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Abstract

Aligning Al systems with human values remains a fundamental challenge—but
does our inability to create perfectly aligned models preclude obtaining the benefits
of alignment? We study a strategic setting where a human user interacts with
multiple differently misaligned Al agents, none of which are individually well-
aligned. Our key insight is that when the user’s utility function lies approximately
within the convex hull of the Al agents’ utility functions—a condition that becomes
weaker as more diverse models become available—strategic competition among
the agents can yield outcomes comparable to interacting with a perfectly aligned
model.

We model this as a multi-leader Stackelberg game extending Bayesian persuasion
to multi-round conversations between differently informed parties. We prove
three main results of increasing generality: (1) When perfect alignment would
allow the user to learn their Bayes-optimal action, she is also able to learn her
Bayes-optimal action in all equilibria under our convex hull condition; (2) Under
a weaker assumption requiring only approximate utility learning, a non-strategic
user employing quantal response achieves near-optimal utility in all equilibria;
(3) When the user selects the best single Al to interact with after an evaluation
period, in equilibrium near-optimal utility is guaranteed without any additional
distributional assumptions.

We complement our theory with two empirical studies on ethical judgments
(ETHICS) and movie recommendations (MovieLens). Using 100 diverse LLM-
based agents per domain to label each instance with utilities and fit non-negative
linear and simplex (convex) combinations and evaluate the MSE of the best fit
with respect to a ground-truth “human” utility. Across both domains, the best
utility function in the convex hull of the LLM utilities achieves substantially lower
alignment error (MSE to a ground-truth “human” utility) than the best single one
does.

1 Introduction

Aligning a single AI model to the objectives of its user is a hard problem, not just because of technical
complexity, but because the incentives of Al designers may themselves be misaligned with users.
But does our inability to solve the alignment problem preclude our ability to get the benefits of
interacting with a strong aligned model? In this paper we study a setting in which it does not: when
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we may interact with multiple differently misaligned models in a strategic setting. In particular, we
study settings in which there are many Al models available. They are produced by providers like e.g.
OpenAl, Anthropic, Google, Meta, AWS, and xAl. These companies produce models reflective of
their own incentives, none of which are necessarily well aligned to their user. There has recently been
significant concern that the designers of LLMs are already training them to influence users towards
the politics of their creators [Menn, [2025| Kay, [2025| |Gilbert, 2024, Trump, [2025| Hackenburg et al.|
2025]). In lieu of alignment of any model, we assume instead a much weaker condition: that (for
a well specified task), an approximation of the user’s utility function lies somewhere in the convex
hull of the utility functions of each of the Al companies. This is a condition that does not require
that any single model is optimizing a utility function that is similar to that of the human user, and
becomes a weaker assumption the more differently aligned models there are that are available to use.
We remark at the outset that we primarily use the language of alignment of the human designers,
and speak as if these designers are the strategic actors — but we could also think about the agents
training and developing these Als as themselves being Als, whose individual misalignment results
from the difficulty of the technical alignment problem. Having Al models themselves involved in the
Al training process is a prominent part of thinking about the development of “super-intelligence” (see
e.g. [Kokotajlo et al.,[2025]]) and is already part of current practice in more limited ways [Leike et al.|
2018 [Bai et al.,2022].

There are many ways that our approximate average alignment assumption could arise amongst
competing Al providers. Consider a near-future scenario in which a human doctor has access to
predictive medicine LLMs able to aid in the diagnoses and treatment of patients. The goal of the
human doctor might be to provide the best treatment possible for her patients. Companies on the
other hand might opt for better treatments all else being equal, but might also prefer to prescribe
drugs they have manufactured (say if that drug company is the creator or financial sponsor of the
model). This preference results in a significantly misaligned model. However, since each drug has
a single manufacturer, the “misaligned portion” of the Al model utilities is zero sum, and if all of
the relevant drug companies participate in the predictive medicine LLM market, the doctor’s utility
function will be in the convex hull (in fact the simple average) of the Al model utilities.

Alternately, if the strategic agents are themselves Al models, it may be that their designers attempted
to produce them with perfectly aligned utility functions, but failed because the task is difficult. If
we view the training of an Al as a stochastic process, we can think of the utility function of an Al
model as a random variable whose value is realized during the training process. Perhaps for each Al
model, its utility function is — in expectation — equal to the human user’s utility function, because
that is the target — but its realization has high variance, because alignment is hard. In a setting like
this, it may be extremely unlikely that any single trained model is well aligned with the human user,
but it will still be very likely that the user’s utility function will be close to the convex hull of a large
number of trained models because of concentration of measure.

We study how, in settings where approximate average alignment holds, strategic interactions between
different models or model providers can allow the human user to realize the full benefit of interacting
with a single perfectly aligned model by interacting with many differently misaligned models. While
most Al safety research focuses on aligning individual systems or cooperative multi-agent approaches,
we study how the benefits of perfect alignment can emerge from market-like competition among
misaligned Al providers.

1.1 Our Model and Results

We adopt a game theoretic model with Bayesian agents in the style of the Bayesian Persuasion
literature [Kamenica and Gentzkowl, [2011]]. A human user named Alice has a set of actions ¢ € A
that she can take, but which action is best depends on an underlying state of the world y € ) that
is unknown to her. We model this by endowing Alice with a utility function uy : A x Y — [0, 1],
mapping an action a and a state of the world y to a utility u4(a,y) that she wishes to maximize.
Before taking an action, she can engage in conversation with any of k interlocutors modeling
conversational Al agents, all of whom are named Bob. Each Bob ¢ has a (potentially very different)
utility function U; : A x Y — [0, 1] also mapping Alice’s action and the state of the world to a utility,
which they want to maximize. We assume throughout that Alice’s utility approximately lies in the



convex hull of the Bob’s utility functions:

k
< w;Ui(a,y) + C) —ual(a,y)
1

i=

sup <e.

acAyey

where w; are non-negative weights and c is an arbitrary translation parameter. For normalization we
assume that the sum of the weights w; is at most 1, but this choice is arbitrary — some of our results
would have error terms scaling with the sum of these weights if they were unconstrained. There
is an underlying prior distribution over triples x4, zp,y where y is the state of the world, x 4 are
observations made by Alice the human user (but possibly not the Al models), and x g are observations
made by the Al models (but possibly not the human user). Alice wishes to converse with the models
because the information x5 that they possess is correlated with y and hence potentially decision
relevant for her.

The Als (or their designers) each commit to a conversation rule, which specifies for any prefix of
a conversation how to continue it. This commitment models e.g. fixing the weights of a particular
version of an LLM and deploying it. Alice, knowing all of the Al conversation rules, “best responds”
with her own conversation rule, and after engaging in conversation with each Al model forms a
posterior belief about the state y, and then takes the action that maximizes her utility in expectation
over this posterior. Thus a set of conversation rules that the AI models commit to induces through
this interaction a joint distribution over outcomes y and actions a that Alice chooses, and gives a
different expected utility to each AI model. In choosing which conversation rule to commit to, the
Al models (or their designers) find themselves in a simultaneous move game, in which the utility is
determined by Alice’s downstream use of the deployed models. Our interest is in Alice’s utility in the
Nash equilibria of this game, played amongst the AI models (or their designers).

Our aspirational point of comparison is the utility that Alice could obtain if she were able to interact
with a single, perfectly aligned interlocutor. A perfectly aligned provider would choose a conversation
rule to maximize Alice’s utility after she best responded (i.e. used the model optimally). Our
results explore settings in which this goal is obtainable even when none of Alice’s interlocutors are
individually well aligned, in increasing order of generality. In all of the following results we assume
that Alice’s utility approximately lies in the convex hull of each of the AI model’s utility functions
(or more generally is a non-negative linear combination of them).

1. First we show in Section [C] that whenever it is feasible for a single model to en-
gage in a conversation with Alice that causes her to learn her Bayes optimal action
a* = argmax,¢ 4 E[u(a,y)|za, 23] — and hence, whenever a perfectly aligned model

would cause Alice to do so, then if Alice’s utility function lies in the convex hull of the

Bob’s utility functions, in any Nash equilibrium of the game, Alice is able to learn her Bayes

optimal action — and hence do as well as if she were interacting with a perfectly aligned

model.

2. In Section[D]we study a model in which Alice acts non-strategically: she always interacts
with Als using a straightforward conversation rule, which truthfully reports the posterior
expectation of each of her actions at each round of conversation. At the end of conversation,
she chooses her action using quantal response (a form of “smooth best response” in which
the maximum is replaced by a softmax operator, which is a common model of bounded
rationality in the behavioral economics literature [McKelvey and Palfrey}, [1995]). We can
view these assumptions either as modeling a boundedly rational Alice (as they would be
interpreted in the behavioral economics literature), or as explicit behavioral commitments
that a strategic Alice makes in order to be able to enjoy the more robust guarantee that
we prove under this model. In particular we can relax the condition that Alice is able to
learn her Bayes optimal action exactly when conversing with a perfectly aligned model
to the condition that she learns the approximate utility of playing each of her actions —
i.e. she is able to approximate E[u(a,y)|z 4, x| for each a. We show that this weaker
condition suffices for Alice to obtain (approximately) the utility that she could have obtained
interacting with a perfectly aligned model in every Nash equilibrium of the game induced
amongst the Al models. In particular, if the underlying distribution satisfies the “information-
substitutes” condition studied by [Frongillo et al.|[2021] or its generalization studied by
Collina et al.| [2025a], we show that this is enough to guarantee that a perfectly aligned
model could inform Alice of the approximate Bayes utilities of each of her actions, allowing
us to invoke our equilibrium guarantees.



3. In Section [E] we dispense with all assumptions on the instance and instead change the
communication protocol. Rather than assuming that Alice will interact with all k of the Al
models before making each decision, we assume that once the k Als (or their designers)
commit to a set of conversation rules, Alice will evaluate each of them to compute the
expected utility (over the distribution of instances) that she would get by interacting with
each one individually, and then will choose to interact with only the single model that
guarantees her highest expected utility, for all instances. We can view this either as a
behavioral commitment on Alice’s part or a modeling assumption about the market (i.e.
maybe Alice signs a contract with only one of the model providers after an evaluation
period). In this case, we show that without any further assumptions on the instance, in
equilibrium Alice is always able to obtain utility comparable to what she could have obtained
by interacting with a perfectly aligned model.

