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Abstract

In human-interactive applications of online learn-
ing, a human’s preferences or abilities are often a
function of the algorithm’s recent actions. Moti-
vated by this, a significant line of work has formal-
ized settings where an action’s loss is a function
of the number of times it was played in the prior
m timesteps, where m corresponds to a bound
on human memory capacity. To more faithfully
capture decay of human memory with time, we
introduce the Weighted Tallying Bandit (WTB),
which generalizes this setting by requiring that an
action’s loss is a function of a weighted summa-
tion of the number of times it was played in the
last m timesteps. WTB is intractable without fur-
ther assumption. So we study it under Repeated
Exposure Optimality (REO), a condition requiring
the existence of an action that when repetitively
played will eventually yield smaller loss than any
other action sequence. We study the minimiza-
tion of complete policy regret (CPR), which is the
strongest notion of regret, in WTB under REO.
Since m is often unknown, we only assume access
to an upper bound M on m. We show that for
problems with K actions and horizon T', a simple
modification of the successive elimination algo-

rithm has O (\/KT +(m+ M)K) CPR. Upto

an additive (in lieu of mutliplicative) factor in
(m + M) K, this recovers the classical guarantee
for the far simpler stochastic multi-armed bandit
with traditional regret. We additionally show that
in our setting, any algorithm will suffer additive
CPR of 2 (mK + M), demonstrating our result
is near optimal. Our method is computationally
efficient, and we experimentally demonstrate its
practicality and superiority over various baselines.
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1. Introduction

When an online learning algorithm is deployed in an in-
teractive application, its decisions impact the state of its
environment. In turn, this impacts the quality of subsequent
decisions made by the algorithm. This is especially true in
human-centered applications such as recommender systems
or crowdsourcing. For instance, consider a crowdsourcing
setting where at each timestep we want to select a worker
to perform a task, without prior knowledge of any worker’s
ability. The task may be complex or require some fine-
tuning, and each worker might need a calibration period
where they repeatedly perform the task, before they start
exhibiting their true ability. The existence of such a calibra-
tion period has been extensively demonstrated in visuomotor
tasks (Adams, 1961), such as throwing darts (Wunderlich
et al., 2020) or shooting a basketball (Phatak et al., 2020).
Hence, an algorithm that asks workers to alternately perform
the task, without intelligently allowing each worker time
to calibrate themselves to the task, may bias its estimation
of each worker’s true ability. This interaction between an
algorithm and its environment distinguishes it from classical
non-interactive frameworks such as the multi-armed bandit.

To capture one aspect of this interactivity, a significant re-
search thrust in online learning has studied settings where
an action’s loss is described by the number of times that
action was recently played in the prior m timesteps (Heidari
et al., 2016; Levine et al., 2017; Seznec et al., 2019; 2020;
Lindner et al., 2021; Awasthi et al., 2022; Malik et al., 2022).
The quantity m typically corresponds to a bound on human
memory capacity or capability. For example, in the afore-
mentioned scenario m would be the number of timesteps
required by a worker to fine-tune and calibrate themselves
to the task, before revealing their true ability.

Of course, such settings are an approximation to reality.
For instance, psychological research shows that humans
typically have better memory for more recently occurring
events (Klatzky, 1980; Ricker et al., 2016). So if we play
an action once in the previous m timesteps, its impact on
the present may greatly differ depending on whether it was
played on the previous timestep or m timesteps ago. In
the context of the aforementioned crowdsourcing setting,
a worker may need a shorter calibration period if they per-
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formed the task on the previous timestep, as opposed to
many timesteps ago. However, prior formalizations are
oblivious to this difference. Motivated by these considera-
tions, we make the following contributions:

* We introduce the Weighted Tallying Bandit (WTB),
which generalizes prior formalizations by requiring
that an action’s loss is described by a weighted sum-
mation of the number of times that action was played
in the prior m timesteps. Since this setting is dynamic
and interactive, we eschew the traditional regret, and
instead study the minimization of the strongest notion
of regret known as the complete policy regret (CPR).

* We show that minimizing CPR in WTB is generally in-
tractable. So we study it under the additional condition
of Repeated Exposure Optimality (REO), which en-
forces the existence of an action that when repetitively
played m times will yield smaller loss than other action
sequences. In the context of the aforementioned exam-
ple, REO is interpreted as the existence of a worker
that once calibrated to the task, will perform better than
other (calibrated or uncalibrated) workers. We moti-
vate this condition via literature on human physiology.

» For WTB problems with K actions and horizon 7T that
satisfy REO, and in the regime where only an upper
bound M on the true value of m is known, we show
that a slight modification of the classical successive
elimination algorithm achieves a CPR guarantee (upto

a logarithmic factor) of O (\/ KT+ (m+ M)K)

Besides an additive factor in (m + M) K, this matches
the lower bound on the weaker traditional regret of
the stochastic multi-armed bandit (which is the special
m = 1 case of WTB with REO).

* One may desire an algorithm that is fully adaptive to
m and requires no such upper bound M. We show this
is impossible. Concretely, we show that any algorithm
with sublinear CPR must require such an upper bound
M, and then show that a linear dependency on this
input M is necessary. This implies a lower bound of

O (VKT + mIK + M) on the achievable CPR in our
setting, highlighting our algorithm’s near optimality.

¢ Via numerical simulations, we demonstrate our
method’s efficiency and superiority over various base-
lines.

2. Problem Formulation

2.1. Weighted Tallying Bandit

We begin by formally introducing the Weighted Tallying
Bandit as an online learning game with bandit feedback

over time horizon 7', where the player has an action set X’
with finite cardinality K. A long line of prior work has
studied the scenario where an action’s loss at any timestep
is a function of the number of timesteps it was played in the
prior m timesteps (Heidari et al., 2016; Levine et al., 2017;
Seznec et al., 2019; 2020; Lindner et al., 2021; Awasthi
et al., 2022; Malik et al., 2022). We refer to these settings as
“tallying” settings. Our goal is to generalize this, to the case
where an action’s loss is a function of a weighted tally of
the number of times it was played in the past m timesteps.

To this end, we first introduce some notation. Assume the
player has played the game for ¢ timesteps, and for each
timestep 1 < ¢/ < t the player plays action a;. For a fixed
action z € X, we define the vector y>*™ € {0,1}™ in a
componentwise fashion as follows. For each component
1<i<mletyd™" =T(as_ipg =x)ift—i+1>1
else let yf’z’m = 0ift — ¢+ 1 < 1. Hence, the vector
yH®™ stores the timesteps where action x was played in
the previous m timesteps upto (and including) the current
timestep t. With this notation in hand, we are now in a
position to formally define the Weighted Tallying Bandit.

Definition 2.1 (Weighted Tallying Bandit (WTB)). An on-
line learning game is said to be an (m, w, h)-weighted tal-
lying bandit with memory capacity m, if there exists an
integer m > 1, a set of vectors {w, },ex C (0,1]™, and
a set of functions {h, },cx each mapping from R to [0, 1],
such that the following is true. For each x € X, the ex-
pected loss incurred at timestep ¢ by playing action a; = x
is given by h, (w] y*™), and the player observes as feed-
back a random observation hg (w, y**™) € [0,1], that is
independent of all other random observations, and satisfies

E [hm(w;yt’z’m)} =hy (w;yt’z’m).

