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Abstract

Despite enjoying desirable efficiency and reduced reliance on domain expertise,
existing neural methods for vehicle routing problems (VRPs) suffer from severe
robustness issues – their performance significantly deteriorates on clean instances
with crafted perturbations. To enhance robustness, we propose an ensemble-based
Collaborative Neural Framework (CNF) w.r.t. the defense of neural VRP methods,
which is crucial yet underexplored in the literature. Given a neural VRP method,
we adversarially train multiple models in a collaborative manner to synergistically
promote robustness against attacks, while boosting standard generalization on clean
instances. A neural router is designed to adeptly distribute training instances among
models, enhancing overall load balancing and collaborative efficacy. Extensive
experiments verify the effectiveness and versatility of CNF in defending against
various attacks across different neural VRP methods. Notably, our approach also
achieves impressive out-of-distribution generalization on benchmark instances.

1 Introduction

Combinatorial optimization problems (COPs) are crucial yet challenging to solve due to the NP-
hardness. Neural combinatorial optimization (NCO) aims to leverage machine learning (ML) to
automatically learn powerful heuristics for solving COPs, and has attracted considerable attention
recently [2]. Among them, a large number of NCO works develop neural methods for vehicle routing
problems (VRPs) – one of the most classic COPs with broad applications in transportation [54],
logistics [35], planning and scheduling [52], etc. With various training paradigms (e.g., reinforcement
learning (RL)), the neural methods learn construction or improvement heuristics, which achieve com-
petitive or even superior performance to the conventional algorithms. However, recent studies show
that these neural methods are plagued by severe robustness issues [20], where their performance drops
devastatingly on clean instances (sampled from the training distribution) with crafted perturbations.

Although the robustness issue has been investigated in a couple of recent works [87, 20, 42], the
defensive methods on how to help forge sufficiently robust neural VRP methods are still underexplored.
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(c) Illustration of Robustness Issue

Figure 1: (a-b) Performance of POMO [38] on TSP100 against the attacker in [87]. The value in
brackets denotes the number of trained models. We report the average optimality (opt.) gap over
1000 test instances. (c) Solution visualizations on an adversarial instance. These results reveal the
vulnerability of existing neural methods to adversarial attacks, and the existence of undesirable
trade-off between standard generalization (a) and adversarial robustness (b) in VRPs. Details of the
attacker and experimental setups can be found in Appendix B.1 and Section 5, respectively.

In particular, existing endeavours mainly focus on the attack2 side, where they propose different
perturbation models to generate adversarial instances. On the defense side, they simply follow the
vanilla adversarial training (AT) [48]. Concretely, treated as a min-max optimization problem, it first
generates adversarial instances that maximally degrade the current model performance, and then
minimizes the empirical losses of these adversarial variants. However, vanilla AT is known to face an
undesirable trade-off [66, 85] between standard generalization (on clean instances) and adversarial
robustness (against adversarial instances). As demonstrated in Fig. 1, vanilla AT improves adversarial
robustness of the neural VRP method at the expense of standard generalization (e.g., POMO (1) vs.
POMO_AT (1)). One key reason is that the training model is not sufficiently expressive [20]. We
empirically justify this viewpoint by increasing the model capacity through ensembling multiple
models, which partially alleviates the trade-off. However, it is still an open question on how to
effectively synergize multiple models to achieve favorable overall performance on both clean and
adversarial instances within a reasonable computational budget.

In this paper, we focus on the defense of neural VRP methods, aiming to concurrently enhance both
the standard generalization and adversarial robustness. We resort to the ensemble-based AT method
to achieve this objective. Instead of separately training multiple models, we propose a Collaborative
Neural Framework (CNF) to exert AT on multiple models in a collaborative manner. Specifically, in
the inner maximization optimization of CNF, we synergize multiple models to further generate the
global adversarial instance for each clean instance by attacking the best-performing model, rather than
only leveraging each model to independently generate their own local adversarial instances. In doing
so, the generated adversarial instances are diverse and strong in benefiting the policy exploration and
attacking the models, respectively (see Section 4). In the outer minimization optimization of CNF,
we train an attention-based neural router to forward instances to models for effective training, which
helps achieve satisfactory load balancing and collaborative efficacy.

Our contributions are outlined as follows. 1) In contrast to the recent endeavors on the attack side,
we concentrate on the defense of neural VRP methods, which is crucial yet underexplored in the
literature. We empirically observe that the defense through vanilla AT may lead to the undesirable
trade-off between standard generalization and adversarial robustness in VRPs. 2) We propose an
ensemble-based collaborative neural framework to concurrently enhance the performance on both
clean and adversarial instances. Specifically, we propose to further generate global adversarial
instances, and design an attention-based neural router to distribute instances to each model for
effective training. 3) We evaluate the effectiveness and versatility of our method against various
attacks on different VRPs, such as the symmetric and asymmetric traveling salesman problem (TSP,
ATSP) and capacitated vehicle routing problem (CVRP). Results show that our framework can greatly
improve the adversarial robustness of neural methods while even boosting the standard generalization.
Beyond the expectation, we also observe the improved out-of-distribution (OOD) generalization on
both synthetic and benchmark instances, which may suggest the favorable potential of our method in
promoting various types of generalization of neural VRP methods.

2Note that in CO, there may not be an intentional attacker seeking to compromise the model in practice. In
this paper, an "attacker" refers to a method of generating instances where the current model underperforms.
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2 Related Work

Neural VRP Methods. Most neural VRP methods learn construction heuristics, which are mainly
divided into two categories, i.e., autoregressive and non-autoregressive ones. Autoregressive methods
sequentially construct the solution by adding one feasible node at each step. [71] proposes the Pointer
Network (Ptr-Net) to solve TSP with supervised learning. Subsequent works train Ptr-Net with RL to
solve TSP [1] and CVRP [51]. [37] introduces the attention model (AM) based on the Transformer
architecture [69] to solve a wide range of COPs including TSP and CVRP. [38] further proposes the
policy optimization with multiple optima (POMO), which improves upon AM by exploiting solution
symmetries. Further advancements [39, 34, 3, 24, 13, 44, 27, 45, 21, 12] are often developed on top
of AM and POMO. Regarding non-autoregressive methods, the solution is typically constructed in
a one-shot manner without iterative forward passing through the model. [31] leverages the graph
convolutional network to predict the probability of each edge appearing on the optimal tour (i.e.,
heat-map) using supervised learning. Recent works [17, 36, 56, 64, 49, 82, 33, 77] further improve
its performance and scalability by using advanced models, training paradigms, and search strategies.
We refer to [40, 28, 83, 88] for scalability studies, to [30, 5, 90, 18, 41, 16, 89, 4] for generalization
studies, and to [11, 59, 84, 61] for other COP studies. On the other hand, some neural methods learn
improvement heuristics to refine an initial feasible solution iteratively, until a termination condition is
satisfied. In this line of research, the classic local search methods and specialized heuristic solvers for
VRPs are usually exploited [8, 43, 10, 76, 47, 78, 46]. In general, the improvement heuristics can
achieve better performance than the construction ones, but at the expense of much longer inference
time. In this paper, we focused on autoregressive construction methods.

Robustness of Neural VRP Methods. There is a recent research trend on the robustness of neural
methods for COPs [68, 20, 42], with only a few works on VRPs [87, 20, 42]. In general, they
primarily focus on attacking neural construction heuristics by introducing effective perturbation
models to generate adversarial instances that are underperformed by the current model. Following
the AT paradigm, [87] perturbs node coordinates of TSP instances by solving an inner maximization
problem (similar to the fast gradient sign method [22]), and trains the model with a hardness-aware
instance-reweighted loss function. [20] proposes an efficient and sound perturbation model, which
ensures the optimal solution to the perturbed TSP instance can be directly derived. It adversarially
inserts several nodes into the clean instance by maximizing the cross-entropy over the edges, so
that the predicted route is maximally different from the derived optimal one. [42] leverages a no-
worse optimal cost guarantee (i.e., by lowering the cost of a partial problem) to generate adversarial
instances for asymmetric TSP. However, existing methods mainly follow vanilla AT [48] to deploy
the defense, leaving a considerable gap to further consolidate robustness.

Robustness in Other Domains. Deep neural networks are vulnerable to adversarial examples [22],
spurring the development of numerous attack and defensive methods to mitigate the arisen security
issue across various domains. 1) Vision: Early research on adversarial robustness mainly focus
on the continuous image domain (e.g., at the granularity of pixels). The vanilla AT, as formulated
by [48] through min-max optimization, has inspired significant advancements in the field [65, 60,
85, 7, 86]. 2) Language: This domain investigates how malicious inputs (e.g., characters and
words) can deceive (large) language models into making incorrect decisions or producing unintended
outcomes [14, 72, 50, 91, 74]. Challenges include the discrete nature of natural languages and
the complexity of linguistic structures, necessitating sophisticated techniques for generating and
defending against adversarial attacks. 3) Graph: Graph neural networks are also susceptible to
adversarial perturbations in the underlying graph structures [92], prompting research to enhance their
robustness [29, 15, 19, 23, 63]. Similar to the language domain, challenges stem from the discrete
nature of graphs and the interconnected nature of graph data. Although various defensive methods
have been proposed for these specific domains, most are not adaptable to the VRP (or COP) domain
due to their needs for ground-truth labels, reliance on the imperceptible perturbation model, and
unique challenges inherent in combinatorial optimization.

3 Preliminaries

3.1 Neural VRP Methods

Problem Definition. Without loss of generality, we define a VRP instance x over a graph G = {V, E},
where V = {vi}ni=1 represents the node set, and (vi, vj) ∈ E represents the edge set with vi ̸= vj .
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The solution τ to a VRP instance is a tour, i.e., a sequence of nodes in V . The cost function c(·)
computes the total length of a given tour. The objective is to seek an optimal tour τ∗ with the
minimal cost: τ∗ = argminτ∈Φ c(τ |x), where Φ is the set of all feasible tours which obey the
problem-specific constraints. For example, a feasible tour in TSP should visit each node exactly once,
and return to the starting node in the end. For CVRP, each customer node in V is associated with
a demand δi, and a depot node v0 is additionally added into V with δ0 = 0. Given the capacity Q
for each vehicle, a tour in CVRP consists of multiple sub-tours, each of which represents a vehicle
starting from v0, visiting a subset of nodes in V and returning to v0. It is feasible if each customer
node in V is visited exactly once, and the total demand in each sub-tour is upper bounded by Q. The
optimality gap c(τ)−c(τ∗)

c(τ∗) × 100% is used to measure how far a solution is from the optimal solution.