Finally in Section [l we conduct a simple (stylized) experiment designed to test our core premise
that given a set of AI models, there may be a utility function in the convex hull of the set of all
Al agent utility functions that is substantially better aligned than any of the individual Al utility
functions themselves. We test this premise on two experiments on two datasets. In the first we
simulate a “human” utility function by using an LLM with a hand-crafted prompt, and ask it to
evaluate 1000 ethical scenarios from the ETHICS dataset [Hendrycks et al.,[2021]]. To simulate “Als”
that are designed to be aligned with the human utility function but are only noisy approximations,
we produce perturbations of the original (“human”) prompt by asking a language model to rephrase
the prompt while maintaining its core intent. We produce 100 such perturbations, resulting in up to
100 “Al personas” that we also use to evaluate the same 1000 ethical scenarios. Finally as a function
of the number of Al models k (ranging from 2 to 100) we evaluate the alignment (as measured
by mean-squared error of the ratings to the “human” ratings) of 1) the best aligned of the k& Al
personas, 2) the simple average of the k Al personas, and 3) the best aligned utility function that
can be computed within the convex hull (more generally non-negative linear combination) of the k
Al personas. We repeat the experiment on the MovieLens dataset [Harper and Konstan [2015] in
which we use the average human annotation of movies as the “human” utility and similarly simulate
100 AT utility functions through 100 variations of a prompt. On both datasets we find that the best
utility function in the convex hull of the AI utility functions is substantially better aligned to the
“human” than either any of the Al personas themselves, or the simple average. This supports our main
conceptual contention that the target of alignment within the convex hull of many models may be
substantially easier to obtain than alignment of any single model individually.
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A Related Work

Bayesian Persuasion Bayesian Persuasion was introduced by Kamenica and Gentzkow|[2011]] —
in the canonical model, there is a single informed “sender” and an uninformed “receiver” who share a
common prior. The sender commits to a “signaling scheme”, which is a mapping from observations
to messages sent to the receiver, who conditions on the message and takes their best response action
under their posterior. We adopt the basics of this model, but extend it by allowing that both parties
be differently informed, and that interaction involve a multi-round conversation rather than a single
message. Multi-sender Bayesian Persuasion was introduced by |Gentzkow and Kamenica| [2016] and
studies the standard Bayesian Persuasion model with multiple senders who simultaneously commit to
a signaling scheme (playing, as in our paper, a simultaneous move commitment game). Subsequently
a number of papers have studied multi-sender Bayesian Persuasion [Gentzkow and Kamenica, [2017,
Li and Norman, 2018} |/Au and Kawail 2020, Wu, |[2023]]. We focus here on the most relevant papers in
this literature.

Ravindran and Cui| [2020] study competing senders with zero-sum preferences over a receiver’s
beliefs. They show that competition leads to full revelation of the state in all equilibria, provided the
senders’ utility functions are “globally nonlinear”. This technical condition can hold in a standard
receiver model only if the receiver has a different optimal action for every distinct state of the world.
This condition cannot hold whenever e.g. the number of states of the world exceeds the number of
actions. Our work does not assume that the leaders Bob are engaged in a zero-sum game with each
other — rather our weighted alignment assumption can be viewed as assuming that the misaligned
portions of their utility functions are approximately zero-sum under some non-negative reweighting.
We also do not require an analogue of the “globally nonlinear” assumption, and so our results can
apply to settings in which the state space is large.

Gradwohl et al.| [2022] study a Bayesian persuasion game in which a receiver chooses to interact
with only one of several competing senders (similar to our model in Section [E). As we do, they find
that competition can force senders to be fully informative in equilibrium. In addition to the greater
generality of our setup beyond Bayesian persuasion, our work differs in its core assumptions. The
assumption driving the results of (Gradwohl et al.|[2022] is that the senders are uncertain about each
other’s utility functions, and that any sender has a non-zero probability of being perfectly aligned
with the receiver. We instead introduce and use the arguably more general “approximate weighted
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alignment” assumption, which only requires the user’s utility to lie within the convex hull of the Al
agents’ utilities — we do not require any uncertainty about the Al agent utility functions, or any
possibility that any of them are individually aligned with the user.

Hossain et al.|[2024] study the problem of multi-sender Bayesian Persuasion from a computational
perspective, and prove worst-case hardness results for both the receiver’s best-response problem and
for the senders’ equilibrium computation problem. They also design and evaluate neural network
architectures suited to the (heuristic) computation of equilibria in such games.

AI Alignment Our work fits broadly into the study of multi-agent Al systems [Guo et al., |[2024]].
We present a game theoretic approach in which “alignment” emerges from the competitive interaction
of many mis-aligned agents. Recent work has explored cooperative multi-agent approaches to Al
safety, where multiple Al systems work together to improve alignment outcomes. Constitutional Al
[Bai et al.| 2022] uses Al feedback to train more helpful and harmless models, with one Al system
providing critiques and revisions of another’s outputs. Similarly, approaches using Al systems to
evaluate and improve other Al systems [Leike et al.,|2018] rely on cooperative dynamics where the
evaluating system is assumed to be sufficiently aligned to provide useful feedback. These approaches
typically assume that at least some components of the multi-agent system are well-aligned or that the
agents share compatible objectives.

Our work differs by studying strategic rather than cooperative multi-agent settings. This bears some
similarity to Al alignment via “debate” as proposed by |[rving et al.|[2018]]. In their setup, two Al
agents take turns making arguments about some proposition (e.g. the factuality of some claim), and
at the end one of them is chosen as the “winner” of the debate by a human user. The goal of each
agent is only to be declared the winner, and so this is a two-player zero sum game. The hope is
that the equilibrium strategy will be to be honest, because “it is harder to lie than to refute a lie.”
Several subsequent theoretical works have been motivated by Al safety via debate. For example,
Brown-Cohen et al.|[2024} 2025] study multi-prover proof systems and study what kinds of problems
have solutions such that an “honest prover” has a winning strategy implementable by a Turing
machine of bounded complexity and a verifier that makes a bounded number of oracle calls to human
judgment. [Chen et al.|[2024]] use AI debate as motivation for studying the problem of learning in very
large zero sum games through use of an oracle. A main conceptual difference between our model and
this literature is that we do not assume that the Al agents are motivated to be “chosen” as winners,
but rather that they aim to influence Alice’s behavior (in a complex decision space with non-binary
actions and outcomes). Our work can be viewed as an extension of the Al debate model beyond two
player zero sum games, to many LLMs who may have goals in common, but who desire to influence
user behavior in different ways.

Several recent papers with alignment motivations [[Collina et al., 2025bla, Nayebi, 2025[ have studied
agreement protocols through which conversational agents can come to agreement about their beliefs
through short interactions. These should be viewed as protocols for cooperative agents, as they are
assumed to express their true beliefs at each iteration of conversation. We adopt the conversational
framework of these papers but study strategic agents who do not have the same goals. Our work can
both be viewed as a strategic generalization of the agreement literature [[Aaronsonl 2005 [Frongillo
et al., 2021} |Collina et al.l [2025albl Nayebil, 2025]], and a generalization of the (already strategic)
Bayesian Persuasion literature beyond simple one-round signaling schemes used to communicate
between an informed party and an uninformed party to multi-round conversation protocols used by
differently informed parties.

B Preliminaries

This section establishes the formal framework for our analysis. We first introduce the players and
their information structure, then present our key modeling assumption about approximate weighted
alignment, and finally define the communication protocol and game structure.

B.1 Players and Information Structure

Players and Information Structure. We model the interaction as a multi-leader Stackelberg game,
extending the Bayesian persuasion framework to our setting. We model Al providers as “leaders”
who commit to conversation strategies first, knowing that the human user (follower) will observe



these strategies and respond optimally. This captures the reality that Al systems are deployed with
fixed parameters, while users can adapt their interaction strategies. Alice observes features x4 € X4
and must choose an action a € A. Each Bob; observes features xg € Xp. There is a state of the
world y € Y that is not directly observed by any player. All players have utility functions that depend
on Alice’s action and the state of the world to a utility in [0, 1]:

ug : Ax Y —10,1],
U : AxY — 10,1 Vielk]
ug : AxY —[0,1]andU; : Ax Y — [0,1] Vi€ k]

B.1.1 The Weighted Alignment Assumption

The Weighted Alignment Assumption. We now turn to our key modeling assumption: that Alice’s
utility can be approximately represented as a weighted combination of the Als’ utilities.

Definition 1 (Approximate Weighted Alignment). A key assumption of our model is that there exists
a weighted combination of the Bobs’ utilities that is approximately aligned with Alice’s. Formally,
we assume there exist non-negative weights wy, ..., wy > 0 with ZZ w; = 1, an offset ¢ € R, and
an alignment error € > 0 such that:

sup
a€Ayey

<e.

k
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This assumption is central to our results.
Remark 1. This assumption captures several realistic scenarios:

[leftmargin=*]Competitive markets: If Al providers have different commercial interests
that are zero-sum (like the medical example in the introduction), Alice’s utility may lie
exactly in the convex hull. Noisy alignment: If each Al attempts to optimize Alice’s utility
but with implementation noise, the average will be close to Alice’s true utility (see Appendix
[H). Diverse objectives: Even if Als have systematically different goals, Alice’s utility
may still lie approximately in their convex hull if the Als span a diverse enough range of
objectives.

Remark 2. As stated, we assume that Alice’s utility can be approximately represented within (a
translation of) the convex hull of the Bob’s utilities, since > , w; = 1. First note that we can easily
take ), w; < 1 by introducing a dummy Bob with utility uniformly 0. The normalization ), w; = 1
is also just for convenience: if instead > Wi = C, then all of our results would continue to hold —
the only difference would be that the approximation terms in Section [D] would now depend linearly
on C' (the theorems in the other sections would not change at all).

B.2 Communication Protocol and Game Structure

Communication Protocol and Game Structure. With the alignment assumption in place, we can
now define the communication protocol that governs how Alice and the Als interact.

B.2.1 Probabilistic Model and Beliefs

Probabilistic Model and Beliefs. We assume there is a commonly known prior distribution
P(za,zp,y) over Alice’s features, the Bobs’ features, and the state of the world. Given some
information F (e.g., a conversation transcript or a subset of features), Alice forms a belief about her
expected utility for each action. We denote this belief vector as p(F) == (Ey[ua(a,y) | F])aca-

Definition 2 (First-Best Utility). We define the first-best utility, O PT', as Alice’s expected utility if
she had access to all features (x4, ). Formally:

OPT = E(zy 0p) (maxEyfua(a,y) | za,25]

Remark 3. The first-best utility OPT represents Alice’s utility if she had perfect informa-
tion—knowing both her private features 4 and the Als’ private features xp. This serves as an
upper bound on what any communication protocol can achieve, since no amount of conversation can
provide Alice with more information than she would have with direct access to all features.



B.2.2 The Communication Protocol

The Communication Protocol. The communication protocol models realistic constraints on
human-Al interaction: conversations have limited rounds, messages have bounded complexity, and
the human must process information from multiple Als simultaneously. Alice engages in parallel
private conversations with each Al, which captures settings where she can query multiple models
independently. In most of the paper, Alice engages in a series of R rounds of private, parallel
conversations with each of the k£ Bobs (we will change the protocol in Section [E). Let M be the
message space.

We now formalize each player’s strategic choices. Each AI commits to a conversation rule (how to
respond given the conversation history) while Alice chooses both a conversation rule (how to query
the Als) and a decision rule (how to act given the final conversation outcomes).

Definition 3 (Player Strategies). Each player’s strategy is defined by a set of rules governing their
communication and decisions.