The quantities m, {w; }zex, {hs }zcx are all generally un-
known, and the player only learns about them via bandit
feedback over time. When m = 1, then WTB recovers
the stochastic multi-armed bandit (sSMAB) (Lai & Robbins,
1985; Auer et al., 2002a). However, WTB with m > 2
is often a better model for human-centered domains that
require calibration. To see this, let us concretize the crowd-
sourcing setting introduced in Section 1. Assume the task
to be performed is throwing a dart at a dartboard, and each
worker is a different darts player. Without prior knowledge
of any player’s true ability to hit the dartboard, our goal is
to discover which of the K players is best, by picking (at
each timestep) a player to throw a dart and seeing whether
they hit or miss. At first glance, this appears to be an SMAB
problem, where each player has some true ability, which we
stochastically observe each time we query the player.

Unfortunately, this SMAB formulation is agnostic to the
calibration period that darts players require before they can
exhibit their true performance. The existence of such a
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calibration period has been demonstrated in the literature
on visuomotor calibration. For instance, Wunderlich et
al. (2020) show that when professional darts players toss
darts in a row, the first toss is significantly less accurate
than the remainder of the darts, although the performance
stabilizes after the first dart toss. They attribute this phe-
nomenon to the warm-up decrement (Adams, 1961; Anshel
& Wrisberg, 1993; Anshel, 1995), which describes the de-
cline in performance due to a break in a specific motor skill,
as well as its recovery once the skill is resumed. Simply put,
a player performs better once they are “in motion” and have
fine-tuned their movement parameters after their first toss.

This phenomenon affects the design of algorithms for our
darts setting, since we do not observe the true performance
of a dart player until after their first toss. Furthermore, this
cannot be resolved by simply having each player toss once,
so that they are calibrated, and then running a standard
sMAB algorithm while assuming the players stay calibrated
forever. Indeed, Wunderlich et al. (2020) demonstrate that
even small interruptions in the dart tosses (such as the time
required for the player to retrieve their darts from the board)
can cause the player to “reset”, and subconsciously lose
their fine-tuned movement parameters. Hence, the SMAB is
hence a poor model for this setting. By contrast, the WTB
with m > 2 is a more faithful model, since m describes the
number of times a player must toss a dart in a row before we
(stochastically) observe their true performance. The “reset”
phenomenon that exists in this motivating example (as well
as our forthcoming examples) requires that if we model this
problem with WTB, then m should be non-trivially smaller
than the horizon T'. We assume this throughout our paper.

WTB more naturally models this phenomenon than the
aforementioned tallying settings (Heidari et al., 2016;
Levine et al., 2017; Seznec et al., 2019; 2020; Lindner et al.,
2021; Awasthi et al., 2022; Malik et al., 2022), which are all
special cases of the WTB where w,, is the all ones vector
I foreachz € X. Asa stylized example, assume the task
is shooting basketball free-throws, and that we need to find
the best of two players x1, x2. Consider two different se-
quences of selecting players — x1, xo, £1 versus xa, 1, 2].
Phatak et al. (2020) show that players require a calibration
period of length at least 3 while shooting free-throws, and
that their shooting performance improves with each succes-
sive free-throw. This implies that picking x1, z2, z1 (i.e.,
x1 shoots, then x5, then x; again) will cause x; to have a
worse expected performance on her final shot, relative to
her performance if we select xo, 1, 1 (i.e., x2 shoots, then
x1 shoots twice). If we model this with WTB where m = 3
and w, = f then we cannot distinguish these two scenarios,
since in both cases x; shot twice in the past m timesteps.
By contrast, WTB with w # T allows us to model differ-
ent losses for these two scenarios. For instance, if we set
wy, = [1,1/2,1/4] and h,, (z) = 1 — z/3, then this model

says that selecting x2, 21,21 will cause z; to have better
performance on her final shot than if we selected x1, 22, x1.

More broadly, WTB significantly generalizes prior tallying
settings, by allowing us to better approximate the decay in
memory strength that occurs with passage of time, that has
been documented extensively by studies on human mem-
ory (Klatzky, 1980; Ricker et al., 2016). This more naturally
models the human-centered applications that motivate tal-
lying settings. For instance, Malik et al. (2022) motivate
their study via recommender systems, arguing that recom-
mended content impacts human preferences, and assume
the quantity m < T  bounds the length of time that a human
remembers past recommendations. But their formulation
is agnostic to how recently a piece of content was recom-
mended within this window of length m. So if some content
was recommended k times in the past m timesteps, then
their framework requires that this incurs the same loss re-
gardless of the ordering of those k£ recommendations. This
is rather limiting, since human preferences today may de-
pend only mildly on recommendations that occurred §2(m)
timesteps ago. Our WTB formulation is more fine grained,
and allows for the possibility of different losses incurred by
each of the different orderings of those k£ recommendations.

2.2. Complete Policy Regret

A key property of WTB is that the loss incurred by an
action depends on the past actions of the algorithm. In
such dynamic scenarios, it has been established that the
traditional regret is inappropriate to measure an algorithm’s
performance (Arora et al., 2012). Instead, one opts for the
stronger notion of policy regret (Cesa-Bianchi et al., 2013;
Arora et al., 2018). In line with prior work on tallying set-
tings (Heidari et al., 2016; Levine et al., 2017; Seznec et al.,
2019; 2020; Lindner et al., 2021; Awasthi et al., 2022; Malik
et al., 2022), we study the minimization of the complete pol-
icy regret (CPR), which is the strongest possible notion of
regret. Given an (m, w, h)-weighted tallying bandit and an
algorithm that plays action sequence (ay,as...ar) € X7,
the CPR RP of the algorithm is defined as

T
RP — Z hat (w;l—tyt,at,m) _
t=1

T

min > ha, (w)yh ™). (1)

(z1,22...27)€E )

Following prior convention, we refer to any length 7" se-
quence of actions (i.e., an element of XT) as a policy. The
CPR is hence the algorithm’s cumulative loss, relative to the
minimum loss achieved by the best policy in X”". Minimiz-
ing CPR is thus equivalent to minimizing the cumulative
loss of the algorithm, and we note that this performance
metric is identical to the one used in reinforcement learn-
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ing (Jin et al., 2018; Wang et al., 2020; Igoe et al., 2022). If
the CPR of an algorithm is sublinear in 7" and polynomial
in m, K then we say it has statistically efficient CPR.

Prior work has shown that in the case of WTB with w, = T
for each z € X, without any further assumption, there exists
an algorithm with statistically efficient CPR (Malik et al.,
2022). Unfortunately, the following result shows that such
an algorithm does not exist in WTB with w,, # I.

Proposition 2.2. For any m > 1, there exists an (m,w, h)-
weighted tallying bandit with K = 2 such that the following
is true. Any (possibly randomized) algorithm has expected
CPR satisfying E[R¥] = Q (min{2™,T}/m).

The proof of Proposition 2.2 is deferred to Appendix C. At a
high level, the proof shows that if w, # 1 then h,, can take
on (2 (2™) different values, and so discovering the optimal
sequence of actions requires € (2™) queries. This result
demonstrates that if we desire an algorithm with statistically
efficient CPR, then we must impose structure on the WTB
setting that restricts the set of optimal action sequences. We
motivate and formalize such structure in the sequel.