Autoregressive Construction Methods. Popular neural methods [37, 38] construct a solution to
a VRP instance following Markov Decision Process (MDP), where the policy is parameterized by
a neural network with parameters θ. The policy takes the states as inputs, which are instantiated
by features of the instance and the partially constructed solution. Then, it outputs the probability
distribution of valid nodes to be visited next, from which an action is taken by either greedy rollout
or sampling. After a complete tour τ is constructed, the probability of the tour can be factorized
via the chain rule as pθ(τ |x) =

∏S
s=1 pθ(π

s
θ|π<s

θ , x), where πs
θ and π<s

θ represent the selected node
and the partial solution at the sth step, and S is the number of total steps. Typically, the reward
is defined as the negative length of a tour −c(τ |x). The policy network is commonly trained with
REINFORCE [75]. With a baseline function b(·) to reduce the gradient variance and stabilize the
training, it estimates the gradient of the expected reward as:

∇θL(θ|x) = Epθ(τ |x)[(c(τ)− b(x))∇θ log pθ(τ |x)]. (1)

3.2 Adversarial Training

Adversarial training is one of the most effective and practical techniques to equip deep learning models
with adversarial robustness against crafted perturbations on the clean instance. In the supervised
fashion, where the clean instance x and ground truth (GT) label y are given, AT is commonly
formulated as a min-max optimization problem:

min
θ

E(x,y)∼D[ℓ(y, fθ(x̃))], with x̃ = argmaxx̃i∈Nϵ[x][ℓ(y, fθ(x̃i))], (2)

where D is the data distribution; ℓ is the loss function; fθ(·) is the model prediction with parameters
θ; Nϵ[x] is the neighborhood around x, with its size constrained by the attack budget ϵ. The solution
to the inner maximization is typically approximated by projected gradient descent:

x(t+1) = ΠNϵ[x][x
(t) + α · sign(∇x(t)ℓ(y, fθ(x

(t))))], (3)

where α is the step size; Π is the projection operator that projects the adversarial instance back to the
neighborhood Nϵ[x]; x(t) is the adversarial instance found at step t; and the sign operator is used
to take the gradient direction and carefully control the attack budget. Typically, x(0) is initialized
by the clean instance or randomly perturbed instance with small Gaussian or Uniform noises. The
adversarial instance is updated iteratively towards loss maximization until a stop criterion is satisfied.

AT for VRPs. Most ML research on adversarial robustness focuses on the continuous image
domain [22, 48]. We would like to highlight two main differences in the context of discrete VRPs
(or COPs). 1) Imperceptible perturbation: The adversarial instance x̃ is typically generated within a
small neighborhood of the clean instance x, so that the adversarial perturbation is imperceptible to
human eyes. For example, the adversarial instance in image related tasks is typically bounded by
Nϵ[x] : ∥x− x̃∥p ≤ ϵ under the lp norm threat model. When the attack budget ϵ is small enough, x̃
retains the GT label of x. However, it is not the case for VRPs due to the nature of discreteness. The
optimal solution can be significantly changed even if only a small part of the instance is modified.
Therefore, the subjective imperceptible perturbation is not a realistic goal in VRPs, and we do not
exert such an explicit imperceptible constraint on the perturbation model (see Appendix A for further
discussions). In this paper, we set the attack budget within a reasonable range based on the attack
methods. 2) Accuracy-robustness trade-off: The standard generalization and adversarial robustness
seem to be conflicting goals in image related tasks. With increasing adversarial robustness the
standard generalization tends to decrease, and a number of works intend to mitigate such a trade-off
in the image domain [66, 85, 73, 57, 80]. By contrast, a recent work [20] claims the existence of
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Figure 2: The overview of CNF. Suppose we train M = 3 models (Θ = {θ1, θ2, θ3}) on a batch
(B = 3) of clean instances. The inner maximization generates local (x̃) and global (x̄) adversarial
instances within T steps. In the outer minimization, a neural router θr is jointly trained to distribute
instances to the M models for training. Specifically, based on the logit matrix P predicted by the
neural router, each model selects the instances with TopK-largest logits (e.g., red ones). The neural
router is optimized to maximize the improvement of collaborative performance after each training
step of Θ. For simplicity, we omit the superscripts of instances in the outer minimization.

neural solvers with high accuracy and robustness in COPs. They state that a sufficiently expressive
model does not suffer from the trade-off given the problem-specific efficient and sound perturbation
model, which guarantees the correct GT label of the perturbed instance. However, by following the
vanilla AT, we empirically observe that the undesirable trade-off may still exist in VRPs (as shown in
Fig. 1), which is mainly due to the insufficient model capacity under the specific perturbation model.
Furthermore, similar to combinatorial optimization, although the language and graph domains are
also discrete, their methods cannot be trivially adapted to VRPs (see Appendix A).

4 Collaborative Neural Framework

In this section, we first present the motivation and overview of the proposed framework, and then
introduce the technical details. Overall, we propose a collaborative neural framework to synergistically
promote adversarial robustness among multiple models, while boosting standard generalization. Since
conducting AT for deep learning models from scratch is computationally expensive due to the extra
inner maximization steps, we use the model pretrained on clean instances as a warm-start for
subsequent AT steps. An overview of the proposed method is illustrated in Fig. 2.

Motivation. Motivated by the empirical observations that 1) existing neural VRP methods suffer
from severe adversarial robustness issue; 2) undesirable trade-off between adversarial robustness and
standard generalization may exist when following the vanilla AT, we propose to adversarially train
multiple models in a collaborative manner to mitigate the above-mentioned issues within a reasonable
computational budget. It then raises the research question on how to effectively and efficiently
train multiple models under the AT framework, involving a pair of inner maximization and outer
minimization, which will be detailed in the following parts. Note that despite the accuracy-robustness
trade-off being a well-known research problem in the literature of adversarial ML, most works
focus on the image domain. Due to the needs for GT labels or the dependence on the imperceptible
perturbation model, their methods (e.g., TRADES [85], Robust Self-Training with AT [57]) cannot
be directly leveraged to solve this trade-off in VRPs. We refer to Appendix A for further discussions.

Overview. Given a pretrained model θp, CNF deploys the AT on its M copies (i.e., Θ(0) =

{θ(0)j }Mj=1 ← θp) in a collaborative manner. Concretely, at each training step, it first solves the
inner maximization optimization to synergistically generate the local (x̃) and global (x̄) adversarial
instances, on which the current models underperform. Then, in the outer minimization optimization,
we jointly train an attention-based neural router θr with all models Θ by RL in an end-to-end manner.
By adaptively distributing instances to different models for training, the neural router can reasonably
exploit the overall capacity of models and thus achieve satisfactory load balancing and collaborative
efficacy. During inference, we discard the neural router θr and use the trained models Θ to solve each
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Algorithm 1 Collaborative Neural Framework for VRPs
Input: training steps: E, number of models: M , attack steps: T , batch size: B, pretrained model: θp;
Output: robust model set Θ(E) = {θ(E)

j }
M
j=1;

1: Initialize Θ(0) = {θ(0)1 , · · · , θ(0)M } ← θp, θ
(0)
r

2: for e = 1, . . . , E do
3: {xi}Bi=1 ← Sample a batch of clean instances
4: Initialize x̃

(0)
i,j , x̄

(0)
i ← xi, ∀i ∈ [1, B], ∀j ∈ [1,M ]

5: for t = 1, . . . , T do ▷ Inner Maximization

6: x̃
(t)
i,j ← Approximate solutions to max ℓ(x̃

(t−1)
i,j ; θ

(e−1)
j ), ∀i ∈ [1, B], ∀j ∈ [1,M ]

7: θ
(e−1)
bi

← Choose the best-performing model for x̄(t−1)
i from Θ(e−1), ∀i ∈ [1, B]

8: x̄
(t)
i ← Approximate solutions to max ℓ(x̄

(t−1)
i ; θ

(e−1)
bi

), ∀i ∈ [1, B]
9: end for

10: X ←
{
{xi, x̃

(T )
i,j , x̄

(T )
i }, ∀i ∈ [1, B], ∀j ∈ [1,M ]

}
▷ Outer Minimization

11: R← Evaluate X on Θ(e−1)

12: P̃ ← Softmax(f
θ
(e−1)
r

(X ,R))
13: Θ(e) ← Train θ

(e−1)
j ∈ Θ(e−1) on TopK(P̃·j) instances, ∀j ∈ [1,M ]

14: R′ ← Evaluate X on Θ(e)

15: θ
(e)
r ← Update neural router θ(e−1)

r with the gradient∇
θ
(e−1)
r

L using Eq. (6)
16: end for

instance. The best solution among them is returned to reflect the final collaborative performance. We
present the pseudocode of CNF in Algorithm 1, and elaborate each part in the following subsections.

4.1 Inner Maximization

The inner maximization aims to generate adversarial instances for the training in the outer mini-
mization, which should be 1) effective in attacking the framework; 2) diverse to benefit the policy
exploration for VRPs. Typically, an iterative attack method generates local adversarial instances
for each model only based on its own parameter (e.g., the same θ in Eq. (3) is repetitively used
throughout the generation). Such local attack (line 6) only focuses on degrading each individual
model, failing to consider the ensemble effect of multiple models. Due to the existence of multiple
models in CNF, we are motivated to further develop a general form of local attack – global attack (line
7-8), where each adversarial instance can be generated using different model parameters within T
generation steps. Concretely, given each clean instance x, we generate the global adversarial instance
x̄ by attacking the corresponding best-performing model in each iteration of the inner maximization.
In doing so, compared with the sole local attack, the generated adversarial instances are more diverse
to successfully attack the models Θ (see Appendix A for further discussions). Without loss of
generality, we take the attacker from [87] as an example, which directly maximizes the variant of the
reinforcement loss as follows:

ℓ(x; θ) =
c(τ)

b(x)
log pθ(τ |x), (4)

where b(·) is the baseline function (as shown in Eq. (1)). On top of it, we generate the global
adversarial instance x̄ such that:

x̄(t+1) = ΠN [x̄(t) + α · ∇x̄(t)ℓ(x̄(t); θ
(t)
b )], θ

(t)
b = argminθ∈Θc(τ |x̄(t); θ), (5)

where x̄(t) is the global adversarial instance and θ
(t)
b is the best-performing model (w.r.t. x̄(t)) at step

t. If x̄(t) is out of the range, it would be projected back to the valid domain N by Π, such as the
min-max normalization for continuous variables (e.g., node coordinates) or the rounding operation
for discrete variables (e.g., node demands). We discard the sign operator in Eq. (3) to relax the
imperceptible constraint. More details are presented in Appendix B.1.

In summary, the local attack is a special case of the global attack, where the same model is chosen
as θb in each iteration. While the local attack aims to degrade a single model θ, the global attack
can be viewed as explicitly attacking the collaborative performance of all models Θ, which takes
into consideration the ensemble effect by attacking θb. In CNF, we involve adversarial instances that
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are generated by both the local and global attacks to pursue better adversarial robustness, while also
including clean instances to preserve standard generalization.

4.2 Outer Minimization

After the adversarial instances are generated by the inner maximization, we collect a set of instancesX
with |X | = N , which includes clean instances x, local adversarial instances x̃ and global adversarial
instances x̄, to train M models. Here a key problem is that how are the instances distributed to models
for their training, so as to achieve satisfactory load balancing (training efficiency) and collaborative
performance (effectiveness)? To solve this, we design an attention-based neural router, and jointly
train it with all models Θ to maximize the improvement of collaborative performance.

Concretely, we first evaluate each model on X to obtain a cost matrix R ∈ RN×M . The attention-
based neural router θr takes as inputs the instances X andR, and outputs a logit matrix fθr (X ,R) =
P ∈ RN×M , where f is the decision function. Then, we apply Softmax function along the first
dimension of P to obtain the probability matrix P̃ , where the entity P̃ij represents the probability
of the ith instance being selected for the outer minimization of the jth model. For each model, the
neural router distributes the instances with TopK-largest predicted probabilities as a batch for its
training (line 10-13). In doing so, all models have the same amount (K) of training instances, which
explicitly ensures the load balancing (see Appendix A). We also discuss other strategies of instance
distributing, such as sampling, instance-based choice, etc. More details can be found in Section 5.2.

