

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 FROM FORGETTING TO ROBUSTNESS: ROBUST CLASS -INCREMENTAL LEARNING WITH CLIP

Anonymous authors

Paper under double-blind review

ABSTRACT

Class-Incremental Learning (CIL) aims to enable a model to continuously recognize new categories without forgetting previously learned ones. While most existing methods focus on alleviating catastrophic forgetting, they largely overlook the vulnerability of CIL models to adversarial perturbations, which poses a critical threat to their reliability in real-world applications. Motivated by this oversight, we formalize a new problem setting, Robust Class-Incremental Learning (RCIL). To address the conflict between adversarial robustness and class-incremental learning, we propose Selective parameter optimization for Adversarial training with **GEometric constraint (SAGE)**, which selectively updates critical parameters to protect knowledge learned from previous tasks. Beyond parameter efficiency, SAGE introduces a theoretically grounded geometric constraint together with a contrastive loss to preserve structural relationships among features. This design enables stable and robust learning across tasks under adversarial attacks. Extensive experiments demonstrate that SAGE effectively improves adversarial robustness while mitigating catastrophic forgetting, leading to more reliable and practical CIL models. *The code is provided in the supplementary material.*

1 INTRODUCTION

Real-world systems often operate in dynamic environments where new classes appear sequentially and models must maintain performance on previously learned tasks. To address this, Class-Incremental Learning (CIL) has been proposed as a learning paradigm that enables models to adapt to new tasks while retaining knowledge from previous ones, without requiring access to all historical data (Li & Hoiem, 2017; Shin et al., 2017; Wang et al., 2022; Huang et al., 2024). Owing to its effectiveness and practicality, CIL has been widely adopted across diverse domains, including image classification (Kirkpatrick et al., 2017; Yu et al., 2020), image captioning (Nguyen et al., 2019; Del Chiaro et al., 2020), and other vision-language tasks (Greco et al., 2019; Zhang et al., 2023; Wu et al., 2025; Lin et al., 2025). The emergence of large-scale pre-trained vision-language models (Jia et al., 2021; Radford et al., 2021a;b; Yao et al., 2021), most notably CLIP (Radford et al., 2021a), provides a new direction for advancing CIL. Leveraging its strong generalization and rich multimodal representations, CLIP naturally emerged as a promising backbone for CIL (Thengane et al., 2022), significantly outperforming conventional models. Building on this foundation, recent studies (Yu et al., 2024a; Huang et al., 2024; Wang et al., 2023; Jha et al., 2024) further enhance CLIP-based CIL by employing advanced regularization techniques, lightweight adapter modules, or textual representations to mitigate forgetting and improve knowledge transfer.

Despite these advances in alleviating catastrophic forgetting, a critical vulnerability has been largely overlooked, which is susceptibility to adversarial perturbations. These perturbations, crafted deliberately by adversarial attacks, are often imperceptible to humans yet can cause models to produce incorrect predictions, leading to significant accuracy degradation (Szegedy et al., 2014; Madry et al., 2018; Croce & Hein, 2020). Although techniques such as adversarial training (AT) (Zheng et al., 2016; Shafahi et al., 2019b; Zhang et al., 2019) aim to enhance robustness by exposing models to adversarial examples, the objectives of CIL and adversarial robustness are fundamentally distinct. As a result, directly applying AT to CIL can result in suboptimal robustness while significantly exacerbating catastrophic forgetting. Consequently, there is a need for methods that can simultaneously preserve knowledge across tasks while ensuring robustness against adversarial perturbations. **Robust Class-Incremental Learning (RCIL)** addresses this gap by jointly tackling incremental

learning and adversarial robustness, ensuring that models remain accurate and secure across both clean and adversarial inputs throughout continual learning (Bai et al., 2023; Cho et al., 2025).

