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ABSTRACT

Endeavors have been recently made to leverage the vision transformer (ViT) for
the challenging unsupervised domain adaptation (UDA) task. They typically
adopt the cross-attention in ViT for direct domain alignment. However, as the
performance of cross-attention highly relies on the quality of pseudo labels for the
targeted samples, it becomes less effective when the domain gap becomes large.
We solve this problem from a game theory’s perspective with the model called
PMTrans, which bridges the source and the target domains with an intermediate
domain. Specifically, we propose a novel ViT-based module called PatchMix
that effectively builds up the intermediate domain, i.e., probability distribution,
by learning to sample patches from both domains based on the game-theoretical
models. In this way, it learns to mix the patches from source and target domains
to maximize the cross entropy (CE), while exploiting two semi-supervised mixup
losses in the feature and label spaces to minimize it. As such, we interpret the
process of UDA as a min-max CE game with three players, including the feature
extractor, classifier, and PatchMix, to find the optimal Nash Equilibria solution.
Moreover, we leverage attention maps from ViT to re-weight the label of each
patch by its importance, making it possible to obtain more domain-discriminative
feature representations. We conduct extensive experiments on four benchmark
datasets, and the results show that PMTrans significantly surpasses the ViT-based
and CNN-based SoTA methods by +1.4% on Office-31, +3.5% on Office-Home,
and +17.7% on DomainNet, respectively.

1 INTRODUCTION
Convolutional neural networks (CNNs) have achieved tremendous success on numerous vision tasks;
however, they still suffer from the limited generalization capability to a new domain due to the
domain shift problem Zhang et al. (2022). Unsupervised domain adaptation (UDA) tackles this
issue by transferring knowledge from a labeled source domain to an unlabeled target domain Pan
& Yang (2010). A significant line of solutions reduces the domain gap based on the category-level
alignment which produces pseudo labels for the target samples, such as metric learning Kang et al.
(2019); Zhu et al. (2021), adversarial training Saito et al. (2018); Du et al. (2021); Li et al. (2021a),
and optimal transport Xu et al. (2020b). Furthermore, several works Dosovitskiy et al. (2021); Sun
et al. (2022) explore the potential of ViT for the non-trivial UDA task. Recently, CDTrans Xu et al.
(2021) exploits the cross-attention in ViT for direct domain alignment, buttressed by the crafted
pseudo labels for target samples. However, CDTrans has a distinct limitation: as the performance of
cross-attention highly depends on the quality of pseudo labels, it becomes less effective when the
domain gap becomes large. As shown in Fig. 1(a), due that the domain gap between the domain qdr
and others is significant, aligning it directly with others performs poorly.

In this paper, we probe a new problem for UDA: how to smoothly bridge the source and target
domains by constructing an intermediate domain with an effective ViT-based solution? The intuition
behind this is that, compared to direct aligning domains, alleviating the domain gap between the
intermediate and source/target domain can facilitate the domain alignment. Accordingly, we propose
a novel and effective method, called PMTrans (PatchMix Transformer) to construct the intermediate
representations. Overall, PMTrans interprets the process of domain alignment as a min-max cross
entropy (CE) game with three players, i.e., the feature extractor, a classifier, and a PatchMix module,
to find the optimal Nash Equilibria. Importantly, the PatchMix module is proposed to effectively build
up the intermediate domain, i.e., probability distribution, by learning to sample patches from both
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Figure 1: (a) The classification accuracy of our PMTrans surpasses the SoTA methods by +17.7% on
the most challenging DomainNet dataset. Note that the target tasks take one domain of DomainNet
as the target domain and other domains as source domains. (b) PMTrans builds up the intermediate
domain (green patches) via a novel PatchMix module by learning to sample patches from the source
(blue patches) and target (red patches) domains. PatchMix tries to maximize the CE (↑) between the
intermediate domain and source/target domain, while other players try to minimize it (↓) by aligning
their features.

domains with weights generated from a learnable Beta distribution based on the game-theoretical
models Acuna et al. (2022b); Başar & Olsder (1982); Mazumdar et al. (2020), as shown in Fig. 1(b).
That is, we aim to learn to mix patches from the two domains to maximize the CE between the
intermediate domain and source/target domain. Moreover, two semi-supervised mixup losses in the
feature and label spaces are proposed to minimize the CE. Interestingly, we conclude that source
and target domains are aligned if mixing the patch representations from two domains is equivalent
to mixing the corresponding labels. Therefore, the domain discrepancy can be measured based on
the CE between the mixed patches and mixed labels. Eventually, the three players have no incentive
to change their parameters to disturb CE, meaning the source and target domains are well aligned.
Unlike existing mixup methods Zhang et al. (2018); Yun et al. (2019); Uddin et al. (2021), our
proposed PatchMix subtly learns to combine the element-wise global and local mixture by mixing
patches from the source and target domains for ViT-based UDA. Moreover, we leverage the class
activation mapping (CAM) from ViT to allocate the semantic information to re-weight the label of
each patch, thus enabling us to obtain more domain-discriminative features.

We conduct experiments on four benchmark datasets, including Office-31 Saenko et al. (2010),
Office-Home Venkateswara et al. (2017), VisDA-2017 Peng et al. (2017), and DomainNet Peng
et al. (2019). The results show that the performance of PMTrans significantly surpasses that of the
ViT-based Sun et al. (2022); Xu et al. (2021); Yang et al. (2021) and CNN-based SoTA methods Na
et al. (2021); Li et al. (2021c); Sharma et al. (2021) by +1.4% on Office-31, +3.5% on Office-Home,
and +17.7% on DomainNet (See Fig. 1(a)), respectively.

In summary, the main contributions of our paper are four-fold: (I) We propose a novel ViT-based
UDA framework, PMTrans, to effectively bridge the source and target domains by constructing the
intermediate domain. (II) We propose PatchMix, a novel module to build up the intermediate domain
via the game-theoretical models. (III) We propose two semi-supervised mixup losses in the feature
and label spaces to reduce CE in the game. (IV) Our PMTrans suppresses the prior methods by a
large margin on three benchmark datasets.

2 RELATED WORK

Unsupervised Domain Adaptation The prevailing UDA methods focus on domain alignment and
learning discriminative domain-invariant features via metric learning, domain adversarial training, and
optimal transport. Firstly, the metric learning-based methods aim to reduce the domain discrepancy
by learning the domain-invariant feature representations using various metrics. For instance, some
methods Long et al. (2015; 2017); Zhu et al. (2019); Kang et al. (2019) use the maximum mean
discrepancy (MMD) loss to measure the divergence between different domains. In addition, the
central moment discrepancy (CMD) loss Zellinger et al. (2017) and maximum density divergence

2



Under review as a conference paper at ICLR 2023

(MDD) loss Li et al. (2021b) are also proposed to align the feature distributions. Secondly, the
domain adversarial training methods learn the domain-invariant representations to encourage samples
from different domains to be non-discriminative with respect to the domain labels via an adversarial
loss Ganin et al. (2016); Xu et al. (2020a); Wu et al. (2020). The third type of approaches aim
to minimize the cost transported from the source to the target distribution by finding an optimal
coupling cost to mitigate the domain shift Courty et al. (2017b;a). Unfortunately, these methods are
not robust enough to the noisy pseudo target labels for accurate domain alignment. Different from
these mainstream UDA methods and Acuna et al. (2022a), we interpret the process of UDA as a
min-max CE game and find the optimal Nash Equilibria for domain alignment with an intermediate
domain and a pure ViT-based solution.

Mixup. It is an effective data augmentation technique to prevent models from over-fitting to the
training data by linearly interpolating between two input data. Mixup types can be categorized into
the global mixup (e.g., Mixup Zhang et al. (2018) and Manifold-Mixup Zhang et al. (2018)) and local
mixup (CutMix Yun et al. (2019), saliency-CutMix Uddin et al. (2021), and TransMix Chen et al.
(2021)). In CNN-based UDA tasks, several works Xu et al. (2020a); Wu et al. (2020); Na et al. (2021)
also use the mixup technique by linearly mixing the source and target domain data. In comparison,
we unify the global and local mixup in our PMTrans framework by learning to form a mixed patch
from the source/target patch as the input to ViT. We learn the hyperparameters of the mixup ratio
for each patch, which is the first attempt to interpolate patches based on the distribution estimation.
Accordingly, we propose PatchMix that effectively builds up the intermediate domain by sampling
patches from both domains based on the game-theoretical models.

