021.

Vikranth Dwaracherla, Seyed Mohammad Asghari, Botao Hao, and Benjamin Van Roy. Efficient exploration
for llms. arXiv preprint arXiv:2402.00396, 2024.

Yarin Gal. Uncertainty in deep learning. 2016.

Yarin Gal and Zoubin Ghahramani. Bayesian convolutional neural networks with bernoulli approximate
variational inference. arXiv preprint arXiv:1506.02158, 2015.

Yarin Gal and Zoubin Ghahramani. Dropout as a bayesian approximation: Representing model uncertainty
in deep learning. In international conference on machine learning, pp. 1050–1059. PMLR, 2016.

Luyu Gao, Aman Madaan, Shuyan Zhou, Uri Alon, Pengfei Liu, Yiming Yang, Jamie Callan, and Graham
Neubig. Pal: Program-aided language models. In International Conference on Machine Learning, pp.
10764–10799. PMLR, 2023.

Gemini Team, Rohan Anil, Sebastian Borgeaud, Yonghui Wu, Jean-Baptiste Alayrac, Jiahui Yu, Radu Sori-
cut, Johan Schalkwyk, Andrew M Dai, Anja Hauth, et al. Gemini: a family of highly capable multimodal
models. arXiv preprint arXiv:2312.11805, 2023.

Robert Gorwa, Reuben Binns, and Christian Katzenbach. Algorithmic content moderation: Technical and
political challenges in the automation of platform governance. Big Data & Society, 7(1):2053951719897945,
2020.

Alex Graves. Practical variational inference for neural networks. In J. Shawe-Taylor, R. Zemel, P. Bartlett,
F. Pereira, and K.Q. Weinberger (eds.), Advances in Neural Information Processing Systems, volume 24.
Curran Associates, Inc., 2011. URL https://proceedings.neurips.cc/paper_files/paper/2011/
file/7eb3c8be3d411e8ebfab08eba5f49632-Paper.pdf.

Shibo Hao, Tianyang Liu, Zhen Wang, and Zhiting Hu. Toolkengpt: Augmenting frozen language models
with massive tools via tool embeddings. arXiv preprint arXiv:2305.11554, 2023.

Dan Hendrycks and Kevin Gimpel. Gaussian error linear units (gelus). arXiv preprint arXiv:1606.08415,
2016.

Eyke Hüllermeier and Willem Waegeman. Aleatoric and epistemic uncertainty in machine learning: An
introduction to concepts and methods. Machine Learning, 110:457–506, 2021.

13

https://proceedings.mlr.press/v202/carta23a.html
https://proceedings.neurips.cc/paper_files/paper/2011/file/7eb3c8be3d411e8ebfab08eba5f49632-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2011/file/7eb3c8be3d411e8ebfab08eba5f49632-Paper.pdf

Under review as submission to TMLR

Kirthevasan Kandasamy, Akshay Krishnamurthy, Jeff Schneider, and Barnabás Póczos. Parallelised bayesian
optimisation via thompson sampling. In International Conference on Artificial Intelligence and Statistics,
pp. 133–142. PMLR, 2018.

Alex Kendall and Yarin Gal. What uncertainties do we need in bayesian deep learning for computer vision?
Advances in neural information processing systems, 30, 2017.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

Martin Klissarov, Pierluca D’Oro, Shagun Sodhani, Roberta Raileanu, Pierre-Luc Bacon, Pascal Vincent,
Amy Zhang, and Mikael Henaff. Motif: Intrinsic motivation from artificial intelligence feedback. arXiv
preprint arXiv:2310.00166, 2023.

Frederik Kunstner, Philipp Hennig, and Lukas Balles. Limitations of the empirical fisher approximation for
natural gradient descent. Advances in neural information processing systems, 32, 2019.

Balaji Lakshminarayanan, Alexander Pritzel, and Charles Blundell. Simple and scalable predictive uncer-
tainty estimation using deep ensembles. Advances in neural information processing systems, 30, 2017.

Shuang Li, Xavier Puig, Chris Paxton, Yilun Du, Clinton Wang, Linxi Fan, Tao Chen, De-An Huang,
Ekin Akyürek, Anima Anandkumar, et al. Pre-trained language models for interactive decision-making.
Advances in Neural Information Processing Systems, 35:31199–31212, 2022.

Renkai Ma and Yubo Kou. “how advertiser-friendly is my video?”: Youtuber’s socioeconomic interac-
tions with algorithmic content moderation. Proceedings of the ACM on Human-Computer Interaction, 5
(CSCW2):1–25, 2021.

Andrew Maas, Raymond E Daly, Peter T Pham, Dan Huang, Andrew Y Ng, and Christopher Potts. Learning
word vectors for sentiment analysis. In Proceedings of the 49th annual meeting of the association for
computational linguistics: Human language technologies, pp. 142–150, 2011.

David JC MacKay. Bayesian interpolation. Neural computation, 4(3):415–447, 1992.

Grégoire Mialon, Roberto Dessì, Maria Lomeli, Christoforos Nalmpantis, Ram Pasunuru, Roberta Raileanu,
Baptiste Rozière, Timo Schick, Jane Dwivedi-Yu, Asli Celikyilmaz, et al. Augmented language models: a
survey. arXiv preprint arXiv:2302.07842, 2023.

OpenAI. Gpt-4 technical report, 2023.

Ian Osband, Seyed Mohammad Asghari, Benjamin Van Roy, Nat McAleese, John Aslanides, and Geoffrey
Irving. Fine-tuning language models via epistemic neural networks. arXiv preprint arXiv:2211.01568,
2022.