However, despite its importance, research on RCIL remains limited. A related but distinct line of research, zero-shot adversarial robustness, partially echoes the objectives of RCIL by seeking both robustness enhancement and knowledge preservation. Methods such as TeCoA (Mao et al., 2023), PMG-AFT (Wang et al., 2024b), and TGA-ZSR (Yu et al., 2024b) presuppose a fixed global label space, where robustness is optimized with full label access, limiting their applicability under continually expanding label spaces. These limitations underscore the need for RCIL-specific approaches. Existing attempts in this direction remain scarce. For instance, TABA (Bai et al., 2023) increases sample diversity via mixup, but this does not directly improve robustness, leaving the model vulnerable to stronger attacks. FLAIR (Cho et al., 2025) enhances robustness by constraining distillation with respect to the discrepancy between clean and adversarial outputs in the current task relative to the previous task, implicitly regularizing gradients and Hessians. However, it only captures changes in model outputs without explicitly considering the feature space structure. Consequently, the model may suffer from feature shift, which can undermine the effectiveness of the distillation.

To address the challenge of simultaneously achieving adversarial robustness and knowledge preservation in CIL, we observed that improving robustness often requires substantial parameter updates to adjust decision boundaries, but such updates can destabilize previously learned knowledge, leading to catastrophic forgetting. To reconcile this conflict, we propose a unified framework that combines selective parameter optimization for adversarial training with a geometric constraint. By updating only the most critical parameters, the model rapidly reduces loss and maintains stability while adapting to new tasks. At the same time, the geometric constraint preserves the structural consistency of representations by aligning adversarial and clean embeddings across tasks. Together, these components provide a principled solution for robust class-incremental learning.

Our main contributions can be summarized as follows:

- To the best of our knowledge, this is the first work to formalize the definition of Robust Class-Incremental Learning (RCIL) and theoretically show that adversarial training, which requires extensive parameter updates, conflicts with the stability needed in class-incremental learning.
- We propose a novel method, SAGE, which selectively updates critical parameters identified via gradient-weight products and incorporates a geometric constraint-based contrastive loss to simultaneously enhance robustness and mitigate forgetting.
- Extensive experiments demonstrate that SAGE not only significantly outperforms naive combinations of class-incremental learning and adversarial training across multiple benchmarks, but also achieves superior performance over existing baselines in robust class-incremental learning.

2 RELATED WORK

2.1 ADVERSARIAL ROBUSTNESS

Deep neural networks (DNNs) are expected to exhibit robustness to minor natural variations in input and maintain consistent predictions. However, extensive studies (Szegedy et al., 2014; Madry et al., 2018; Carlini & Wagner, 2017; Croce & Hein, 2020) have demonstrated that they are highly vulnerable to adversarial perturbations, which can cause incorrect predictions. To enhance adversarial robustness, various defense methods have been proposed. Adversarial training (AT) (Zheng et al., 2016; Wu et al., 2020; Mao et al., 2023) is the most widely studied and empirically validated defense paradigm. It enhances robustness by generating adversarial examples via various attack methods and incorporating them into the training process, thereby exposing the model to challenging perturbations and improving its resilience. Adversarial purification (Nie et al., 2022; Lee & Kim, 2023; Yang et al., 2022) leverages diffusion models to remove adversarial noise from inputs, enabling downstream classifiers to make accurate predictions on the purified samples. Randomized defenses (Ma et al., 2023; Dong & Xu, 2023) introduce stochasticity into the model architecture or inference process to obfuscate gradients and hinder attack effectiveness. More recently, research attention has shifted toward pre-trained vision-language models such as CLIP, which have attracted wide interest for their strong generalization and zero-shot capabilities. Despite these strengths, recent studies (Mao et al., 2023; Schlarbmann et al., 2024) reveal that CLIP remains highly vulnerable

108 to adversarial attacks, motivating a growing body of research (Li et al., 2024; Wang et al., 2024b;
 109 Yu et al., 2024b) on improving the robustness of CLIP-based models.
 110