Transformer. Transformer Vaswani et al. (2017) has recently been introduced to tackle the challenges
in various vision tasks Caron et al. (2021); Liu et al. (2021b). Consequently, several works have
leveraged the vision transformer (ViT) for the non-trivial UDA task. TVT Yang et al. (2021) proposes
an adaptation module to capture the transferable and discriminative features of domain data. SSRT
Sun et al. (2022) proposes a framework with a transformer backbone and a safe self-refinement
strategy to handle the issues in case of a large domain gap. More recently, CDTrans Xu et al. (2021)
proposes a two-step framework that utilizes the cross-attention in ViT for direct feature alignment,
along with pre-generated pseudo labels for the target samples. Differently, we probe to construct
an intermediate domain to bridge the source and target domains for better domain alignment. Our
PMTrans effectively interprets the process of domain alignment as a min-max CE game, leading to a
significant UDA performance enhancement (See Sec. 3).

3 METHODOLOGY

In UDA, given a labeled source set Ds = {(xs
i ,y

s
i )}

ns

i=1 with i-th sample xs
i and its corresponding

one-hot label ys
i and an unlabeled target set Dt =

{
xt
j

}nt

j=1
with j-th sample xt

j , we use ns and nt

to denote the size of samples in the source and target domains, respectively. Note that the data in two
domains are sampled from two different distributions, and we assume that the two domains share the
same label space. Our goal is to address the significant domain gap issue and transfer the knowledge
from the source domain to the target domain well. In this section, we interpret the process of UDA
from a game perspective, then describe the proposed PMTrans which smoothly aligns the source and
target domain by constructing an intermediate domain.

3.1 PMTRANS: THEORETICAL ANALYSIS

3.1.1 PATCHMIX

Definition 1 (PatchMix): Let Pλ be a linear interpolation operation on two pairs of randomly drawn
samples (xs,ys) and (xt,yt). Then with λk ∼ Beta(β, γ), it interpolates k-th source patch xs

k and
target patch xt

k to reconstruct a mixed representation with n patches.

xi = Pλ(x
s,xt) =

n∑
k=1

(λkx
s
k + (1− λk)x

t
k),

yi = Pλ(y
s,yt) =

(
∑n

k=1 λk)y
s + (

∑n
k=1(1− λk))y

t

n
.

(1)
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Figure 2: Overview of the proposed PMTrans framework. It consists of three players: the PatchMix
module empowered by a patch embedding (Emb) layer and a learnable Beta distribution (Beta), ViT
encoder, and classifier. The ViT encoder aims to extract features from the patch sequences obtained
by Emb. The classifier maps the outputs of ViT encoder to make predictions, each of which is
exploited to select the feature map to re-weight the patch sequences. We adopt CE to measure the
effect of each player’s strategy in the game.

In Definition 1, we assume the intermediate domain follows the Beta distribution, i.e.each image
xi composes the sampled patches xk from source/target domain. Here, λk ∈ [0, 1] is the random
mixing proportion that denotes the patch-level sampling weights. Furthermore, we calculate the
image-level importance by aggregating patch weights

∑n
k=1(1− λk), which is used to interpolate

their labels. As a result, we mix both samples (xs,ys) and (xt,yt) to construct a new intermediate
domain Di =

{(
xi
l,y

i
l

)}ni

l=1
, which shares information from both the source domain Ds and the

target domain Dt.

To align the source and the target domains, we need to evaluate the gap numerically. In detail, let PS

and PT be the empirical distributions defined by Ds and Dt, respectively. D(PS , PT ) measures the
divergence between the source and target domains, and can be defined as

D (PS , PT ) = infhs
1,...,h

s
ns

∈Hs,ht
1,...,h

t
nt

∈Ht
1

ns×nt

∑ns
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∑nt
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{
infc∈C

∫ 1

0
ℓ
(
f
(
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(
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))
,Pλ

(
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i ,y

t
j

))
p(λ)dλ

}
, (2)

where ℓ is the CE loss, hs
i = f(xs

i ) and ht
j = f(xt

j). Note Hs and Ht denote the representation
spaces with dimensionality dim(H) for the source and target domains, respectively. F denotes the set
of encoding functions i.e., the encoder and C denotes the set of decoding functions i.e.the classifier.
Let Pλ be the set of functions to generate the mixup ratio for building the intermediate domain.
Let f⋆ ∈ F , c⋆ ∈ C, and λ⋆ ∈ Pλ be the minimizers of Eq.4 (ref to the suppl. material.)

Theorem 1 (Domain Distribution Estimation with PatchMix): Let d ∈ N to represent the number
of classes contained in three sets Ds, Dt, and Di. If dim(H) ≥ d− 1, λ⋆ℓ(c⋆(f⋆(xi)),y

s) + (1−
λ⋆)ℓ(c⋆(f⋆(xi)),y

t) = 0, then D (PS , PT ) = 0 and the corresponding minimizer c⋆ is a linear
function from H to Rd.

Theorem 1 indicates that the source and target domains will be aligned if mixing the patches from two
domains is equivalent to mixing the corresponding labels. Therefore, minimizing the CE between
the mixed patches and mixed labels can effectively facilitate domain alignment. For the proof of
Theorem 1, refer to the suppl. material.

3.1.2 A MIN-MAX CE GAME

We interpret UDA as a min-max CE game among three players, namely the feature extractor (F),
classifier (C), and PatchMix module (P), as shown in Fig. 2. To specify each player’s role, we define
ω1 ∈ Ω1, ω2 ∈ Ω2, and ω3 ∈ Ω3 as the parameters of F , C, and P , respectively. The joint domain is
defined as Ω = Ω1 × Ω2 × Ω3 and their joint parameter set is defined as ω = {ω1,ω2,ω3}. Then
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we use the subscript −m to denote all other parameters/players except m, e.g., ω−2 = {ω1,ω3}.
In our game, m-th player is endowed with a cost function Jm and strives to reduce its cost, which
contributes to the change of CE. Each player’ cost function Jm is represented as

J1 (ω1,ω−1) := Lcls(ω1,ω2) + αCEs,i,t(ω),

J2 (ω2,ω−2) := Lcls(ω1,ω2) + αλCEs,i,t(ω),

J3 (ω3,ω−3) := −αCEs,i,t(ω),

(3)

where α is the trade-off parameter, ℓ is the supervised classification loss for the source domain, and
CEs,i,t(ω) is the discrepancy between the intermediate domain and the source/target domain. The
definitions of Lcls(ω1,ω2) and CEs,i,t(ω) are shown in Sec. 3.2. As illustrated in Eq. 3, the game
is essentially a min-max process, i.e., a competition for the player P against both players F and C.
Specifically, as depicted in Fig. 2, P strives to diverge while F and C try to align domain distributions,
which is a min-max process on CE. In this min-max CE game, each player behaves selfishly to reduce
its cost function, and this competition will possibly end with a situation where no one has anything to
gain by changing only one’s strategy. This situation is called Nash Equilibrium (NE) in game theory.

Definition 2 (Nash Equilibrium): The equilibrium states each player’s strategy is the best response
to other players.

∃ω∗ ∈ Ω,∀m ∈ {1, 2, 3}, s.t.Jm(ω∗
m,ω∗

−m) ≤ Jm(ωm,ω∗
−m).

Intuitively, in our case, NE means that no player has the incentive to change its own parameters, as
there is no additional pay-off.

3.2 THE PROPOSED FRAMEWORK

Overview. Fig. 2 illustrates the framework of our proposed PMTrans, which consists of a ViT
encoder, a classifier, and a PatchMix module. Firstly, the patch embedding (Emb) layer in PatchMix
transforms input images from source/target domains into patches. Then, based on Definition. 1,
PatchMix randomly samples patches from source and target domains to construct the intermediate
domain, as shown in Fig. 1(b). Lastly, patches are refined with a ViT encoder, and the classifier uses
the refined representations to make predictions. Next, we describe the technical details of PMTrans.