2.3. Repeated Exposure Optimality

To motivate additional structure in the types of problems
that are modeled by WTB, we recall the darts setting il-
lustrated in Section 2.1. Notably, if we ask a player to
toss darts in a row, then on the first toss, their uncalibrated
performance is poor and not necessarily indicative of their
subsequent performance. But on successive tosses after the
first toss, Wunderlich et al. (2020) show that their calibrated
performance stabilizes and is better than the uncalibrated
performance on the first toss. A similar observation holds
for shooting free-throws (Phatak et al., 2020). So if we let
x* € X denote the player with the best calibrated perfor-
mance, then this implies that the calibrated performance x*
is better than not only the calibrated performances of player
x # x*, but also the uncalibrated performances of all play-
ers. We formalize this insight in the following condition.

Definition 2.3 (Repeated Exposure Optimality (a-REQ)).
An (m,w, h)-weighted tallying bandit satisfies the Repeated
Exposure Optimality condition with parameter «, if there
exists action * € X, such that foreachx € X andeachy €
{1} x {0,1}™~1 we have s (||wes|1) < ho (wg y) + .

The a-REO condition thus requires that there is some action
x* € X, which when played repetitively for at least m times
in a row, will have smaller loss (upto the suboptimality «)
than other action sequences. Two remarks are in order, to
understand this condition in the context of prior work. First,
observe that even when we additionally impose the a-REO
condition on WTB, the sMAB remains a special case of this
setting via a choice of @« = 0, m = 1. Second, significant
prior work on tallying settings has focused on when the

loss functions {h, }.cx are monotonic. For instance, the
improving bandit (Heidari et al., 2016) is a special case of
WTB under significant additional restrictions, including (but
not limited to) the facts that {w, }ocx = {1} and {hs }eex
are decreasing. We note that this property of decreasing
{hs}zcx functions is a special case of the 0-REO condition.

We have motivated REO via the warm-up decrement phe-
nomenon documented in the psycho-physiological literature.
And we believe REO may be relevant in other interactive
settings such as recommender systems, as we discuss in
Section 6. Yet, we acknowledge our setting fails to model
many subtleties that arise in human-centered applications. A
complete study of these subtleties is beyond the scope of our
paper, and we relegate discussion of avenues for future work
to Section 6. With the REO condition thus formalized, we
devote the remainder of our paper to the following question:

Fix any (m, w, h)-weighted tallying bandit satisfying
a-REO. Is there a computationally efficient algorithm, with
statistically efficient CPR, that solves this problem?

3. Main Results

We present two categories of results. In Section 3.1 we
present a statistically and computationally efficient algo-
rithm that can solve WTB problems satisfying REO. This
method requires only an upper bound M on the true mem-
ory capacity m, whose exact value is often unknown. In
Section 3.2, we show the impossibility of an algorithm that
is fully adaptive to an unknown m (i.e., does not require
knowledge of an upper bound M < T on m). We also show
that if such an upper bound M < T on m is known, then
the dependency of our method on M is optimal.

3.1. An Algorithm for WTB with REO

Before we present our algorithm, we consider some natu-
ral approaches. Since WTB is a subclass of reinforcement
learning (RL) problems, one may attempt to use RL algo-
rithms to solve it. But even when {w, },cx = {1}, such
algorithms suffer Q (K™) CPR (Awasthi et al., 2022; Malik
et al., 2022). One may also attempt to extend the classical
UCB algorithm from sMAB to WTB as follows. Solve the
problem in epochs of length m, where at the beginning of
each epoch, we select the action that minimizes the usual
UCB estimate, and then play it m times in a row instead
of just once. Then we record the loss observed in the most
recent play, since this is an unbiased estimate of the action’s
eventual loss, and use it to update the action’s UCB estimate.
While this seems like a reasonable heuristic, each epoch has
an m-length overhead which substantially increases regret.

A different idea is to adapt algorithms from prior tallying
settings for our problem. But prior tallying settings that are
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Algorithm 1 Successive Elimination for WTB with REO

Require: upper bound M on memory capacity m, time
horizon T, failure probability tolerance § € (0,1)
1: Define S = log, (/457 + 1) and A; = X.
2: Define n, = KM2°/|A,| and C, = |/ 2 log (252).
3: fors e {1,2...S5} do
4: forxz e A, do
5 Execute action x for ng > m times.
6: Execute action z for ng times and store
{ha(lwzll1)s,e by - ~
Define fis(z) = n% 22;1 ha(lwzll1) s,k
8: end for
9:  Select T, € argmin, 4 s(z).
10:  Construct At =
{x € Ag s.t. is(x) < 15(Ts) + 2Cs }.
11: end for

=

comparable to ours have CPR bounds that scale multiplica-
tively with m (see Section 5 for details). We show that due to
the additional presence of REO, we can solve not just these
tallying settings but also WTB with a CPR guarantee that is
only additive in m. The algorithm that achieves this bound
is a slightly modified version of successive elimination (SE),
and is presented in Algorithm 1. This is inspired by Malik
et al. (2022), who adapt SE for their tallying bandit setting,
although their modification is more involved. By contrast,
our modification is simple, since REO permits us to only
estimate the eventual loss of each action. We now present
our main result, which bounds this algorithm’s CPR.

Theorem 3.1. Fix any (m,w, h)-weighted tallying bandit
problem satisfying Repeated Exposure Optimality with pa-
rameter o.. When Algorithm 1 is run with inputs M > m
and § € (0,1), then with probability at least 1 — 0 it has
complete policy regret upper bounded as

RP? <AKM + Kmlog(T)+
800/ KTlog (2K log(T)/8) + aT. (2)

The proof of Theorem 3.1 is deferred to Appendix A. Let
us highlight some key aspects of this result.

Comparison to sSMAB & Tallying Settings. Recall that
in the classical SsMAB, which is a special case of WTB
with 0-REO via m = 1, any algorithm suffers Q (\/ﬁ)
traditional regret. Theorem 3.1 thus shows that the much
larger class of WTB with 9] (\/W ) -REO problems can

be solved with essentially this guarantee on CPR, upto a
logarithmic factor and an additive dependence on m K. Our
guarantee scales more favorably than those obtained for
prior comparable tallying settings (see Section 5 for details).

Efficiency & Practicality. Algorithm 1 is computationally

efficient and scalable. Its total runtime over T iterations
is O (T + Klog(T')) and the space complexity required
at any timestep is O(K). This is in contrast to results
on prior comparable tallying settings (see Section 5 for
details). Moreover, implementing Algorithm 1 does not
require exact knowledge of unknown quantities such as
{hz}zex, {Ws}zex, @ or m; an upper bound M on m
suffices. While Algorithm 1 appears to require the time
horizon T as an input, we note that the method is already
performing a doubling trick. This means that for any T'
representable on a computer (say 7' < 204 = 22%), and
since Cs = O (loglog T'), a short numerical computation

% log(2K/6) and picking
0 < 0.009 ensures that we can get the same CPR bound

(upto constants) as Eq. (2), even without providing 7" as an
input.

reveals that redefining C as

Statistical Optimality In Various Regimes. In the regime
where m is known (so M = m) and REO is satisfied with
a = 0, the guarantee of Theorem 3.1 is optimal within a
single logarithmic factor. To see this, note that in the RHS of
Eq. (2), the K'm term cannot be improved due to Proposition
1 of Malik et al. (2022), and the v/ KT term is of course tight
due to the classical SMAB lower bound. Moreover, when

m is known and REQ is satisfied with or = © (w/mK/T>,

then the proof of Theorem 2 of Malik et al. (2022) shows
that there is a regime of non-trivial 0 < a < 1 where the
dependence on oT" in Theorem 3.1 cannot be improved, and
so Theorem 3.1 is optimal (within a logarithmic factor). We
note that it is unclear whether the o/I' term in Eq. (2) is
optimal for all o > 0, and investigating this is an interesting
future direction. We defer our investigation into the optimal
dependency on M (when m is unknown) to Section 3.2.