After all models Θ are trained with the distributed instances, we further evaluate each model on
X , obtaining a new cost matrixR′ ∈ RN×M . To pursue desirable collaborative performance, it is
expected that the neural router θr can reasonably exploit the overall capacity of models. Since the
action space of θr is huge and the models Θ are changing throughout the training, we resort to the
reinforcement learning (based on trial-and-error) to optimize parameters of the neural router θr (line
14-15). Specifically, we set (minR−minR′) as the reward signal, and update θr by gradient ascent
to maximize the expected return with the following approximation:

∇θrL(θr|X ) = Ej∈[1,M ],i∈TopK(P̃·j),P̃ [(minR−minR′)i∇θr log P̃ij ], (6)

where the min operator is applied along the last dimension of R and R′, since we would like to
maximize the improvement of collaborative performance after training with the selected instances.
Intuitively, if an entity in (minR−minR′) is positive, it means that, after training with the selected
instances, the collaborative performance of all models on the corresponding instance is increased.
Thus, the corresponding action taken by the neural router should be reinforced, and vice versa. For
example, in Fig. 2, if the reward entity for the first instance x1 is positive, the probability of this action
(i.e., the red one in the first row of P) will be reinforced after optimization. Note that the unselected
(e.g., black ones) will be masked out in Eq. (6). In doing so, the neural router learns to effectively
distribute instances and reasonably exploit the overall model capacity, such that the collaborative
performance of all models can be enhanced after optimization. Further details on the neural router
structure and the in-depth analysis of the learned routing policy are presented in Appendix C.

5 Experiments

In this section, we empirically verify the effectiveness and versatility of CNF against attacks spe-
cialized for VRPs, and conduct further analyses to provide the underlying insights. Specifically, our
experiments focus on two attack methods [87, 42], since the accuracy-robustness trade-off exists when
conducting vanilla AT to defend against them. We conduct the main experiments on POMO [38] with
the attacker in [87], and further demonstrate the versatility of the proposed framework on MatNet [39]
with the attacker in [42]. More details on the experimental setups, data generation and additional
empirical results (e.g., evaluation on large-scale instances) are presented in Appendix D. All experi-
ments are conducted on a machine with NVIDIA V100S-PCIE cards and Intel Xeon Gold 6226 CPU
at 2.70GHz. The source code is available at https://github.com/RoyalSkye/Routing-CNF.

Baselines. 1) Traditional methods: we solve TSP instances by Concorde and LKH3 [25], and CVRP
instances by hybrid genetic search (HGS) [70] and LKH3. 2) Neural methods: we compare our
method with the pretrained base model POMO (∼1M parameters), and its variants training with
various defensive methods, such as the vanilla adversarial training (POMO_AT), the defensive method
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Table 1: Performance evaluation over 1K test instances. The bracket includes the number of models.

n = 100 n = 200
Uniform (100) Fixed Adv. (100) Adv. (100) Uniform (200) Fixed Adv. (200) Adv. (200)
Gap Time Gap Time Gap Time Gap Time Gap Time Gap Time

T
SP

Concorde 0.000% 0.3m 0.000% 0.3m – – 0.000% 0.6m 0.000% 0.6m – –
LKH3 0.000% 1.3m 0.002% 2.1m – – 0.000% 3.9m 0.005% 5.8m – –
POMO (1) 0.144% 0.1m 35.803% 0.1m 35.803% 0.1m 0.736% 0.5m 63.477% 0.5m 63.477% 0.5m
POMO_AT (1) 0.365% 0.1m 0.390% 0.1m 0.330% 0.1m 2.151% 0.5m 1.248% 0.5m 1.154% 0.5m
POMO_AT (3) 0.255% 0.3m 0.295% 0.3m 0.243% 0.3m 1.884% 1.5m 1.090% 1.5m 1.011% 1.5m
POMO_HAC (3) 0.135% 0.3m 0.344% 0.3m 0.316% 0.3m 0.683% 1.5m 1.308% 1.5m 1.273% 1.5m
POMO_DivTrain (3) 0.255% 0.3m 0.297% 0.3m 0.254% 0.3m 1.875% 1.5m 1.093% 1.5m 1.026% 1.5m
CNF_Greedy (3) 0.187% 0.3m 0.314% 0.3m 0.280% 0.3m 0.868% 1.5m 1.108% 1.5m 1.096% 1.5m
CNF (3) 0.118% 0.3m 0.236% 0.3m 0.217% 0.3m 0.614% 1.5m 0.954% 1.5m 0.952% 1.5m

C
V

R
P

HGS 0.000% 6.6m 0.000% 14.6m – – 0.000% 0.4h 0.000% 1.2h – –
LKH3 0.538% 18.1m 0.344% 23.0m – – 1.116% 0.5h 0.761% 0.6h – –
POMO (1) 1.209% 0.1m 3.983% 0.1m 3.983% 0.1m 2.122% 0.6m 16.173% 0.8m 16.173% 0.8m
POMO_AT (1) 1.456% 0.1m 0.882% 0.1m 0.935% 0.1m 3.249% 0.6m 1.384% 0.6m 1.435% 0.6m
POMO_AT (3) 1.256% 0.3m 0.767% 0.3m 0.809% 0.3m 2.919% 1.8m 1.253% 1.8m 1.296% 1.8m
POMO_HAC (3) 1.085% 0.3m 0.829% 0.3m 0.848% 0.3m 1.974% 1.8m 1.374% 1.8m 1.367% 1.8m
POMO_DivTrain (3) 1.254% 0.3m 0.754% 0.3m 0.809% 0.3m 2.946% 1.8m 1.220% 1.8m 1.302% 1.8m
CNF_Greedy (3) 1.112% 0.3m 0.785% 0.3m 0.821% 0.3m 1.969% 1.8m 1.316% 1.8m 1.353% 1.8m
CNF (3) 1.073% 0.3m 0.730% 0.3m 0.769% 0.3m 2.031% 1.8m 1.193% 1.8m 1.198% 1.8m

— For traditional methods, Adv. is not shown since the test adversarial dataset is different for each neural method.

proposed by the attacker [87] (POMO_HAC), and the diversity training [32] from the literature of
ensemble-based adversarial ML (POMO_DivTrain). Specifically, POMO_AT adversarially trains the
models by first generating local adversarial instances in the inner maximization, and then minimizing
their empirical risks in the outer minimization. POMO_HAC further improves the outer minimization
by optimizing a hardness-aware instance-reweighted loss function on a mixed dataset, including
both clean and local adversarial instances. POMO_DivTrain improves the ensemble diversity by
minimizing the cosine similarity between the gradients of models w.r.t. the input. Furthermore, we
also compare our method with CNF_Greedy by replacing the neural router with a heuristic greedy
selection method, and another advanced ensemble-based AT method TRS [81] (see Appendix D.6).
More implementation details of baselines are provided in Appendix D.1.

Training Setups. CNF starts with a pretrained model, and then adversarially trains its M copies
in a collaborative way. We consider two scales of training instances n ∈ {100, 200}. For the
pretraining stage, the model is trained on clean instances following the uniform distribution. We
use the open-source pretrained POMO for n = 100, and retrain the model for n = 200. Following
the original training setups from [38], Adam optimizer is used with the learning rate of 1e− 4, the
weight decay of 1e− 6 and the batch size of B = 64. To achieve full convergence, we pretrain the
model on 300M and 100M clean instances for TSP200 and CVRP200, respectively. After obtaining
the pretrained model, we use it to initialize M = 3 models, and further adversarially train them on
5M and 2.5M instances for n = 100 and n = 200, respectively. To save the GPU memory, we reduce
the batch size to B = 32 for n = 200. The optimizer setting is the same as the one employed in the
pretraining stage, except that the learning rate is decayed by 10 for the last 40% training instances.
For the mixed data collection, we collect B clean instances, MB local adversarial instances and B
global adversarial instances in each training step.

Inference Setups. For neural methods, we use the greedy rollout with x8 instance augmentations
following [38]. We report the average gap over the test dataset containing 1K instances. Concretely,
the gap is computed w.r.t. the traditional VRP solvers (i.e., Concorde for TSP, and HGS for CVRP).
If multiple models exist, we report the collaborative performance, where the best gap among all
models is recorded for each instance. The reported time is the total time to solve the entire dataset.
We consider three evaluation metrics: 1) Uniform (standard generalization): the performance on
clean instances whose distributions are the same as the pretraining ones; 2) Fixed Adv. (adversarial
robustness): the performance on adversarial instances generated by attacking the pretrained model. It
mimics the black-box setting, where the attacker generates adversarial instances using a surrogate
model due to the inaccessibility to the current model and the transferability of adversarial instances;
3) Adv. (adversarial robustness): the performance on adversarial instances generated by attacking the
current model. For a neural method with multiple (M ) models, it generates MK adversarial instances,
from which we randomly sample 1K instances to construct the test dataset. It is the conventional
white-box metric used to evaluate adversarial robustness in the literature of AT.

5.1 Performance Evaluation

The results are shown in Table 1. We have conducted t-test with the threshold of 5% to verify the
statistical significance. For all neural methods, we report the inference time on a single GPU. More-
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Figure 3: Ablation studies on TSP100. The metrics of Uniform and Fixed Adv. are reported.

over, for neural methods with multiple (M ) models (e.g., CNF (3)), we develop an implementation
of parallel evaluation on multiple GPUs, which can further reduce their inference time by almost
M times. From the results, we observe that 1) traditional VRP methods are relatively more robust
than neural methods against crafted perturbations, demonstrating the importance and necessity of
improving adversarial robustness for neural methods; 2) the evaluation metrics of Fixed Adv. and
Adv. are almost consistent in the context of VRPs; 3) our method consistently outperforms baselines,
and achieves high standard generalization and adversarial robustness concurrently. For CNF, we show
the performance of each model on TSP100 in Fig. 5. Although not all models excel well on both
clean and adversarial instances, the collaborative performance is quite good, demonstrating diverse
expertise of models and the capability of CNF in reasonably exploiting the overall model capacity.

5.2 Ablation Study

We conduct extensive ablation studies on TSP100 to demonstrate the effectiveness and sensitivity
of our method. Note that the setups are slightly different from the training ones (e.g., half training
instances). The detailed results and setups are presented in Fig. 3 and Appendix D.1, respectively.

Ablation on Components. We investigate the role of each component in CNF by removing them
separately. As demonstrated in Fig. 3(a), despite both components contribute to the collaborative
performance, the neural router exhibits a bigger effect due to its favorable potentials to elegantly
exploit training instances and model capacity, especially in the presence of multiple models.

Ablation on Hyperparameters. We investigate the effect of the number of trained models, which is
a key hyperparameter of our method, on the collaborative performance. The results are shown in Fig.
3(b), where we observe that increasing the number of models can further improve the collaborative
performance. However, we use M = 3 in the main experiments due to the trade-off between empirical
performance and computational complexity. We refer to Appendix D.4 for more results.

Ablation on Routing Strategies. We further discuss different routing strategies, including neural and
heuristic ones. Specifically, given the logit matrix P predicted by the neural router, there are various
ways to distribute instances: 1) Model choice with TopK (M-TopK): each model chooses potential
instances with TopK-largest logits, which is the default strategy (K = B) in CNF; 2) Model choice
with sampling (M-Sample): each model chooses potential instances by sampling from the probability
distribution (i.e., scaled logits); 3-4) Instance choice with TopK/sampling (I-TopK/I-Sample): in
contrast to the model choice, each instance chooses potential model(s) either by TopK or sampling.
The probability matrix P̃ is obtained by taking Softmax along the first and last dimension of P for
model choice and instance choice, respectively. Unlike the model choice, instance choice cannot
guarantee load balancing. For example, the majority of instances may choose a dominant model
(if exists), leaving the remaining models underfitting and therefore weakening the ensemble effect
and collaborative performance; 5) Random: instances are randomly distributed to each model; 6)
Self-training: each model is trained on adversarial instances generated by itself without instance
distributing. The results in Fig. 3(c) show that M-TopK performs the best.