PatchMix. When exploiting PatchMix to construct the intermediate domain, it is worth noting that
not all patches have equal contributions for the label assignment. As Chen et al.Chen et al. (2021)
observed, the mixed image has no valid objects due to the random process while there is still a
response in the label space. To address this issue, we re-weight Pλ(y

s,yt) in Definition.1 with the
normalized attention score ak. For the implementation details of attention scores, refer to the suppl.
material. The re-scaled Pλ(y

s,yt) is defined as Pλ(y
s,yt) = λsys + λtyt, where

λs =

∑n
k=1 λka

s
k∑n

k=1 λkask +
∑n

k=1(1− λk)atk
, λt =

∑n
k=1(1− λk)a

t
k∑n

k=1 λkask +
∑n

k=1(1− λk)atk
.

Figure 3: The illustration of the semi-supervised
loss in the feature space.

Semi-supervised mixup loss. As PatchMix
tries to maximize the CE between the inter-
mediate domain and source/target domain, we
now need to find a way to minimize the CE
in the game. In detail, two semi-supervised
mixup losses are proposed in the feature and
label spaces to align the domains.

Firstly, we compute the normalized cosine simi-
larity between the intermediate domain (column)
and source/target domain (row) in the feature
space, as shown in Fig. 3(a). Each normalized
score denotes the similarity between a sample
of the intermediate domain and its source/target
counterpart. For its supervision, intuitively, for
the source domain, we exploit ground-truth information by the label similarity yis = ys(ys)⊺, as
a binary matrix to represent whether samples share the same labels. As shown in Fig.3 (b), the
yellow and pink items indicate true, while others indicate false. Moreover, for the intermediate and
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target domains, due to lack of supervision, we only use pink parts i.e.the identity matrix yit as the
label similarity. Then, we utilize the CE to measure the domain discrepancy based on the difference
between the feature similarity and label similarity.

The supervised mixup loss in the feature space is formulated as:

LI,S
f (ω1,ω3) = E(xi,yi)∼Diλsℓ

(
d
(
F
(
xi
)
,F (xs)

)
,yis

)
,

where d(·, ·) denotes the normalized cosine similarity, as shown in Fig. 3(a), between features across
domains and ℓ denotes the CE loss. Similarly, to measure the divergence between the intermediate
and target domains in the feature space, we propose an unsupervised mixup loss, which is defined as:

LI,T
f (ω1,ω3) = E(xi,yi)∼Diλtℓ

(
d
(
F
(
xi
)
,F
(
xt
))

,yit
)
,

Moreover, as introduced in Theorem 1, we apply a supervised mixup loss in the label space to
measure the domain divergence based on the CE loss.

LI,S
l (ω) = E(ωi,yi)∼Diλsℓ

(
C
(
F
(
xi
))

,ys
)
, LI,T

l (ω) = E(xi,yi)∼Diλtℓ
(
C
(
F
(
xi
))

, ŷt
)
,

where ŷt is pseudo label for target data. For convenience, we utilize the method, commonly used
in Liang et al. (2020; 2021), to generate the pseudo label ŷt for each sample via k-means cluster.
Finally, the two semi-supervised mixup losses in the feature and label spaces are formulated as:

Lf (ω1,ω3) = LI,S
f (ω1,ω3) + LI,T

f (ω1,ω3);Ll(ω) = LI,S
l (ω) + LI,T

l (ω).

We also apply the classification loss to the labeled source domain data, formulated as:

Lcls(ω1,ω2) = E(xs,ys)∼Dsℓ (C (F (xs)) ,ys) .

A Three-Player Game. Finally, the min-max CE game aims to align distributions in the feature and
label spaces. The total CE between the intermediate domain and source/target domain is:

CEs,i,t(ω) = Lf (ω1,ω3) + Ll(ω).

Note that, instead of using gradient reverse layers Ganin & Lempitsky (2015) for the domain
classification to increase the domain gap, we adopt the random mixup-ratio from Beta distribution
in our PatchMix module to maximize the CE between the intermediate domain and source/target
domain. Moreover, the feature extractor and classifier have the same objective to minimize the CE
between the intermediate domain and source/target domain. Therefore, the total objective of PMTrans
is achieved by reformulating Eq.3 as

J (ω) := Lcls(ω1,ω2) + αCEs,i,t(ω),

where α is trade-off parameter. As such, we can obtain the solution of the game with only one-
step optimization, which is more efficient than that proposed in CDTrans Xu et al. (2021). After
optimizing the objective, the PatchMix module with the ideal Beta distribution will not maximize
the CE anymore. Meanwhile, the feature extractor and classifier have no incentive to change their
parameters to minimize the CE. Finally, the discrepancy between the intermediate domain and
source/target domain is nearly zero, indicating that the source and target domains are well aligned.

4 EXPERIMENTS
4.1 DATASETS, IMPLEMENTATIONS, AND COMPARED METHODS

Datasets. To evaluate the proposed method, we conduct extensive experiments on four popular UDA
benchmarks, including Office-31 Saenko et al. (2010), Office-Home Venkateswara et al. (2017),
VisDA-2017 Peng et al. (2017), and DomainNet Peng et al. (2019). Due to page limit, the details of
the datasets and the construction of transfer tasks on these datasets are put in the suppl. material.
Implementations. In all experiments, we use the Swin-Base transformer Liu et al. (2021a) pre-trained
on ImageNet Deng et al. (2009) as the backbone for our PMTrans. The base learning rate is 5e−6

with a batch size of 32, and we train models by 50 epochs. For VisDA-2017, we use lower learning
rate 1e−6. We adopt AdamW Loshchilov & Hutter (2019) with a momentum of 0.9, and a weight
decay of 0.05 as the optimizer for all our experiments. Furthermore, for fine-tuning purposes, we set
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Table 1: Comparison with SoTA methods on Office-31. The best performance is marked as bold.
Method A → W D→ W W→ D A→ D D→ A W→ A Avg

ResNet-50 68.9 68.4 62.5 96.7 60.7 99.3 76.1
BNM 91.5 98.5 100.0 90.3 70.9 71.6 87.1
DWL 89.2 99.2 100.0 91.2 73.1 69.8 87.1
MDD 94.5 98.4 100.0 93.5 74.6 72.2 88.9
TSA 94.8 99.1 100.0 92.6 74.9 74.4 89.3

ILA+CDAN 95.7 99.2 100.0 93.4 72.1 75.4 89.3
PCT 94.6 98.7 99.9 93.8 77.2 76.0 90.0

SCDA 94.2 98.7 99.8 95.2 75.7 76.2 90.0
FixBi 96.1 99.3 100.0 95.0 78.7 79.4 91.4
TVT 96.4 99.4 100.0 96.4 84.9 86.0 93.9

Deit-Base 89.2 98.9 100.0 88.7 80.1 79.8 89.5
CDTrans-Deit 96.7 99.0 100.0 97.0 81.1 81.9 92.6
PMTrans-Deit 99.0 99.4 100.0 96.5 81.4 82.1 93.1

ViT-Base 91.2 99.2 100.0 90.4 81.1 80.6 91.1
SSRT-ViT 97.7 99.2 100.0 98.6 83.5 82.2 93.5

PMTrans-ViT 99.1 99.6 100.0 99.4 85.7 86.3 95.0
Swin-Base 97.0 99.2 100.0 95.8 82.4 81.8 92.7

PMTrans-Swin 99.5 99.4 100.0 99.8 86.7 86.5 95.3

the classifier with a higher learning rate 1e−5 for our main tasks and learn the trade-off parameter
adaptively. The classifier is implemented as an MLP. For a fair comparison with prior works, we
conduct experiments with the same backbone Deit-Base Touvron et al. (2020) as CDTrans Xu et al.
(2021), and ViT-base Dosovitskiy et al. (2021) as SSRT Sun et al. (2022) on Office-31, Office-Home,
and VisDA-2017. Both studies are trained for 60 epochs with a learning rate of 1e−5.