Best Arm Identification. Algorithm 1 can also be used to
identify actions whose eventual loss is near that of z*. In
particular, after 7" rounds (or S epochs), with probability
atleast 1 — 0 any action z € Agq satisfies hy (||wy|1) <

B (s 1) + 4, = has (- 1) + O (VETT).

The proof of Theorem 3.1 requires care to ensure optimal
dependencies, but the technique is standard, and our contri-
bution is not a novel analysis route. Rather, our contribution
is to demonstrate that a classical algorithm for the canonical
SMAB can be easily adapted to solve a much more general,
and ostensibly more complex, class of problems that are
practically motivated. Prior tallying settings that are com-
parable to WTB have inherent computational and statistical
difficulties (see Section 5 for details). Our formalization
of REO and Theorem 3.1 identifies well motivated struc-
ture that permits statistically and computationally efficient
solutions to problems arising in interactive domains.
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3.2. Adaptivity To Memory Capacity

While Algorithm 1 does not require knowledge of the true
memory capacity m, it does require an upper bound M on
m. Theorem 3.1 suggests that the CPR of Algorithm 1 scales
linearly in this input M, which is disadvantageous when it
is difficult to non-trivially upper bound m. In general, we
desire an algorithm which scales more favorably (or not at
all) with the input M. For instance, this could be achieved
via an algorithm that maintains a confidence interval of the
true value m, and adaptively queries to refine its estimate of
m, in order to improve or remove its dependency on M. We
now show that such an algorithm cannot exist, even in the
simpler “tallying setting” that is a special case of WTB, and
in the case when REO is satisfied with parameter o = 0.

To this end, we introduce some notation. For any posi-
tive integers T, M, K with M < T, let UTBr »s ¢ de-
note the set of unweighted tallying bandit problems (i.e.,
WTB problems where w,, is the all ones vector for each
action x), that each have horizon length 7', number of ac-
tions K, and memory capacity m € {1,2... M}, and that
satisfy 0-REO. For any possibly randomized algorithm A
and any unweighted tallying bandit problem tb, let my,
denote the memory capacity of tb, and let R?(A, tb) de-
note the expected CPR of algorithm .4 when it is used to
solve tb. And for a choice of € = (€1, €z, €3) satisfying
€1,62 € (0,1) and e3 € [0,€2), and a choice of func-
tion f : R?> — R, let Zeyf be the set of algorithms A
which, when given as input any positive integers 7', M, K
with M < T (and no other information), satisfy for each
problem instance tb € UTBrp ar i that E[RP(A,tb)] <
min {T/4, f(mw, K) (T' = + T M=) }

An algorithm A in the set Xe,f thus has a benign depen-
dence on M in the following sense. When given positive
integers T, M, K with M < T, and a problem instance
tb € UTB7 ar, k., the algorithm .4 does not a priori know
the memory capacity my, of tb, and only knows the upper
bound M. Nonetheless, the CPR of .4 when solving tb
scales sublinearly in M. Unfortunately, the following result
demonstrates that such an algorithm does not exist.

Theorem 3.2. For each e satisfying €1,e5 € (0,1) and
€3 € [0, €2), and each function f, the corresponding set
Ay is the empty set.

The proof is deferred to Appendix B. The result reveals
a “price for adaptivity” (see, for e.g., Locatelli & Carpen-
tier (2018) for similar results in a different context), showing
that if we only have a bound M on the unknown true mem-
ory capacity, then any algorithm’s CPR cannot be sublinear
in both M and 7. We concretize this via two corollaries.
The following corollary is stated for when we have no non-
trivial bound on the memory capacity (i.e., that M = T).

Corollary 3.3. Fix any function f : R> — R. There is no

(possibly randomized) algorithm which has expected CPR
bounded by o(T) f (muw, K) for each tb € UTBr 1 k.

The result shows it is impossible to have an algorithm whose
CPR is sublinear in 7" for all unweighted tallying bandit
instances tb with horizon 7 that satisfy 0-REO, even at the
expense of arbitrarily poor dependence on myy,, K. So, to
obtain a sublinear CPR guarantee of the sort afforded by
Theorem 3.1, it is necessary to have knowledge of a bound
M < T on the true memory capacity. The next corollary is
stated for when we have such a non-trivial bound M < T

Corollary 3.4. Fix any function f : R> — R. There is no
(possibly randomized) algorithm, which given an input M,
has expected CPR bounded by f(muw, K) (0(T) 4+ o(M))
for each tb € UTBTJV[’K.

The result thus shows that we cannot hope to have an
algorithm with sublinear dependency on both M and T
for all unweighted tallying bandit instances tb with hori-
zon T that satisfy 0-REO, even at the expense of ar-
bitrarily bad dependence on K, my,. Note that ignor-
ing logarithmic factors, Theorem 3.1 shows that Algo-

rithm 1 has O (\/KT—i-K(M—i—mtb)) CPR for each

tb € UTBr s, k. Combined with our earlier discussion of
Theorem 3.1, Corollary 3.4 thus shows that any algorithm

must suffer O (\/KT  mwK + M) CPR, highlighting
the near optimality of Algorithm 1 for WTB problems sat-

isfying 0-REO, even in the regime when we only have an
upper bound M on the unknown true memory capacity.

4. Numerical Results

In this section, we evaluate the performance of Algorithm 1
(denoted SE), in different domains which are modeled as
WTB problems satisfying REO. In each domain, we com-
pare this performance to the following baselines — (A) The
EXP3 algorithm (Auer et al., 2002b), which has sublinear
traditional regret in our setting (B) The batched version of
EXP3 described by Arora et al. (2012), denoted as EXP3B,
which has sublinear CPR in our setting (C) The modified
UCB algorithm described in Section 3.

4.1. Synthetic Losses on Unweighted Tallying Bandit

We let {w,},cx = {1}, and fix some z* € X. We de-
fine h, = 0.5 for each z € X, with the modification
that Az (||wg+]]1) = 0.35. So the losses are identical, ex-
cept until we play x* at least m times, implying that this
instance satisfies 0-REO. To define the feedback model,
we say the random variable h,.(w, y**™) has distribution
Bernoulli(h, (w, y®™)). When m = 1, this is a hard in-
stance for sSMAB (Slivkins, 2019), and UCB is optimal. For
m > 1, we note that the UCB variant will perform best
when h, & hg«(||lwg+||1), since the losses incurred dur-
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Figure 1: We plot the expected CPR of each algorithm. In both plots, each datapoint is obtained by averaging over 20
problem instances, and the shaded region depicts £1 standard error around the mean. In (a) we fix K = 5, m = 3 and

M =3.In(b) we fixm =4 and T = 106.

ing the m-length overhead are nearly equal to the eventual
losses of repetitively playing *. Hence, we consider our
experimental design to be as favorable to the UCB variant
as possible. In Figure 1a, we plot the expected CPR of each
method over time. As expected, SE outperforms each base-
line. In Appendix D.1, we present similar results for other
choices of m, K, M, and also for a problem where a-REO
is satisfied with o > 0. Separately, we study SE’s CPR as
a function of its input M, for the same fixed m, T, K. In
Figure 1b, we observe that SE’s CPR is at most a linear
function of M, as predicted by Theorem 3.1.