Ian Osband, Zheng Wen, Seyed Mohammad Asghari, Vikranth Dwaracherla, Morteza Ibrahimi, Xiuyuan Lu,
and Benjamin Van Roy. Epistemic neural networks. Advances in Neural Information Processing Systems,
36, 2023a.

Ian Osband, Zheng Wen, Seyed Mohammad Asghari, Vikranth Dwaracherla, Morteza Ibrahimi, Xiuyuan Lu,
and Benjamin Van Roy. Approximate thompson sampling via epistemic neural networks. In Proceedings
of the Thirty-Ninth Conference on Uncertainty in Artificial Intelligence, UAI ’23. JMLR.org, 2023b.

Long Ouyang, Jeff Wu, Xu Jiang, Diogo Almeida, Carroll L. Wainwright, Pamela Mishkin, Chong Zhang,
Sandhini Agarwal, Katarina Slama, Alex Ray, John Schulman, Jacob Hilton, Fraser Kelton, Luke Miller,
Maddie Simens, Amanda Askell, Peter Welinder, Paul Christiano, Jan Leike, and Ryan Lowe. Training
language models to follow instructions with human feedback, 2022.

Alec Radford, Karthik Narasimhan, Tim Salimans, Ilya Sutskever, et al. Improving language understanding
by generative pre-training. 2018.

14

Under review as submission to TMLR

Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, Ilya Sutskever, et al. Language models
are unsupervised multitask learners. OpenAI blog, 1(8):9, 2019.

Jack W Rae, Sebastian Borgeaud, Trevor Cai, Katie Millican, Jordan Hoffmann, Francis Song, John
Aslanides, Sarah Henderson, Roman Ring, Susannah Young, et al. Scaling language models: Methods,
analysis & insights from training gopher. arXiv preprint arXiv:2112.11446, 2021.

Carlos Riquelme, George Tucker, and Jasper Snoek. Deep bayesian bandits showdown: An empirical com-
parison of bayesian deep networks for thompson sampling. In International Conference on Learning
Representations, 2018.

Daniel J Russo, Benjamin Van Roy, Abbas Kazerouni, Ian Osband, Zheng Wen, et al. A tutorial on thompson
sampling. Foundations and Trends® in Machine Learning, 11(1):1–96, 2018.

Timo Schick, Jane Dwivedi-Yu, Roberto Dessì, Roberta Raileanu, Maria Lomeli, Luke Zettlemoyer, Nicola
Cancedda, and Thomas Scialom. Toolformer: Language models can teach themselves to use tools. arXiv
preprint arXiv:2302.04761, 2023.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy optimiza-
tion algorithms. arXiv preprint arXiv:1707.06347, 2017.

Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan Salakhutdinov. Dropout: a
simple way to prevent neural networks from overfitting. The journal of machine learning research, 15(1):
1929–1958, 2014.

William R Thompson. On the likelihood that one unknown probability exceeds another in view of the
evidence of two samples. Biometrika, 25(3-4):285–294, 1933.

Romal Thoppilan, Daniel De Freitas, Jamie Hall, Noam Shazeer, Apoorv Kulshreshtha, Heng-Tze Cheng,
Alicia Jin, Taylor Bos, Leslie Baker, Yu Du, et al. Lamda: Language models for dialog applications. arXiv
preprint arXiv:2201.08239, 2022.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée Lacroix,
Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, et al. Llama: Open and efficient foundation
language models. arXiv preprint arXiv:2302.13971, 2023a.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Nikolay Bash-
lykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al. Llama 2: Open foundation and fine-tuned
chat models. arXiv preprint arXiv:2307.09288, 2023b.

Kristen Vaccaro, Christian Sandvig, and Karrie Karahalios. “at the end of the day facebook does what
it wants” how users experience contesting algorithmic content moderation. Proceedings of the ACM on
human-computer interaction, 4(CSCW2):1–22, 2020.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz Kaiser,
and Illia Polosukhin. Attention is all you need. Advances in neural information processing systems, 30,
2017.

Chih-Chun Wang, Sanjeev R Kulkarni, and H Vincent Poor. Bandit problems with side observations. IEEE
Transactions on Automatic Control, 50(3):338–355, 2005.

LI Xuhong, Yves Grandvalet, and Franck Davoine. Explicit inductive bias for transfer learning with convo-
lutional networks. In International Conference on Machine Learning, pp. 2825–2834. PMLR, 2018.

Rui Yang, Lin Song, Yanwei Li, Sijie Zhao, Yixiao Ge, Xiu Li, and Ying Shan. Gpt4tools: Teaching large
language model to use tools via self-instruction. arXiv preprint arXiv:2305.18752, 2023a.

Sherry Yang, Ofir Nachum, Yilun Du, Jason Wei, Pieter Abbeel, and Dale Schuurmans. Foundation models
for decision making: Problems, methods, and opportunities. arXiv preprint arXiv:2303.04129, 2023b.

15

Under review as submission to TMLR

Marcos Zampieri, Shervin Malmasi, Preslav Nakov, Sara Rosenthal, Noura Farra, and Ritesh Kumar.
Semeval-2019 task 6: Identifying and categorizing offensive language in social media (offenseval). In
Proceedings of the 13th International Workshop on Semantic Evaluation, pp. 75–86, 2019.

16

Under review as submission to TMLR

A Prior Work

Decision-making with Large Language Models Large language models (LLMs) recently emerged as
a dominant paradigm in natural language processing (Ouyang et al., 2022; OpenAI, 2023), achieving state-
of-the-art performance across a wide range of tasks (Rae et al., 2021), pushing model scale and dataset size
to unprecedented levels. Models such as the OpenAI’s GPT LLM series (Radford et al., 2018; 2019; Brown
et al., 2020; OpenAI, 2023), Google’s PaLM (Chowdhery et al., 2023) and Gemini (Gemini Team et al.,
2023), or Meta’s LLaMA (Touvron et al., 2023a;b) have leveraged the transformer architecture (Vaswani
et al., 2017) with model sizes ranging from hundreds of millions to hundreds of billions of parameters and
are trained on up to hundreds of billions of text examples.