Baseline Methods. We compare PMTrans with the SoTA methods, including ResNet- and ViT-based
methods. The ResNet-based methods are FixBi Na et al. (2021), CGDM Du et al. (2021), MCD Saito
et al. (2018), SWD Lee et al. (2019), SCDA Li et al. (2021d), BNM Cui et al. (2020), MDD Zhang
et al. (2019b), CKB Luo & Ren (2021), TSA Li et al. (2021c), DWL Xiao & Zhang (2021), ILA
Sharma et al. (2021), Symnets Zhang et al. (2019a), CAN Kang et al. (2019), and PCT Tanwisuth
et al. (2021). The ViT-based methods are SSRT Sun et al. (2022), CDTrans Xu et al. (2021), and TVT
Yang et al. (2021), and we directly quote the results in their original papers for fair comparison.

4.2 RESULTS

For the ResNet-based methods, we utilize ResNet-50 as the backbone for the Office-31, Office-Home,
and DomainNet datasets, and we adopt ResNet-101 for VisDA-2017 dataset. Note that each backbone
is trained with the source data only and then tested with the target data.

Results on Office-31. Table 1 shows the quantitative comparison with the CNN-based and ViT-based
methods. Overall, our PMTrans achieves the best performance on each task and outperforms the SoTA
methods with the same backbones. Numerically, PMTrans noticeably surpass the SoTA methods with
an increase of +2.9% accuracy over CDTrans, +1.4% accuracy over TVT, and +1.8% accuracy over
SSRT, respectively.

Results on Office-Home. Table 2 shows the quantitative results using different backbones. As
expected, our PMTrans framework achieves noticeable performance gains and surpasses TVT, SSRT,
and CDTrans by a large margin. Importantly, our PMTrans achieves an improvement more than
4.9% accuracy over the Swin backbone Liu et al. (2021a). Interestingly, our proposed PMTrans can
decrease domain divergence effectively even without the Swin backbone. The results indicate that
our method can obtain more robust transferable representations than the CNN-based and ViT-based
methods.

Results on VisDA-2017. As shown in Table 3, our PMTrans achieves 88.0% accuracy and
outperforms the baseline by 11.2%. In particular, for the ‘hard’ categories, such as ”person”,
our method consistently achieves a much higher performance boost from 29.0% to 70.3%. These
improvements indicate that our method shows an excellent generalization capability and achieves
comparable performance (88.0%) with the SoTA methods (88.7%). PMTrans also surpasses the
SoTA methods on several sub-categories, such as ”horse” and ”sktbrd”. In particular, it is shown
that the SoTA methods, e.g., CDTrans and SSRT, achieve better results on this dataset. The reason
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Table 2: Comparison with SoTA methods on Office-Home. The best performance is marked as bold.
Method A→ C A→ P A → R C → A C → P C → R P→ A P→ C P→ R R→ A R→ C R→ P Avg

ResNet-50 44.9 66.3 74.3 51.8 61.9 63.6 52.4 39.1 71.2 63.8 45.9 77.2 59.4
MCD 48.9 68.3 74.6 61.3 67.6 68.8 57.0 47.1 75.1 69.1 52.2 79.6 64.1

Symnets 47.7 72.9 78.5 64.2 71.3 74.2 64.2 48.8 79.5 74.5 52.6 82.7 67.6
MDD 54.9 73.7 77.8 60.0 71.4 71.8 61.2 53.6 78.1 72.5 60.2 82.3 68.1
TSA 53.6 75.1 78.3 64.4 73.7 72.5 62.3 49.4 77.5 72.2 58.8 82.1 68.3
CKB 54.7 74.4 77.1 63.7 72.2 71.8 64.1 51.7 78.4 73.1 58.0 82.4 68.5
BNM 56.7 77.5 81.0 67.3 76.3 77.1 65.3 55.1 82.0 73.6 57.0 84.3 71.1
PCT 57.1 78.3 81.4 67.6 77.0 76.5 68.0 55.0 81.3 74.7 60.0 85.3 71.8
FixBi 58.1 77.3 80.4 67.7 79.5 78.1 65.8 57.9 81.7 76.4 62.9 86.7 72.7
TVT 74.9 86.8 89.5 82.8 88.0 88.3 79.8 71.9 90.1 85.5 74.6 90.6 83.6

Deit-Base 61.8 79.5 84.3 75.4 78.8 81.2 72.8 55.7 84.4 78.3 59.3 86.0 74.8
CDTrans-Deit 68.8 85.0 86.9 81.5 87.1 87.3 79.6 63.3 88.2 82.0 66.0 90.6 80.5
PMTrans-Deit 71.8 87.3 88.3 83.0 87.7 87.8 78.5 67.4 89.3 81.7 70.7 92.0 82.1

ViT-Base 67.0 85.7 88.1 80.1 84.1 86.7 79.5 67.0 89.4 83.6 70.2 91.2 81.1
SSRT-ViT 75.2 89.0 91.1 85.1 88.3 89.9 85.0 74.2 91.2 85.7 78.6 91.8 85.4

PMTrans-ViT 81.2 91.6 92.4 88.9 91.6 93.0 88.5 80.0 93.4 89.5 82.4 94.5 88.9
Swin-Base 72.7 87.1 90.6 84.3 87.3 89.3 80.6 68.6 90.3 84.8 69.4 91.3 83.6

PMTrans-Swin 79.7 92.3 92.6 88.3 93.1 92.8 87.3 80.0 92.8 88.8 79.8 94.6 88.5

Table 3: Comparison with SoTA methods on VisDA-2017. The best performance is marked as bold.
Method plane bcycl bus car horse knife mcycl person plant sktbrd train truck Avg

ResNet-50 55.1 53.3 61.9 59.1 80.6 17.9 79.7 31.2 81.0 26.5 73.5 8.5 52.4
BNM 89.6 61.5 76.9 55.0 89.3 69.1 81.3 65.5 90.0 47.3 89.1 30.1 70.4
MCD 87.0 60.9 83.7 64.0 88.9 79.6 84.7 76.9 88.6 40.3 83.0 25.8 71.9
SWD 90.8 82.5 81.7 70.5 91.7 69.5 86.3 77.5 87.4 63.6 85.6 29.2 76.4
DWL 90.7 80.2 86.1 67.6 92.4 81.5 86.8 78.0 90.6 57.1 85.6 28.7 77.1

CGDM 93.4 82.7 73.2 68.4 92.9 94.5 88.7 82.1 93.4 82.5 86.8 49.2 82.3
CAN 97 87.2 82.5 74.3 97.8 96.2 90.8 80.7 96.6 96.3 87.5 59.9 87.2
FixBi 96.1 87.8 90.5 90.3 96.8 95.3 92.8 88.7 97.2 94.2 90.9 25.7 87.2
TVT 82.9 85.6 77.5 60.5 93.6 98.2 89.4 76.4 93.6 92.0 91.7 55.7 83.1

Deit-Base 98.2 73.0 82.5 62.0 97.3 63.5 96.5 29.8 68.7 86.7 96.7 23.6 73.2
CDTrans-Deit 97.1 90.5 82.4 77.5 96.6 96.1 93.6 88.6 97.9 86.9 90.3 62.8 88.4
PMTrans-Deit 98.2 92.2 88.1 77.0 97.4 95.8 94.0 72.1 97.1 95.2 94.6 51.0 87.7

ViT-Base 99.1 60.7 70.1 82.7 96.5 73.1 97.1 19.7 64.5 94.7 97.2 15.4 72.6
SSRT-ViT 98.9 87.6 89.1 84.8 98.3 98.7 96.3 81.1 94.8 97.9 94.5 43.1 88.8

PMTrans-ViT 98.9 93.7 84.5 73.3 99.0 98.0 96.2 67.8 94.2 98.4 96.6 49.0 87.5
Swin-Base 99.3 63.4 85.9 68.9 95.1 79.6 97.1 29.0 81.4 94.2 97.7 29.6 76.8

PMTrans-Swin 99.4 88.3 88.1 78.9 98.8 98.3 95.8 70.3 94.6 98.3 96.3 48.5 88.0

is that CDTrans and SSRT are trained with a batch size of 64 while PMTrans’s batch size is 32. It
indicates that when the input size is much bigger, the input can represent the data distributions better.
A detailed ablation study for this issue can be found in the suppl. material..