4.2. Synthetic Losses on Weighted Tallying Bandit

We now consider a WTB problem satisfying REO where
{wy}sex # {1}. We relegate the discussion of the precise
loss functions used to Appendix D.2. The optimal policy,
and hence the CPR, are difficult to compute for this problem.
So in lieu of CPR, we plot the expected cumulative loss of
each algorithm in excess of SE’s loss (hence the CPR at
any time is obtained by applying a constant shift to each
algorithm’s excess loss). The results are shown in Figure 2a,
and demonstrate our method’s superiority over the baselines.

4.3. Simulated Dart Throwing Tournament

Motivated by prior work showing the existence of a cali-
bration period in motor tasks (Adams, 1961; Phatak et al.,
2020; Wunderlich et al., 2020), we simulate a simplified
dart throwing tournament with K = 20 players. As dis-
cussed in Section 2.3, Wunderlich et al. (2020) show that
while a player’s first toss is uncalibrated and not necessarily
indicative of their subsequent performance, in immediately
subsequent tosses the performance calibrates, stabilizes and
is better than that of the first toss. We model each (ran-
dom) instance of the tournament as a WTB with m = 2 and
arbitrary w, where each player x € X has expected loss
function sampled from h,(w; 1) ~ Unif[0.68,0.72] and
hz(|Jwz]|1) ~ Unif[0.58,0.62]. We obtained the bounds

for these distributions from Wunderlich et al. (2020), who
showed that most players’ average performance was concen-
trated in these intervals. To define the feedback model, we
require the random variable h, (w_ y*®™) has distribution
Bernoulii(h, (w, y*™)). While our experimental design
eschews some real world subtleties that may occur while
throwing darts (for instance, missing a throw might affect
the player’s confidence on the next throw), we believe it
reasonably models the calibration period required to throw
darts optimally. In Figure 2b, we plot the CPR of each
method over time. SE outperforms each baseline.

5. Related Work

Tallying Settings with m = T'. A significant thrust of prior
work studies tallying settings that are special cases of WTB
with {w, }scx = {1}, and require that m = T (Heidari
et al., 2016; Levine et al., 2017; Seznec et al., 2019; 2020;
Lindner et al., 2021; Metelli et al., 2022). Of course, to
ensure tractability they enforce various additional types of
assumptions, typically in the form of monotonicity on the
{hz }=zex functions. Results here do not apply to the case
when m < T, because m < T causes complications in
the design of algorithms since an action’s loss “resets” if
it is not played. Since our paper is primarily motivated by
applications where m < T, we do not view these works as
directly comparable to ours. Nevertheless, we note that upto
an additive factor in m K and a logarithmic factor, the CPR
guarantees in all these works generally scale less favorably
than the rates provided by our Theorem 3.1.

Tallying Settings with m < T'. A different body of prior
work studies tallying settings that are special cases of WTB
with {w,}zex = {1}, and like us, they are motivated
by applications where m < T' (Awasthi et al., 2022; Ma-
lik et al., 2022). These settings are more comparable to
ours, since they do not enforce that m = T'. The tally-
ing bandit (Malik et al., 2022) makes no assumptions be-
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Figure 2: In (a), we plot as a function of time the expected cumulative loss of each algorithm in excess of that of SE, in
the WTB instance where {w, },cx # {1} described in Section 4.2, with K = 5, m = 4 and M = 4. In (b), we plot as
a function of time the expected CPR of each algorithm in the simulated darts tournament described in Section 4.3, and
truncate the y-axis below 102 for illustrative purpose. In both (a) & (b), data is obtained by averaging over 20 problem
instances, and the shaded region depicts 4-1 standard error around the mean.

yond {w }scx = {1}, and here any algorithm must suffer
Q (\/ mK T) CPR. They adapt successive elimination, and

our algorithm is heavily inspired by theirs. The congested
bandit (Awasthi et al., 2022) specializes the tallying ban-
dit by requiring that the {h, }.cx functions are increasing,

and even here the best known upper bound is 1) (\/ mK T) .

The best CPR bounds of these settings thus seem to scale
multiplicatively with m. Moreover, the computational com-
plexities of the best known algorithms in these settings are
exponential in 7', m respectively. By contrast, our REO con-
dition allows for a computationally efficient method with a
near optimal CPR guarantee that is only additive in m.

Related Non-Tallying Settings. A massive body of work
studies settings where the loss of each action evolves over
time in some structured fashion (for instance, according to a
stochastic process or according to the number of timesteps
since the action was last played (Whittle, 1981; Garivier &
Moulines, 2011; Tekin & Liu, 2012; Besbes et al., 2014;
Bouneffouf & Féraud, 2016; Kleinberg & Immorlica, 2018;
Basu et al., 2019; Pike-Burke & Grunewalder, 2019; Cella
& Cesa-Bianchi, 2020; Cortes et al., 2020; Laforgue et al.,
2021). The models for the evolution of loss in all these
works are different than our (weighted) tallying setting.

Policy Regret. Many works study policy regret against
generic m-memory bounded adversaries, and their algo-
rithms apply to our setting (Arora et al., 2012; Cesa-Bianchi
et al., 2013; Dekel et al., 2014; Arora et al., 2018; Mohri &
Yang, 2018). However, these results are agnostic to our prob-
lem’s structure, and a direct application would result in a
suboptimal CPR bound that is worse than our Theorem 3.1.

6. Discussion

In this paper, we formulated the Weighted Tallying Bandit,
which generalizes prior tallying settings so that the loss at a
timestep is a function of a weighted summation of the num-
ber of times it was recently played. To ensure tractability,
we introduced the Repeated Exposure Optimality condition,
which we motivated via human-centered applications where
one’s best performance requires a calibration period before
it stabilizes. We showed that a simple modification of the
classical successive elimination algorithm solves this set-
ting, and our numerical results demonstrate its superiority
over alternative baselines. Finally, we showed that while
our algorithm required as input a non-trivial upper bound
M < T on m, any algorithm with sublinear CPR requires
such an input, and our method’s dependency on this input
M is optimal. This implies our algorithm’s CPR is near
optimal for WTB problems satisfying 0-REO.

Our work is primarily theoretical, so we do not foresee short-
term negative societal impact. In the long-term, our work
could increase the deployment of interactive algorithms
amongst humans. To ensure this deployment is benign, it is
necessary (but not sufficient) to understand the power and
limitations of such algorithms, which is the aim of our work.

We acknowledge our work has certain limitations. From a
theoretical perspective, while there is a regime of non-trivial
« (see Section 3.1) where Theorem 3.1’s dependence on «
cannot be improved, it is unclear whether this dependence
is optimal for all values of a. Investigating this is an inter-
esting future direction. More practically, a limitation is that
while our setting models calibration periods, it fails to model
other subtleties arising in the human-centered domains that
motivate our work. For e.g., in strenuous tasks, a calibrated
individual may fatigue after repeatedly performing a task
for long m < T'. Here, the best model for losses associated
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with repeatedly playing an action is an initial period where
the individual calibrates and their performance improves to
“sweet-spot”, but then performance deteriorates as fatigue
accumulates (this is analogous to the m = T setting consid-
ered by Lindner et al. (2021)). Our setting handles the initial
calibration period, but cannot handle the latter deterioration
phase. Handling this is a key direction for future work.