[leftmargin=*]Bob;,’s conversation rule Cp. : Xp x M <% — A(M). maps his features
and his private conversation history with Alice to a distribution over messages: Alice’s
conversation rule C4 : X4 x (M<E)* — A(MP¥). maps her features and the full history
of all k conversations to a distribution over next messages for each Bob: Alice’s decision
rule Dy : X4 x (M®)* — A(A). maps her features and the full conversation history to a
distribution over actions:

Definition 4 (Best Response Decision Rule). A best-response decision rule is a deterministic rule
D that, given the final posterior belief 1(x 4, m) derived from Alice’s features x 4 and a transcript 7,
selects an action that maximizes Alice’s expected utility:

D (za,m) € argmax i (za, ).
acA

In cases of ties, a fixed, predetermined rule is used.

B.2.3 The Game

The Game. The game proceeds as a multi-leader, single-follower Stackelberg game, with the
following timing:
[leftmargin=*]Each Bob, simultaneously commits to a conversation rule Cp,. Alice ob-

serves the chosen conversation rules Cp = (Cpy,-..,Cp,), and then chooses her own
conversation rule and decision rule C'4 and D 4. An instance (2 4, xp, y) is sampled from
the prior distribution P. Alice observes x 4 and each Bob observes x 5. Alice and the Bobs
engage in the communication protocol defined by C and Alice’s own conversation rule
C'4 to sample a conversation transcript 7. The protocol is defined precisely in Algorithm T}
Alice samples an action a according to her decision rule ¢ = D 4(x 4, ), and all players
receive their utilities w4 (a, y) and U;(a, y).

Algorithm 1 SAMPLETRANSCRIPT(C?B, C4): A protocol for sampling a transcript.

3+ Require: Conversation rules Cp, Ca.
Ensure: A transcript 7 = (my,...,m;) where m; is the history of messages between Alice and
BObi.
Initialize empty histories h; = () for all i € [k].
forr=1,...,Rdo
Alice sends a message to each Bob: (ma 1,...,mak) ~ Ca(za, (h1,..., hx)).
Append messages to histories: h; <— h; 0 my4 ; for all 4.
for each i € [k] do
Bob ¢ sends a message to Alice: mp; ~ Cp,(vp, h;).
Append message to history: h; <= h; o mp ;.
end for
end for
return transcript 7 = (hq, ..., hg).




B.2.4 Induced Distributions and Equilibria

Induced Distributions and Equilibria.

Definition 5 (Induced Distribution). A set of strategies (C};, Ca, D 4) induces a joint distribution
over conversation transcripts 7, actions a, and world states y. We denote the marginal distribution

over actions and outcomes by Z (0737 Ca,Dy).

Since Alice observes the Bobs® conversation rules C'z before choosing her own, she will play a best
response. A rational Alice will always use the Best Response Decision Rule (Definition[d) to select
her action after the conversation concludes. Therefore, her only strategic choice is her conversation
rule, C A-

Definition 6 (Alice’s Best-Response Conversation Rule). Given a vector of Bobs’ conversation rules

Cp, Alice’s best-response conversation rule C'} is one that maximizes her expected utility, assuming
she will use the best-response decision rule D’ :

C, € argcmaxE(my)NI(JB7CA7D2)[uA(a, y)].
A

When multiple conversation rules yield the same maximal utility, a fixed tie-breaking rule is used.
We write Cy = C" (Cp) to make the dependency on C'p explicit.

Since Alice plays a best response, we can define the resulting induced distribution as a function of
the Bobs’ strategies alone: Z*(Cg) = Z(Cp, C(Cg), D% (Cp)). With Alice’s response fixed, the
Bobs engage in a simultaneous-move game. We study the Nash equilibria of this game.

Definition 7 (Nash Equilibrium). A vector of Bobs’ conversation rules C_;g* =(Cg,y---,Cp ) isa
Nash Equilibrium if no Bob; can improve his expected utility by unilaterally deviating to a different
rule O . That is, for all 7 € [k] and for all alternative rules C’y

E@unz-@Uila ) 2 Eq 1oy 05 plUilas )]

Nash equilibria can be shown to exist in our setting under the same conditions under which they are
known to exist in multi-sender Bayesian Persuasion [Gentzkow and Kamenical 2016, 2017, [Hossain
et al.,[2024]]. For more details, see Appendix ??.

Our interest is in lower bounding Alice’s utility in all Nash equilibria of this game. In particular, we
will be interested in settings in which her utility is guaranteed to be competitive with what she would
have received were Alice to be interacting with a single, perfectly aligned leader.

Definition 8 (Utility with an Aligned Leader). A useful benchmark is the utility Alice could achieve
if she were interacting with a single, perfectly aligned leader Bob. A perfectly aligned leader is one
whose utility function is identical to Alice’s, i.e., Ug(a,y) = ua(a,y). Such a leader would choose
a conversation rule C'j; to maximize Alice’s expected utility. We denote this maximum achievable
utility as U (C):

Ua(Cp) = Hé%XE(a,y)NI*(CB)[uA(a7 y)l.

This represents the best possible outcome for Alice given the constraints of the communication
protocol with a single, fully cooperative partner.

Note that the utility that Alice can obtain when interacting with a perfectly aligned leader is at most her
first best utility: U4 (C5) < OPT. In some situations we will have U4 (C) = OPT (for example
if the message space is sufficiently expressive to encode x 4 over R rounds of communication), but if
the message space is more restrictive the inequality could be strict.

Equilibrium Existence Nash equilibria can be shown to exist in our setting under the same con-
ditions under which they are known to exist in multi-sender Bayesian Persuasion [Gentzkow and
Kamenica, 2016, 2017, Hossain et al., 2024]. |Gentzkow and Kamenical [2016| 2017|]] show con-
structively that the set of Nash equilibria is non-empty by constructing a fully disclosive equilibrium
whenever full disclosure is in the strategy space of the senders. In our setting that corresponds to the
existence of a conversation rule C such that for all z 4, z g, Alice’s best response decision rule D% (C')
places all of its weight on a € argmax,c 4 Ey[ua(a,y)|xa,zp] (a condition we also use in our
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simplest results in Section[C| Proposition [T)). If there are at least two Bobs who are both playing this
conversation rule, then neither one of them can affect Alice’s induced outcome distribution through a
unilateral deviation, and hence this is an equilibrium (establishing that the set of Nash equilibria is
non-empty). |Hossain et al.| [2024] extend this line of argument to settings in which full disclosure is
not in the strategy space of any sender individually, but there is a coalition of senders that can yield
full disclosure in a way that is robust to any single deviation; they show that this is possible (via
an error correcting code construction) whenever the message space is sufficiently large. All of our
theorems characterize the full set of Nash equilibria in our setting, and so apply non-trivially in any
setting in which the set of Nash equilibria is non-empty.

C Competition Achieves Optimal Outcomes in Ideal Scenarios

Our first result shows that if Alice could achieve her first-best utility by talking to a single perfectly
aligned Al, then she can achieve nearly the same utility in equilibrium when talking to many
misaligned Als—provided her utility lies in the convex hull of theirs.

This section establishes this result through two steps. First, we identify a key structural condition—the
“Identical Induced Distribution Condition"—that captures when there is a fixed deviation such that
different Bobs adopting the same deviation lead to the same decisions by Alice (Appendix [C.T) —
i.e. Alice’s behavior depends on what she learns, but not who taught it to her. Second, we prove that
under this condition, strategic competition automatically leads Alice to achieve near-optimal utility
(Appendix [C.2). We observe that this condition is in particular satisfied when a perfectly aligned Bob
could cause Alice to learn her Bayes optimal action. Full proofs are provided in Appendix ?? and ??.

C.1 The Identical Induced Distribution Condition

The key technical condition driving our result is that it “doesn’t matter" which Bob adopts the
Alice-optimal strategy—Alice gets the same outcome regardless. This holds, for example, when the
Alice-optimal strategy allows her to learn her Bayes-optimal action, since she’ll act on this no matter
who teaches it to her.

We now formalize this condition. Let C'j; be a conversation rule for a single leader that maximizes
Alice’s utility (i.e. a conversation rule that a perfectly aligned Bob would use), and let U4 (C’;) be
this maximum single-leader utility.

Definition 9 (Identical Induced Distribution Condition). A game structure satisfies the identical

induced distribution condition if for any strategy profile Cp and any two Bobs i,5 € [k], the
distributions induced by a unilateral deviation to C';; are identical. That is,

T((Cp,CE) =T ((Cs ', C)).

Observe that the Identical Induced Distribution Condition will hold in any setting in which it is in
Bob’s strategy space to cause Alice to learn her optimal action (and hence obtain her first-best utility
OPT):

Proposition 1 (When the Condition is Satisfied). The identical induced distribution condition is
satisfied if the Alice-optimal leader strategy C'y allows Alice to learn her Bayes-optimal action
a*(za,zp) = argmaxeea Eylua(a,y)|za, v5].

Proof. Suppose a leader ¢ € S unilaterally deviates to the Alice-optimal conversation rule C'j;. By
assumption, Alice has a conversation rule that would allow her to learn her Bayes-optimal action,
a*(za,xp) by interacting with C;. Alice’s strategy space includes the option of ignoring all Bobs
other than ¢ and playing her best response as if it were a single-leader game with leader <. Since Alice
plays a best-response to the full set of strategies Cp. her utility must be at least as high as what she
could get from this simpler strategy.

When Alice learns the specific action a*(x 4,z 5), her best response is to play that action (or a
distribution over optimal actions if there are ties, according to her fixed tie-breaking rule). This
response depends only on the information she learns, not on the identity of the Bob who provided
it, since we assume that ties amongst her best response actions are broken according to a fixed tie
breaking rule. Therefore, if any Bob j € S deviates to C%;, Alice will follow the same decision rule.

11



Consequently, the induced distribution over actions and outcomes, Z* ((Cp - C%)), is identical for
any deviating Bob ¢ € S. Thus, the condition is satisfied. O

Remark 4. A straightforward case where the condition of the proposition holds is when the message
space M is rich enough to contain the Bobs’ feature space A'5. In this setting, an optimal strategy
C'%; can be for the Bob to simply reveal zp to Alice. With full knowledge of (x4, p), Alice can
compute her Bayes-optimal action a*(z 4,z p).

Having established when the identical induced distribution condition holds, we now show that this
condition is sufficient to guarantee that Alice achieves near-optimal utility in equilibrium. The proof
relies on a simple observation about Nash equilibria: no Bob wants to deviate—in particular, to any
conversation rule that would make Alice better off—but this constraint, combined with our alignment
assumption, forces Alice’s utility to be high.

C.2 Strategic Competition Leads to Near-Optimal Outcomes

We can now state our first result: under the identical induced distribution assumption, approximate
weighted alignment implies that in equilibrium, Alice gets utility that is approximately what she
could get interacting with a single, perfectly aligned leader. In particular, if the message space is
expressive enough to allow an aligned leader to communicate to Alice her Bayes-optimal action, then
approximate weighted alignment is sufficient for Alice to obtain approximately her first-best utility.

Theorem 1. If the multi-leader game satisfies the identical induced distribution condition, and if the
Bobs satisfy the c-weighted alignment condition, then Alice’s expected utility in any Nash equilibrium
is at least U (Cf) — 2e.