5.3 Out-of-Distribution Generalization

In contrast to other domains (e.g., vision), the set of valid problems is not just a low-dimensional
manifold in a high-dimensional space, and hence the manifold hypothesis [62] does not apply to
VRPs (or COPs). Therefore, it is critical for neural methods to perform well on adversarial instances
when striving for a broader out-of-distriburion (OOD) generalization in VRPs. In this section, we
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Table 2: Generalization evaluation on synthetic TSP datasets. Models are only trained on n = 100.

Cross-Distribution Cross-Size Cross-Size & Distribution
Rotation (100) Explosion (100) Uniform (50) Uniform (200) Rotation (200) Explosion (200)
Gap Time Gap Time Gap Time Gap Time Gap Time Gap Time

Concorde 0.000% 0.3m 0.000% 0.3m 0.000% 0.2m 0.000% 0.6m 0.000% 0.6m 0.000% 0.6m
LKH3 0.000% 1.2m 0.000% 1.2m 0.000% 0.4m 0.000% 3.9m 0.000% 3.3m 0.000% 3.5m
POMO (1) 0.471% 0.1m 0.238% 0.1m 0.064% 0.1m 1.658% 0.5m 2.936% 0.5m 2.587% 0.5m
POMO_AT (1) 0.640% 0.1m 0.364% 0.1m 0.151% 0.1m 2.667% 0.5m 3.462% 0.5m 2.989% 0.5m
POMO_AT (3) 0.508% 0.3m 0.263% 0.3m 0.085% 0.1m 2.362% 1.5m 3.176% 1.5m 2.688% 1.5m
POMO_HAC (3) 0.204% 0.3m 0.107% 0.3m 0.038% 0.1m 1.414% 1.5m 2.184% 1.5m 1.718% 1.5m
POMO_DivTrain (3) 0.502% 0.3m 0.255% 0.3m 0.078% 0.1m 2.356% 1.5m 3.176% 1.5m 2.707% 1.5m
CNF (3) 0.193% 0.3m 0.084% 0.3m 0.036% 0.1m 1.383% 1.5m 2.055% 1.5m 1.672% 1.5m

further evaluate the OOD generalization performance on unseen instances from both synthetic and
benchmark datasets. The empirical results demonstrate that raising robustness against attacks through
CNF can favorably promotes various forms of generalization, indicating the potential existence of
neural VRP solvers with high generalization and robustness concurrently. The data generation and
comprehensive results can be found in Appendix D.

Synthetic Datasets. We consider three generalization settings, i.e., cross-distribution, cross-size,
and cross-size & distribution. The results are shown in Table 2, from which we observe that simply
conducting the vanilla AT somewhat hurts the OOD generalization, while CNF can significantly
improve it. Since adversarial robustness is known as a kind of local generalization property [22,
48], the improvements in OOD generalization can be viewed as a byproduct of defending against
adversarial attacks and balancing the accuracy-robustness trade-off.

Benchmark Datasets. We further evaluate all neural methods on the real-world benchmark datasets,
such as TSPLIB [58] and CVRPLIB [67]. We choose representative instances within the range of
n ∈ [100, 1002]. The results, presented in Tables 9 and 10, demonstrate that our method performs
well across most instances. Note that all neural methods are only trained on n = 100.

5.4 Versatility Study

To demonstrate the versatility of CNF, we extend its application to MatNet [39] to defend against
another attacker in [42]. Specifically, it constructs the adversarial instance by lowering the cost of a
partial clean asymmetric TSP (ATSP) instance. When adhering to the vanilla AT, the undesirable
trade-off is also observed in the empirical results of [42]. In contrast, our method enables models to
achieve both high standard generalization and adversarial robustness. The detailed attack method,
training setups, and empirical results are presented in Appendix B.3, D.1 and D.3, respectively.

6 Conclusion

This paper studies the crucial yet underexplored adversarial defense of neural VRP methods, filling
the gap in the current literature on this topic. We propose an ensemble-based collaborative neural
framework to concurrently enhance performance on clean and adversarial instances. Extensive
experiments demonstrate the effectiveness and versatility of our method, highlighting its potential
to defend against attacks while promoting various forms of generalization of neural VRP methods.
Additionally, our work can be viewed as advancing the generalization of neural methods through
the lens of adversarial robustness, shedding light on the possibility of building more robust and
generalizable neural VRP methods in practice.

The limitation of this work is the increased computational complexity due to the need to synergistically
train multiple models. Fortunately, based on experimental results, CNF with just three models has
already achieved commendable performance. It even surpasses vanilla AT trained with nine models,
demonstrating a better trade-off between empirical performance and computational complexity.

Interesting future research directions may include: 1) designing efficient and effective attack or
defense methods for other COPs; 2) pursuing better robustness with fewer computation, such as
through conditional computation and parameter sharing; 3) theoretically analyzing the robustness of
neural VRP methods, such as certified robustness; 4) investigating the potential of large language
models to robustly approximate optimal solutions to COP instances.
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Collaboration! Towards Robust Neural Methods
for Routing Problems (Appendix)

A Frequently Asked Questions

Load Balancing. In this paper, load balancing refers to distributing each model with a similar or the
same number of training instances from the instance set X , in each outer minimization step. It can
avoid the appearance of dominant model or biased performance. The proposed neural router with
the TopK operator explicitly ensures such load balancing since each model is assigned exactly K
instances based on the probability matrix predicted by the neural router.

Why does CNF Work? Instead of simply training multiple models, the effectiveness of the proposed
collaboration mechanism in CNF can be attributed to its diverse adversarial data generation and the
reasonable exploit of overall model capacity. As shown in the ablation study (Fig. 3(a)), the diverse
adversarial data generation is helpful in further improving the adversarial robustness (see results
of CNF vs. W/O Global Attack). Meanwhile, the neural router has a bigger effect in mitigating
the trade-off (see results of CNF vs. W/O Router). Intuitively, by distributing instances to suitable
submodels for training, each submodel might be stimulated to have its own expertise. Accordingly,
the overlap of their vulnerability areas may be decreased, which could promote the collaborative
performance of CNF. As shown in Fig. 5, not all models perform well on each kind of instance. The
expertise of θ0 lies primarily in handling clean instances, whereas θ1 specializes in dealing with
adversarial instances. Such diversity in submodels contributes to the collaborative efficacy of Θ and
the mitigation of the undesirable trade-off between standard generalization and adversarial robustness,
thereby significantly outperforming vanilla AT with multiple models.

Why using Best-performing Model for Global Attack? The collaborative performance of our
framework depends on the best-performing model θb w.r.t. each instance, since its solution will be
chosen as the final solution during inference. The goal of inner maximization is to construct the
adversarial instance that can successfully fool the framework. Intuitively, if we choose to attack
other models (rather than θb), the constructed adversarial instances may not successfully fool the
best-performing model θb, and therefore the final solution to the adversarial instance could still be
good, which contradicts the goal of inner maximization. Therefore, to increase the success rate
of attacking the framework and generate more diverse adversarial instances, for each instance, we
choose the corresponding best-performing model θb as the global model in each attack iteration.

Divergence of Same Initial Models. We take POMO [38] as an example. During training, in each
step of solution construction, the decoder of the neural solver selects the valid node to be visited by
sampling from the probability distribution, rather than using the argmax operation. Even though we
initialize all models using the same pretrained model, given the same attack hyperparameters (e.g.,
attack iterations), the adversarial instances generated by different models are generally not the same
at the beginning of the training. Therefore, the same initial models can diverge to different models
due to the training on different (adversarial) instances.

Larger Model. In addition to training multiple models, increasing the number of parameters for
a single model is another way of enhancing the overall model capacity. However, technically, 1) a
larger model needs more GPU memory, which puts more requirements on a single GPU device. It is
also more sophisticated to enable parallel training on multiple GPUs compared to the counterpart
with multiple models; 2) currently, our method conducts AT upon the pretrained model, but there
does not exist a larger pretrained model (e.g., larger POMO) in the literature. Despite the technical
issues, we try to pretrain a larger POMO (i.e., 18 encoder layers with 3.64M parameters in total) on
the uniform distributed data, and further conduct the vanilla AT. The performance is around 0.335%
and 0.406% on clean and adversarial instances, respectively, which is inferior to the counterpart with
multiple models (i.e., POMO_AT (3)). The superiority of multiple models may be attributed to its
ensemble effect and the capacity in learning multiple diverse policies.
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Advanced AT Methods in Other Domains. In this paper, we mainly focus on the vanilla AT [48].
More advanced AT techniques, such as TRADES [85], AT in RL [55], and ensemble-based AT [65,
32, 53, 79, 81] can be further considered. However, some of them may not be applicable to the
VRP domain due to their needs for ground-truth labels or the dependence on the imperceptible
perturbation model. 1) TRADES is empirically effective for trading adversarial robustness off
against standard generalization on the image classification task. Its loss function is formulated as
L = CE(f(x), y)+βKL(f(x), f(x̃)), where CE is cross-entropy; KL is KL-divergence; x is a clean
instance; x̃ is an adversarial instance; f(x) is the logit predicted by the model; y is the ground-truth
label; β is a hyperparameter. By explicitly making the outputs of the network (logits) similar for x
and x̃, it can mitigate the accuracy-robustness trade-off. However, the above statement is contingent
upon the imperceptible perturbation model, where the ground-truth labels of x and x̃ are kept the
same. As we discussed in Section 3.2, in the discrete VRPs, the perturbation model does not have
such an imperceptible constraint, and the optimal solutions to x and x̃ are not the same in the general
case. Therefore, it does not make sense to make the outputs of the model similar for x and x̃. 2)
Another interesting direction is AT in RL, where the focus is the attack side rather than the defense
side (e.g., most of the design in [55] focuses on the adversarial agent). Specifically, it jointly trains
another agent (i.e., the attacker or adversary), whose objective is to impede the first agent, to generate
hard trajectories in a two-player zero-sum way. Its goal is to learn a policy that is robust to modeling
errors in simulation or mismatch between training and test scenarios. In contrast, our work focuses
on the defense side and aims to mitigate the trade-off between standard generalization and adversarial
robustness. Moreover, this method is specific to RL while our framework has the potential to work
with the supervised learning setting. Overall, it is non-trivial to directly apply this method to address
our research problem (e.g., the trade-off). But it is an interesting future research direction to design
attack methods specific to RL (e.g., by training another adversarial agent or attacking each step of
MDP). 3) Similar to the proposed CNF, ensemble-based AT also leverages multiple models, but
with a different motivation (e.g., reducing the adversarial transferability between models to defend
against black-box adversarial attacks [79]). Concretely, ADP [53] needs the ground-truth labels
to calculate the ensemble diversity. DVERGE [79] depends on the misalignment of the distilled
feature between the visual similarity and the classification result, and hence on the imperceptible
perturbation model. Therefore, it is non-trivial to directly adapt them to the discrete VRP domain.
DivTrain [32] proposes to decrease the gradient similarity loss to reduce the overall adversarial
transferability between models, and TRS [81] further uses a model smoothness loss to improve the
ensemble robustness. Technically, their methods are computational expensive due to the needs to
keep the computational graph before taking an optimization step. We show their empirical results in
Table 7. Compared with others, their empirical results are not superior in VRPs. For example, for
TSP100, POMO_TRS (3), which is adapted from [81], achieves 0.098% and 0.528% on the metrics
of Uniform and Fixed Adv., respectively, failing to mitigate the undesirable trade-off. We leave the
discussion on defensive methods from other domains (e.g., language and graph) to Section 2.