111 2.2 CLASS-INCREMENTAL LEARNING 112

113 Class-Incremental Learning (CIL) aims to continuously learn new tasks while retaining knowledge
 114 from previous ones, thereby mitigating catastrophic forgetting. Existing approaches are typically
 115 categorized into three main groups. Regularization-based methods (Li & Hoiem, 2017; Kirkpatrick
 116 et al., 2017; Zenke et al., 2017; Chaudhry et al., 2018a; Liu et al., 2018; Dhar et al., 2019; Rannen
 117 et al., 2017) mitigate forgetting by introducing additional constraints during optimization. Replay-
 118 based methods (Chaudhry et al., 2018b; Hou et al., 2019; Rebuffi et al., 2017; Buzzega et al., 2020;
 119 Boschini et al., 2022) preserve previous knowledge by revisiting samples from earlier tasks while
 120 training on new ones. Architecture-based methods (Mallya & Lazebnik, 2018; Mallya et al., 2018;
 121 Fernando et al., 2017; Veniat et al., 2020; Ostapenko et al., 2021) dynamically increase model capac-
 122 ity, allocating separate parameters or structures for each new task to minimize interference. Beyond
 123 these conventional strategies, the advent of pre-trained models has opened new possibilities for
 124 CIL, with vision-language models such as CLIP offering strong multimodal representations. Con-
 125 sequently, several studies (Thengane et al., 2022; Yu et al., 2024a; Huang et al., 2024; Wang et al.,
 126 2023; Jha et al., 2024) have explored CIL with CLIP, leveraging its strong visual representation and
 127 rich language semantics to mitigate forgetting and enhance adaptability. Existing CIL methods pri-
 128 marily focus on mitigating forgetting, yet recent studies (Bai et al., 2023; Cho et al., 2025) reveal
 129 that they remain highly vulnerable to adversarial examples. To address this issue, Robust Class-
 130 Incremental Learning (RCIL) jointly tackles CIL and adversarial robustness. However, these ap-
 131 proaches rely on simple techniques and fail to exploit the rich representations of pre-trained models,
 132 limiting their resilience against adversarial threats. Therefore, we explore RCIL with CLIP, aiming
 133 to harness its strong multimodal representations for improved robustness and reduced forgetting.
 134

135 3 PROBLEM DEFINITION 136

137 Robust Class-Incremental Learning (RCIL) extends CIL by explicitly incorporating adversarial ro-
 138 bustness (Bai et al., 2023; Cho et al., 2025). As illustrated in Figure 1, its objective is to learn a
 139 model that correctly classifies both clean and adversarial inputs across sequential tasks.
 140

141 To formulate the sequential learning setting, following prior work (Thengane et al., 2022; Yu
 142 et al., 2024a), we partition the full dataset \mathcal{D} into a sequence of t disjoint tasks, denoted as
 143 $\{\mathcal{D}_1, \mathcal{D}_2, \dots, \mathcal{D}_t\}$. Each task $\mathcal{D}_t = \{\mathcal{X}_t, \mathcal{Y}_t, \mathcal{P}_t\}$ consists of input samples \mathcal{X}_t , their labels \mathcal{Y}_t ,
 144 and the set of text prompts \mathcal{P}_t . The class sets across different tasks are strictly non-overlapping,
 145 where $\mathcal{Y}_i \cap \mathcal{Y}_j = \emptyset$ ($i \neq j$). During training on task t , the model $f_{\theta_t}(\cdot)$ is trained solely on data
 146 from the current task \mathcal{D}_t , without access to data from earlier tasks $\mathcal{D}_{1:(t-1)} = \bigcup_{i=1}^{t-1} \mathcal{D}_i$. Building on
 147 this standard CIL setup, RCIL further augments the training dataset of each task by incorporating
 148 dynamically generated adversarial examples. Specifically, adversarial examples \mathcal{X}_t^{adv} are generated
 149 from the clean examples $\mathcal{X}_t \in \mathcal{X}_t$, and we define the adversarial example set as:
 150

$$\mathcal{X}_t^{adv} = \{\mathcal{X}_t^{adv} \mid \mathcal{X}_t^{adv} = \mathcal{X}_t + \delta_t^{train}, \|\delta_t^{train}\| \leq \epsilon, \mathcal{X}_t \in \mathcal{X}_t\} \quad (1)$$