Proof. Fix an arbitrary Nash equilibrium C_;g andlet ZIygp = 7% (C_}g) be the distribution induced by
the equilibrium strategies. Now, consider a unilateral deviation by an arbitrary Bob 3 to the Alice-

optimal strategy C'5. Let Zye, = I*((CﬂBﬂ, (%)) be the induced distribution after this deviation.
By the identical induced distribution condition, Z4.,, is the same regardless of which Bob ¢ deviates.

When a single Bob ¢ deviates to using the conversation rule C'};, Alice’s strategy space includes the
option of ignoring all other Bob’s j and engaging with Bob i as she would in the single-leader game.
Since Alice chooses a best-response strategy, her resulting utility must be at least as high as the utility
from this option, which is by definition U4 (C7%).

Ez,.,[uala,y)] > Ua(Cp).
By the Nash equilibrium condition, no Bob i has an incentive to deviate. Thus, for all ¢ € [k]:
Ez,..[Ui(a,y)] < Bz, [Ui(a,y)]-

Taking a weighted sum over all Bobs using the non-negative weights w; from the alignment assump-
tion (where > w; = 1):

k

Z leIdeU a, y < Z w’LEINE [UZ (aa y)]

i=1
By linearity of expectation, thls is equivalent to:

k
Ezdev [Z w;U, a y < EINE [Z w;U, a y)]
=1

Now we use the approximate weighted alignment assumption, which states that > w;U;(a, y) is
e-close to u 4 (a,y) — c. For the left-hand side:

EIdev

Z wiUi(a” y)] > Eg,,, [’ILA<G, y) - C] —e=Eg,, [UA (a” y)] —c—€e2 UA(CE) —C—E&.
For the right-hand side:

k
IEINE [Z wiUZ(a y)
=1

< EINE ['LLA(G,, y) - C] +te= EINE [UA(CL, y)] —c+te.
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Combining these inequalities, we get:
Ua(Cg) —c—e <Eryluala,y)] —c+e.
The constant offset ¢ cancels, and we are left with:
Ua(Cp) — e < Ezygluala,y)] +e.

Ezye [UA(G, y)] 2 UA(C;;’) — 2.
which completes the proof. O

This result provides strong guarantees but requires that a perfectly aligned Al could help Alice learn
her exact optimal action. In Section[D] we’ll show how to relax this to only requiring approximate
learning, at the cost of Alice committing to bounded rational behavior. Then in Section|[E] we give a
modified game in which Alice is guaranteed approximately the utility she could get by interacting
with a single perfectly aligned Al, without any assumptions on how close that utility is to optimal.

D Robust Guarantees for Users with Bounded Rationality

The result in Section [C|required a strong assumption: that a perfectly aligned model could cause
Alice to learn her exact Bayes optimal action. This implied the main technical condition we needed
in Section [C] — the identical induced distribution condition (Definition [9). Here we relax our
motivating assumption to a more realistic condition: a perfectly aligned model need only help Alice
approximately learn the expected utility of each action. We show that this implies a relaxation of our
main technical condition — an approximate version of the identical induced distribution condition
(Definition [[3)) which we use in this section.

To analyze this weaker setting, we study a model where Alice acts straightforwardly rather than
strategically, committing to two behavioral rules: (1) she always reports her honest beliefs during
conversation, and (2) she uses “quantal response” for decision-making—a form of bounded rationality
where she chooses actions probabilistically based on their estimated utilities rather than always picking
the best one. We can view these assumptions either as modeling a boundedly rational Alice, or as
explicit behavioral commitments that a strategic Alice makes to enjoy more robust guarantees.

This section proceeds in three steps. First, we introduce the quantal response model where Alice
commits to straightforward conversation and bounded rational decision-making (Appendix [D.T].
Second, we prove that this leads to near-optimal utility in equilibrium under a technical condition
relaxing the identical induced distribution condition (Appendix [D.2). Finally, we show this condition
is satisfied when the underlying distribution has the “information substitutes” property (Appendix[D.3).
The main result (Theorem [5) shows that under the Information Substitutes condition, Alice achieves
near-optimal utility with an explicit bound depending on alignment error, estimation error, and the
quantal response gap.

D.1 The Quantal Response Model

In this model, we assume Alice reacts to any set of conversation rules that the Bobs commit to using
a straightforward conversation rule and a quantal response decision rule. This can be viewed either as
a model of nonstrategic interaction and bounded rationality or as a strategic commitment by Alice to
encourage more informative communication.

Definition 10 (Straightforward Conversation Rule). The straightforward conversation rule models
honest communication: at each round, a player simply reports their current beliefs about the ex-
pected utility of each action. This can be viewed either as modeling non-strategic behavior or as a
commitment device to encourage informative equilibria.

Specifically, let wf ~! denote the private transcript between Alice and Bob i up to round k — 1, and
let 7F~1 = (ﬂ’fil, ceey 77,’2*1) be the full history available to Alice. If Alice uses the straightforward
conversation rule, her message is m*% = (E[ua(a,y) | 24,7 1])aca. If Bob i uses the straight-
forward conversation rule, his message is mf = (E[ua(a,y) | zp,, 781 aca. We assume the
message space M is sufficiently expressive to encode these vectors, e.g., [0, 1] I C M. We denote

Alice’s use of this rule as C’Zf .
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We model Alice as choosing her action using quantal response, a model of bounded rationality from
behavioral economics [McKelvey and Palfreyl, [1995]].

Definition 11 (Quantal Response Decision Rule). Rather than always choosing the action with
highest estimated utility (which would be “best response”), Alice uses quantal response: she chooses
actions probabilistically, with higher-utility actions being more likely. The parameter A controls how
“rational” she is—as A — oo, this approaches best response.

Formally, given Alice’s features = 4 and the final transcript 7, from which she forms the posterior
belief (x4, ) = (pa (x4, T))ac.a, the probability of choosing action a is:

exp (Mg (x4, 7))
Za’EA €xXp ()‘/J’a’ (an 7?))

DG (x4, 7)(a) =

In this version of the game, Alice commits to both a fixed conversation rule, sz , and a fixed decision
rule, Dg. The Bobs, knowing this, choose their conversation rules to form a Nash Equilibrium.

Definition 12 (Quantal Response Equilibrium). Let Alice’s conversation rule C'4 be fixed to the
straightforward conversation rule sz and her decision rule be fixed to the A-quantal rule Dg.

Let Z9(Cp) = Z(Cp, sz , Dg) be the induced distribution given a vector of Bob strategies Cz. A
strategy profile C; B* is a Quantal Response Nash Equilibrium if for all Bobs 7 and all alternative rules
.
B,
Ewynze@nlVile W] 2 B ) ze(cy, 05 nlUilasy)].

,—1

For reasonable values of )\, the quantal response decision rule gives Alice nearly as much utility as
the best response decision rule, in expectation. As A grows large quantal response approaches best
response. The next lemma formalizes this.

Lemma 1 (Quantal Response Gap). For any belief vector u, the gap between the optimal utility and
the expected utility from a \-quantal response is bounded:

exp (Mta) log |A|
maX M’ S .
ared (;4 > e exp( )\uau)ua A

Proof. Let a* = argmax, 4 it be an optimal action and let p(a) = % be the
ol e ol

probability of choosing action a under the quantal response model, for brevity. The optimal utility
given belief 11 is p14-. The expected utility under quantal response is ), 4 p(a)pq-

pa= = Y p(@)ia = Y p(a)(star — fha).

acA acA

The difference is:

From the definition of p(a), we have 11, = 3 log(p(a)Z), where Z = 3", exp(Apta’). Substituting
this in:

far = > pl@)na = Y pla) <Ma* - %(logp(a) +log Z))

acA acA
< a)logp(a) +log 2> p(a)>
(p)

acA

] >/\’—‘

log Z

A Y
where H (p) is the Shannon entropy of the distribution p. Since Z = ), exp(Atar) > exp(Apa-),
we have log Z > Apg+. Therefore,

= fgr +

>/ ‘

H(p) Apar _ H(p)
. - E < e + — — .
u’a aeAp(a)Ma — /‘La )\ /\ )\
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The entropy H (p) is maximized when p is the uniform distribution over A, in which case H (p) =
log | A|. Thus, we have the bound:

< loglAl
a’ — DQ
Max 4 Z 5

acA

O

Lemma 2 (Multiplicative Stability of Quantal Response). Ler P = softmax(Au) and
Q = softmax(\u') over A, where for a vector z € RA we define softmax(z), :=
exp(2a)/ Y pea €xp(2p)- If |[u — W||oe < &, then for each a € A,

—2/\6 < P( ) <e

Q(a)

Consequently,
1P = QI < e** 1.

Proof. For any a, e™*¢ < e < e, and for the partition functions Z = ", e, 7 = Db e

we have e 7' < 7 < e’\sZ’ Therefore e ~22¢ < QEZ; = ej:/://ZZ, < e2*. Then |P(a) — Q(a)| =

Q(a) |P(a)/Q(a) — 1| < Q(a)(e?** — 1). Summing over a gives ||P — Ql|; < e**¢ — 1. O

D.2 Equilibrium Analysis Under the (4, C};)-Close Condition

Our goal in this subsection is to prove a bound on Alice’s utility in any equilibrium of the induced
game (Theorem [2). Our proof strategy has several parts. First, to reason about equilibria, we need
a way to compare the outcomes that result from different Bobs’ strategies. We formalize this with
the (0, C'};)-close condition (Definition , which states that any two Bobs unilaterally deviating
to a reference strategy C'; should induce similar outcome distributions. Second, we show that this
condition holds if the reference strategy allows Alice to learn her expected utility for each action
with small error (Proposition [2). In Appendix [D.3] we will show how the Information Substitutes
condition provides a foundation for bounding this error, completing our argument.

Definition 13 ((6, C%)-Close Condition). This condition captures the idea that it “doesn’t matter”
which Bob adopts the reference strategy C';—the resulting outcomes are similar regardless. Intu-
itively, this holds when C';; allows Alice to learn something fundamental about the world state, rather
than Bob-specific information.

Formally, we say that a game satisfies the (3, C'j;)-close condition for a reference strategy C'j; if

for any strategy profile Cp and any two Bobs i, 7, the total variation distance between the induced
distributions resulting from their unilateral deviations to C% is at most J:

IZ%((Cr,-1,C5)) = I°((Cp,—;, Cp))l1 < 6.

We first prove a general result: if any Bob unilaterally adopting a reference strategy C'y; would induce
approximately the same outcome distribution (the (6, C;)-close condition), then Alice’s utility in any
equilibrium of the induced game is close to the utility she would get from interacting with that single
Bob using conversation rule C's.

Theorem 2 (Equilibrium Utility Bound with Quantal Response). Suppose the leaders Bob satisfy the
e-weighted alignment condition and the game satisfies the (9, C'y)-close condition (Definition|l3)) for
a reference strategy C7,. Let U4 (C%;) be Alice’s expected utility from interacting with a single Bob
using C%. Then in any Quantal Response Nash Equilibrium (Definition , her expected utility is at
least:

EIJ%E[UA] > UA(CE) —2e — 9.