Our concrete motivating examples for REO are primarily
derived from the psycho-physiological literature. Neverthe-
less, we expect it may additionally apply to recommender
systems. For e.g., it is plausible that a user needs to see a
type of content multiple times before she decides her prefer-
ences for it, but if she is not shown the content for a while,
then she forgets its details and requires re-calibration to
re-affirm her preference for that content relative to more
recent recommendations. In this case, the goal is to explore
her eventual preferences, and then repetitively select the
item she eventually prefers most. This setting is reasonably
modeled via WTB with REO. Incorporating this idea into a
recommender system is an interesting practical direction.
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A. Analysis of Algorithm 1

In this section, we analyze the complete policy regret of Algorithm 1, and prove Theorem 3.1. As discussed in Section 3,
our analysis is overall rather standard, although we require a careful choice of parameters to ensure optimal dependencies in
the final result. Thus, many of the computations closely follow those of Malik et al. (Malik et al., 2022), but we nevertheless
provide the entire argument for the sake of completeness. Before we formally prove Theorem 3.1, we first introduce the
function p : X — [0, 1] which will be useful for our proofs. For any action z € X’ let us define pu(z) as

/1,(.27) = h:z:("wz”l)

And for each epoch s € {1,2... S} in the outer loop of Algorithm 1, define Ty = 2| A;|n,, where A, n, are defined in
Algorithm 1. With this definition in hand, we are now in a position to formally prove Theorem 3.1.

A.1. Proof of Theorem 3.1

For any policy 7, which is a length T' deterministic sequence of actions, let ¢;(7) denote the expected loss suffered at
timestep ¢ while playing 7. Define the policy 7* as

T

T EargmmE Ly (
ISP S —

so that 77* is an optimal policy (i.e., a policy that suffers the minimum cumulative expected loss). Note that the definition of
an (m, w, h)-weighted tallying bandit ensures that for any timestep ¢, there exists an actionz € X and y € {1} x {0,1}™ !
such that £;(7*) = h,(w, y). Thus, the a-REO condition ensures that

(@) = hos (lwes [l1) < hx(w;y) +a=4(r") + o
In particular, this implies that

th ) > Tu(x*) — aT. 3)

Now let ¢° denote the loss experienced in epoch s € {1,2...S} of Algorithm 1. The following lemma bounds the
cumulative loss of Algorithm 1 relative to T'u(x*).

Lemma A.1. With probability at least 1 — 6, the total loss of Algorithm I relative to T u(x*) can be upper bounded as

2K 1<;g(T) ) .

Zés Tu(z*) < AKM + Kmlog(T) + 800\/KTlog <

The proof of this Lemma A.1 is provided in Appendix A.2. With the result of Lemma A.1 in hand, we now utilize it to prove
Theorem 3.1 as follows. Note via Eq. (3) and Lemma A.1 that the complete policy regret R°P of Algorithm 1 satisfies

S T
cp _ ZES _ th(ﬂ*)
Z )+ aT

2K log(T
< AKM + Kmlog(T) + 800\/ KTlog (‘;g()> +aT.

This completes the proof of Theorem 3.1. ]

A.2. Proof of Lemma A.1

To facilitate the proof, we require the following critical lemma, which bounds the loss incurred by Algorithm 1 in each
epoch s € {1,2...5}. For the statement of the following lemma, note that completing any epoch s € {1,2... 5} takes a
total of Ty = 2| Ag|ns timesteps.

11
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Lemma A.2. With probability at least 1 — §, we have simultaneously for each epoch s € {2,3 ... S5} that the total loss
relative to Tsp(x*) is bounded as

00 —Tsp(z™) < |As] (m +4(2ns —m)Cs_1) .

The proof of this Lemma A.2 is provided in Appendix A.3. Observe that by the result of Lemma A.2, we are guaranteed
with probability at least 1 — § that

Mm

Zﬁs Tu(x z¥))
s:l
S
SAKM + ) (05 = Top(a™))
s=2
. “
SAKM 4+ |Ag| (m 4 4(2n, — m)Cyy)
s=2
S
<AKM + SEm+8  |Ay|nCs_1.
s=2

Recall the definitions n, = KM2%/|A;| and Ts = 2| As|ns provided in Algorithm 1. Also note that

c 32 (2[(5) 32 | (2[(5) 64[Asa (2[(5)
s—1 = O, = (0} .
! ney B\ sl A/ 1A B\ s nal Ay 8\ 75

Substituting the above relations into the final term on the RHS of Eq. (4), we get that

S S
4| As_ 2K
82 |AgnsCs—1 = 82 As|ns\/6n| A 1| log < 68)
s=2 s=2 s s

S
2K S 64|As_1|
_ 1 “no § A 2Fs 1
=° Og( d ) [Asns ns|As

ZKS 64| A,
—s 1og Z\AW :All'

2KS KM2s [64]|A,_,|
=8 log< | As|
Z | As| | As]

= 8, /log <2KS> Z VEM25\/64]A, |

< 8 /log <2I§S) ZK@\/@
s=2

2K
< 8004 /log (55>K\/M2S/2.

12
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Now recall from Algorithm 1 the definition of S = log, (ﬁ + 1). Substituting this into the equation above, we get that

5 | /2KS
83 [Ad|n Cy_y < 800, [log (5>K\/M2S/2
s=2

Q)
2K S T
< - _
< 800, [log ( ; )K\/M\ | =
2K
= 8004 /log (55) VEVT.
Combining Eq. (4) with Eq. (5) and using the upper bound S < log(T') yields the result. |

A.3. Proof of Lemma A.2

To facilitate the proof, we leverage the following critical lemma, which bounds the gap of the value u(x) of each action
x € As versus p(z*).

Lemma A.3. The event
N Nuea, {pu(x) — p(a*) <4C,_1},

occurs with probability at least 1 — 4.
The proof of this Lemma A.3 is provided in Appendix A.4. Let us now return to the main proof. For any epoch s > 1 and

any action z € A, let £° denote the total loss experienced in epoch s of Algorithm 1 while executing the action z for 2n

times. Hence we have ¢° =3 _, (7.

Note that within a single epoch s > 1, for each x € A; we execute = for 2n times. For the latter 2n; — m times that
is executed, action z has been played m times in the previous m timesteps. Hence, for the latter 2n; — m times that z is
executed, the expected loss of playing the action x is h;(m) = u(x). Thus, we have that

% <m+ (2ns — m)u(x).

Hence, for each s > 1 and = € A, we can use Lemma A.3 to upper bound

0%~ () <t (2 — m)p(e) — o) + mp(e®)
<m+ (2ng —m) (u(z) — p(z”))
<m-+42ns — m)Cy_1.

This bound holds uniformly for each x € A,. Recalling that T, = 2| A|ns, we hence have that

0 —Top(z*) = Z 5% — 2| Ag|nsp(z™)

TEA;

= D (" = 2nu(a"))
TEA;

< ) (m+4(2n, —m)Csoy)
TxEAg

= |As| (m+4(2ns — m)Cs_1) .
This completes the proof. u
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A.4. Proof of Lemma A.3

To facilitate the proof, we require the following two critical helper results. The first result bounds the error incurred when
estimating () via the stochastic realizations {7195(771)S & }- The second result shows that while running Algorithm 1, which
is based on successive elimination of inferior actions over epochs s € {1,2... S}, at any epoch s we never eliminate z*
from our set A, of feasible actions.