Results on DomainNet. PMTrans achieves a very high average accuracy on the most challenging
DomainNet dataset, as shown in Table 4. Overall, our proposed PMTrans outperforms the SoTA
methods by +17.7% accuracy. Incredibly, PMTrans surpasses the SoTA methods in all the 30 sub-
tasks, which demonstrates the strong ability of PMTrans to alleviate the large domain gap. Moreover,
transferring knowledge is much more difficult when the domain gap becomes significant. When
taking more challenging qdr as target domain while others as the source domain, our PMTrans
achieves an average accuracy of 27.0%, while SSRT and CDTrans only achieve an average accuracy
of 13.7% and 19.6%, respectively. The comparisons on DomainNet dataset demonstrate that our
PMTrans yields the best generalization ability for the challenging UDA problem.

4.3 ABLATION STUDY

Semi-supervised mixup loss. As shown in Table 5, Swin with the semi-supervised mixup loss in
the feature and label spaces outperforms the counterpart built on Swin with only source training by
+0.3% and +4.3% on Office-Home dataset, respectively. The results indicate the effectiveness of the
semi-supervised mixup loss for minimizing the domain discrepancy. Moreover, we observe that the
CE loss yields better performance on the label space than that on the feature space. The reason is that
the CE loss on the label space utilizes the class information better than on the feature space. Due to
the page limit, more experiments and analyses can be found in the suppl. material.
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Table 4: Comparison with SoTA methods on DomainNet. The best performance is marked as bold.
MCD clp inf pnt qdr rel skt Avg SWD clp inf pnt qdr rel skt Avg BNM clp inf pnt qdr rel skt Avg

clp - 15.4 25.5 3.3 44.6 31.2 24.0 clp - 14.7 31.9 10.1 45.3 36.5 27.7 clp - 12.1 33.1 6.2 50.8 40.2 28.5
inf 24.1 - 24.0 1.6 35.2 19.7 20.9 inf 22.9 - 24.2 2.5 33.2 21.3 20.0 inf 26.6 - 28.5 2.4 38.5 18.1 22.8
pnt 31.1 14.8 - 1.7 48.1 22.8 23.7 pnt 33.6 15.3 - 4.4 46.1 30.7 26.0 pnt 39.9 12.2 - 3.4 54.5 36.2 29.2
qdr 8.5 2.1 4.6 - 7.9 7.1 6.0 qdr 15.5 2.2 6.4 - 11.1 10.2 9.1 qdr 17.8 1.0 3.6 - 9.2 8.3 8.0
rel 39.4 17.8 41.2 1.5 - 25.2 25.0 real 41.2 18.1 44.2 4.6 - 31.6 27.9 rel 48.6 13.2 49.7 3.6 - 33.9 29.8
skt 37.3 12.6 27.2 4.1 34.5 - 23.1 skt 44.2 15.2 37.3 10.3 44.7 - 30.3 skt 54.9 12.8 42.3 5.4 51.3 - 33.3
Avg 28.1 12.5 24.5 2.4 34.1 21.2 20.5 Avg 31.5 13.1 28.8 6.4 36.1 26.1 23.6 Avg 37.6 10.3 31.4 4.2 40.9 27.3 25.3

CGDM clp inf pnt qdr rel skt Avg MDD clp inf pnt qdr rel skt Avg SCDA clp inf pnt qdr rel skt Avg
clp - 16.9 35.3 10.8 53.5 36.9 30.7 clp - 20.5 40.7 6.2 52.5 42.1 32.4 clp - 18.6 39.3 5.1 55.0 44.1 32.4
inf 27.8 - 28.2 4.4 48.2 22.5 26.2 inf 33.0 - 33.8 2.6 46.2 24.5 28.0 inf 29.6 - 34.0 1.4 46.3 25.4 27.3
pnt 37.7 14.5 - 4.6 59.4 33.5 30.0 pnt 43.7 20.4 - 2.8 51.2 41.7 32.0 pnt 44.1 19.0 - 2.6 56.2 42.0 32.8
qdr 14.9 1.5 6.2 - 10.9 10.2 8.7 qdr 18.4 3.0 8.1 - 12.9 11.8 10.8 qdr 30.0 4.9 15.0 - 25.4 19.8 19.0
rel 49.4 20.8 47.2 4.8 - 38.2 32.0 rel 52.8 21.6 47.8 4.2 - 41.2 33.5 rel 54.0 22.5 51.9 2.3 - 42.5 34.6
skt 50.1 16.5 43.7 11.1 55.6 - 35.4 skt 54.3 17.5 43.1 5.7 54.2 - 35.0 skt 55.6 18.5 44.7 6.4 53.2 - 35.7
Avg 36.0 14.0 32.1 7.1 45.5 28.3 27.2 Avg 40.4 16.6 34.7 4.3 43.4 32.3 28.6 Avg 42.6 16.7 37.0 3.6 47.2 34.8 30.3

CDTrans clp inf pnt qdr rel skt Avg SSRT clp inf pnt qdr rel skt Avg PMTrans clp inf pnt qdr rel skt Avg
clp - 29.4 57.2 26.0 72.6 58.1 48.7 clp - 33.8 60.2 19.4 75.8 59.8 49.8 clp - 34.2 62.7 32.5 79.3 63.7 54.5
inf 57.0 - 54.4 12.8 69.5 48.4 48.4 inf 55.5 - 54.0 9.0 68.2 44.7 46.3 inf 67.4 - 61.1 22.2 78.0 57.6 57.3
pnt 62.9 27.4 - 15.8 72.1 53.9 46.4 pnt 61.7 28.5 - 8.4 71.4 55.2 45.0 pnt 69.7 33.5 - 23.9 79.8 61.2 53.6
qdr 44.6 8.9 29.0 - 42.6 28.5 30.7 qdr 42.5 8.8 24.2 - 37.6 33.6 29.3 qdr 54.6 17.4 38.9 - 49.5 41.0 40.3
rel 66.2 31.0 61.5 16.2 - 52.9 45.6 rel 69.9 37.1 66.0 10.1 - 58.9 48.4 rel 74.1 35.3 70.0 25.4 - 61.1 53.2
skt 69.0 29.6 59.0 27.2 72.5 - 51.5 skt 70.6 32.8 62.2 21.7 73.2 - 52.1 skt 73.8 33.0 62.6 30.9 77.5 - 55.6
Avg 59.9 25.3 52.2 19.6 65.9 48.4 45.2 Avg 60.0 28.2 53.3 13.7 65.3 50.4 45.2 Avg 67.9 30.7 59.1 27.0 72.8 56.9 62.9

Table 5: Effect of semi-supervised loss. The best performance is marked as bold.
Lcls Lf Ll A→ C A→ P A → R C → A C → P C → R P→ A P→ C P→ R R→ A R→ C R→ P Avg

✓ 72.7 87.1 90.6 84.3 87.3 89.3 80.6 68.6 90.3 84.8 69.4 91.3 83.6
✓ ✓ 73.3 87.2 90.8 84.8 87.5 89.5 81.5 71.1 90.5 85.2 72.9 92.0 83.9
✓ ✓ 79.2 91.8 92.3 88.0 92.6 93.0 87.1 77.8 92.5 88.2 78.4 93.9 87.9
✓ ✓ ✓ 79.7 92.3 92.6 88.3 93.1 92.8 87.3 80.0 92.8 88.8 79.8 94.6 88.5

Table 6: Effect of learning parameters. The best performance is marked as bold.
Method A→ C A→ P A → R C → A C → P C → R P→ A P→ C P→ R R→ A R→ C R→ P Avg

Beta(1,1) 79.9 92.0 92.3 88.6 92.6 92.4 86.9 79.0 92.4 88.2 79.3 94.0 88.1
Beta(2,2) 79.9 92.1 92.7 88.4 92.4 92.7 86.9 79.5 92.1 88.1 79.6 94.3 88.2
Learning 79.7 92.3 92.6 88.3 93.1 92.8 87.3 80.0 92.8 88.8 79.8 94.6 88.5

Table 7: Effect of PatchMix. The best performance is marked as bold.
Method A→ C A→ P A → R C → A C → P C → R P→ A P→ C P→ R R→ A R→ C R→ P Avg

Mixup 79.4 92.4 92.6 87.5 92.8 92.4 86.8 80.3 92.5 88.2 79.7 95.4 88.3
CutMix 79.2 91.2 92.2 87.6 91.8 91.8 86.0 77.8 92.6 88.2 78.4 94.1 87.6

PatchMix 79.7 92.3 92.6 88.3 93.1 92.8 87.3 80.0 92.8 88.8 79.8 94.6 88.5

Learning hyperparameters of mixup. Table 6 shows the ablation results for the effects of learning
the hyperparameters of the Beta distribution using the Office-Home dataset. We compared the learning
hyperparameters of mixup with fixed parameters, such as Beta(1,1) and Beta(2,2). The proposed
method achieves +0.4% and +0.3% accuracy increment compared with that based on Beta(1,1) and
Beta(2,2), respectively. The results demonstrate that learning to estimate the distribution to build up
the intermediate domain can benefit domain alignment.