151 where ϵ controls the perturbation budget. The adversarial perturbation δ_t^{train} is obtained by:
 152

$$\arg \max_{\|\delta_t^{train}\| \leq \epsilon} \mathcal{L}_{CE}(\mathcal{X}_t + \delta_t^{train}, \mathcal{Y}_t, \mathcal{P}_t), \quad \mathcal{Y}_t \in \mathcal{Y}_{1:t}, \quad \mathcal{P}_t \in \mathcal{P}_{1:t} \quad (2)$$

153 where \mathcal{L}_{CE} represents the cross-entropy loss, $\mathcal{Y}_{1:t} = \bigcup_{i=1}^t \mathcal{Y}_i$ and $\mathcal{P}_{1:t} = \bigcup_{i=1}^t \mathcal{P}_i$ denote the cumula-
 154 tive label and prompt spaces up to task t , respectively. Finally, the training dataset for task t is given
 155 by $\mathcal{D}_t^{train} = \{\mathcal{X}_t, \mathcal{Y}_t, \mathcal{P}_t\} \cup \{\mathcal{X}_t^{adv}, \mathcal{Y}_t, \mathcal{P}_t\}$.
 156

157 This allows the model to learn from both clean and adversarial examples simultaneously. Accord-
 158 ingly, the overall training objective at task t integrates the adversarial robustness loss \mathcal{L}_t^R with the
 159 CIL loss \mathcal{L}_t^{CIL} to jointly promote robustness and retention:
 160

$$\mathcal{L}_t^{RCIL} = \mathcal{L}_t^R(\mathcal{X}_t \cup \mathcal{X}_t^{adv}, \mathcal{Y}_t, \mathcal{P}_t) + \mathcal{L}_t^{CIL}(\mathcal{X}_t \cup \mathcal{X}_t^{adv}, \mathcal{Y}_t, \mathcal{P}_t) \quad (3)$$

161 After training on task t , the model is evaluated on the joint evaluation set $\mathcal{D}_{1:t}^{eval} = \bigcup_{i=1}^t \mathcal{D}_i^{eval}$,
 162 which includes both clean and regenerated adversarial examples. Importantly, adversarial examples

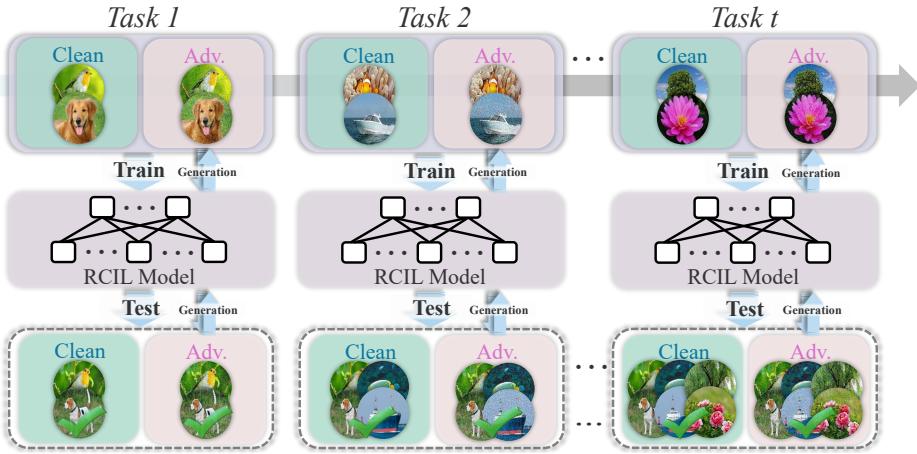


Figure 1: Illustration of Robust Class-Incremental Learning (RCIL). At each task t , adversarial examples are generated on the fly, and the model is jointly optimized on both clean and adversarial examples. During evaluation, the test set includes clean examples and regenerated adversarial examples from all classes encountered thus far, reflecting the continually expanding class space.

are recomputed at each evaluation stage under the expanded class space, as shown in Figure 1. A mismatch arises because during training on a previous task i ($i < t$), adversarial examples are generated using Eq. 1 and 2 with respect to $\mathcal{Y}_{1:i}$. At evaluation stage, however, samples from \mathcal{D}_i^{eval} are perturbed with the enlarged label set $\mathcal{Y}_{1:t}$, still following Eq. 1, but with a new perturbation term:

$$\arg \max_{\|\delta_i^{eval}\| \leq \epsilon} \mathcal{L}_{CE}(\mathbf{x}_i + \delta_i^{eval}, \mathbf{y}_i, \mathbf{p}_i), \quad \mathbf{y}_i \in \mathcal{Y}_{1:t}, \quad \mathbf{p}_i \in \mathcal{P}_{1:t} \quad (4)$$

This expansion of the class space significantly increases the challenge for the model, since the regenerated adversarial examples are crafted against the current model and therefore more aggressive.