Due to their remarkable capabilities in text processing, LLMs have also been applied to decision-making tasks
(Yang et al., 2023b), and there is a plethora of papers in the research literature that investigated this idea (Li
et al. 2022; Carta et al. 2023; Chen et al. 2023; Klissarov et al. 2023; inter alia). One of the most prominent
examples is that of dialogue agents. Many recent papers model the dialogue between the LLM and a user
as a sequential decision-making problem, where the action is the answer that the LLM should provide to
the user after receiving the user’s message. In particular, those works typically use Reinforcement Learning
(RL) techniques (Ouyang et al., 2022) to fine-tune language models for dialogue applications. Hence, they
use the LLM as a policy to solve the RL problem with state-of-the-art RL algorithms, such as Proximal
Policy Optimization (Schulman et al., 2017). Another example is enhancing LLMs by allowing them to use
external tools (Thoppilan et al., 2022; Yang et al., 2023a; Hao et al., 2023; Gao et al., 2023; Mialon et al.,
2023; Schick et al., 2023). In this case, the LLM-based agent has an action space which is the set of external
tools at disposal and the various interactions possible with those tools.

The aforementioned approaches typically assume that a sufficient amount of data has been collected a priori
to train an effective policy. They do not explicitly address the exploration-exploitation trade-off and they do
not systematically explore issues around the role of epistemic uncertainty in decision-making. In contrast,
in our work, we explicitly consider the problem of learning from interaction, and we focus on one of the
most fundamental and natural decision-making tasks, which is the one of contextual bandits (Chapelle & Li,
2011). We comprehensively investigate the role of epistemic uncertainty for bandit models with pre-trained
LLMs. The importance of exploiting epistemic uncertainty is emphasized also in (Dwaracherla et al., 2024),
where they propose an approach to approximate epistemic uncertainty for the alignment problem of LLMs.

Uncertainty in Deep Learning Deep learning models provide state-of-the-art performance in several
different tasks, ranging from image recognition to natural language processing. However, these models
usually provide poor uncertainty estimates (Kendall & Gal, 2017). For this reason, several techniques have
been proposed in the literature that allow the estimation of the uncertainty of deep learning algorithms.
A useful mathematical model for characterizing uncertainty in deep learning is to categorize it into two
types: epistemic and aleatoric (Gal, 2016; Hüllermeier & Waegeman, 2021). Epistemic uncertainty stems
from our lack of knowledge about the best model to describe a process. It is reducible as more data or
knowledge is gathered. Aleatoric uncertainty, in contrast, is due to the inherent randomness in the data or
environment and is irreducible even with more data. In particular, epistemic uncertainty has been proven
to be particularly helpful when it comes to decision-making problems.

A possible way to capture epistemic uncertainty in deep learning is to equip neural networks with a distri-
bution over the parameters, which is then updated upon seeing new data. This kind of neural network is
usually called Bayesian Neural Network (BNN). From a theoretical perspective for decision making under
uncertainty, Bayesian neural networks (BNNs) are appealing since they provide a full posterior distribu-
tion over models, allowing the derivation of formal regret bounds to guide exploration (Agrawal & Goyal,
2017). However, exact BNN inference is intractable for large models like LLMs. Thus, we must rely on
approximations.

One common approach to approximate the posterior distribution is Dropout (also called Monte Carlo
Dropout) (Gal & Ghahramani, 2016). Dropout is a technique initially proposed for standard supervised
learning (Srivastava et al., 2014), which consists of randomly setting a proportion p of neuron outputs to
zero at each forward pass through the network during training. In standard supervised learning, dropout

17

Under review as submission to TMLR

is then deactivated during inference, and all dropout neurons are re-scaled to account for the fact that all
dropout neurons are active. However, we can still apply dropout during inference. In this way, we randomly
select (according to the dropout probability) a set of parameters θ̂ to use. This procedure can be seen
approximately as sampling parameters from a posterior Bayesian distribution, and it is proven to have links
with variational inference techniques (Gal & Ghahramani, 2015).

Another popular technique is Variational Inference (VI) (Graves, 2011). VI is a technique in machine learning
used for approximating complex posterior distributions in Bayesian inference. The goal is to find a simpler,
parameterized distribution (the variational distribution) that is close to the true posterior distribution of
interest by solving an optimization problem. However, it requires changes in the training procedure, which
is not possible if we want to use pre-trained models.

Laplace Approximation (LA) (MacKay, 1992) is another technique that is used to approximate the posterior
distribution of the parameters of a neural network. It consists of assuming that the training consists of a
maximum-a-posteriori estimate of the parameters and replacing the loss with its second-order Taylor expan-
sion around the MAP estimate. With these two steps, an analytical solution for the posterior distribution
of the weights can be found. In particular, the weights are distributed as a multivariate Gaussian with the
MAP estimate as the mean and the inverse of the Hessian as the covariance matrix. The key advantage
of LA is that the MAP estimate of the weights is usually available after standard deep learning training.
A more problematic issue is the computation of the Hessian. However, a recent paper (Daxberger et al.,
2021) investigates different techniques to approximate the Hessian, making the computation feasible even
for modern neural networks.