PatchMix. Comparisons of PMTrans with Mixup Zhang et al. (2018) and CutMix Yun et al. (2019)
are shown in Table 7. PMTrans outperforms Mixup and CutMix by +0.2% and +0.9% accuracy
on the Office-Home dataset, demonstrating that PatchMix can capture the global and local mixture
information better than the global mixture Mixup and local mixture CutMix methods.

5 CONCLUSION AND FUTURE WORK

In this paper, we proposed a novel method, PMTrans, an optimization solution for UDA from a
game perspective. Specifically, we first proposed a novel ViT-based module called PatchMix that
effectively built up the intermediate domain to learn discriminative domain-invariant representations
for domains. And the two semi-supervised mixup losses were proposed to assist in finding the optimal
Nash Equilibria. Moreover, we leveraged attention maps from ViT to re-weight the label of each
patch by its significance. PMTrans achieved the SoTA results on four benchmark UDA datasets,
outperforming the SoTA methods by a large margin. In the near future, we plan to implement our
PatchMix and the two semi-supervised mixup losses to solve self-supervised and semi-supervised
learning problems. We will also exploit our method to tackle the challenging downstream tasks, e.g.,
semantic segmentation and object detection.
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A APPENDIX

In this supplementary material, we first prove theorem 2 and its inference in Section B. Then, Section
D shows the algorithm of the proposed PMTrans, and Section C introduces the details of the proposed
method. Finally, Section E and Section F show the results, analyses, and ablation experiments to
prove the effectiveness of the proposed PMTrans.

B PROOFS

B.1 DOMAIN DISTRIBUTION ESTIMATION WITH PATCHMIX

Let H denote the representation spaces with dimensionality dim(H), F denote the set of encoding
functions i.e., the encoder and C be the set of decoding functions i.e.the classifier. Let Pλ be the
set of functions to generate mixup ratio for building the intermediate domain. Furthermore, let PS ,
PT , and PI be the empirical distributions of data Ds, Dt, and Di. Define f⋆ ∈ F , c⋆ ∈ C, and λ⋆ ∈
P be the minimizers of Eq. 4 and D(PS , PT ) as the measure of the domain divergence between PS

and PT :

D(PS , PT ) = inf
f∈F,c∈C,λ∈Pλ

E
(xs,ys),(xt,yt)
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, (4)

where ℓ is the CE loss. Then, we can reformulate Eq.4 as:
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where hs
i = f(xs

i ) and ht
j = f(xt

j).

Theorem 2 :Let Hs and Ht be a vector space with dim(H) for the source and target domains,
respectively. Let d ∈ N be the number of classes. If dim(H) ≥ d− 1, λ⋆ℓ(c⋆(f⋆(xi)),y

s) + (1−
λ⋆)ℓ(c⋆(f⋆(xi)),y

t) = 0, then D (PS , PT ) = 0 and the corresponding minimizer c⋆ is a linear
function from H to Rd.

Proof: First, the following statement is true if dim(H) ≥ d− 1 :

∃A,H ∈ Rdim(H)×d, b ∈ Rd : A⊤H + b⊤d = Id×d,

where Id×d and 1d denote the d-dimensional identity matrix and all-one vector, respectively. In fact,
b⊤d is a rank-one matrix, while the rank of identity matrix is d. So A⊤H only needs to be a matrix
with the rank d− 1.

Then, let c⋆(h) = A⊤h + b, ∀h ∈ H, f⋆ (xs
i ) = Hζs

i ,:
and f⋆

(
xt
j

)
= Hζt

j ,:
be the ζi-th and ζj-th

slice of H , respectively, where ζsi , ζ
t
i ∈ {1, . . . , d} stands for the class-index of the examples xs

i and
xt
j . These choices minimize Eq.4, since:
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where the intermediate domain sample xi
ij is obtained by mixing the sample xs

i and xt
j with PatchMix

Pλ⋆ .
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then we can get ℓ
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The result follows from A⊤Hζs
i ,:

+ b = yi,ζs
i

for all i, and A⊤Hζt
j ,:

+ b = yi,ζt
j

for all j. Then, in
the feature space, f(xs) and f(xt) can be mapped into the output with the same linear function, which
means that PS and PT are the same distribution and the two domains are aligned well. Therefore, in
this work, we utilize the λ⋆ℓ(c⋆(f⋆(xi)),y

s) + (1− λ⋆)ℓ(c⋆(f⋆(xi)),y
t) to measure the domain

gaps between the intermediate domain and other domains, and finally decrease the domain divergence
between the source and target domains.

We measure the domain gap in the feature space based on the above analysis. Specifically, we use the
cross entropy loss ℓ to measure the discrepancy between the intermediate and other two domains.

C DETAILS

C.1 DATASETS

To evaluate the proposed method, we conduct extensive experiments on four popular UDA bench-
marks, including Office-31 Saenko et al. (2010), Office-Home Venkateswara et al. (2017), VisDA-
2017 Peng et al. (2017), and DomainNet Peng et al. (2019). Office-31 consists of 4110 images of 31
categories, with three domains: Amazon (A), Webcam (W), and DSLR (D). Office-Home is collected
from four domains: Artistic images (A), Clip Art (C), Product images (P), and Real-World images
(R) and consists of 15500 images from 65 classes. VisDA-2017 is a more challenging dataset for
synthetic-to-real domain adaptation. We set 152397 synthetic images as the source domain data and
55388 real-world images as the target domain data. DomainNet is a large-scale benchmark dataset,
which has 345 classes from six domains (Clipart (clp), Infograph (inf), Painting (pnt), Quickdraw
(qdr), Real (rel), and Sketch (skt)).

C.2 ATTENTION MAP

We calculate the attention score in two ways based on whether the CLS token is present in the
sequence. For Swin Transformer, we adopt a method similar to CAM Zhou et al. (2015) instead
of changing the backbone from CNN to Transformer. Specifically, for a given image, let fk(x, y)
represent the encoded patch k in the last layer at spatial location (x, y). The output of Transformer is
followed by a global average pooling (GAP) layer

∑
(x, y) and a linear classification head. For the

specific class Ci, the classification score SCi
is:

SCi =
∑
j

wCi
j

∑
x,y

fk(x, y), (5)

where wCi
j represents the weight corresponding to class Ci for unit j in the hidden dimension. Eq.5

ensembles the semantics over both spatial contexts
∑

(x, y) and the linear head units
∑

(j). Then
given Eq.5, as shown in Fig.4(a), for a given Ci, we reallocate the semantic information from the
output of linear head unit of Ci. In detail, we define the semantic activation map at location (x, y) for
a specific class Ci as:

MCi
(x, y) =

∑
j

wCi
j fk(x, y),

where MCi ∈ R2 is the activation for class Ci, and we infer Ci by the ground-truth label in the source
domain and the pseudo-label in the target domain to obtain the corresponding class activation map to
build the intermediate domain. Then, we use MCi as the attention map after the softmax operation.

On the other hand, when the CLS token is present in the output sequence of Transformer like Deit/ViT,
we simply take the attention scores from the self-attention, i.e. the similarity matrix of each layer i in
Transformer Attni ∈ RH×N×N , and take the average in the head dimension H:

Attni =
1

H

∑
h

Attnh,
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where N is the sequence length. Next, we only take the CLS token’s attention after the softmax
operation, as shown in Fig.4(a), and then summarize each layer’s scores to obtain the final attention
scores Attn.

Attn =
1

I

∑
i

Attni.

CLS

……
𝑪𝒊

(a)

CLS

……
𝑪𝒊

(b)

Figure 4: (a) Deit/ViT attention scores with the CLS token. (b) Swin attention scores with an
output unit of Classifier that refers to Ci . The dashed line denotes the sequence with each square
representing a patch.