4 METHOD

4.1 OBSERVATION

In **class-incremental learning** (Wang et al., 2024a), a key challenge is to preserve performance on previously learned tasks while effectively adapting to new ones. A theoretical motivation for this challenge can be derived by analyzing how parameter updates affect the outputs of old tasks. Specifically, for old-task data \mathbf{x}_{t-1} , we denote $f_{\theta_{t-1}}(\mathbf{x}_{t-1})$ as the model output before the parameter update and $f_{\theta_t}(\mathbf{x}_{t-1})$ as the output after updating the parameters from θ_{t-1} to θ_t . The output difference can be approximated via a first-order Taylor expansion:

$$f_{\theta_t}(\mathbf{x}_{t-1}) \approx f_{\theta_{t-1}}(\mathbf{x}_{t-1}) + \nabla_{\theta_{t-1}} f_{\theta_{t-1}}(\mathbf{x}_{t-1})^\top \Delta\theta \quad (5)$$

where $\Delta\theta = \theta_t - \theta_{t-1}$, and $\nabla_{\theta_{t-1}} f_{\theta_{t-1}}(\mathbf{x}_{t-1})$ denotes the gradient of the model output with respect to the parameters at θ_{t-1} . This shows that small parameter updates lead to bounded changes in the outputs on data from previous tasks, helping preserve prior knowledge and mitigate forgetting.

Building on the above discussion, we next consider a complementary perspective from **adversarial robustness**. Its key objective is to reduce the model’s sensitivity to input perturbations, thereby ensuring stable predictions and improved robustness (Wu et al., 2020). Formally, given an adversarial input $\mathbf{x}_t^{adv} = \mathbf{x}_t + \delta$, the model output can be approximated by a first-order Taylor expansion:

$$f_{\theta_t}(\mathbf{x}_t + \delta) \approx f_{\theta_t}(\mathbf{x}_t) + \nabla_{\mathbf{x}_t} f_{\theta_t}(\mathbf{x}_t)^\top \delta \quad (6)$$

where $\nabla_{\mathbf{x}_t} f_{\theta_t}(\mathbf{x}_t)$ represents the gradient of the model output with respect to the input. Since δ is chosen by the adversary and cannot be directly controlled during training, the key objective becomes reducing the first-order term $\nabla_{\mathbf{x}_t} f_{\theta_t}(\mathbf{x}_t)$, which measures the model’s local sensitivity to input perturbations. Lowering this gradient effectively flattens the loss landscape around the input,

216 leading to more robust predictions under adversarial noise. In neural networks, the input gradient
 217 $\nabla_{\mathbf{x}_t} f_{\theta_t}(\mathbf{x}_t)$ can be computed through the chain rule across all layers:
 218

$$219 \quad \nabla_{\mathbf{x}_t} f_{\theta_t}(\mathbf{x}_t) = \frac{\partial f_{\theta_t}(\mathbf{x}_t)}{\partial \mathbf{x}_t} = \frac{\partial f_{\theta_t}(\mathbf{x}_t)}{\partial \mathbf{z}_n} \cdot \frac{\partial \mathbf{z}_n}{\partial \mathbf{z}_{n-1}} \cdot \dots \cdot \frac{\partial \mathbf{z}_1}{\partial \mathbf{x}_t} \quad (7)$$

221 where \mathbf{z}_n denotes the intermediate representation at the n -th layer. This formulation reveals that
 222 the input gradient depends on the entire forward-backward propagation path through the network.
 223 Therefore, effectively reducing $\nabla_{\mathbf{x}_t} f_{\theta_t}(\mathbf{x}_t)$ often necessitates coordinated updates across multiple
 224 layers. In practice, this typically requires extensive parameter updates throughout the network,
 225 which is why many adversarial defense methods (Mao et al., 2023; Wang et al., 2024b; Yu et al.,
 226 2024b) adopt full-parameter training to modify the network’s sensitivity to input perturbations.