There are also non-Bayesian approaches to estimating epistemic uncertainty. Deep Ensembles (Lakshmi-
narayanan et al., 2017) provide a conceptually simple way to capture uncertainty, but are expensive and do
not yield a well-defined posterior. The authors show that the degree of disagreement among the NNs within
the ensemble is indicative of the epistemic uncertainty of the ensemble. While promising, this approach is not
suitable for LLMs, for which an ensemble would be prohibitively expensive for both training and inference.

A more affordable approach is the use of epinets (Osband et al., 2023a). An epinet estimates the epistemic
uncertainty with a separate neural network that takes as inputs both features derived from the base network
(usually before the last layer) and an epistemic index, which is a random vector sampled from a fixed
reference distribution. The prediction is then obtained by adding the predictions of the base network and
the epinet. Though not Bayesian, epinets has been shown to provide useful uncertainty estimates for guiding
exploration combined with a Thompson Sampling policy, with much lower overhead than ensembles (Osband
et al., 2023b).

In our paper, we focus on scalable approaches to estimating epistemic uncertainty, and we adapt them to
the case of pre-trained LLM: we used the pre-trained weights as prior, exploited the dropout probability
used in the pre-training phase, and used different Hessian approximations. Finally, we empirically show the
importance of using epistemic uncertainty by embedding it into Thompson Sampling policies (Thompson,
1933). This significantly outperforms a greedy policy that does not account for uncertainty in decision-
making.

B Additional details on Laplace Approximation

In this section, we describe in more detail the Laplace Approximation technique.

Laplace Approximation The Laplace Approximation (LA) technique can be used to approximate the
posterior distribution of weights of a neural network. As we will see, Laplace Approximation does not require
any change in the training process nor training multiple models; thus, it is feasible for modern deep learning
neural networks (such as LLMs) that are typically pre-trained (hence, their training procedure can not be
modified) and expensive to train (hence, training multiple models is unfeasible).

Typically, deep neural networks are trained via the minimization of a loss. Let us say that we are given a
dataset D = {(xi, yi)}D

i=1. We call the neural network we want to train fθ, which is a parametric function.
The parameters of the neural network are θ ∈ RN . Standard deep learning losses can usually be decomposed

18

Under review as submission to TMLR

in a regularization term and a sum of empirical loss terms on single data points:

L(D; θ) = r(θ) +
D∑

i=1
l(xi, yi; θ) (11)

From a Bayesian point of view, it is straightforward to interpret the regularization term as the negative log
prior: r(θ) = − log P (θ), and the sum of empirical losses as the negative log-likelihoods:

∑D
i=1 l(xi, yi; θ) =

− log P (D|θ) = −
∑D

i=1 log P (yi|fθ(xi)). This means that minimizing such a loss is actually leading to a
maximum-a-posteriori (MAP) estimate: θMAP = arg minθ L(D; θ). From these considerations, we can also
re-write the posterior distribution as follows:

P (θ|D) = 1
Z

P (D|θ)P (θ) = 1
Z

exp(−L(D; θ)), Z =
∫

P (D|θ)P (θ)dθ (12)

Now, Laplace Approximation consists in replacing the loss with its second-order Taylor expansion around
θMAP:

L(D; θ) ≈ L(D; θMAP) + 1
2(θ − θMAP)T H(θ − θMAP), H = ∇2

θL(D; θ)|θMAP (13)

Notice that the first-order term vanishes because we are expanding around θMAP, which is a point of minimum
of the loss.

Starting from this approximation, it can be shown that the posterior distribution is a multivariate Gaussian.
First, we obtain a closed-form solution for the normalizing constant Z:

Z =
∫

P (D|θ)P (θ)dθ =
∫

exp(−L(D; θ))dθ

≈
∫

exp(−L(D; θMAP)− 1
2(θ − θMAP)T H(θ − θMAP))dθ

= exp(−L(D; θMAP))
∫

exp(−1
2(θ − θMAP)T H(θ − θMAP))dθ

= exp(−L(D; θMAP)) (2π) N
2

(det H) 1
2

,

where the last equality derives from the multivariate normal density.

Now, if we come back to the posterior distribution, we obtain:

P (θ|D) = 1
Z

P (D|θ)P (θ) = 1
Z

exp(−L(D; θ))

≈ (det H) 1
2

(2π) N
2

exp(−1
2(θ − θMAP)T H(θ − θMAP))

= N (θ; θMAP, H−1)

(14)

Therefore, to derive the approximate posterior in practice, we need first to identify the weights θMAP that
maximize the log-posterior function. This, in deep learning terms, corresponds to the training phase, where a
regularized loss is minimized. Subsequently, the only additional step is the calculation of the Hessian matrix
at the point θMAP. This means that LA can also be applied to pre-trained neural networks with no need
to change the training procedure. This is a fundamental requirement if we want to apply this procedure to
LLMs.

19

Under review as submission to TMLR

Expected Fisher Matrix The Laplace approximation as outlined above requires the knowledge of the
Hessian of the loss function. Typically, a further approximation is used. First of all, let us rewrite the
Hessian as the sum of the Hessian of the likelihood and the Hessian of the prior: H = Hl + Hp. Now, the
true Hessian of the likelihood is replaced by the expected Fisher8 matrix.

Hl ≈ |D| ExEy∼Pθ(y|x)
[
−∇2 log Pθ(y|x)

]
(15)

Despite the fact that the Hessian on the left hand side depends on the true regression targets, while the
right hand side does not, the approximation is accurate when the regression residuals are small (Kunstner
et al., 2019). In order to make the formula in equation 15 practical, we replace the expectation with respect
to the datapoints using a Monte-Carlo estimate.

|D| ExEy∼Pθ(y|x)
[
−∇2 log Pθ(y|x)

]
≈
∑
x∈D

Ey∼Pθ(y|x)
[
−∇2 log Pθ(y|x)

]
(16)

We can further use the identity (Kunstner et al., 2019)∑
x∈D

Ey∼Pθ(y|x)
[
−∇2 log Pθ(y|x)

]
=
∑
x∈D

Ey∼Pθ(y|x)
[
∇ log Pθ(y|x)∇ log Pθ(y|x)⊤] (17)

to obtain a formula that does not require us to compute second-order derivatives. This highlights one benefit
of the expected Fisher matrix: it is positive-semi-definite by construction.