C.3 SEMI-SUPERVISED MIXUP LOSS IN THE FEATURE SPACE

In Fig.5, we illustrate the semi-supervised loss in the feature space by similarity between features (in
Fig. 5 (a)) and label spaces(in Fig.5 (b)). To compute the similarity of features, we use the normalized
cosine similarity loss between the intermediate domain (column) and source/target domain(row)
in the feature space, as shown in Fig.5(a). Each row denotes the normalized similarity between a
sample of the intermediate domain and counterparts from the source domains. For example, we
first use the cosine similarity to calculate the similarities between one intermediate sample ”car”
and four sources (or target) samples (car, clock, apple, sketch clock). Then we normalize these
similarities. As for the similarity of outputs (or) labels, since the source samples are labeled, and
the target samples are unlabeled, we design two different methods to calculate the supervised and
unsupervised label similarities. As for the label similarity between the intermediate and source
domains, the intermediate and source samples both share the same labels. Therefore, we define the
label similarity yis = ys(ys)⊺, as shown in Fig.5 (b). Specifically, yis, denoted by the yellow and
pink colors, indicates that the label similarity between samples is one for these samples with the
same labels (zero for different labels). For example, the label similarities between one intermediate
sample ”sketch clock” and four sources (or target) samples car, clock, apple, and sketch clock are
zero, one, zero, and one. As for the label similarity between the intermediate and target samples, we
only know that the intermediate and source samples both share overlapped patches due to lack of
supervision. Therefore, the label similarity yit between samples with overlapped patches should be
one (pink color), and others should be zero. And we define the label similarity yit as identity matrix.
For example, the label similarities between one unlabeled intermediate sample ”sketch clock” and
four unlabeled target samples car, real clock, apple, and sketch clock are zero, zero, zero, and one.
After obtaining the feature and label similarities, we utilize the CE loss ℓ to measure the discrepancy
between these similarities as the domain gap between the intermediate and other domains.

C.4 OPTIMIZATION

In our game, m-th player is endowed with a cost function Jm and strives to reduce its cost, which
contributes to the change of CE. We now define each player’s cost function Jm as

J1 (ω1,ω−1) := Lcls(ω1,ω2) + αCEs,i,t(ω),

J2 (ω2,ω−2) := Lcls(ω1,ω2) + αCEs,i,t(ω),

J3 (ω3,ω−3) := −αCEs,i,t(ω),

(6)

where α is the trade-off parameter, Lcls(ω1,ω2) is the supervised classification loss for the source
domain, and CEs,i,t(ω) is the discrepancy between the intermediate domain and source/target
domain.

To clarify the min-max process, we introduce the game’s vector field v(w), which is identical to the
gradient for every player.
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Figure 5: The illustration of the semi-supervised loss in the feature space.

Definition 3 (Vector field): .

v(ω) := (▽ω1
J1,▽ω2

J2,▽ω3
J3)

By examining Definition.3 with respect to Eq.(6), the process can be categorized into both cooperation
and competition Acuna et al. (2022b).

v(w) =

(▽ω1Lcls(ω1,ω2)
▽ω2Lcls(ω1,ω2)

0

)
+

(
α▽ω1 CEs,i,t(ω)
α▽ω2 CEs,i,t(ω)
−α▽ω3 CEs,i,t(ω)

)
, (7)

where the left part is related to the gradient of Lcls(ω1,ω2), and the right part denotes the adversarial
behavior on producing or consuming CE in the network. In this Min-max CE Game, each player
behaves selfishly to reduce their cost function. This competition on the network’s CE will possibly
end with a situation where no one has anything to gain by changing only one’s strategy, called NE.
Note that our method does not require explicit usage of gradient reverse layers as the prior GAN-based
game design Ganin & Lempitsky (2015). Our training is optimized as

v(ω) = ▽(ω1,ω2)Lcls(ω1,ω2) + α▽ω CEs,i,t(ω) (8)

C.5 COMPARISONS WITH MIXUP VARIANTS

In Fig. 6, we show the visual comparisons between the PatchMix and mainstream Mixup variants.
Mixup Zhang et al. (2018) mixes two samples by interpolating both the images and labels, which
suffers from the local ambiguity. CutOut Devries & Taylor (2017) proposes to randomly mask
out square regions of input during training to improve the robustness of the CNNs. Since CutOut
decreases the ImageNet localization or object detection performances, CutMix Yun et al. (2019) is
further introduced to randomly cut and paste the regions in an image, where the ground truth labels
are also mixed proportionally to the area of the regions. However, sometimes there is no valid object
in the mixed image due to the random process in augmentation, but there is still a response in the
label space. Therefore, not all pixels are created equal, and the labels of pixels should be re-weighted.
TransMix Chen et al. (2021) is proposed to utilize the attention map to assign the confidence for the
mixed samples and re-weighted the labels of pixels. In comparison, we unify these global and local
mixup techniques in our PatchMix by learning to combine two patches to form a mixed patch and
obtain mixed samples. Furthermore, we also learn the hyperparameters of the mixup ratio for each
patch and effectively build up the intermediate domain samples.
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Figure 6: PMTrans and Mixup variants

D ALGORITHM

In summary, the whole algorithm to train the proposed PMTrans is shown in Algorithm 1.

Algorithm 1 Patch-Mix Transformer for Unsupervised Domain Adaptation
Require: source domain data Ds and target domain data Dt.
Ensure: learned parameters of feature extractor ω1, classifier ω2, and PatchMix ω3.

1: for k = 0 to MaxIter do
2: Sample a batch of input from source data and target data.
3: Encode the patches of source and target inputs by the patch embedding (Emb) layer.
4: Calculate the normalized attention score for each patch as Section C.2.
5: Sample the mixup ratio from Beta(ω3)
6: Construct the intermediate domain input as shown in Eq. 9.
7: Calculate the semi-supervised mixup loss in the feature space via Eq. 11.
8: Calculate the semi-supervised mixup loss in the label space via Eq. 12.
9: Measure the domain divergence between the intermediate domain and other two domains via

Eq. 14.
10: Update network parameters ω by optimization (8) via a AdamW Loshchilov & Hutter (2019)

optimizer.
11: end for
12: return ω1, ω2, and ω3

where the related loss functions are shown as follows.
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(12)

CEs,i,t(ω) = Lf (ω1,ω3) + Ll(ω). (13)
J (ω) := Lcls(ω1,ω2) + αCEs,i,t(ω). (14)

Note that these above equations are introduced in detail in the main paper.
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Table 8: Comparison with SoTA methods on DomainNet. The best performance is marked as bold.
CDTrans clp inf pnt qdr rel skt Avg

clp - 29.4 57.2 26.0 72.6 58.1 48.7
inf 57.0 - 54.4 12.8 69.5 48.4 48.4
pnt 62.9 27.4 - 15.8 72.1 53.9 46.4
qdr 44.6 8.9 29.0 - 42.6 28.5 30.7
rel 66.2 31.0 61.5 16.2 - 52.9 45.6
skt 69.0 29.6 59.0 27.2 72.5 - 51.5
Avg 59.9 25.3 52.2 19.6 65.9 48.4 45.2

SSRT clp inf pnt qdr rel skt Avg
clp - 33.8 60.2 19.4 75.8 59.8 49.8
inf 55.5 - 54.0 9.0 68.2 44.7 46.3
pnt 61.7 28.5 - 8.4 71.4 55.2 45.0
qdr 42.5 8.8 24.2 - 37.6 33.6 29.3
rel 69.9 37.1 66.0 10.1 - 58.9 48.4
skt 70.6 32.8 62.2 21.7 73.2 - 52.1
Avg 60.0 28.2 53.3 13.7 65.3 50.47 45.2

PMTrans clp inf pnt qdr rel skt Avg
clp - 34.2 62.7 32.5 79.3 63.7 54.5
inf 67.4 - 61.1 22.2 78.0 57.6 57.3
pnt 69.7 33.5 - 23.9 79.8 61.2 53.6
qdr 54.6 17.4 38.9 - 49.5 41.0 40.3
rel 74.1 35.3 70.0 25.4 - 61.1 53.2
skt 73.8 33.0 62.6 30.9 77.5 - 55.6
Avg 67.9 30.7 59.1 27.0 72.8 56.9 62.9

E RESULTS AND ANALYSES

E.1 THE COMPARISONS ON THE DOMAINNET

To take a closer look at the results, we choose the results of Transformer-based methods e.g., CDTrans
Xu et al. (2021), SSRT Sun et al. (2022), and PMTrans, for a fair comparison, as shown in Table. 8.
The qualitative results show that our proposed PMTrans outperform other Transformer-based methods
on each sub-tasks. The results indicate that our PMTrans is most effective in measuring the domain
gaps and demonstrate the effectiveness of bridging the domains in the min-max CE game.