Attack Budget. As discussed in Section 3.2, we do not exert the imperceptible constraint on the
perturbation model in VRPs. We further explain it from two perspectives: 1) different from other
domains, there is no theoretical guarantee to ensure the invariance of the optimal solution (or ground-
truth label), given an imperceptible perturbation. A small change on even one node’s attribute may
induce a totally different optimal solution. Therefore, we do not see the benefit of constraining the
attack budget to a very small (i.e., imperceptible) range in VRP tasks. Moreover, even with the
absence of the imperceptible constraint on the perturbation model, unlike the graph learning setting,
we do not observe a significant degradation on clean performance. It reveals that we don’t need
explicit imperceptible perturbation to restrain the changes on (clean) objective values in VRPs. In
our experiments, we set the attack budget within a reasonable range following the applied attack
method (e.g., α ∈ [1, 100] for [87]). Our experimental results show that the proposed CNF is able
to achieve a favorable balance, given different attack methods and their attack budgets; 2) in VRPs
(or COPs), all generated adversarial instances are valid problem instances regardless of how much
they differ from the clean instances [20]. In this sense, the attack budget models the severity of a
potential distribution shift between training data and test data. This highlights the differences to other
domains (e.g., vision), where unconstrained perturbations may lead to non-realistic or invalid data.
Technically, the various attack budgets can help to generate diverse adversarial instances for training.
Considering the above aspects, we believe our adversarial setting, including diverse but valid problem
instances, may benefit the VRP community in developing a more general and robust neural solver.
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With that said, this paper can also be viewed as an attempt to improve the generalization of neural
VRP solvers from the perspective of adversarial robustness.

Attack Scenarios and Practical Significance. Actually, there may not be a person or attacker to
deliberately invade the VRP model in practice. However, the developers in a logistics enterprise
should consider the adversarial robustness of neural solvers as a sanity check before deploying
them in the real world. The adversarial attack can be viewed as a way of measuring the worst-case
performance of neural solvers within the neighborhood of inputs. Without considering adversarial
robustness, the neural solver may perform very poorly (see Fig. 1(c)) when the testing instance
pattern in the real world is 1) different from the training one, and 2) similar to the adversarial one. For
example, considering an enterprise like Amazon, when some new customers need to be added to the
current configuration or instance, especially when their locations coincidentally lead to the adversarial
instance of the current solver (i.e., the node insertion attack presented in Appendix B.2), the model
without considering adversarial robustness may output a very bad solution, and thus resulting in
unpleasant user experience and financial losses. Furthermore, one may argue that this robustness
issue can be ameliorated by using other solvers, i.e., NCO alongside traditional heuristics. We would
like to note that traditional solvers may be non-robust as well, as discussed in a recent work [42]. The
availability of traditional solvers cannot be guaranteed for novel problems as well.

The Selection Basis of Attackers. There are three attackers in the current VRP literature [87, 20, 42].
We select the attacker based on its generality. Specifically, 1) [20] is an early work that explicitly
investigates the adversarial robustness in COPs. Their perturbation model needs to be sound and
efficient, which means, given a clean instance and its optimal solution, the optimal solution to the
adversarial instance can be directly derived without running a solver. However, this direct derivation
requires unique properties and theorems of certain problems (e.g., the intersection theorem [9]
for Euclidean-based TSP), and hence is non-trivial to generalize to more complicated VRPs (e.g.,
CVRP). Moreover, their perturbation model is limited to attack the supervised neural solver (i.e.,
ConvTSP [31]), since it needs to construct the adversarial instance by maximizing the loss function
so that the model prediction is maximally different from the derived optimal solution. While in VRPs,
RL-based methods [37, 38] are more appealing since they can gain comparable performance without
the need for optimal solutions. 2) [42] requires that the optimal solution to the adversarial instance is
no worse than that to the clean instance in theory, which may limit the search space of adversarial
instances. It focuses on the graph-based COPs (e.g., asymmetric TSP) and satisfies the requirement
by lowering the cost of edges. Similar to [20], their method is not easy to design for VRPs with
more constraints. Moreover, they resort to the black-box adversarial attack method by training a
reinforcement learning based attacker, which may lead to a higher computational complexity and
relatively low success rate of attacking. Therefore, for better generality, we choose [87] as the attacker
in the main paper, which can be applied to different VRP variants and popular VRP solvers [37, 38].
Moreover, we also evaluate the versatility of CNF against [42] as presented in Appendix D.3.

Training Efficiency. As mentioned in Section 6, the limitation of the proposed CNF is the increased
computational complexity due to the need to synergistically train multiple models. Concretely, we
empirically observe that CNF requires more training time than the vanilla AT variants on TSP100
(e.g., POMO_AT (3) 32 hrs vs. CNF (3) 85 hrs). However, simply further training them cannot
significantly increase their performance since the training process has nearly converged. For example,
given roughly the same training time, POMO_AT achieves 0.246% and 0.278% while CNF achieves
0.118% and 0.236% on the metrics of Uniform and Fixed Adv., respectively. On the other hand, our
training time is less than that of advanced AT methods (e.g., POMO_TRS (3) [81] needs around 94
hrs). The above comparison indicates that CNF can achieve a better trade-off to deliver superior
results within a reasonable computational budget. Moreover, we find that the global attack generation
consumes much more training time than the neural router (∼0.05 million parameters). During
inference, the computational complexity of CNF only depends on the number of models, since the
neural router is only activated during training, and is discarded afterwards. Therefore, all methods
with the same number of trained models have the same inference time.

Relationship between OOD Generalization and Adversarial Robustness in VRPs. Generally, the
adversarial robustness measures the generalization capability of a model over the perturbed instance
x̃ in the proximity of the clean instance x. In the context of VRPs (or COPs), adversarial instances
are neither anomalous nor statistical defects since they are valid problem instances regardless of
how much they differ from the clean instance x [20]. In contrast to other domains (e.g., vision), 1)
the attack budget models the severity of a potential distribution shift between training data and test
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data; 2) the set of valid problems is not just a low-dimensional manifold in a high-dimensional space,
and hence the manifold hypothesis [62] does not apply to combinatorial optimization. Therefore,
it is critical for neural VRP solvers to perform well on adversarial instances when striving for a
broader OOD generalization. Based on experimental results, we empirically demonstrate that raising
robustness against attacks through CNF favorably promotes various forms of generalization of neural
VRP solvers (as shown in Section 5.3), indicating the potential existence of neural VRP solvers with
high generalization and robustness concurrently.

Robustness of Test-time Adaptation Methods. Test-time adaptation methods [26, 56, 82] are
relatively robust. This degree of "robustness" primarily comes from 1) traditional local search
heuristics and metaheuristics, which can effectively handle perturbations but bring much post-
processing runtime, or 2) the costly fine-tuning that incurs more inference time on each test instance.
Our CNF can also be combined with them to pursue better performance. Furthermore, we conduct
experiments on DIMES [56] and DeepACO [82]. The results are shown in Tables 3 and 4, where
we observe that 1) CNF outperforms them in most cases (e.g., w/o advanced search) with a much
shorter runtime, and 2) test-time adaptation methods (i.e., the purple columns) improve robustness by
adopting much post-search effort and consuming hours of runtime. According to the results, we note
that 1) directly comparing CNF with these methods with advanced searches (e.g., MCTS, NLS) is
somewhat unfair, since the additional post-processing search makes the analysis of model robustness
difficult. For example, recent work finds that MCTS is so strong that using an almost all-zero heatmap
can achieve good solutions [77], raising doubts about the real robustness of learned models; 2) the
post-processing searches are typically time-consuming and problem-specific, making them non-trivial
to be adapted to other COPs. Finally, we highlight that studies on robustness in COPs are still rare,
and most work focused on investigating the robustness of neural solvers themselves, due to their
advantages in generality on more complex COPs and inference speed. However, attacking test-time
adaption methods is a potential research direction, which we will leave to future work.

Table 3: Robustness study of DIMES [56] on 1000 TSP100 instances. G, S, MCTS, and AS denote
greedy, sample, Monte Carlo tree search, and active search, respectively.

DIMES (G) DIMES (AS+G) DIMES (S) DIMES (AS+S) DIMES (MCTS) DIMES (AS+MCTS)
Gap Time Gap Time Gap Time Gap Time Gap Time Gap Time

Clean 14.65% 1.31m 5.21% 2.42h 13.50% 1.40m 5.11% 2.44h 0.05% 2.50m 0.03% 2.47h
Fixed Adv. 19.29% 1.32m 12.12% 2.45h 18.24% 1.42m 11.87% 2.45h 0.19% 2.50m 0.16% 2.49h

Table 4: Robustness study of DeepACO [82] on 1000 TSP100 instances. Note that only DeepACO
(NLS) uses local search. We use 100 ants and T ∈ {1, 10, 50, 100} ACO iterations. The total
inference time of each method with T = 100 is reported.

ACO - 1.7h DeepACO - 1.7h DeepACO (NLS) - 5.6h
T=1 T=10 T=50 T=100 T=1 T=10 T=50 T=100 T=1 T=10 T=50 T=100

Clean 98.65% 46.15% 25.47% 20.31% 13.65% 7.21% 5.54% 5.08% 0.46% 0.08% 0.03% 0.02%
Fixed Adv. 40.87% 19.09% 12.61% 10.92% 25.50% 14.60% 10.75% 9.71% 0.31% 0.08% 0.00% 0.00%
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B Attack Methods

In this section, we first give a formal definition of adversarial instance in VRPs, and then present
details of existing attack methods for neural VRP solvers, including perturbing input attributes [87],
inserting new nodes [20], and lowering the cost of a partial problem instance to ensure no-worse
theoretical optimum [42]. They can generate instances that are underperformed by the current model.

We define an adversarial instance as the instance that 1) is obtained by the perturbation model within
the neighborhood of the clean instance, and 2) is underperformed by the current model. Formally,
given a clean VRP instance x = {xc, xd, σ}, where xc ∈ Nc is the continuous variable (e.g., node
coordinates) within the valid range Nc; xd ∈ Nd is the discrete variable (e.g., node demand) within
the valid range Nd; σ is the constraint, the adversarial instance x̃ = {x̃c, x̃d, σ̃} is found by the
perturbation model G around the clean instance x, on which the current model may be vulnerable.
Technically, the adversarial instance x̃ can be constructed by adding crafted perturbations γ to the
corresponding attribute of the clean instance, and then project them back to the valid domain, e.g.,
x̃c = ΠNc

(xc + α · γxc
), where Π denotes the projection operator (e.g., min-max normalization); α

denotes the attack budget. The crafted perturbations can be obtained by various perturbation models,
such as the one in Eq. (7), γxc

= ∇xc
ℓ(x; θ), where θ is the model parameters; ℓ is the loss function.

We omit the attack step t for notation simplicity. An illustration of generated adversarial instances is
shown in Fig. 4. Below, we follow the notations from the main paper, and detail each attack method.

(a) (b)

3
4

3
2

(c)

Figure 4: An illustration of generated adversarial instances (i.e., the grey ones). (a) An adversarial
instance generated by [87] on CVRP, where the triangle represents the depot node. A deeper color
denotes a heavier node demand; (b) An adversarial instance generated by [20] on TSP, where the red
nodes represent the newly inserted adversarial nodes; (c) An adversarial instance generated by [42]
on asymmetric TSP, where the cost of an edge is in half.