Lemma A4. Fixany s € {1,2...S}, and let B, denote the event that for all actions © € Ag we simultaneously have that

o~

s (2) — p(@)| < Cs.

Then By occurs with probability at least 1 — §/S.

Lemma A.5. The event N3_, By, where the event B, is defined in Lemma A.4, implies the event that

¥ € NS_ Ay and N5_; {0 < fis(2%) — is(T,) < 204} .
The proofs of Lemma A.4 and Lemma A.5 are provided in Appendix A.5 and Appendix A.6 respectively.

Let us now return to the proof. By the result of Lemma A.4 and a union bound, the event N5_, B, occurs with probability at
least 1 — 6. Furthermore, the result of Lemma A.5 shows that the event N2_, B, implies the event

r* e NS A,. (6)
So on the event N5_, By, note that for any s > 1 and any action x € A, we have
* (,L) - *
p(a) — p(@”) < fs—1(x) — p(a”) + Cs

(21) N N N
< Hs—1(Ts—1) — (™) +3Cs 1

(iii) _

< i (@) — ple) +3Cey

(iv)
< p(a*) - pla®) +4C,

= 405—17

where step () follows from Lemma A 4, step (i¢) follows from the definition of A, and the fact that x € A, step (¢ii)
follows from the definition of Z5_; and Eq. (6), and step (iv) follows again from Lemma A.4 and Eq. (6). This completes
the proof. |
A.S. Proof of Lemma A .4

Fix any « € X. Recalling the definition of C; provided in Algorithm 1, Hoeffding’s bound (Hoeffding, 1963) ensures that

the event
2 2K
<[ 10g (S) yex ™
Ng )

occurs with probability at least 1 — § /(K S). Since |As| < K, a union bound then ensures that the above event occurs
simultaneously for all z € A, with probability at least 1 — §/5S. |

() = @) = ) = - D" Pl
S k=1

A.6. Proof of Lemma A.5

Assume that the event ﬁf,les/ is true. On this event, we prove the lemma by induction on s. First we demonstrate the base
case of s = 1, which is that z* € A; and 0 < fi;(«*) — [11(Z1) < 2C4. Then for the inductive step we show that if the
eventz* € Ag_1 and 0 < fig_1(a*) — fis—1(Zs—1) < 2C5_1 occurs, then we also have that the event

2 € Ay and 0 < Jis(¢¥) — fis(T5) < 20,

14
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is also true.

For the base case, note that by definition we are guaranteed z* € A;. And by the definition of Z;, we know that
0 < fi1(z*) — i1 (Z1). Furthermore, recalling the definition of the event By in Lemma A.4, on the event B; we have that

f(x*) — p(x*) < Crand p(z1) — 1 (21) < Ch.
Putting these equations together and using the fact that u(z*) < 1(Z1) ensures that
fir (z%) — p1(71) < 2Ch.

This verifies the base case.

For the inductive step, assume that 2* € A;_1 and 0 < fi5—1(2*) — fis—1(Ts—1) < 2C5_1 occurs. Then the definition of
Ay and the inductive hypothesis directly imply that z* € A,. Hence, it is true by definition of Z that 0 < fis(x*) — s (Zs).
Then recalling the definition of the event B, in Lemma A.4, on the event B, we have that

fis(z*) — p(z*) < Cs and p(T5) — fs(@s) < Cs.
Putting these equations together and using the fact that p(z*) < u(Z5) ensures that
fis(z*) — p1s(25) < 2C.

This verifies the inductive step. As argued earlier, this is sufficient to complete the proof. ]

B. Proof of Theorem 3.2

Assume for the sake of contradiction that the statement is false. Then there exists some € satisfying the given conditions and
some function f, such that A, ; is not empty. This implies the existence of an algorithm .4, such that when it is given as
input any positive integers T, K, M with M < T, the algorithm A satisfies that

E[R?P(A,tb)] < min {T/4, f(mw, K) (T'~ +T*M"'~)} foralltb € UTBy k. ®)
If A was a randomized algorithm, then this implies the existence of a deterministic algorithm with the same property. So we
can assume without loss of generality that A is deterministic.
Fix some integer K > 2. Pick some sufficiently large 7', M such that the following conditions hold simultaneously
M <T/4and f(1,K) (T'" +TM'~) < M/2. )

To see these conditions are simultaneously feasible, recall that e; € (0,1) and 0 < €3 < €3 < 1. Lety = min{ey, ea—e3} >
0. So if we choose M = T1=7/2  then since this M satisfies M = T1~7/2 < T, we have that

fOLE) (T 4 TeM™2) < f(1L,K) (T + T<T' )
= fLK) (T 4 (e
< 2f(1, K)T'™.

So for sufficiently large 7, we have for this choice of M = T'7/2 that M < T/4 and also that
f(1,K) (T~ + T M*~“2) < M /2. This shows that Eq. (9) is feasible.

We will now define two unweighted tallying bandit problems, each of which have K actions. Recall that in an unweighted
tallying bandit problem with memory capacity m, the loss associated with playing an action at a given timestep is fully
defined by the number of times that action was played in the last m timesteps. Concretely, assume that in some unweighted
tallying bandit problem tb, we play action z on the current timestep, and the total number of times it has been played in the

15
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last m timesteps (including the current timestep) is 1 < y < m. Then there exists a function hy, 5 : {1,2...m} — [0, 1],
such that denote the loss associated with playing this action is given by A, . (y). We will use this notation to instantiate the
forthcoming unweighted tallying bandit problems.

With this notation in hand, let us instantiate the unweighted tallying bandit problem tb 4 with memory length my,, = 1 as
follows. For action x1, we have that hy,, ,, = 1/2. For action x2, we have that A, », = 1. And for every other action
x, let hyp, » = 1. We say that whenever the player plays action z, the player almost surely observes A, »(1). Notice
that since my,,, = 1, and there is no stochasticity in the observation of losses when we play any action, tb4 is indeed a
deterministic multi-armed bandit problem.

Now, we instantiate the tallying bandit problem tbz with memory length my,, = M as follows. For action z; we define
htby z, = 1/2. For action x5 we define

lifl<y< M

Piby x = -

tbp, Q(y) {Oify:M

And for every other action x, we define hy,, , = 1. Once again, we enforce that there is no stochasticity in the player’s
observation of losses when the player plays an action. So the feedback model in tbg is deterministic.

Let the horizon length for problems tb 4 and tbp be the T" chosen as per Eq. (9). Note also that both problem instances
satisfy REO with parameter v = 0, and so tb4,tbp € UTBr a, k. So via our assumption of the determinism of A, via
Eq. (8) and via the fact that my,,, = 1, we have that

RP(A,tba) < flmup,, K) (T +TM"™) = f(1,K) (T'* + T M' ™) < M/2, (10)

where the final inequality follows due to Eq. (9). And again by our assumption of the determinism of .4 and via Eq. (8), we
have that
RP(A, tbg) < T/4. (11)

When A is run on problem tb 4, there are 2 cases. Either A plays x2 for M times in a row (at some point in its execution for
T timesteps while solving tb 4) or it does not.