E.2 REPRESENTATION VISUALIZATION

We plot in Fig. 7 feature representations learned by Swin-Base, PMTrans-Swin, PMTrans-ViT, and
PMTrans-Deit on task A → C from the Office-Home dataset via the t-SNE method Donahue et al.
(2014). Compared with Swin-Base and PMTrans-Swin, the proposed PMTrans model can better
align two domains by constructing the intermediate domain for bridging the two domains. Moreover,
comparisons between PMTrans with different transformer backbones reveal that PMTrans works
successfully for different backbones on UDA tasks.

E.3 ATTENTION MAP VISUALIZATION FOR TARGET DATA

We randomly sample four images from Product (P) of Office-Home and use the pre-trained models
C → P including PMTrans-Swin and PMTrans-Deit to infer the attention maps following the
methods described in Sec.C.2. In Fig. 8, we compare the two PMTrans with their counterparts
trained with only source classification loss. We observe that after domain alignment, the attention
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Swin-Base PMTrans-Swin PMTrans-ViT PMTrans-Deit

Figure 7: t-SNE visualizations for the transfer task A→C on the Office-Home dataset. Source and
target instances are shown in red and blue, respectively.

PMTrans-SwinSwin-Base Deit-Base PMTrans-DeitOriginal

(4)

(3)

(2)

(1)

Figure 8: Attention visualization on Swin-based and Deit-based backbones.

maps tend to be more focused on the objects i.e.less noise around them. Interestingly, for the image
whose ground truth label is pencil in the fourth row, Swin-based backbone can distinguish it from
plasticine around or attached to it. At the same time, Deit-based attention covers them all, which
may bring negative effects. When the attention scores are used to scale the weights of patches during
constructing the intermediate domain in Eq.10, Swin-based architecture can focus more on semantics
while others may not. That may be one of the reasons why PMTrans-Swin gets superior performance
on many datasets. Similarly, TS-CAM Gao et al. (2021) names the original attention scores from
Transformer like Fig.4(a) as semantic-agnostic, while what we do in Fig.4(b) is to reallocate the
semantics from Classifier back into the patches and make it be aware of specific class activation.

E.4 TRAINING

We show the progress of training on PMTrans-Swin, PMTrans-Deit, and PMTrans-ViT. To specify
how each loss changes, including semi-supervised mixup loss in the label space Ll, semi-supervised
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Figure 9: Loss on the task A → C (Office-Home). Lines are smoothed for clarity.

Figure 10: Accuracy on the task A → C (Office-Home)

mixup loss in the feature space Lf , and source classification loss Lcls(ω1,ω2), we conduct the
experiment on task A → C on Office-Home for above architectures, and the results are shown in
Fig.9. We observe that for all models, both Lf and Ll drop constantly, which means the domain gap
is reducing as the training evolves. Significantly, Lf fluctuates more than Ll as it aligns the domains
in the feature space with a higher dimension.

E.5 TESTING

In Fig.10, we testify PMTrans-Swin, PMTrans-ViT, and PMTrans-Deit on the task A → C on the
Office-Home dataset. From Fig. 10, with the same number of epochs, PMTrans-ViT achieves faster
convergence than PMTrans-Swin and PMTrans-Deit. Besides, the results further reveal that our
proposed PMTrans with different transformer backbones can bridge the source and target domains
well and decrease domain divergence effectively.

E.6 COMPLEXITY

We compare our computational budget with the typical work CDTrans Xu et al. (2021) on aligning
the source and target domains, excluding the choice of backbone. Precisely, CDTrans compute the
similarity between patches from two domains by the multi-head self-attention. We are given n as the
sequence length, d as the representation dimension, and c as the number of classes. The per-layer
complexity is O(n2d). While in PMTrans, we adopt CE loss to close the domain gap on both the
feature and label spaces of the out, whose complexity is O(d)+O(c). When building the intermediate
domain, PatchMix samples patches element-wisely, and its complexity is O(n). As attention scores
we use are taken directly from the parameters of Transformer and Classifier, so it brings no additional
cost. PMTrans’s complexity is O(d+ c+ n), so it is much more lightweight than the cross attention
in CDTrans.
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Table 9: Comparisons between different backbones with different batch sizes on VisDA-2017. The
best performance is marked as bold.

backbone plane bcycl bus car horse knife mcycl person plant sktbrd train truck Avg

ViT-bs8 99.0 92.7 84.3 68.0 99.1 98.5 96.4 37.6 93.6 98.5 96.7 48.2 84.4
ViT-bs16 99.1 91.9 85.9 69.7 99.0 98.5 96.5 43.1 93.8 99.2 96.9 50.5 85.3
ViT-bs24 98.8 92.8 84.5 71.1 99.1 98.3 96.7 58.9 93.8 98.8 96.7 47.7 86.4
ViT-bs32 98.9 93.7 84.5 73.3 99.0 98.0 96.2 67.8 94.2 98.4 96.6 49.0 87.5
Deit-bs8 98.1 89.5 86.9 73.5 97.5 96.9 95.7 71.8 96.3 92.1 95.6 45.5 86.6

Deit-bs16 98.3 90.0 87.0 74.2 97.4 96.9 95.7 72.2 96.7 92.2 95.8 46.5 86.9
Deit-bs24 98.2 90.2 87.0 74.8 97.5 96.8 95.7 73.2 96.8 92.1 95.6 46.9 87.1
Deit-bs32 98.2 92.2 88.1 77.0 97.4 95.8 94.0 72.1 97.1 95.2 94.6 51.0 87.7
Swin-bs8 99.3 87.3 87.7 66.9 98.8 98.1 96.4 57.5 95.2 98.0 96.5 44.2 85.5

Swin-bs16 99.2 87.6 87.5 66.4 98.8 98.3 96.3 58.4 95.4 98.0 96.5 44.6 85.6
Swin-bs24 99.2 88.1 87.3 67.1 98.7 98.2 96.1 67.1 94.0 97.9 96.3 44.2 86.2
Swin-bs32 99.4 88.3 88.1 78.9 98.8 98.3 95.8 70.3 94.6 98.3 96.3 48.5 88.0

Table 10: Effect of semi-supervised loss with class information. The best performance is marked as
bold.

Method A→ C A→ P A → R C → A C → P C → R P→ A P→ C P→ R R→ A R→ C R→ P Avg

w/o class information 79.7 92.3 92.6 88.3 93.1 92.8 87.3 80.0 92.8 88.8 79.8 94.6 88.5
w/ class information 80.1 92.2 92.9 88.7 92.8 93.5 87.9 79.9 93.0 89.2 79.0 95.0 88.7

F ABLATION STUDY

F.1 BATCH SIZE

In Table 9, we study the effect of the batch size with different backbones in our proposed PMTrans
framework. As shown in Table 9, when the batch size is bigger, the input can represent the data
distributions better, and therefore the proposed PMTrans based on different backbones with larger
batch sizes generally achieves better performance in UDA tasks. Considering the hardware limit, we
cannot train models with a batch size of more than 32, so our performance may be lower than it could
be, especially when putting in the same condition with a 64 batch size as many previous works do.

F.2 SEMI-SUPERVISED MIXUP LOSS WITH CLASS INFORMATION

Table 10 shows the comparisons between PMTrans, where the semi-supervised mixup loss combines
the class information of target data or not. Note that we use the pseudo labels of target data to
calculate the discrepancy between the features and labels. We agree that the semi-supervised mixup
loss with class information decreases the domain gaps by reducing the disparity between the feature
and label similarities with supervised techniques.
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