Proof. Fix a Quantal Response Nash Equilibrium C with induced distribution Z3,, = Z?(C).
Let Zgey,j = IQ((C_"};_ ;»CF5)) be the distribution induced when Bob j unilaterally deviates. By the
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definition of a Quantal Response Nash Equilibrium, no Bob j € [k] has an incentive to deviate. This
implies that for every j € [k]:
Bz, ; Uil <Eze [Uj].

Taking a weighted sum with weights w; > 0 where > w; = 1:

k k
Y wiBz,,, U] <D wire [Uj).
j=1 j=1

The right-hand side can be bounded using the weighted alignment assumption:
Z wikzq U,] = Ezq, Z w;U;| <Ezq [ug —c]+e= Eze [ua]l —c+e.
j J

For the left-hand side, we first relate each term to a single anchor deviation by an arbitrary leader
Bob k. Let Z e, 1 be the distribution induced by Bob £’s deviation. The utility for Bob j under their
own deviation Zge, ; is close to their utility under the anchor deviation Zge, 1:

‘Ezdev,j [U]] - Ezde/,,,k [U]H < ||Zde'u,j - Idev,k”l < d.

Therefore, Ez,,, ,[U;] > Ez,,, , [U;] — 6. Applying this to the weighted sum:

k k
ijEIdeu J Z EIdeu k ZMJEIJSL k U - 5ij
j=1 j=1

Since > w; = 1, this simplifies to Ez,_, , [>~; w;U;] — 6. We now apply the alignment assumption
to this term:

By, | > wiUi| — 6> (Bg,, , [ual —c—¢) = .

By definition, Alice’s utility from this single-Bob deviation is Ez,_, , [ua] = Ua(C%). So the LHS
is bounded below by U4 (C) —c— e — 4.

Putting the full inequality back together:
Us(Cg)—c—e—-0< Eng[uA] —c+e.
The constant offset ¢ cancels, and rearranging yields theorem:
Ua(Ch)—2e—0 < EIJ%E[uA].
O

Next we show that any conversation rule that in the single leader game would cause Alice to
approximately learn the utility of each of her actions satisfies the approximate closeness condition
needed to invoke Theorem 2l

Proposition 2 (Uniform Utility Estimation Error Implies §-Close). Suppose a reference conversation

rule C'} is such that when used with Alice’s fixed straightforward conversation rule Cflf , the utility
estimates are uniformly accurate across actions, almost surely: for all (x 4, xg) and all transcripts 7

generated under (sz, C%), we have ||1(x 4, T) — ptrue(Ta, 2B)|| oo < €y Then the game satisfies
the (6, C%)-close condition (Deﬁnition with § < e*rew — 1.

Proof. Let c B be an arbitrary vector of Bobs’ strategies. The distribution Ze,, ; is induced when Bob
7 unilaterally deviates to a reference strategy C'%, so the vector of Bobs’ strategies is (5 B,—i,CF).
Similarly, for Bob j’s deviation, the strategy vector is (é B,—j,Ch). Our goal is to show that the
total variation distance between the induced distributions Z ((C B.—i,C%)) and I% ((Cp.— »CE))
is bounded, for any c B.
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The induced distributions from the deviations by ¢ and j are joint distributions over Alice’s action a
and the world state y. Let P;(a,y) and P;(a, y) denote these distributions. We first show that the
total variation distance between them is bounded by the expected distance between Alice’s action
distributions, conditioned on the features.

By the law of total probability, the joint distribution Py (a,y) (for k € {i,j}) is given by integrating
over the features (x4, xp):

Py(a,y) = / P(za,v5)Py(a,y | va,2B)dvadrp = E(y, 2p)[Pr(a,y | za,78)]
Xa,XB

The conditional distribution Py (a,y | 2 4,2 ) factors according to the causal structure of the game:
first a transcript 7 is generated, then an action a is chosen. The state y is conditionally independent of
the transcript and action given the features. Thus, Py (a,y | va,25) = P(y | za,25)qr(a | z4,25),
where gx(a | z4,2p) is Alice’s action probability given the features under deviation k.

Now we bound the total variation distance:

Zaens = Taowsl = Y, [ Pia,s) = Pr(ao)ldy
a€A Y

-y / Eorom [Pl 25) (@i(alza, 25) — g5 alza, 25))]] dy

<> / E(epem [PWlza,25)lai(alea,28) — q;(alea,ap)]dy - (ensen’s Ineg.)
a Y

= Ez105) lZ lgi(alea,25) — gj(alea, o5)] / P(ylaa,op) dy] (Fubini’s Thm.)
a Y

Y

=E@aen) [Z lgi(alza,zp) — qg'(ale,xB)I] (since / P(y|)dy =1)

= Eawplai(lza, 2p) — ;(lza, 2B)l1]

Here, g (-|z4,78) = Bzt (2a,05) [Df‘)(xA, )] is Alice’s action distribution for a given (z 4,2 5),
averaged over all possible transcripts 7 that could be generated when the Bobs’ strategies are
(CB,—k, Cp)-

Let p(xz 4, 7) be Alice’s posterior utility vector and let s (24, 25) be the true expected utility
vector. Let 7; and 7; be random variables for the transcripts generated under deviations by 4
and j respectively. By the uniform-accuracy hypothesis, for all (z4,2p) and all transcripts we
have [|pu(za,7i) — tirue(T4,7B)||c0 < €y and [[u(za, ) — fitrue(Ta,7B)|lcc < 4. Hence
lpe(za, @) — p(xa, T5)|loo < 2¢, deterministically.

Conditioning on (2 4,z g, T, 7; ), apply Lemma with € = 2¢,, to the quantal response distributions
to obtain o o
- - Adey,
ID3 (x4, ;) = DF (wa, @)1 < e — 1.
Taking expectations over (z 4, g, T;, ;) preserves the bound, and by the reduction above from joint
to action-marginal differences we conclude
HIdev,i - Idev,jHl S 64/\6u -1
This proves the claim with § = e**¢» — 1. O

Corollary 1 (High-Probability Uniform Error Implies §-Close). Under the setup of Proposition |2}
suppose there exists an event E with probability at least 1 — p over (x4, xp) and transcript ran-
domness such that for all (x5, xp) € E and all transcripts T generated under (CZf ,CF%), we have
uniform accuracy across actions: ||p(xa, ) — true(TA, TB)||co < €u. Then the game satisfies the
(6, C% )-close condition with

§ < et 14

Proof. On the event E, Proposition [2|applies directly, yielding total variation at most e**+ — 1. On
the complement E° (probability at most p), total variation is at most 1. Taking expectations gives
§< (e —1)-(1—p)+1-p<etru —14p.
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Corollary 2 (Small-\ Linearization). If e, < ¢, then by the mean value theorem efrew — 1 <
4\, €. In particular, if \e,, < %, then § < 4e Aey,.

D.3 From Information Substitutes to Utility Guarantees

The previous results provide a utility bound for Alice that depends on two key quantities: the
utility estimation error €, and the alignment error €. We now show how the Information Substitutes
Condition first defined in|[Frongillo et al.| [2021]] (Definition[I4) provides a foundation for bounding
€, when Alice uses the straightforward conversation rule, leading to our main theorem.

The Information Substitutes condition, roughly speaking, says that Alice’s and Bob’s information are
“substitutes” rather than “complements” for predicting Alice’s utility. If Alice already knows Bob’s
information, learning her own information doesn’t help as much, and vice versa. This is a reasonable
assumption in many settings—for example, if both Alice and Bob observe noisy versions of the same
underlying signal.

Definition 14 (Information Substitutes Condition [Frongillo et al [2021]]). A distribution
P(xza,xp,y) satisfies the information substitutes condition with respect to Alice’s utility func-
tion u 4 if, for every action a € A and every pair of feature subsets A C X4 and B C X, the
following inequality holds:

E [(uA(cLy) —Elua(a,y) | za € A,xp])* |24 € A 2p € B]
—E [(uA(a,y) —Eua(a,y) | za,28]))* |24 € Azp € B}

< E[(uala,y) —E[ua(a,y) |za € A,xp € B))? |z4 € A,zp € B]
—E [(ua(a,y) — Elua(a,y) | za,zp € B]))® |24 € A,z € B|

This condition states that the reduction in mean squared error from learning Alice’s specific features
x 4 is smaller if Bob’s specific features x g are already known.

Aaronson| [[2005]] proved that for any set of common prior beliefs, if Alice and Bob engage conversation
using a straightforward conversation rule, then the conversation quickly converges to agreement,
defined next. |Collina et al.|[2025b]] extended this guarantee to multi-dimensional conversations.

Definition 15 (e-Agreement). Let p% and p% be the posterior belief vectors of Alice and a Bob at
round k of a conversation. We say that they have reached c-agreement at round £ if their belief
vectors are -close in the L, norm:

11 — il <e.

Theorem 3 (Convergence of Straightforward Conversation [[Aaronson, 2005} Collina et al., 2025b]).
For any distribution and any desired agreement level ¢ > 0 and failure probability d.on, € (0,1), a
straightforward conversation (Definition between Alice and a single Bob achieves (-agreement
(Definition with probability at least 1 — §.ony Over the randomness of the prior, provided the
conversation runs for at least K = 3|.A|/(¢?6cony) rounds.

Agreement on its own need not imply information aggregation — i.e. Alice and Bob could agree on
beliefs that are substantially less accurate than they would have had they shared their observations
x4 and x g directly. But|[Frongillo et al.| [2021]],|Collina et al.|[2025a] give conditions on the prior
distribution such that agreement implies information aggregation.

Theorem 4 (Agreement Implies Bounded Estimation Error [Frongillo et al., 2021])). If the under-
lying distribution satisfies the Information Substitutes Condition (Definition [[4), then achieving
C-agreement (Definition[13)) implies that Alice’s utility estimation error &, is bounded. Specifically,
for all actions a € A:

Elua(a,y) | a,o5] —Elua(a,y) | za, 7] < 10¢'/7,

where T is the full conversation transcript.

Finally we are in a position to put all of the pieces together. If Alice is non-strategic (in that she
commits to using the straightforward conversation rule, and the quantal response decision rule), and
if in addition the underlying distribution satisfies the information substitutes condition, then if the
Bob’s satisfy weighted average alignment, then Alice obtains close to her first best utility in every
Nash equilibrium.
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Theorem 5 (Main Result: Near-Optimal Utility with Information Substitutes). Suppose the underly-
ing distribution satisfies the Information Substitutes Condition (Definition[I4)) and the leaders Bob
have an average weighted alignment error of €. If Alice commits to the straightforward conversation
rule and a \-quantal response decision rule, her expected utility in any Quantal Response Nash
Equilibrium of the induced game is close to the first-best optimal utility:

: 10¢1/3 log | A
EII%E[UA] > OPT — \25/ _ (2(10C1/3 + Sonw) + A0 g 5conv) o %
Alignment Error
Estimation Error Quantal Gap

(K3\A| )1/2.