B.1 Attribute Perturbation

The attack generator from [87] is applied to attention-based models [37, 38] by perturbing attributes of
input instances. As introduced in Section 4, it generates adversarial instances by directly maximizing
the reinforcement loss variant (so called the hardness measure in [87]). We take the perturbation on
the node coordinate as an example. Suppose given the clean instance x (i.e., x̃(0) = x) and model
parameter θ, the solution to the inner maximization can be approximated as follows:

x̃(t+1) = ΠNc [x̃
(t) + α · ∇x̃(t)ℓ(x̃(t); θ(t))], (7)

where x̃(t) is the (local) adversarial instances and θ(t) is the model parameters, at step t. Here we use
Nc to represent the valid domain of node coordinates (i.e., unit square U(0, 1)) for simplicity. After
each iteration, it checks whether x̂(t) = x̃(t) + α · ∇x̃(t)ℓ(x̃(t); θ(t)) is within the valid domain Nc or
not. If it is out of Nc, the projection operator (i.e., min-max normalization) is applied as follows:

ΠNc(x̂
(t)) =

x̂(t) −min x̂(t)

max x̂(t) −min x̂(t)
(maxNc −minNc). (8)

Note that it originally only focuses on TSP, where the node coordinates are perturbed. We further
adapt it to CVRP by perturbing both the node coordinates and node demands. The implementation is
straightforward, except that we set the valid domain of node demands as Nd = {1, . . . , 9}. For the
perturbations on node demands, the projection operator applies another round operation as follows:

ΠNd
(x̂(t)) = ⌈ x̂(t) −min x̂(t)

max x̂(t) −min x̂(t)
(maxNd −minNd)⌉. (9)
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B.2 Node Insertion

An efficient and sound perturbation model is proposed by [20], which, given the optimal solution
y to the clean instance x sampled from the data distribution D, guarantees to directly derive the
optimal solution ỹ to the adversarial instance x̃ without running a solver. The attack is applied to the
GCN [31], which is a non-autoregressive construction method for TSP. It learns the probability of
each edge occurring in the optimal solution (i.e., heat-map) with supervised learning. Following the
AT framework, the objective function can be written as follows:

min
θ

E(x,y)∼D max
x̃

ℓ(fθ(x̃), ỹ), with x̃ ∈ G(x, y) ∧ ỹ = h(x̃, x, y), (10)

where ℓ is the cross-entropy loss; G is the perturbation model that describes the possible perturbed
instances x̃ around the clean instance x; and h is used to derive the optimal solution ỹ based on
(x̃, x, y) without running a solver. In the inner maximization, the adversarial instance x̃ is generated
by inserting several new nodes into x (below we take inserting one new node as an example), which
adheres to below proposition and proof (by contradiction) borrowed from [20]:

Proposition 1. Let Z /∈ V be an additional node to be inserted, w(E) is an edge weight, and P,Q
are any two neighbouring nodes in the original optimal solution y. Then, the new optimal solution ỹ
(including Z) is obtained from y through inserting Z between P and Q if ∄(A,B) ∈ E \ {(P,Q)}
with A ̸= B s.t. w(A,Z) + w(B,Z)− w(A,B) ≤ w(P,Z) + w(Q,Z)− w(P,Q).

Proof. Let (R,S) ∈ E \ {(P,Q)} to be two neighboring nodes of Z on ỹ. Assume w(P,Z) +
w(Q,Z) − w(P,Q) < w(R,Z) + w(S,Z) − w(R,S) and the edges (P,Z) and (Q,Z) are not
contained in ỹ (i.e., Z is inserted between R and S rather than P and Q).

Below inequalities hold by the optimality of y and ỹ:

c(ỹ)− w(R,Z)− w(S,Z) + w(R,S) ≥ c(y). (11)

c(y) + w(P,Z) + w(Q,Z)− w(P,Q) ≥ c(ỹ). (12)
Therefore, we have

c(y) + w(P,Z) + w(Q,Z)− w(P,Q) ≥ c(ỹ) ≥ c(y) + w(R,Z) + w(S,Z)− w(R,S), (13)

which leads to a contradiction against the assumption (i.e., w(P,Z) + w(Q,Z) − w(P,Q) <
w(R,Z) + w(S,Z)− w(R,S)). The proof is completed.

They use a stricter condition ∄(A,B) ∈ E \ {(P,Q)} with A ̸= B s.t. w(A,Z) + w(B,Z) −
w(A,B) ≤ w(P,Z) + w(Q,Z) − w(P,Q) in the proposition, since it is unknown which nodes
can be R and S in ỹ. Moreover, for the metric TSP, whose node coordinate system obeys the
triangle inequality (e.g., euclidean distance), it is sufficient if the condition of Proposition 1 holds
for (A,B) ∈ E \ ({(P,Q)} ∪ H) with A ̸= B where H denotes the pairs of nodes both on the
Convex HullH ∈ CH(E) that are not a line segment of the Convex Hull. It is due to the fact that the
optimal route ỹ must be a simple polygon (i.e., no crossings are allowed) in the metric space. This
conclusion was first stated for the euclidean space as "the intersection theorem" by [9] and is a direct
consequence of the triangle inequality.

Based on the above-mentioned proposition, the optimization of inner maximization involves: 1)
obtaining the coordinates of additional node Z by gradient ascending (e.g., maximizing l such that
the model prediction is maximally different from the derived optimal solution ỹ); 2) penalizing if Z
violates the constraint in Proposition 1. Unfortunately, the constraint is non-convex and hard to find a
relaxation. Instead of optimizing the Lagrangian (which requires extra computation for evaluating
fθ), the vanilla gradient descent is leveraged with the constraint as the objective:

Z ← Z − η∇Z [w(P,Z) + w(Q,Z)− w(P,Q)− (min
A,B

w(A,Z) + w(B,Z)− w(A,B))], (14)

where η is the step size. After we find Z satisfying the constraint, the adversarial instance x̃ and the
corresponding optimal solution ỹ can be constructed directly. Finally, the outer minimization takes
(x̃, ỹ) as inputs to train the robust neural solvers. This attack method can be easily adopted by our
proposed framework, where θ is replaced by the best model θb when maximizing the cross-entropy
loss (i.e., maxx̃ ℓ(fθb(x̃), ỹ)) in the inner maximization optimization. However, due to the efficiency
and soundness of the perturbation model, it does not suffer from the undesirable trade-off following
the vanilla AT [20]. Therefore, we mainly focus on other attack methods [87, 42].
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B.3 No-Worse Theoretical Optimum

The attack method specialized for graph-based COPs is proposed by [42]. It resorts to the black-box
adversarial attack method by training a reinforcement learning based attacker, and thus can be used to
generate adversarial instances for both differentiable (e.g., learning-based) and non-differentiable (e.g.,
heuristic or exact) solvers. In this paper, we only consider the learning-based neural solvers for VRPs.
Specifically, it generates the adversarial instance x̃ by modifying the clean instance x (e.g., lowering
the cost of a partial instance) under the no worse optimum condition, which requires c(ỹ) ≤ c(y) if
we are solving a minimization optimization problem. The attack is successful (w.r.t. the neural solver
θ) if the output solution to x̃ is worse than the one to x (i.e., c(τ̃ |x̃; θ) > c(τ |x; θ) ≥ c(y) ≥ c(ỹ)).
The training of the attacker is hence formulated as follows:

max
x̃

. c(τ̃ |x̃; θ)− c(τ |x; θ),

s.t. x̃ = G(x, T ; θ), c(ỹ) ≤ c(y),
(15)

where G(x, T ; θ) represents the deployment of the attacker G trained on the given model (or solver)
θ to conduct T modifications on the clean instance x. It is trained with the objective as in Eq.
(15) using the RL algorithm (i.e., Proximal Policy Optimization (PPO)). Specifically, the attack
process is modelled as a MDP, where, at step t, the state is the current instance x̃(t); the action is
to select an edge whose weight is going to be half; and the reward is the increase of the objective:
c(τ (t+1)|x̃(t+1); θ) − c(τ (t)|x̃(t); θ). This process is iterative until T edges are modified. We use
ROCO to represent this attack method in the remaining of this paper.

ROCO has been applied to attack MatNet [39] on asymmetric TSP (ATSP). As shown in the
empirical results of [42], conducting the vanilla AT may suffer from the trade-off between standard
generalization and adversarial robustness. To solve the problem, we further apply our method to
defend against it. However, it is not straightforward to adapt ROCO to the inner maximization of
CNF, since ROCO belongs to the black-box adversarial attack method, which does not directly rely
on the parameters (or gradients) of the current model to generate adversarial instances. Concretely,
we first train an attacker Gj using RL for each model θj , obtaining M attackers for M models
(Θ = {θj}M−1

j=0 ) in CNF. For the local attack, we simply use Gj to generate local adversarial
instances for θj by Gj(x, T ; θj). For the global attack, we decompose the generation process (i.e.,
modifying T edges) of a global adversarial instance x̄ as follows:

x̄(t+1) = G
(t)
b (x̄(t), 1; θ

(t)
b ), θ

(t)
b = argminθ∈Θc(τ |x̄(t); θ), (16)

where x̄(t) is the global adversarial instance; θ(t)b is the best-performing model (w.r.t. x̄(t)); and G
(t)
b

is the attacker corresponding to θ
(t)
b , at step t ∈ [0, T − 1]. Since the model θj is updated throughout

the optimization, to save the computation, we fix the attacker Gj and only update (by retraining) it
every E epochs using the latest model. More details and results can be found in Appendix D.3.

C Neural Router

C.1 Model Structure

Without loss of generality, we take TSP as an example, where an instance consists of coordinates
of n nodes. The attention-based neural router takes as inputs N instances X ∈ RN×n×2 and a cost
matrixR ∈ RN×M , where M is the number of models in CNF. The neural router first embeds the
raw inputs into h-dimensional (i.e., 128) features as follows:

FI = Mean(W1X + b1), FR = W2R+ b2, (17)

where FI ∈ RN×h and FR ∈ RN×h are features of instances and cost matrices, respectively; W1,W2

are weight matrices; b1, b2 are biases. The Mean operator is taken along the second dimension of
inputs. Then, a single-head attention layer (i.e., glimpse [1]) is applied:

Q = WQ([FI , FR]), K = WK(Emb(M)), (18)

where [·, ·] is the horizontal concatenation operator; Q ∈ RN×h is the query matrix; K ∈ RM×h is
the key matrix; WQ,WK are the weight matrices; Emb(M) ∈ RM×h is a learnable embedding layer
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Figure 5: Left panel: Performance of each model θj ∈ Θ in CNF (M = 3), and the overall
collaboration performance of Θ. Right panel: A demonstration (i.e., attention map) of the learned
routing policy for θ0. The horizontal axis is the index of the training instance. Concretely, 0-2: clean
instances x; 3-11: local adversarial instances x̃; 12-14: global adversarial instances x̄. The vertical
axis is the epoch of the checkpoint. A deeper color represents a higher probability to be selected.

representing the features of M models. The logit matrix P ∈ RN×M is calculated as follows:

P = C · tanh(QKT

√
h

), (19)

where the result is clipped by the tanh function with C = 10 following [1]. When the neural router
is applied to CVRP, we only slightly modify Q by further concatenating it with the features of the
depot and node demands, while keeping others the same.