Consider the first case, where A plays x for M times in a row on problem tb 4. Then we have that RP(A, tb4) > M/2.
This is because the optimal strategy for tb 4 always plays x; on each timestep, and so any timestep where .4 plays action
x # x; willadd hyp, o — by 2, = 1 — 1/2 = 1/2 to the CPR of \A. This is a contradiction to Eq. (10).

Consider the second case, where A never plays xo for M times in a row on problem tb4. Note that the deterministic
algorithm A can be viewed as a length T sequence of functions, where the ¢th function maps the past ¢ — 1 action choices
and loss observations to the action played at timestep ¢. Also note that the observed loss of a playing an action in tbp is
different from playing the same action in tb 4, if and only if that action was x5 and it was played M times in the prior M
timesteps (including the current timestep).

Thus, since A never plays x5 for M times in a row on problem tb 4, it sees the identical sequence of loss outputs when it
is deployed on tbp, and hence makes the identical sequence of actions as it would have if deployed in tb 4, which in turn
implies that it never plays x5 for M times in a row on problem tbg. Since M < T'/4 via Eq. (9), and playing any action
x # xo will always yield loss at least 1/2, the strategy that always plays x5 is optimal and has cumulative loss of M — 1.
So, since Eq. (9) implies that

T/2—(M—-1)>T/2—M>T/2-T/4=T/4,

we have that
RP(Atbg) >T/2— (M —1) > T/4.

This is a contradiction to Eq. (11).
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In either case, we have arrived at a contradiction. Hence, we have shown that for each € satisfying the given conditions and
each function f, the corresponding set A, ¢ is the empty set. This completes the proof. ]

C. Proof of Proposition 2.2

In this section, we provide a formal proof of Proposition 2.2. Let X = {x1,22}. Let w be defined componentwise as
w; = % foreach 1 < i < m. Set w, = w for each x € . Now sample a bit string y* uniformly at random from
{0,1}™~1, whose identity is kept hidden from the player. Define h,, = 1 and define

1 if,w'l'yt,zz,m # ’LUT(l y*)
T, t,xo,m\ __ T, t,xo,m\ __ 3
hay (W, y*2™) = hay (wyo*2™) = {O if wTyt®2m =w'(1,y*)
We assume that there is no stochasticity in the loss feedback experienced by the player. This defines an (m, w, h)-weighted
tallying bandit game. For ease in notation in the sequel, we also define v € X™ ! as

v; = e
1 ify; =0
We claim that with our choice of w, if y # ' € {1} x {0,1}™~! then w Ty # w"y’. We defer the formal proof of this
claim for now, and use this claim to complete the proof of Proposition 2.2. Critically, the claim implies that we incur
non-unit loss at timestep ¢ if and only if we play action x5 at timestep ¢ and have y*%2™ = (1, y*). Equivalently, we incur
non-unit loss at timestep ¢ if and only if our action sequence for the timesteps ¢,¢ — 1 ...t — m is (z3, v). Thus, the policy

that cyclically plays v, —1, Upm—2 ... v1, 2 incurs a loss of zero at least once every m timesteps. Meanwhile, identifying the
optimal policy is at least as hard as playing the action sequence (z2,v), which in turn is at least as hard as identifying y*.

A standard “needle in the haystack” argument (Du et al., 2020) then shows that identifying y* requires Q (2™) timesteps. In
turn, since the cyclic policy v, —1, Um—2 . .. V1, T2 incurs a loss of zero at least once every m timesteps, this implies that
the expected CPR [ [R%] of any (possibly randomized) algorithm is lower bounded by € (min{2™, T’} /m), where the
expectation is over the (possible) randomization of the algorithm as well as the sampling of y*.

Let us now return to prove our claim that if y # ' € {1} x {0,1}™ ! then w'y # w'y’. Assume for the sake of
contradiction that y # ' but w'y = w'y’. Let J C {2,3...m} be the set of coordinates that y, 3’ differ, and let
7* = min J. Note that J is non-empty by assumption, and so j* is well defined. Assume without loss of generality that
Yjr — y} = 1 (the case when y;~ — y} = —1 is completely symmetric). Then observe that

O=w'(y—y)

m
= wily; — )
j=1

(12)
= wi(y; — )
jeJ
=wje+ Y wily — ).
j#iTed
We can now lower bound Eq. (12) as
0=wje + > wily; —y})
J#j*eJ
>wie — Y wsly; — ]
J#j*ed (13)
“upe 3w
J#j*ed
m
> Wy — Z W
=541
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Now substituting in our choice of w into Eq. (13), we find that

m m 1 m—j* 1
02wy — >, w -2 5T 7 2
j=i*+1 j=i+1 i=1
which of course is a contradiction. This proves our claim that if y # 3’ € {1} x {0,1}™ T thenw 'y # w'y/'. [ ]

D. Extended Numerical Results & Details
D.1. Unweighted Tallying Bandit

In this section, we first present additional experimental results for the unweighted tallying bandit problem, where the loss
functions are identical to those described in Section 4.1. Hence, this problem satisfies 0-REO. Here, we vary the values of
m, K, M, and plot the CPR of each method over time. The results are shown in Figure 3. In each case, we observe that SE
outperforms the baselines. These results also show that the performance of Algorithm 1 is robust to using a conservative
upper bound M on m.

We now present results for a difﬁerent unweighted tallying bandit problem, where a-REOQ is satisfied with « > 0. For each
action z € X, we define w, = 1/(4m). We fix an action z* € X and a different action z** € X, and then define the loss
functions {h; }ycr as
1—w]yb®m —0.15if = a*, yb*om =1
he(yh®™) = S 1 —wlytom — Bl — 0.2i0f ¢ = 2**, 4" = (1,0,0...0)
1 —w, y-®™ otherwise

A numerical computation reveals that this unweighted tallying bandit problem instance satisfies a-REO with o =
max{0,—0.2 + QT—nf} We empirically study the performance of Algorithm 1 relative to the baselines on this prob-
lem instance, with a choice of m = 4, K = 5, M = 4. Since the optimal policy in this problem is not obvious, the CPR is
difficult to compute. So in lieu of the CPR, we plot the expected cumulative loss of each algorithm in excess of SE’s loss
(hence the CPR at any time is obtained by applying a constant shift to each algorithm’s excess loss). The results are shown
in Figure 4, where we observe that our method outperforms all others.

D.2. Weighted Tallying Bandit

Here, we describe the loss functions that were used to define the WTB problem instance described in Section 4.2. For each
action x € X, we define w,, in the following fashion. First we define the vector v € R™ coordinate wise by setting its ¢th
coordinate as v; = 1/2¢. Then we set w, = v/(2]|v||1) for each z € X. We fix an action z* € X, and then define the loss
functions {h; }zcx as

o (greemy = L wTy T 0I5 i =yt <
1—w, yt M otherwise

Hence, this weighted tallying bandit problem satisfies 0-REO.
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Figure 3: We plot the expected CPR of each algorithm, when deployed on the unweighted tallying bandit problem described
in Section 4.1, with varying values of m, K, M. In all plots, each datapoint is obtained by averaging over 20 problem
instances, and the shaded region depicts 1 standard error around the mean.
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Figure 4: We plot as a function of time the expected cumulative loss of each algorithm in excess of that of SE, on the
unweighted tallying bandit instance described in Appendix D.1, with m = 4, K = 5, M = 4. Note this instance satisfies
a-REO with oo = 0.1125. Each datapoint is obtained by averaging over 20 problem instances, and the shaded region depicts
=+1 standard error around the mean.
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