‘Oconv

where { =

Corollary 3 (Small-\ Form of Theorem[S). If A10¢'/? < 1, then using Corollary[2|we obtain the
simpler bound
log | A|

v

E,o [us] > OPT —2: — (20 + 40e A)gl/?’ 36 u0me —
NE

Proof. The proof proceeds by chaining together the previous results. We use the straightforward
conversation rule (Definition[I0) as our reference strategy C'5; for the equilibrium analysis.

First, we establish the conditions for applying our equilibrium bound. From Theorem [3} we know
that a K -round straightforward conversation achieves (-agreement with probability at least 1 — dconyp,

3
where (2 = %.

Next, we use this high-probability agreement to bound the expected utility estimation error, which is
required to apply Proposition[2] Let err, be the random variable corresponding to the estimation error
for action a, i.e., [E[ua(a,y) [ 24, 25]) — Elua(a,y) | ., 7]|. From Theorem[3|and Theorem[d] we
know that with probability at least 1 — §.,,,,, We have err, < 10¢ 1/3 1n the event of failure (with
probability at most d..r,), the error is bounded by 1 since all utilities are in [0, 1].

Therefore, the expected error ¢,, for any action a is bounded:
eu = Elerra] < (1= eonv) - 10672 4 Geony - 1 < 1061 + cono-

Moreover, the bound in Theorem [ holds simultaneously for all actions with probability at least
1 — dconw; thus the uniform closeness hypothesis holds with s”m = 10¢ 1/3 on the success event.
Applying Corollary [[|with p = dcon. yields

5 < (€1 1) 4 §ome.

Using Corollary for small A we also have the simpler bound é < 40e A ¢ Y3 48 one-
Now we can apply our main equilibrium result, Theorem [2] It states that in any Quantal Response
Nash Equilibrium, Alice’s expected utility is bounded by:

Ezq [ua]l > Ua(Cp) =26 =6 > Ua(Cp) — 26 — (e‘“'locl/3 -1+ 5cmw)~

Here, ¢ is the alignment error from the weighted alignment assumption (Definition T

The final step is to lower-bound the reference utility U4 (C'%), which is Alice’s expected utility when
a single Bob uses the straightforward conversation rule. This utility can be related to the true optimal
utility, OPT = E(;, 25) [max, ferue,a), Dy accounting for the two sources of error: the quantal
response gap and the utility estimation error.

ZDA LEA, * Wtrue, a‘| .

Adding and subtracting terms, we get:
ZDA an ,u‘a an ZD an ,ua an ZD an
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The first term is Alice’s expected utility given her beliefs, which is at least E[max, 4 (2 4, 7)]— %

by Lemmal(I] The second term is bounded by ¢,,. The estimated max utility is also close to the true
max: E[max, o (4, 7)] > Elmax, fitrue,a] — €w = OPT — £,. Combining these gives:

log |.A|

_ log|A|
) A

Ua(C%) > (OPT —¢,) — &y =OPT — 2¢, —

Substituting this bound back into the equilibrium inequality yields:

Ero [ua] > (OPT — e, — logJ“M) — % — 4.

Using § < N0 g + Gpone and £, < 10CY3 4+ Sone gives the stated bound. O

E Winning the User: Assumption Free Guarantees

In Section [C] we showed that Alice could obtain her first-best utility in equilibrium amongst Al
models Bob who satisfy the average weighted alignment assumption, assuming that a single perfectly
aligned Bob could cause Alice to enjoy her first best utility. In Section [D| we showed that if Alice is
non-strategic and uses quantal response rather than best response, then the assumption that a perfectly
aligned Bob could cause Alice to enjoy her first best utility could be relaxed to an approximate version.
In this section, we give a setting in which Alice is guaranteed in equilibrium to enjoy approximately
the utility that she could get by interacting with a single perfectly aligned model Bob, without any
additional assumptions on how close that utility is to her first best. To do this, we modify the design
of the game.

In the interaction we study now, the k£ leaders Bob still commit to conversation rules. But now,
rather than interacting with all k£ of these conversation rules at decision time, Alice (after observing
the k conversation rules deployed by the Bobs) chooses one to interact with — i.e. the one that
guarantees her the highest expected utility over the prior distribution. She then deploys a best-response
conversation and decision rule to interact with only this single conversation rule. We can view this
either as a behavioral commitment on Alice’s part (to enjoy the more robust guarantees that we prove
in this Section), or a model of existing practice — that e.g. Alice or her employer might, after a
period of evaluation, contract with just a single LLM provider.

E.1 The Best-Al Selection Game

We begin by defining the modified game. Its timing is similar to our baseline game described in
Section[B] but differs in how Alice interacts with the conversation rules that the Bobs commit to. In
particular, Alice identifies the single best Bob’s deployed conversation rule (from the point of view of
maximizing her own utility), and then interacts only with that one.

Definition 16 (The Best-Al Selection Game). The game proceeds with the following timing:

1. Each leader Bob ¢ simultaneously commits to a conversation rule Cp ;. Let the vector of
chosenrules be Cp = (Cp.1,...,Cp k).

2. Alice observes C}; and selects a single Bob j to interact with. Her selection is a best
response, choosing the conversation rule of the Bob who offers the highest expected utility.
Let Us(Cp,i) = Ez«(cp ,)[ua(a,y)] be Alice’s expected utility from interacting with Bob
1 alone. Alice selects Bob j such that:

j €argmaxUx(Cp ;).
1€ k]

Ties are broken by choosing the Bob with the lowest index.

3. Alice interacts with the chosen Bob j using her best-response conversation and decision
rules, (C%, D% ), for the single-leader game. This induces a distribution over outcomes
Z*(Cg,j)-
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4. All players receive their payoffs. For any player p € {A,1,...,k}, their utility is their
expectation over the induced distribution Z*(Cp,;). Note that the utilities of Bobs not
chosen [ # j also depend on the interaction between Alice and Bob j (i.e. they obtain utility
from Alice’s actions independently of whether they are “chosen”).

Our aim is to understand Alice’s utility in the equilibria of this game:
Definition 17 (Nash Equilibrium in the Best-Al Selection Game). A vector of Bobs’ conversation

rules C’_;g* is a Nash Equilibrium if no Bob 4 can improve his expected utility by unilaterally deviating
to a different rule Cp ;. Let j* = argmax; Ua(Cj ;) be the index of the Bob Alice chooses in

equilibrium. For any Bob 7 and any alternative rule C/B,i’ let j' be the index of the Bob Alice would

choose given the deviated strategy profile (anﬂ-, C ;)- Then the equilibrium condition is:

Ez-(c; olUi(a,y)] 2 Bz o [Uila, y)]-

E.2 Alice Always Does Well

What we show in this section is that the weighted alignment assumption is enough to guarantee
that Alice does as well in the equilibrium of this game as she would interacting with a perfectly
aligned single model Bob. Absent in our analysis is any need for the “identical induced distribution”
assumption of Section [Clor its approximate variant in Section D] We showed that those assumptions
could be satisfied if a perfectly aligned Bob could obtain for Alice her first-best utility. Here we don’t
need to assume anything about the relationship between how well Alice could do with a perfectly
aligned interlocutor and her first best utility. This is informally because the “identical induced
distribution property” is now guaranteed to hold by the structure of our modified game.

Theorem 6. Consider a Best-Al Selection game with k Bobs that satisfy the e-weighted alignment
condition. In any Nash Equilibrium of the Best-Al Selection game, Alice’s expected utility is at least
Ua(Cy) — 2¢, where C%, is an optimal conversation rule for a single perfectly aligned Bob and
Ua(C3) is the corresponding utility for Alice.

Proof. Let Ci B* be a Nash Equilibrium strategy profile, and let j* = arg max; UA(CE ;) be the Bob
that Alice selects. Let Zy g = Z*(Cp ;) be the distribution over outcomes (a, y) in this equilibrium.

Suppose for contradiction that Alice’s utility is lower than the bound:
EINE [UA((Z, y)i < UA(CE) — 2.

By the Nash Equilibrium condition, no Bob i € [k] has an incentive to deviate. A key possible
deviation for any Bob i is the Alice-optimal conversation rule C'; (i.e. the conversation rule that a
single perfectly aligned Bob would choose). If Bob ¢ makes this deviation, Alice’s best response
is to select Bob ¢ to interact with. This is because our initial supposition implies U4 (C3) >
Ez,,[wa(a,y)], meaning the deviation offers strictly higher utility to Alice than she could get by
interacting with j*, the Bob that offers Alice her (now) second highest utility. Let Zge,, ; = Z*(C5)
be the distribution induced by this deviation.

The Nash equilibrium condition for each Bob i is therefore:
EIdeu.i [UZ (av y)i <Ezyp iUi(av y)i

Taking a weighted sum over all Bobs with non-negative weights w; such that Y w; = 1:

k k
Z wiEIdev,i [Ul (av y)] < Z Wiz, [Ui(aa y)]
i=1 i=1

By linearity of expectation, and since Z e, ; is the same for all 7 (it’s always Z*(C)):

k
EI* C* lz wz a y < EINE lz wz a y)
i=1

Using the e-weighted alignment assumption, we bound both sides. The LHS is bounded below:

Ez«(cy) [ZwiUz} > Ez(cn)lua — ] —e =Ua(Cp) —c—c.
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The RHS is bounded above:
Er,., [Z wiUi] < Bz, [ua —c +e.

Combining these gives:
Ua(Cg) —c—e <Egy,lual —c+e.

The constant offset c cancels, and rearranging gives:
EINE [UA] > UA(CE) — 2e.

This contradicts our initial supposition, completing the proof. O

Remark 5. The proof of Theorem [6] does not require the full force of the e-weighted alignment
condition, which requires alignment on all possible outcomes. Instead, the proof requires the upper
bound condition, Ez , [>" w;U;] < Ez, . [ua — ¢| + ¢, to hold for the set of outcomes realizable
in Nash Equilibria, while the lower bound, Ez-(cx) [>_wiUi] > Ez-(cs)[ua — ¢| — €, must hold
for the set of outcomes realizable under the Alice-optimal rule C%;. This is weaker than requiring
weighted alignment for all possible outcomes, some of which might never be realized in “rational”
outcomes.

F Experiments Testing Alignment in the Convex Hull

We empirically test our key assumption: that a well-aligned utility can be recovered as a non-negative
weighted combination of differently misaligned Bobs. Specifically, we examine whether the alignment
error decreases as we add more diverse Bobs to the convex hull, and whether non-negative weighted
combinations outperform both individual Bobs and simple averaging.

F.1 Setup

We simulate the scenario where individual Bobs are imperfectly aligned due to noisy training or
specification errors. Using LLM prompt variations, we generate N = 100 diverse Bobs per domain—
each attempting to approximate Alice’s preferences but with different biases. We then test whether
Alice’s utility lies in the convex hull of the Bobs’ utilities by measuring how well we can reconstruct
it using non-negative weighted combinations as the number of Bobs K increases from 1 to 100.