C.2 Learned Routing Policy

We attempt to briefly interpret the learned routing policy. We first show the performance of each
model θj ∈ Θ in CNF in the left panel of Fig. 5, which is trained on TSP100 following the training
setups presented in Section 5. Although not all models perform well on both clean and adversarial
instances, the collaborative performance of Θ is quite good, demonstrating the diverse expertise of
each model and the capability of CNF in reasonably exploiting the overall model capacity. We further
give a demonstration (i.e., attention map) of the learned routing policy in the right panel of Fig. 5.
We take the first model θ0 as an example, whose expertise lies in clean instances. For simplicity and
readability of the results, the batch size is set to B = 3, and thus the number of input instances X for
the neural router is 15. The neural router then distributes B = 3 instances to each model (if using
model choice routing strategies). Note that the instances for different epochs are not the same, while
the types remain the same (e.g., instances with ids 0-2 are clean instances). From the results, we
observe that 1) the learned policy tends to distribute all types of instances to each model in a balanced
way at the beginning of training, when the model is vulnerable to adversarial instances; 2) clean
instances are more likely to be selected at the end of training, when the model is relatively robust to
adversarial instances while trying to mitigate the accuracy-robustness trade-off.

D Experiments

D.1 Extra Setups

Setups for Baselines. We compare our method with several strong traditional and neural VRP
methods. Following the conventional setups in the community [37, 38, 26], for specialized heuristic
solvers such as Concorde, LKH3 and HGS, we run them on 32 CPU cores for solving TSP and
CVRP instances in parallel, while running neural methods on one GPU card. Below, we provide
the implementation details of baselines. 1) Concorde: We use Concorde Version 03.12.19 with the
default setting, to solve TSP instances. 2) LKH3 [25]: We use LKH3 Version 3.0.8 to solve TSP and
CVRP instances. For each instance, we run LKH3 with 10000 trails and 1 run. 3) HGS [70]: We run
HGS with the default hyperparameters to solve CVRP instances. The maximum number of iterations
without improvement is set to 20000. 4) For POMO [38], beyond the open-source pretrained model,
we further train it using the vanilla AT framework (POMO_AT). Specifically, following the training
setups presented in Section 5, we use the pretrained model to initialize M models, and train them
individually using local adversarial instances generated by themselves. 5) POMO_HAC [87] further
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improves upon the vanilla AT. It constructs a mixed dataset with both clean instances and local
adversarial instances for training afterwards. In the outer minimization, it optimizes an instance-
reweighted loss function based on the instance hardness. Following their setups, the weight for
each instance xi is defined as: wi = exp(F(H(xi))/T )/

∑
j exp(F(H(xj))/T ), where F is the

transformation function (i.e., tanh); T is the temperature controlling the weight distribution. It starts
from 20 and decreases linearly as the epoch increasing. The hardnessH is computed following Eq.
(4). 6) POMO_DivTrain is adapted from the diversity training [32], which studies the ensemble-
based adversarial robustness in the image domain by proposing a novel method to train an ensemble
of models with uncorrelated loss functions. Specifically, it improves the ensemble diversity by
minimizing the cosine similarity between the gradients of (sub-)models w.r.t. the input. Its loss
function is formulated as: L = ℓ+ λ log(

∑
1≤a<b≤M exp(<∇xℓa,∇xℓb>

|∇xℓa||∇xℓb| )), where ℓ is the original
loss function; M is the number of models;∇xℓa is the gradient of the loss function (on the ath model)
w.r.t. the input x; λ = 0.5 is a hyperparameter controlling the importance of gradient alignment
during training. 7) CNF_Greedy: the neural router is simply replaced by the heuristic method, where
each model selects K hardest instances. We use [87] as the attack method in Section 5. For training
efficiency, we set T = 1 in the main experiments. The step size α is randomly sampled from 1 to 100.

Setups for Ablation Study. We conduct extensive ablation studies on components, hyperparameters
and routing strategies as shown in Section 5. For simplicity, we slightly modified the training setups.
We train all methods using 2.5M TSP100 instances. The learning rate is decayed by 10 for the last
20% training instances. For the ablation on components (Fig. 3(a)), we set the attack steps as T = 2,
and remove each component separately to demonstrate the effectiveness of each component in our
proposed framework. For the ablation on hyperparameters (Fig. 3(b)), we train multiple models
with M ∈ {2, 3, 4, 5}. For the ablation on routing strategies (Fig. 3(c)), we set K = B for M-TopK,
where B = 64 is the batch size, and K = 1 for I-TopK. The other training setups remain the same.

Setups for Versatility Study. For the pretraining stage, we train MatNet [39] on 5M ATSP20
instances following the original setup from [39]. We further train a perturbation model by attacking
it using reinforcement learning. Concretely, we use the dataset from [42], consisting of 50 "tmat"
class ATSP training instances that obey the triangle inequality, to train the perturbation model for 500
epochs. Adam optimizer is used with the learning rate of 1e− 3. The maximum number of actions
taken by the perturbation model is T = 10. After the pretraining stage, we use the pretrained model
to initialize M = 3 models, and further adversarially train them. We fix the perturbation model and
only update it using the latest model every E = 10 epochs (as discussed in Appendix B.3). After
the 10th epoch, there would be M perturbation models corresponding to M models. Following [42],
we use the fixed 1K clean instances for training. In the inner maximization, we generate MK local
adversarial instances and 1K global adversarial instances using the perturbation models. However,
since the perturbation model is not efficient (i.e., it needs to conduct beam search to find edges to
be modified), we generate adversarial instances in advance and reuse them later. Then, in the outer
minimization, we load all instances and distribute them to each model using the jointly trained neural
router. The models are then adversarially trained for 20 epochs using the Adam optimizer with the
learning rate of 4e− 5, the weight decay of 1e− 6, and the batch size of B = 100.

D.2 Data Generation

We follow the instructions from [37] to generate synthetic instances. Concretely, 1) Uniform
Distribution: The node coordinate of each node is uniformly sampled from the unit square U(0, 1),
as shown in Fig. 6(a). 2) Rotation Distribution: Following [6], we mutate the nodes, which
originally follow the uniform distribution, by rotating a subset of them (anchored in the origin of
the Euclidean plane) as shown in Fig. 6(b). The coordinates of selected nodes are transformed by

multiplying them with a matrix
[
cos(φ) sin(φ)
− sin(φ) cos(φ)

]
, where φ ∼ [0, 2π] is the rotation angle. 3)

Explosion Distribution: Following [6], we mutate the nodes, which originally follow the uniform
distribution, by simulating a random explosion. Specifically, we first randomly select the center of
explosion vc (i.e., the hole as shown in Fig. 6(c)). All nodes vi within the explosion radius R = 0.3
is moved away from the center of explosion with the form of vi = vc + (R + s) · vc−vi

||vc−vi|| , where
s ∼ Exp(λ = 1/10) is a random value drawn from an exponential distribution.

In this paper, we mainly consider the distribution of node coordinates. For CVRP instances, the
coordinate of the depot node v0 is uniformly sampled from the unit square U(0, 1). The demand
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(a) (b) (c)

Figure 6: The generated TSP instances following the (a) Uniform distribution; (b) Rotation distribu-
tion; (c) Explosion distribution.

of each node δi is randomly sampled from a discrete uniform distribution {1, . . . , 9}. The capacity
of each vehicle is set to Q = ⌈30 + n

5 ⌉, where n is the size of a CVRP instance. The demand and
capacity are further normalized to δ′i = δ/Q and 1, respectively.

Table 5: Performance evaluation against ROCO [42] over 1K ATSP instances.

Clean Fixed Adv.
(x1) Gap Time (x16) Gap Time (x1) Gap Time (x16) Gap Time

LKH3 0.000% 1s 0.000% 1s 0.000% 1s 0.000% 1s
Nearest Neighbour 30.481% – 30.481% – 31.595% – 31.595% –
Farthest Insertion 3.373% – 3.373% – 3.967% – 3.967% –

MatNet (1) 0.784% 0.5s 0.056% 5s 0.931% 0.5s 0.053% 5s
MatNet_AT (1) 0.817% 0.5s 0.072% 5s 0.827% 0.5s 0.046% 5s
MatNet_AT (3) 0.299% 1.5s 0.028% 15s 0.319% 1.5s 0.023% 15s
CNF (3) 0.246% 1.5s 0.022% 15s 0.278% 1.5s 0.015% 15s

D.3 Versatility Study

We demonstrate the versatility of CNF by applying it to MatNet [39] to defend against another
attack [42]. The results are shown in Table 5, where we evaluate all methods on 1K ATSP instances.
For neural methods, we use the sampling with x1 and x16 instance augmentations following [39, 42].
The gaps are computed w.r.t. LKH3. Based on the results, we observe that 1) CNF is effective in
mitigating the undesirable accuracy-robustness trade-off; 2) together with the main results in Section
5, CNF is versatile to defend against various attacks among different neural VRP methods.

Table 6: Sensitivity Analyses on hyperparameters.

Remark Optimizer Batch Size Normalization LR Uniform (100) Fixed Adv. (100)

Default Adam 64 Instance 1e-4 0.111% 0.255%
SGD 64 Instance 1e-4 0.146% 3.316%
Adam 32 Instance 1e-4 0.122% 0.262%
Adam 128 Instance 1e-4 0.088% 0.311%
Adam 64 Batch 1e-4 0.114% 0.247%
Adam 64 Instance 1e-3 0.183% 0.282%
Adam 64 Instance 1e-5 0.101% 0.616%

D.4 Sensitivity Analyses

In addition to the ablation study on the key hyperparameter (i.e., the number of models M ), we
further conduct sensitivity analyses on others, such as the optimizer ∈ [Adam, SGD], batch size ∈
[32, 64, 128], normalization layer ∈ [batch, instance], and learning rate (LR) ∈ [1e−3, 1e−4, 1e−5]).
The experiments are conducted on TSP100 following the setups of the ablation study as presented
in Appendix D.1. The results are shown in Table 6, where we observe that the performance of our
method can be further boosted by carefully tuning hyperparameters.
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D.5 Ablation Study on CVRP

CNF W/O Global Attack W/O Router POMO_AT
Method

0.8

0.9

1.0

1.1

1.2

1.3

1.4

1.5

1.6

Op
t. 

Ga
p 

(%
)

Clean
Adv

.
Figure 7: Ablation study on Components.

We further conduct the ablation study on
CVRP. For simplicity, here we only consider
investigating the role of each component in CNF
by removing them separately. The experiments
are conducted on CVRP100, and the setups
are kept the same as the ones presented in
Appendix D.1. The results are shown in Fig.
7, which still verifies the effectiveness of
the global attack and neural router in CNF.

D.6 Advanced Ensemble-based AT

Here, we consider several advanced ensemble-based AT methods, such as ADP [53], DVERGE [79],
TRS [81]. However, as we discussed in Appendix A, it is non-trivial to adapt ADP and DVERGE to
the VRP domain due to their needs for ground-truth labels or the dependence on the imperceptible
perturbation model. Therefore, we compare our method with TRS [81], which improves upon Div-
Train [32]. Concretely, it proposes to use the gradient similarity loss and another model smoothness
loss to improve ensemble robustness. We follow the experimental setups presented in Section 5, and
show the results of TSP100 in Table 7. We observe that TRS achieves better standard generalization
but much worse adversarial robustness, and hence fail to achieve a satisfactory trade-off in our setting.
Moreover, TRS is more computationally expensive than CNF in terms of memory consumption, since
it needs to keep the computational graph for all submodels before taking an optimization step.

Table 7: Comparison with advanced ensemble-based AT on TSP100.