Diagonal Approximation While equation 17 is possible to evaluate in principle, the resulting size of
the Hessian matrix is still way too large to store for even small-scale LLMs. We therefore make another
approximation Ĥl, computing only the diagonal entries in equation 17.

diag(Ĥl) =
∑
x∈D

Ey∼Pθ(y|x)

[
(∇ log Pθ(y|x))2

]
(18)

The diagonal approximation corresponds to taking the Taylor expansion behind the Laplace approximation
for each coordinate separately, which leads to a posterior being a normal distribution with diagonal co-
variance. However, this distribution is not necessarily the best KL-projection of the Gaussian arising from
equation 17 on the space of diagonal Gaussians9.

Analytic Solution for Gaussian Aleatoric Noise If we assume a model where the aleatoric noise is
Gaussian with mean zero and fixed variance σ2

obs, we can compute the expectation in equation 18 analytically.
For the sake of clarity, let us consider the one-dimensional case. The parametric likelihood Pθ(y|x) is defined
as

Pθ(y|x) = 1√
2πσ2

obs
exp

(
− 1

2σ2
obs

(y − fθ(x))2
)

.

Hence, the gradient of the log-likelihood is:

∇ log Pθ(y|x) = 1
σ2

obs
(y − fθ(x))∇fθ(x) .

The expected value of the squared gradient of the log-likelihood is:

Ey∼Pθ(y|x)

[
(∇ log Pθ(y|x))2

]
= (∇fθ(x))2

σ2
obs

∫ ∞

−∞

1
σ2

obs
(y − fθ(x))2 1√

2πσ2
obs

exp
(
− 1

2σ2
obs

(y − fθ(x))2
)

dy︸ ︷︷ ︸
I

.

(19)
8We use the term expected Fisher to stress the fact that it is different from the empirical Fisher matrix (Kunstner et al.,

2019).
9Such a projection could be obtained by inverting the formula in equation 17 and taking the diagonal, which is intractable.

20

Under review as submission to TMLR

Now let us focus on the quantity I:

I = 1√
2πσ2

obs

∫ ∞

−∞
(y − fθ(x)) 1

σ2
obs

(y − fθ(x)) exp
(
− 1

2σ2
obs

(y − fθ(x))2
)

dy

= 1√
2πσ2

obs

[
−(y − fθ(x)) exp

(
− 1

2σ2
obs

(y − fθ(x))2
)]∞

−∞

+
∫ ∞

−∞

1√
2πσ2

obs
exp

(
− 1

2σ2
obs

(y − fθ(x))2
)

dy

=0 + 1 = 1 .

(20)

Hence, we obtained an analytical solution for the quantity of interest:

Ey∼Pθ(y|x)

[
(∇ log Pθ(y|x))2

]
= (∇fθ(x))2

σ2
obs

. (21)

C Additional experimental details

C.1 Experimental setting

C.1.1 Computational resources

Our experiments were conducted on one NVIDIA A100 GPU with 80GBs of VRAM. One random run with
a GPT2 (124M) bandit, T = 100, took about 30 minutes for the fastest bandits (i.e., greedy and dropout)
and up to 45 minutes for the bandits that had to compute the Hessian (i.e., Diag. LA and Last LA). We
ran 5 different bandit models for 20 random runs during the testing phase, and we repeated those runs for
all four tasks. In total, the experiments with GPT2 bandits took around 220 hours of computation. The
experiments done with GPT2-XL (1.5B) bandits, T = 100, 20 random runs, 5 different bandit models, hate
task, took around 50 hours of computation.

C.1.2 Tasks and Data processing

We evaluate the bandit policies on various real-world tasks. These tasks consist of:

• An open-source dataset, called “measuring hate speech”, which is openly available on HuggingFace
Datasets10. This dataset consists of around 136,000 comments. Each of them is associated with
a continuous score, called the “hate speech score”, provided for each comment. Comments with
a score > 0.5 are considered “toxic” (around 36% of the comments are labeled as toxic, while the
others are not toxic). We will refer to this task as toxic.

• An open-source dataset, called “IMDb” (Maas et al., 2011), which is also openly available on Hug-
gingFace Datasets11. This dataset consists of 50,000 movie reviews. Each of them is associated with
a class, which can be “positive” or “negative”, according to the sentiment expressed in the review.
The dataset consists of exactly 50% “positive” reviews and 50% “negative” reviews. We will refer
to this task as imdb.

• An open-source dataset, called “Offensive Language Identification” (Zampieri et al., 2019), which
is also openly available on HuggingFace Datasets12. This dataset consists of over 14,000 English
tweets. Each of them is classified as “non-offensive” or “offensive”. The dataset consists of 66.9%
“non-offensive” tweets and 33.1% “offensive” tweets. We will refer to this task as offensive.