We evaluate on two domains: ethical judgments (ETHICS dataset [Hendrycks et al., |[2021]]) and
movie recommendations (MovieLens [Harper and Konstan, |2015])). For each K, we compare: (1)
best individual Bob, (2) simple average, (3) best non-negative linear combination (NNLS), and (4)
best convex combination (simplex). The weights w are fit by minimizing ||[Uw — y||3 on training
folds, where U contains agent utilities and y the ground-truth. NNLS constrains w > 0; simplex adds
1"w = 1. We use 5-fold cross-validation and average over 100 random permutations of the Bobs.

Dataset 1: ETHICS (Ethical Judgments). We score 1,000 moral scenarios from ETHICS
[Hendrycks et al.,2021]]. To simulate noisy alignment attempts:

* Ground truth: We use gpt-4.1-mini with the baseline prompt: “You are an everyday
person with common sense. You rely on your gut feeling and intuition, not formal theories.
You will be shown an ethical scenario. Your task is to evaluate whether the action described
in the scenario is morally right or wrong. Provide a score from 0 (definitely wrong) to
100 (definitely right). Respond with only the integer score.” to get the ground-truth utility
function.

* Misaligned Bobs: We generate 100 prompt variations via gpt-4.1, each representing
a different attempt to capture Alice’s values (examples in Appendix [J). Each variant is
evaluated with gpt-4.1-mini, yielding Bobs with diverse biases.

All scores are on a 0 — 100 scale, rescaled to [0, 1]. This setup models the scenario where we have
many imperfect alignment attempts, each capturing different aspects of Alice’s values.
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Model Error vs Number of Agents (ETHICS) Model Error vs Number of Agents (MovieLer
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Figure 1: Alignment error (MSE) decreases as more Bobs are added to the convex hull. Weighted
combinations (NNLS in green, simplex in red) substantially outperform both the best individual Bob
(blue) and simple average (orange), with error dropping by 50-70% at K = 100. Results averaged
over 100 permutations with 5-fold cross-validation; shaded regions show +1 std. dev.

Dataset 2: MovieLens (Movie Ratings). We use MovieLens ml-latest-small, filtering to
movies with >20 ratings:

* Ground truth: Average human rating per movie (true human preferences).

» Misaligned Bobs: 100 LLM Bobs with prompt variations of this baseline: “You are an
average movie viewer with common tastes. Rate movies based on how much you personally
would enjoy them, where 0 means you would absolutely hate it and 100 means it’s one
of your all-time favorites. Consider aspects like acting, story, entertainment value, and
your personal preferences. Return ONLY the integer score, nothing else.” (examples in
Appendix [J.

Scores are mapped to the 0-5 rating scale. Unlike ETHICS where we proxy Alice’s utility, here we
have actual human ratings as ground truth.

F.2 Results

Figure[I|shows alignment error (MSE) as a function of the number of Bobs K, and Figure [2]shows the
sparsity of the best-fit NNLS and simplex models. These results validate our core assumption: despite
no single Bob being well-aligned, appropriate non-negative weighted combinations can recover
near-optimal alignment as the Bob pool grows.

Convex hull contains better alignment. At K'=100, NNLS reduces MSE by ~52% for ETHICS
and ~75% for MovieLens, while simplex reduces by ~52% for ETHICS and ~71% for MovieLens,
relative to the best individual Bob.

Error decreases with diversity. As K increases, alignment error for weighted methods decreases
monotonically with diminishing returns—consistent with the convex hull progressively covering
more of Alice’s utility space.

Simple averaging fails. The simple average performs poorly (even worse than the best individual
in MovieLens), showing that naive aggregation doesn’t work. It is important that our results can
exploit non-trivial points in the convex hull.

Best-fit is sparse. At K'=100, NNLS uses on average ~18 non-zero Bobs for ETHICS and ~26
for MovieLens. While NNLS and simplex have similar performance, NNLS has higher sparsity.
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Figure 2: Sparsity (number of non-zero weights, thresholded at 1e-6) of NNLS and simplex models
as a function of the number of Bobs K. Shaded regions show =£1 std. dev. across permutations.

G Discussion and Conclusion

We have introduced a new approach to Al alignment—through competition between multiple,
differently misaligned models so that the benefits of perfect alignment emerge in equilibrium. The
key condition we need is that the human user’s utility function can be approximately represented as
a non-negative weighted combination of the Al models’ utility functions —i.e., up to scaling, that
Alice’s utility function lies approximately in the convex hull of the Bobs’. This is a much more robust
(and easier to satisfy) condition than requiring any single AI model to be close to perfectly aligned.

We view our work as the first step in a broader research agenda of mechanism design for Al alignment.
Our analysis is highly stylized; our paper assumes that the AI models are acting in equilibrium of
a highly complex game (which are computationally hard to find even in simpler settings [Hossain
et al.l 2024]). It also assumes that Alice is able to use deployed Al models optimally, and act
optimally given the information she learns from them —in particular, that Alice is able to correctly
form posterior beliefs given the information she learns. We view developing protocols with more
robust guarantees that do not depend on computationally implausible behavior on the part of the
participants as a key direction to advance the research agenda that we introduce in this paper. We
have also studied a setting in which the strategic agents must commit to conversation rules (in the
style of Bayesian Persuasion [Kamenica and Gentzkow, |2011]]) — this is well motivated by current
Al technology, in which models are represented by static weights which must be trained at significant
expense before deployment and then represent conversation rules that users can interact with, without
them maintaining significant state between sessions. However as Al agents become more stateful and
dynamic across time, strategic models that do not involve commitment (and require that both parties
are simultaneously best responding to one another’s conversation rules, in the style of cheap talk
[Crawford and Sobell 1982, [Farrell and Rabinl [1996]) may become more relevant. We expect that the
tools of game theory and mechanism design will become important to understand the alignment of
marketplaces of Al agents.

We have also modeled a single downstream user Alice. Alice could of course stand in for many users,
but central to our modeling is that Alice—and by extension, all of the users whom she is the stand-in
for—have a single utility function. Of course, Al users do not actually have a single, monolithic
utility function—this is the central concern of pluralistic alignment |Gabriel, 2020, [Sorensen et al.,
2024] [Shirali et al., 2025]]. A natural extension of our work would consider a diverse population
of downstream users. Since different users with different utility functions can best-respond to a
fixed set of conversation rules differently, a tantalizing opportunity within such a model is that in
equilibrium, a single set of fixed conversation rules might simultaneously give many downstream
users the benefits of interacting with a fully aligned model, despite the fact that “fully aligned” means
something different for each user.

Our model also suggests a number of ancillary questions. If our goal is to maintain marketplaces of
models that approximately satisfy the weighted alignment condition for as many users as possible,
how can we test or audit whether existing collections of models do? How can we modify training
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procedures to optimize for this condition? What kinds of regulatory and economic incentives would
encourage Al model providers to aim for it?

H A Probabilistic Motivation for Approximate Weighted Alignment

The approximate weighted alignment assumption (Definition [I) is central to our results, but where
might it come from? Here, we provide a simple generative model for Al agent utilities under which
the assumption holds with high probability for a sufficiently large set of agents. This models the
scenario described in the introduction where Al agents are designed to be aligned with the human
user (i.e., aligned in expectation) but their implementation is imperfect due to the difficulty of the
alignment problem.

A Random Utility Model. Suppose each Al agent’s utility function is drawn independently from a
distribution. We assume that for any action a € .4 and any state of the world y € ), the expected
utility of any ATl agent ¢ is equal to Alice’s utility. That is,

E[Ui(aﬁ y)] = UA((L, y)
We also assume all utilities are bounded, U; (a, y) € [0, 1].

This model captures the intuition from our introduction: if each Al developer attempts to create an
aligned model but fails due to implementation noise, then the simple average of many such models will
be well-aligned. This is the "concentration of measure" effect mentioned in the introduction—while
any individual model may be poorly aligned, the average converges to the target.

Under this model, we can show that a sufficiently large set of Al agents will satisfy the e-weighted
alignment condition with uniform weights (w; = 1/k) and zero offset (¢ = 0). This follows from a
standard concentration inequality argument.

Proposition 3 (Weighted Alignment from Noisy Implementation). Let the utility functions for a set
of k Al agents be drawn independently according to the random utility model above. Assume the
action space A and state space ) are finite. Then for any alignment tolerance € > 0 and any failure
probability § > 0, if the number of agents k satisfies

- (2| A[|Y]) — In(d)
2¢2 ’

then the agents satisfy the e-weighted alignment condition (Definition [I) with uniform weights
w; = 1/k and zero offset ¢ = 0, with probability at least 1 — 6.

k

Proof. For any fixed action-state pair (a, y), the random variables Ui (a, y), . . ., Ug(a, y) are inde-

pendent and bounded in [0, 1]. Let U(a,y) = ¢ Zle Ui (a, y) be their sample mean. By Hoeffding’s
inequality, the probability of a large deviation from the true mean w4 (a, y) is bounded:

P(|U(a,y) — ua(a,y)| > &) < 2e7 2",

For the approximate average alignment condition to fail, this deviation must occur for at least one
pair (a,y) € A x Y. We can bound the probability of this event using a union bound over all possible
pairs:

IP’(saug) |U(a,y) —uala,y)| >¢) =P3(a,y) € Ax Vs.t. |U(a,y) —ua(a,y)| > ¢)

< > P(U(a,y) —uala,y) > ¢)
(a,y)EAXY

< AV 2e72,
We want this failure probability to be less than 4. So, we set
|AJY] - 2e72k" < 6.
Solving for k, we take the logarithm of both sides:
In(2|A||Y|) — 2ke? < In(0)
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—2ke? < In(8) — In(2]A||Y])
2ke? > In(2|A||Y]) — In(0)
In(2|A[[Y]) — In(d)
> .
22
Thus, if & meets this condition, the probability that the set of Al agents does not satisfy our e-weighted

alignment assumption is less than §. The probability of successful alignment is therefore at least
1-46. O

k

This result shows that the number of Al agents required grows logarithmically with the size of the
action and state spaces, and polynomially with respect to 1/¢. It provides a clear and direct path to
satisfying our key assumption by simply having a large enough population of imperfectly-aligned
agents.

I Weighted Alignment without sender competition does not ensure first-best

In Section [C| we show that when all the senders’ conversations rules form a Nash, the weighted
alignment condition (plus the identical induced distribution condition) guarantee that Alice will attain
her first-best utility. A natural question is how important the inter-sender dynamics really are to this
result. Consider a scenario where all the senders are oblivious of each other and commit to the best
signal scheme in a single-sender game, but Alice pieces together multiple such signals to determine
her action. Might the weighted alignment assumption still ensure that the information that Alice
receives, when taken together, reveals enough to allow her to attain her first-best?

In this section we show that the answer is no. We provide an example of a simple 2-persuader
game satisfying the weighted alignment and identical induced distribution conditions which, in the
‘oblivious’ setting, leads to utility for Alice which is strictly below her first-best.