POMO (1) POMO_AT(3) POMO_HAC (3) POMO_DivTrain (3) POMO_TRS (3) CNF (3)

Uniform (100) 0.144% 0.255% 0.135% 0.255% 0.098% 0.118%
Fixed Adv. (100) 35.803% 0.295% 0.344% 0.297% 0.528% 0.236%

D.7 Visualization of Adversarial Instances

The distribution of generated adversarial instances depends on the attack method and its strength. Here,
we take the attacker from [87] as an example. We visualize clean instances and their corresponding
adversarial instances in Fig. 8, where we show distribution shifts of node coordinates and node
demands on CVRP100, respectively.

E Broader Impacts

Recent works have highlighted the vulnerability of neural VRP methods to adversarial perturbations,
with most research focusing on the generation of adversarial instances (i.e., attacking). In contrast,
this paper delves into the adversarial defense of neural VRP methods, filling the gap in the current
literature on this topic. Our goal is to enhance model robustness and mitigate the undesirable
accuracy-robustness trade-off, which is a commonly observed phenomenon in adversarial ML. We
propose an ensemble-based collaborative neural framework to adversarially train multiple models in
a collaborative manner, achieving high generalization and robustness concurrently. Our work sheds
light on the possibility of building more robust and generalizable neural VRP methods in practice.
However, since our approach introduces extra operations upon the vanilla AT, such as the global
attack in the inner maximization and the neural router in the outer minimization, the computation
cost may not be friendly to our environment. Therefore, exploring more efficient and scalable attack
or defense methods for VRPs (or COPs) is a worthwhile endeavor for future research.
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Figure 8: Visualization of clean instances and corresponding adversarial instances generated by weak
and strong attack [87]. (a-c) shows the spatial distribution of node locations, and (d-e) shows the
percentage frequency distribution of node demands over the entire CVRP100 test dataset.

F Licenses

Table 8: List of licenses for code and datasets used in this work.

Resource Type Link License

Concorde Code https://www.math.uwaterloo.ca/tsp/concorde.html Available for academic research use

LKH3 [25] Code http://webhotel4.ruc.dk/~keld/research/LKH-3 Available for academic research use

HGS [70] Code https://github.com/vidalt/HGS-CVRP MIT License

POMO [38] Code https://github.com/yd-kwon/POMO MIT License

MatNet [39] Code https://github.com/yd-kwon/MatNet MIT License

DIMES [56] Code https://github.com/DIMESTeam/DIMES MIT License

DeepACO [82] Code https://github.com/henry-yeh/DeepACO MIT License

HAC [87] Code https://github.com/wondergo2017/tsp-hac No License

ROCO [42] Code https://github.com/Thinklab-SJTU/ROCO No License

TRS [81] Code https://github.com/AI-secure/Transferability-Reduced-Smooth-Ensemble No License

TSPLIB [58] Dataset http://comopt.ifi.uni-heidelberg.de/software/TSPLIB95 Available for any non-commercial use

CVRPLIB [67] Dataset http://vrp.galgos.inf.puc-rio.br/index.php Available for academic research use

27



Table 9: Results on TSPLIB [58] instances. Models are only trained on n = 100.

POMO POMO_AT POMO_HAC POMO_DivTrain CNF
Instance Opt. Obj. Gap Obj. Gap Obj. Gap Obj. Gap Obj. Gap

kroA100 21282 21420 0.65% 21347 0.31% 21308 0.12% 21370 0.41% 21308 0.12%
kroB100 22141 22200 0.27% 22211 0.32% 22200 0.27% 22199 0.26% 22216 0.34%
kroC100 20749 20799 0.24% 20768 0.09% 20753 0.02% 20768 0.09% 20758 0.04%
kroD100 21294 21446 0.71% 21391 0.46% 21407 0.53% 21435 0.66% 21353 0.28%
kroE100 22068 22259 0.87% 22288 1.00% 22167 0.45% 22213 0.66% 22121 0.24%
eil101 629 630 0.16% 630 0.16% 629 0.00% 631 0.32% 630 0.16%
lin105 14379 14477 0.68% 14426 0.33% 14408 0.20% 14402 0.16% 14403 0.17%
pr107 44303 44678 0.85% 47819 7.94% 44596 0.66% 46285 4.47% 44719 0.94%
pr124 59030 59389 0.61% 59257 0.38% 59385 0.60% 59558 0.89% 59076 0.08%
bier127 118282 133042 12.48% 118606 0.27% 118608 0.28% 118337 0.05% 118841 0.47%
ch130 6110 6119 0.15% 6130 0.33% 6115 0.08% 6125 0.25% 6111 0.02%
pr136 96772 97983 1.25% 100225 3.57% 97617 0.87% 100145 3.49% 97567 0.82%
pr144 58537 58935 0.68% 59544 1.72% 58913 0.64% 59265 1.24% 58868 0.57%
ch150 6528 6554 0.40% 6582 0.83% 6556 0.43% 6578 0.77% 6550 0.34%
kroA150 26524 26755 0.87% 26898 1.41% 26736 0.80% 26813 1.09% 26722 0.75%
kroB150 26130 26405 1.05% 26506 1.44% 26379 0.95% 26467 1.29% 26494 1.39%
pr152 73682 74249 0.77% 77537 5.23% 75291 2.18% 77127 4.68% 74876 1.62%
rat195 2323 2486 7.02% 2500 7.62% 2461 5.94% 2467 6.20% 2449 5.42%
kroA200 29368 29992 2.12% 30222 2.91% 29771 1.37% 30143 2.64% 29755 1.32%
kroB200 29437 30298 2.92% 30157 2.45% 29890 1.54% 30267 2.82% 29862 1.44%
ts225 126643 134609 6.29% 135801 7.23% 128085 1.14% 134569 6.26% 128436 1.42%
tsp225 3916 4035 3.04% 4031 2.94% 4004 2.25% 4025 2.78% 4001 2.17%
pr226 80369 83470 3.86% 89455 11.31% 85466 6.34% 90347 12.42% 84914 5.66%
pr264 49135 55157 12.26% 60390 22.91% 53894 9.69% 60957 24.06% 53763 9.42%
a280 2579 2740 6.24% 2741 6.28% 2690 4.30% 2760 7.02% 2701 4.73%
pr299 48191 50785 5.38% 50812 5.44% 50487 4.76% 50535 4.86% 50408 4.60%
lin318 42029 43430 3.33% 43808 4.23% 42860 1.98% 43840 4.31% 43060 2.45%
rd400 15281 15775 3.23% 16221 6.15% 15755 3.10% 16135 5.59% 15778 3.25%
fl417 11861 13958 17.68% 15240 28.49% 14544 22.62% 15637 31.84% 14317 20.71%
pr439 107217 123357 15.05% 120545 12.43% 117963 10.02% 120212 12.12% 117632 9.71%
pcb442 50778 54087 6.52% 54686 7.70% 53165 4.70% 55125 8.56% 53281 4.93%
d493 35002 64215 83.46% 38356 9.58% 37685 7.67% 38168 9.05% 38051 8.71%
u574 36905 41456 12.33% 42045 13.93% 40804 10.57% 41990 13.78% 40737 10.38%
rat575 6773 7828 15.58% 7774 14.78% 7658 13.07% 7791 15.03% 7635 12.73%
p654 34643 46094 33.05% 51915 49.86% 45447 31.19% 52837 52.52% 46425 34.01%
d657 48912 59082 20.79% 56232 14.97% 55580 13.63% 56635 15.79% 55066 12.58%
u724 41910 49171 17.33% 50583 20.69% 48818 16.48% 50679 20.92% 48692 16.18%
rat783 8806 10819 22.86% 10769 22.29% 10512 19.37% 10767 22.27% 10473 18.93%
pr1002 259045 325734 25.74% 328459 26.80% 322276 24.41% 335954 29.69% 320624 23.77%

Table 10: Results on CVRPLIB [67] instances. Models are only trained on n = 100.

POMO POMO_AT POMO_HAC POMO_DivTrain CNF
Instance Opt. Obj. Gap Obj. Gap Obj. Gap Obj. Gap Obj. Gap

X-n101-k25 27591 29282 6.13% 28919 4.81% 29176 5.74% 29019 5.18% 28911 4.78%
X-n106-k14 26362 26961 2.27% 26608 0.93% 26789 1.62% 26679 1.20% 26672 1.18%
X-n110-k13 14971 15154 1.22% 15298 2.18% 15305 2.23% 15125 1.03% 15127 1.04%
X-n120-k6 13332 14574 9.32% 13762 3.23% 13734 3.02% 13801 3.52% 13652 2.40%
X-n134-k13 10916 11315 3.66% 11189 2.50% 11250 3.06% 11259 3.14% 11248 3.04%
X-n143-k7 15700 16382 4.34% 16233 3.39% 16019 2.03% 16192 3.13% 15980 1.78%
X-n148-k46 43448 47613 9.59% 46546 7.13% 46433 6.87% 46504 7.03% 45694 5.17%
X-n162-k11 14138 14986 6.00% 14923 5.55% 14827 4.87% 14942 5.69% 14794 4.64%
X-n181-k23 25569 26969 5.48% 26282 2.79% 26299 2.86% 26211 2.51% 26213 2.52%
X-n195-k51 44225 50296 13.73% 50228 13.57% 48987 10.77% 51367 16.15% 48823 10.40%
X-n214-k11 10856 11752 8.25% 11868 9.32% 11570 6.58% 11760 8.33% 11587 6.73%
X-n233-k16 19230 21107 9.76% 21054 9.49% 20997 9.19% 21067 9.55% 20980 9.10%
X-n251-k28 38684 41355 6.90% 41313 6.80% 41193 6.49% 41212 6.54% 40992 5.97%
X-n270-k35 35291 39952 13.21% 38837 10.05% 38376 8.74% 38511 9.12% 38411 8.84%
X-n289-k60 95151 105343 10.71% 104923 10.27% 104236 9.55% 104786 10.13% 104261 9.57%
X-n294-k50 47161 53937 14.37% 53772 14.02% 52876 12.12% 53789 14.05% 52699 11.74%
X-n313-k71 94043 105470 12.15% 105647 12.34% 104179 10.78% 104375 10.99% 103726 10.30%
X-n331-k15 31102 42292 35.98% 39293 26.34% 36957 18.83% 37047 19.11% 36194 16.37%
X-n376-k94 147713 162224 9.82% 157156 6.39% 158410 7.24% 158168 7.08% 157880 6.88%
X-n384-k52 65928 76139 15.49% 76527 16.08% 76080 15.40% 78141 18.52% 74878 13.58%
X-n439-k37 36391 46077 26.62% 48372 32.92% 49018 34.70% 46614 28.09% 45219 24.26%
X-n469-k138 221824 252278 13.73% 264366 19.18% 258635 16.59% 263698 18.88% 258751 16.65%
X-n502-k39 69226 85692 23.79% 83326 20.37% 83702 20.91% 80082 15.68% 79373 14.66%
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: Main contributions and scope are accurately reflect in Abstract and Section 1.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: The limitations are discussed in see Section 6.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]
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Justification: The paper does not include new theoretical results.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: The detailed experimental setups are presented in Section 5 and Appendix D.
The source code is uploaded to the supplementary material.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [Yes]
Justification: The source code, test datasets, and detailed instructions are uploaded to the
supplementary material.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: The experimental setting are presented in Section 5 and Appendix D.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: T-test is conducted to verify the statistical significance of experimental results,
with the threshold of 5%. Please see Section 5.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
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• It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: Experiments compute resources are indicated in Section 5.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: This paper respects the NeurIPS Code of Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: Please see Appendix E.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: The paper poses no such risks.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: Please see Appendix F.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: The paper does not release new assets.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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