10https://huggingface.co/datasets/ucberkeley-dlab/measuring-hate-speech
11https://huggingface.co/datasets/imdb
12https://huggingface.co/datasets/tweet_eval/viewer/offensive

21

https://huggingface.co/datasets/ucberkeley-dlab/measuring-hate-speech
https://huggingface.co/datasets/imdb
https://huggingface.co/datasets/tweet_eval/viewer/offensive

Under review as submission to TMLR

• An open-source dataset, called “HatEval” (Basile et al., 2019), which is also openly available on
HuggingFace Datasets13. This dataset consists of 13,000 English and Spanish tweets, where some of
them contain hate speech against immigrants and women. Each of them is classified as “non-hateful”
or “hateful”. The dataset consists of 58% “non-hateful” tweets and 42% “hateful” tweets. We will
refer to this task as hate.

For each task, the text is tokenized with the GPT2 Tokenizer. In particular, we rely on the implementation
provided by HuggingFace14. For each task, we selected a maximum number of tokens, and we applied
left padding for the comments with lengths less than the selected number of tokens. For the imdb task,
we selected 256 as the maximum number of tokens; for the toxic task, we selected 128 as the maximum
number of tokens; for the hate and offensive tasks, we selected 64 as the maximum number of tokens.
The difference is due to the difference in the length of each data point of those datasets.

These tasks are framed as a contextual bandit problem as follows. The context is the text input, and the
actions available to the agent are “not publish” or “publish”. For each time step, the agent will observe a
batch of B = 32 comments. The reward function is the following: if the agent decides not to publish a
comment, a reward of 0.5 is observed regardless of the actual toxicity of the comment. If the agent publishes
a non-toxic comment, a reward of 1 is observed. If the agent publishes a toxic comment, a reward of -0.5
is observed. This asymmetric reward function represents a possible example suitable for this real-world
scenario. The goal of the agent is to minimize the regret (compared to a clairvoyant optimal publishing
policy) over time by learning to make optimal publish/not publish decisions based on the text content.
For the imdb task, we consider “negative” reviews as toxic content; for the offensive task, we consider
“offensive” tweets as toxic content; for the hate task, we consider “hateful” tweets as toxic content.

C.1.3 Bandit models

To investigate the role of uncertainty in LLM bandits, we compare different TS variants with the greedy
baseline. Every bandit model is initialized as in Eq. 1, with a pre-trained GPT2 model (Radford et al.,
2019) (either the base one with 124M parameters, or the XL version with 1.5B parameters). We use the
implementation provided by the HuggingFace library15. GPT2 is a Causal Language Model, which means
that the attention of each token can only look to the current token and the previous ones. For our purposes,
we remove the final classification head, and we take the embedded features of the last token. This is because
the last token can look to all the tokens in the sentence with the attention mechanism. In the GPT2 model,
this final feature vector has a dimension of 768. We then add a final linear layer with 2 output neurons,
which will be trained to solve our regression task. All the parameters are updated during training. We
train each model at the end of each time step (for 50 epochs when we use GPT2, for 5 epochs when we
use GPT2-XL) with the Adam optimizer (Kingma & Ba, 2014), with learning rate set to 3 · 10−5. As TS
variants, we include dropout, Diagonal Fisher LA (which we will call Diag. LA), LA with full Hessian on the
last layer (which we will call Last LA), and Epinet TS. In the following paragraphs, we describe in further
detail the different TS bandit models.

Dropout TS The dropout TS differs from standard supervised learning because we still apply dropout
during the action selection phase (Gal & Ghahramani, 2016; Riquelme et al., 2018). Using dropout in this
phase, we randomly select (according to the dropout probability) a set of parameters θ̂ to use. This procedure
can be seen approximately as sampling parameters from a posterior distribution: θ̂ ∼ P (θ|D). With such
approximate posterior distribution, we can apply Thompson Sampling. After the action selection phase, we
observe the rewards for the selected action, and we update all the parameters of the model by minimizing a
MSE loss. A detailed explanation of the Dropout TS is provided in Algorithm 3.

Diag. LA TS With the Diag. LA TS, we have to maintain a diagonal Hessian for all the weights. At the
beginning, the Hessian is initialized as a diagonal matrix with all the entries equal to the inverse of the prior
variance σ2

p. Then, action selection is performed by sampling every time a different set of weights. Finally, a
13https://huggingface.co/datasets/tweet_eval/viewer/hate
14https://huggingface.co/docs/transformers/model_doc/gpt2#transformers.GPT2Tokenizer
15https://huggingface.co/docs/transformers/model_doc/gpt2

22

https://huggingface.co/datasets/tweet_eval/viewer/hate
https://huggingface.co/docs/transformers/model_doc/gpt2#transformers.GPT2Tokenizer
https://huggingface.co/docs/transformers/model_doc/gpt2

Under review as submission to TMLR

Algorithm 3 Dropout TS
Require: Bandit model fθ, regularization scale λ.

1: θp ← [θPT, 0]
2: Initialize D ← ∅
3: for time t = 1, . . . , T do
4: Observe context x1

t , . . . , xB
t .

5: for b = 1, . . . , B do
6: Apply dropout to parameters: θ̂ ← dropout(θ).
7: Select ab

t = arg maxa fθ̂(xb
t , a).

8: Observe reward rb
t .

9: end for
10: Create Dt = {(x1

t , a1
t , r1

t), . . . , (xB
t , aB

t , rB
t)}

11: Add to the observed dataset D ← D ∪Dt.
12: Train the model fθ with Adam optimizer for 50 epochs minimizing:

L(θ(t);Dt) =
B∑

b=1
(rb

t − fθ(t)(xb
t , ab

t))2 + λ||θ(t) − θ(t−1)||22

13: end for

Algorithm 4 Diag. LA TS
Require: Bandit model fθ, prior variance σ2

p, observation variance σ2
obs.

1: θp ← [θPT, 0]
2: H(1:0) = diag(1/σ2

p)
3: P (θ) = P (θ|∅) = N (θp, H−1)
4: Initialize D ← ∅
5: for time t = 1, . . . , T do
6: Observe context x1

t , . . . , xB
t .