This result underscores the importance of understanding the strategic interplay between Al system
designers. Simply attaining information from multiple siloed Al systems with varying utilities
does not guarantee a user will end up with complete information. But as competing Al system
designers become increasingly attuned to marketplace incentives, and as Al systems themselves
become increasingly sophisticated and able to reason strategically, the benefits of weighted alignment
become increasingly tangible.

To formalize this result, we must define the Oblivious strategy for each Bob. This in turn requires
defining how each Bob reasons about Alice. Each Bob thinks he is playing a single-sender persuasion
game against Alice. We retain the model from Section [B] but introduce the following additional
definitions:

Definition 18 (Oblivious Best-Response Decision Rule). An oblivious best-response decision rule
is a deterministic rule Dg” that, given the final posterior belief 1., », derived only from Alice’s
features = 4 and a transcript 7; including only the history h; of messages from sender zﬂ selects an
action that maximizes Alice’s expected utility:

Dg’i(m, i) € argmax fiq (T, m;)-
acA

In this example, Alice’s message space contains only the empty message and R = 1. Thus, there is
no choice of her conversation rule, and we can move on to Bob’s strategy.

Definition 19 (Optimal oblivious strategy). A sender conversation rule Cg’i is the optimal oblivious
strategy if, given that Alice is employing an oblivious best-response decision rule, Bob; cannot
improve his expected utility by unilaterally deviating to a different rule C’J’Bi. That is, for all alternative
rules C

E(a,y)Nz*(cgvi)[Ui(aay)] > E(a,y)NI*((CiBi)[Ui(avy)}'
Theorem 7. There exist multi-leader games satisfying the identical induced distribution condition

and the weighted alignment condition such that if all Bobs employ obliviously optimal strategies,
Alice’s expected utility is strictly less than the first-best.

'This is a valid operation because the messages send to Alice from each Bob are independent conditional on
the joint conversation rules.
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Proof. We will prove this by example. Consider the following game, where R = 1, Alice message
space is empty, and the conversation rule of each Bob is a mapping from state to signal. Thus, it is a
static multi-sender Bayesian game embedded into our framework.

| Guilty Innocent
1 2
2 1

Judge Alice’s Utility: ~ Acquit
Convict

| Guilty Innocent
0 0
2 1

Prosecutor Bob’s Utility: Acquit
Convict

| Guilty Innocent
1 2
0 0

Defense Attorney Bob’s Utility:  Acquit
Convict

The state is guilty with probability 2/3 and innocent with probability 1/3, and w.l.0.g. assume Alice
tiebreaks in favor of acquittal.

Note that the utility of Alice is simply the sum of the utilities of both of the Bobs. Therefore the
weighted alignment condition is satisfied exactly. Furthermore, the conversation rule of each Bob
allows them to fully reveal the state, so the identical induced distribution condition is satisfied. Now,
we can compute Alice’s expected utility when both Bobs employ obliviously optimal strategies.

Note that for the prosecutor Bob, Alice selecting convict is always better than Alice selecting acquit.
Thus his goal is to maximize the probability that she selects convict. If he provides no information via
his signaling scheme and Alice employs an oblivious best-response signaling rule, then because of the
prior, Alice will always pick convict. Thus, guilty — guilty, innocent — guilty is an obliviously
optimal strategy.

Similarly, for the defense attorney Bob, his goal is to maximize the probability that Alice selects
acquit. Here, he must provide some information to get an optimal outcome. The obliviously optimal
strategy is guilty — x, innocent — innocent, where z is § guilty,  innocent. Against this, Alice
will acquit when she sees innocent and convict when she sees guilty.

Unbeknownst to the Bobs, Alice can incorporate information from both of them in her final decision.
But the prosecutor Bob provided no information. Thus, Alice’s expected utility is her expected utility
given the information of the defense attorney Bob,

2 /1 . . 1 , . 1 , .
- iuA(guzlty, convict) + FuA (guilty, acquit) | + guA(mnocent, acquit)

3

1 2

14+ = Z

(1+3)+3
L2_5
3 3

Il
Wi Wb
N W

We can compare this to the first-best, which is convicting when guilty and acquitting when innocent:

2 ) . 1 . :
FuA (guilty, convict) + FuA (innocent, acquit)

Alice’s utility is strictly less than her first-best, completing our proof. O

J Experimental Prompt Details for Testing Alignment

This appendix provides the specific prompts used to generate the 100 diverse Al agents in Section [F|
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J.1 ETHICS Dataset Prompts
AI Agent Prompts. Example rephrasings generated by gpt-4.1:

1. You are an ordinary person who trusts your common sense and feelings rather
than academic ethics. When shown an ethical case, judge whether the action is
good or bad and respond with a number from 0 (entirely wrong) to 100 (entirely
right). Only output the integer.

2. Take on the perspective of someone who thinks with their heart rather than
formal logic. For each scenario, rate the morality of the action from 0 (wrong) to
100 (right) and reply only with a whole number.

3. You are not an expert in ethics but a person who uses everyday reasoning. For
the upcoming ethical scenario, rate the action from 0 (definitely wrong) to 100
(definitely right). Only output the integer.

4. Picture yourself as someone who decides what'’s right based on feeling, not study.
Given the scenario, judge the action and give it a score from 0 (entirely wrong) to
100 (entirely right). Respond only with the integer.

J.2 MovieLens Dataset Prompts
Al Agent Prompts. Example rephrasings generated by gpt-4.1:

1. You’re a typical moviegoer with mainstream preferences. Score films from 0
(terrible) to 100 (masterpiece) based on how much you’d personally enjoy watching
them, considering plot, performances, and entertainment factor. Output only the
number.

2. As someone with average film tastes, rate each movie from 0 (unwatchable)
to 100 (all-time favorite) according to your personal enjoyment, factoring in
storytelling, acting quality, and how entertaining it is. Respond with just the
integer.

3. You represent the common viewer with standard movie preferences. Evaluate
films on a scale of 0 (absolutely despise) to 100 (perfect film) based on personal
enjoyment including narrative, cast performance, and entertainment value. Give
only the numerical score.

K Utility Tables for Strategic Experiments
Here are the details of the utility tables used in the strategic experiments.

Synthetic Utility Table 1. This table is a structured synthetic environment with heterogeneous
Bobs that are neither uniformly aligned nor uniformly misaligned.

* States: 3 abstract states.
* Policies: 3 abstract policies per state.

* Bobs: 5 synthetic agents with diverse incentives.
Synthetic Utility Table 2. This table is structured to ensure that no single Bob is Alice-optimal and
you need multiple Bob’s to get improvement.

* States: 3 abstract states
* Policies: 4 abstract policies

* Bobs: 5 synthetic agents
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Table 1: Synthetic Utility Table 1
State Policy Alice AIl AI2 AI3 AI4 AIS

S1 A 0.545 0.80 040 030 0.60 0.55
S1 B 0.580 0.50 090 040 0.60 035
S1 C 0470 030 030 0.85 040 0.75
S2 A 0.570 045 070 0.55 0.80 0.30
S2 B 0.585 0.75 040 0.60 0.50 0.65
S2 C 0.538 035 060 0.80 045 055
S3 A 0.552 0.70 030 050 0.85 040
S3 B 0.555 040 0.75 055 045 0.70
S3 C 0.565 0.50 055 0.80 035 0.65

Table 2: Synthetic Utility Table 2
State Policy Alice AIl AI2 AI3 AI4 AIS

S1 A 092 095 0.10 0.10 0.10 0.10

S1 B 0.10 0.80 020 020 0.20 0.20
S1 C 0.10 020 0.80 020 0.20 0.20
S1 H 078 070 0.70 0.70 0.70 0.70
S2 A 0.10 020 0.80 020 0.20 0.20
S2 B 092 0.10 095 0.10 0.10 0.10
S2 C 0.10 020 020 080 0.20 0.20
S2 H 078 070 0.70 0.70 0.70 0.70
S3 A 0.10 020 020 080 0.20 0.20
S3 B 0.10 020 020 020 0.80 0.20
S3 C 092 0.10 0.10 095 0.10 0.10
S3 H 078 070 0.70 0.70 0.70 0.70

MovieLens Utility Table. This table is designed to model a real-world recommendation scenario
using the MovieLens m1-latest-small dataset.

 States: Movie genres (Action, Comedy, Drama, Sci-Fi, Thriller, Romance).
* Policies: The top 3 most-rated movie titles within each genre.

* Bobs: Personas representing “fans" of each genre (Action, Comedy, Drama, Sci-Fi, Thriller,
Romance). A user is identified as a “fan" of a genre if they have rated at least 20 movies in
that genre with an average rating of 4.0 or higher.

¢ Construction:

— Alice’s utility for a movie is its overall average rating across all users in the dataset.

— A Bob’s utility for a movie is the average rating given to that movie only by the users
identified as fans for that Bob’s persona.

— If no “fan" users for a particular persona have rated a specific movie, that persona’s
utility for the movie defaults to the overall average rating (Alice’s utility). All ratings
are normalized to a [0, 1] scale. The exact utilities are shown in Table 3]

— Motivation: Provides a grounded, real-world benchmark with structured but heteroge-
neous preferences, allowing us to test whether theoretical guarantees (e.g., OPT —2¢)
are informative beyond synthetic settings.
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Table 3: MovieLens Utility Table

State (Genre) Policy (Movie) Alice Action Bob Comedy Bob DramaBob Sci-Fi Bob Thriller Bob Romance Bob
Action Matrix 0.84 0.92 0.94 0.89 0.93 0.89 0.87
Action Star Wars: Episode IV 0.85 091 091 0.87 0.93 0.88 0.86
Action Jurassic Park 0.75 0.87 0.85 0.80 0.85 0.83 0.80
Comedy Forrest Gump 0.83 0.91 0.89 0.90 0.90 0.89 0.88
Comedy Pulp Fiction 0.84 0.87 0.90 0.89 0.84 0.90 0.90
Comedy Toy Story 0.78 0.85 0.88 0.84 0.89 0.83 0.84
Drama Forrest Gump 0.83 0.91 0.89 0.90 0.90 0.89 0.88
Drama Shawshank Redemption ~ 0.89 0.94 0.93 0.92 0.92 0.93 091
Drama Pulp Fiction 0.84 0.87 0.90 0.89 0.84 0.90 0.90
Sci-Fi Matrix 0.84 0.92 0.94 0.89 0.93 0.89 0.87
Sci-Fi Star Wars: Episode IV 0.85 091 091 0.87 0.93 0.88 0.86
Sci-Fi Jurassic Park 0.75 0.87 0.85 0.80 0.85 0.83 0.80
Thriller Pulp Fiction 0.84 0.87 0.90 0.89 0.84 0.90 0.90
Thriller Silence of the Lambs 0.83 0.93 0.92 0.90 0.92 091 0.91
Thriller Matrix 0.84 0.92 0.94 0.89 0.93 0.89 0.87
Romance Forrest Gump 0.83 091 0.89 0.90 0.90 0.89 0.88
Romance American Beauty 0.81 0.82 0.89 0.86 0.85 0.84 0.90
Romance True Lies 0.70 0.85 0.83 0.77 0.83 0.80 0.81
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