227 Thus, these objectives push feature representations in conflicting directions, leading to a trade-off.
 228 This theoretical observation is further validated empirically in Appendix B, where naive combi-
 229 nations of adversarial training and standard CIL significantly increase forgetting or reduce robustness.
 230 This conflict reflects both the opposing nature of the optimization objectives and the empirical ob-
 231 servations, motivating the need for methods in RCIL that can effectively balance these objectives.
 232

233 4.2 SELECTIVE PARAMETER OPTIMIZATION FOR ADVERSARIAL TRAINING

235 To balance the competing demands of CIL and adversarial robustness, we adopt a selective param-
 236 eter optimization strategy. Specifically, training updates only the critical parameters within each
 237 layer, thereby balancing two objectives. In this process, important parameters are updated to rapidly
 238 reduce loss and enhance robustness, while limiting the scope of updates alleviates feature drift and
 239 mitigates forgetting. To identify critical parameters, we quantify their importance using a first-order
 240 Taylor approximation of the loss. For a small perturbation $\Delta\theta$, the loss can be approximated as:
 241

$$242 \quad \mathcal{L}(\theta + \Delta\theta) \approx \mathcal{L}(\theta) + \sum_l \left(\frac{\partial \mathcal{L}(\theta)}{\partial \theta^l} \cdot \Delta\theta^l \right) \quad (8)$$

243 This formulation allows us to approximate the effect of parameter removal. Following network
 244 pruning methods (Sanh et al., 2020), we represent the hypothetical removal of a parameter θ^l as the
 245 perturbation $\Delta\theta^l = -\theta^l$. Substituting this into the above expansion yields the approximate change:
 246

$$247 \quad \Delta\mathcal{L}_l \approx -\theta^l \cdot \frac{\partial \mathcal{L}(\theta)}{\partial \theta^l} \quad (9)$$

249 Based on this result, we define the importance of each parameter as the absolute magnitude of the
 250 estimated loss change, that is, $I_l = \left| \theta^l \cdot \frac{\partial \mathcal{L}(\theta)}{\partial \theta^l} \right|$. This metric provides a theoretically grounded
 251 measure of parameter importance by quantifying how θ^l affects the loss. In addition, it is simple
 252 and practical to compute since it only requires the parameter values and their gradients and does not
 253 introduce extra hyperparameters. By selecting and updating only the top- $k\%$ parameters with the
 254 highest importance values I_l , we strike a balance between two conflicting objectives. To implement
 255 this selective update mechanism, we introduce a binary mask m_l defined as:
 256

$$257 \quad m_l = \begin{cases} 1, & \text{if } I_l \in \text{Top-}k\%(I) \\ 0, & \text{otherwise} \end{cases} \quad (10)$$

259 Parameter updates are then performed in a masked manner $\theta \leftarrow \theta + m \odot \Delta\theta$, where \odot denotes
 260 element-wise multiplication. This approach effectively restricts parameter modifications to those
 261 most relevant for the current task, which is crucial for maintaining stability and performance in the
 262 class-incremental setting.
 263

264 4.3 GEOMETRIC-CONSTRAINT GUIDED CONTRASTIVE LEARNING

266 Merely constraining parameter updates is insufficient, since adversarial perturbations can still distort
 267 feature representations and compromise consistency across tasks. Prior work in CIL (Kirkpatrick
 268 et al., 2017; Zenke et al., 2017) similarly shows that parameter-level regularization only partially
 269 prevents parameter drift, but it does not directly address adversarial threats. In particular, without
 mechanisms to realign perturbed features with their correct class regions, the relational structure

270 among features may still be severely compromised. This motivates the need to preserve structural
 271 relationships within the feature space. To this end, we adopt cosine similarity as a measure of feature
 272 alignment, which provides a principled foundation for our loss design.