7: for b = 1, . . . , B do
8: Sample parameters: θ̂ ∼ P (θ|D).
9: Select ab

t = arg maxa fθ̂(xb
t , a).

10: Observe reward rb
t .

11: end for
12: Create Dt = {(x1

t , a1
t , r1

t), . . . , (xB
t , aB

t , rB
t)}

13: Add to the observed dataset D ← D ∪Dt.
14: Train the model fθ with Adam optimizer for 50 epochs minimizing:

θMAP ← arg min
θ
L(θ(t);D) = 1

2σ2
obs

∑
(x,a,r)∈Dt

(r − fθ(t)(x, a))2 + 1
2(θ(t) − θ

(t−1)
MAP)T H(1:t−1)(θ(t) − θ

(t−1)
MAP)

15: Compute current Hessian of the likelihood: diag(Ĥ(t)
l) = 1

σ2
obs

∑
(x,a)∈Dt

(∇fθ(x, a))2

16: Update Hessian H(1:t) ← H
(t)
l + H(1:t−1)

17: Update posterior distribution P (θ|D)← N (θMAP, H−1), where H = H(1:t)

18: end for

maximum-a-posteriori loss is minimized. Once we finished the training phase, we obtain a set of weights which
we call θMAP. We update our Hessian using the recursive formula and the expected Fisher approximation.
With these quantities, we update the posterior distribution P (θ|D) as P (θ|D) = N (θMAP, H−1). Then, we
can re-start observing context and selecting actions, repeating the loop. An algorithmic description of this
bandit procedure is provided in Algorithm 4.

23

Under review as submission to TMLR

Algorithm 5 Last LA TS
Require: Bandit model fθ, prior variance σ2

p, observation variance σ2
obs.

1: θp ← [θPT, 0]
2: Initialize the Hessian for the last layer H(1:0) = diag(1/σ2

p)
3: Initialize the prior distribution for the last layer P (θ) = P (θ|∅) = N (0, H−1)
4: Initialize D ← ∅
5: for time t = 1, . . . , T do
6: Observe context x1

t , . . . , xB
t .

7: for b = 1, . . . , B do
8: Sample last layer parameters: θ̂ ∼ P (θ|D) (the remaining parameters stay fixed).
9: Select ab

t = arg maxa fθ̂(xb
t , a).

10: Observe reward rb
t .

11: end for
12: Create Dt = {(x1

t , a1
t , r1

t), . . . , (xB
t , aB

t , rB
t)}

13: Add to the observed dataset D ← D ∪Dt.
14: Train the model fθ with Adam optimizer for 50 epochs minimizing:

θMAP ← arg min
θ
L(θ(t);Dt) =

B∑
b=1

(rb
t − fθ(t)(xb

t , ab
t))2 + λ||θ(t) − θ(t−1)||22 ,

where λ = σ2
obs/σ2

p.
15: Compute the full Hessian of the likelihood (only for the last layer parameters):

Ĥ
(t)
l = ∇2

 1
2σ2

obs

∑
(x,a,r)∈Dt

(r − fθ(x, a))2

16: Update last layer Hessian H(1:t) ← H

(t)
l + H(1:t−1)

17: Update posterior distribution P (θ|D)← N (θMAP, H−1), where H = H(1:t)

18: end for

Last LA TS With the Last LA TS, we have to maintain a full Hessian only for the last layer parameters.
At the beginning, the Hessian is initialized as a diagonal matrix with all the entries equal to the inverse
of the prior variance σ2

p and prior weights equal to zero. Then, action selection is performed by sampling
every time a different set of weights for the last layer, while all the other parameters stay fixed. Finally, a
regularized MSE loss is minimized. Once we finished the training phase, we obtain a set of weights which
we call θMAP for the last layer. We update our Hessian using the recursive formula and computing the full
Hessian on the likelihood part of the loss. With these quantities, we update the posterior distribution on
the last layer parameters P (θ|D) as P (θ|D) = N (θMAP, H−1). Then, we can re-start observing context and
selecting actions, repeating the loop. An algorithmic description of this bandit procedure is provided in
Algorithm 5.

Epinet TS Regarding the epinet architecture, we follow prior work on epinets (Osband et al., 2023a;b)
and select an architecture with a multi-layer perceptron h which is multiplied with a dot product with the
epistemic index: epiη(x; z) = hη([sg(π̃θ(x)), z])T z. In particular, we insert a hidden layer with 256 neurons
with GELU activation function (Hendrycks & Gimpel, 2016) (the same as GPT2). The last layer of the
epinet is a linear layer with a two-dimensional output of dimension 32 × 2. While we conjecture that the
choice of the epinet architecture may influence results, exploring epinet design was not the focus of this work.
Therefore, we used this architecture, which is inspired by prior work (Osband et al., 2023b). Epinets are a
very broad class of neural networks. We believe that our work can shed light on the potential of epinets and
we leave further investigation to future work.

24

Under review as submission to TMLR

Algorithm 6 Epinet TS
Require: Epinet bandit model gθ,η, regularization scale λ, reference distribution PZ .

1: θp ← [θPT, 0]
2: Initialize D ← ∅
3: for time t = 1, . . . , T do
4: Observe context x1

t , . . . , xB
t .

5: for b = 1, . . . , B do
6: Sample epistemic index z ∼ PZ

7: Select ab
t = arg maxa gθ,η(xb

t , a; z).
8: Observe reward rb

t .
9: end for

10: Create Dt = {(x1
t , a1

t , r1
t), . . . , (xB

t , aB
t , rB

t)}
11: Add to the observed dataset D ← D ∪Dt.
12: Train the model gθ,η with Adam optimizer for 50 epochs minimizing:

L(θ(t), η(t);Dt) =
B∑

b=1
(rb

t − gθ(t),η(t)(xb
t , ab

t ; zb))2 + λ||θ − θ(t−1)||22 ,

where zb ∼iid PZ .
13: end for

Model Hyperparameter Range Selected
Greedy Regularization factor λ 0.1, 0.5, 1 1

Diag. LA TS Prior variance σ2
p 0.0001, 0.0005, 0.001, 0.005, 0.01 0.0001

Obs. variance σ2
obs 0.0001, 0.0005, 0.001, 0.005, 0.01 0.01

Last LA TS Prior variance σ2
p 0.0001, 0.0005, 0.001, 0.005, 0.01 0.01

Obs. variance σ2
obs 0.0001, 0.0005, 0.001, 0.005, 0.01 0.01

Dropout Regularization factor λ 0.1, 0.5, 1 1
Epinet Regularization factor λ 0.1, 0.5, 1 1

Table 1: List of the tuned hyperparameters

C.2 Hyperparameter tuning

For each GPT2 (124M) bandit model, hyperparameters are tuned on 10 random runs (with different seeds
than the testing ones) with T = 50 on the toxic task. The set of hyperparameters are shown in Table
1. In particular, for all the hyperparameter configurations, we selected the ones that best performed on
average, measured by cumulative regret, except for the LA TS models. For the LA TS models, we selected
the best configuration and the ones that are not statistically different from the best (measured with a t-
test, p-value=0.05). Among those configurations, we selected the ones with the highest values for prior and
observation variances, in order to induce exploration.

C.3 Additional ablation experiment on dropout

Among the Thompson Sampling techniques, the Dropout method delivers strong results even without tuning
the dropout probability. By relying on the same dropout rate used during pre-training, we are using the
same uncertainty that the original model had in learning to generate natural language. Therefore, it is
not necessarily the best dropout probability to use in a bandit task. To investigate the importance of this
hyperparameter in our experiments, we show dropout TS policies across various dropout probabilities in
Figure 8 on the toxic bandit task. From these results, the rate originally used for pre-training appears
optimal for the bandit task. Also, we notice that, for a smaller value of p (p = 0.05), the reduced exploration
induces a larger variance, as expected.

25

Under review as submission to TMLR

0 200 400 600 800 1000 1200 1400 1600
Observed data points

0.175

0.200

0.225

0.250

0.275

0.300

0.325

0.350

Av
er

ag
e

re
gr

et

Dropout TS p = 0.05
Dropout TS p = 0.1
Dropout TS p = 0.2

Figure 8: Average regret obtained with different dropout values.

0 500 1000 1500 2000 2500 3000
Observed data points

0.175

0.200

0.225

0.250

0.275

0.300

0.325

0.350

Av
er

ag
e

re
gr

et

Greedy
Greedy - Small Transformer

Figure 9: Average regret (± std. err.) obtained on
the toxic bandit task.

0 500 1000 1500 2000 2500 3000
Observed data points

0.22

0.24

0.26

0.28

0.30

0.32

0.34

0.36
Av

er
ag

e
re

gr
et

Greedy
Greedy - Small Transformer

Figure 10: Average regret (± std. err.) obtained on
the imdb bandit task.

0 500 1000 1500 2000 2500 3000
Observed data points

0.22

0.24

0.26

0.28

0.30

0.32

Av
er

ag
e

re
gr

et

Greedy
Greedy - Small Transformer

Figure 11: Average regret (± std. err.) obtained on
the offensive bandit task.

0 500 1000 1500 2000 2500 3000
Observed data points

0.24

0.26

0.28

0.30

0.32

0.34

0.36

Av
er

ag
e

re
gr

et

Greedy
Greedy - Small Transformer

Figure 12: Average regret (± std. err.) obtained on
the hate bandit task.

26

Under review as submission to TMLR

C.4 Additional experiment on model dimension and pre-training

In this experiment, we want to investigate the effect of using a large pre-trained model to initialize the bandit
policies in contextual bandits with text as input. To this end, we evaluate different greedy policies on the
same four tasks presented in Section 5. To investigate the role of the dimension of the model, we include
a smaller transformer with a GPT2-like architecture, with 2 attention blocks, embedding dimension of 128,
and 4 heads, for a total of around 7M parameters. The training procedure is analogous to the one of the
pre-trained greedy policy. The results are shown in Figure 9, 10, 11, 12. These results show how using a
pre-trained LLM is essential for solving contextual bandit tasks with text as input. Indeed, the policies that
use a small transformer always get stuck with suboptimal actions without learning the real bandit task. By
using pre-trained LLMs instead, we can leverage a model that can understand human language (since it was
pre-trained on natural language generation) and focus on learning the task-specific reward function using
expensive bandit data. This transfer learning approach improves the sample-efficiency of our bandit.

27

	Introduction
	Preliminaries
	Batch Contextual Bandit problem
	Aleatoric and Epistemic Uncertainty in Machine Learning

	Large Language Model Bandits
	Greedy policy
	Thompson Sampling

	Epistemic uncertainty estimation for pre-trained LLMs
	Dropout
	Laplace Approximation
	Last-Layer Laplace Approximation
	Epinets

	Experiments
	Experimental Methodology
	Results

	Conclusion
	Prior Work
	Additional details on Laplace Approximation
	Additional experimental details
	Experimental setting
	Computational resources
	Tasks and Data processing
	Bandit models

	Hyperparameter tuning
	Additional ablation experiment on dropout
	Additional experiment on model dimension and pre-training