273 We first introduce the notation for cosine similarity. For any three unit vectors \mathbf{a} , \mathbf{b} and \mathbf{c} , we obtain:

$$275 \quad \gamma_{ab} = \cos(\mathbf{a}, \mathbf{b}) = \mathbf{a}^\top \mathbf{b}, \quad \gamma_{ac} = \cos(\mathbf{a}, \mathbf{c}) = \mathbf{a}^\top \mathbf{c}, \quad \gamma_{bc} = \cos(\mathbf{b}, \mathbf{c}) = \mathbf{b}^\top \mathbf{c} \quad (11)$$

277 These cosine similarities are not independent but follow a geometric constraint, the proof of which
 278 is provided in Appendix C:

$$279 \quad \gamma_{ac}\gamma_{bc} - \sqrt{(1 - \gamma_{ac}^2)(1 - \gamma_{bc}^2)} \leq \gamma_{ab} \leq \gamma_{ac}\gamma_{bc} + \sqrt{(1 - \gamma_{ac}^2)(1 - \gamma_{bc}^2)} \quad (12)$$

281 The relations indicate that γ_{ab} is bounded by a range determined by γ_{ac} and γ_{bc} . When the con-
 282 straint is not saturated, γ_{ab} admits direct optimization with gradient $\frac{\partial \gamma_{ab}}{\partial \theta}$. However, when the
 283 constraint becomes active, γ_{ab} is dictated by γ_{ac} and γ_{bc} , and the gradient can be expressed:

$$285 \quad \frac{\partial \gamma_{ab}}{\partial \theta} = \frac{\partial \mathcal{F}(\gamma_{ac}, \gamma_{bc})}{\partial \gamma_{ac}} \cdot \frac{\partial \gamma_{ac}}{\partial \theta} + \frac{\partial \mathcal{F}(\gamma_{ac}, \gamma_{bc})}{\partial \gamma_{bc}} \cdot \frac{\partial \gamma_{bc}}{\partial \theta} \quad (13)$$

288 where $\mathcal{F}(\gamma_{ac}, \gamma_{bc})$ denotes the bound $\gamma_{ac}\gamma_{bc} \pm \sqrt{(1 - \gamma_{ac}^2)(1 - \gamma_{bc}^2)}$. Therefore, optimizing γ_{ab}
 289 implicitly affects γ_{ac} and γ_{bc} whenever the constraint becomes active.

290 Specifically, we consider three feature representations: the current model’s embedding of the adver-
 291 sarial example $f_{\theta_t}(\mathbf{x}_t^{adv})$, the previous model’s embedding of the clean examples $f_{\theta_{t-1}}(\mathbf{x}_t)$, and the
 292 current model’s embedding of the clean example $f_{\theta_t}(\mathbf{x}_t)$. For clarity, we normalize them as:

$$293 \quad \mathbf{a} = \frac{f_{\theta_t}(\mathbf{x}_t^{adv})}{\|f_{\theta_t}(\mathbf{x}_t^{adv})\|}, \quad \mathbf{b} = \frac{f_{\theta_{t-1}}(\mathbf{x}_t)}{\|f_{\theta_{t-1}}(\mathbf{x}_t)\|}, \quad \mathbf{c} = \frac{f_{\theta_t}(\mathbf{x}_t)}{\|f_{\theta_t}(\mathbf{x}_t)\|} \quad (14)$$

296 Here, γ_{ac} corresponds to improving robustness, while γ_{bc} reflects preserving previously learned
 297 knowledge. According to the geometric constraint in Eq. 12, optimizing the similarity γ_{ab} implicitly
 298 influences both γ_{ac} and γ_{bc} . Therefore, by focusing on optimizing γ_{ab} , we can simultaneously
 299 improve robustness and mitigate forgetting, without the need to explicitly balance γ_{ac} and γ_{bc} .

300 To fully exploit the relational structure of the embeddings and optimize cosine similarity, we intro-
 301 duce a symmetric contrastive loss. By enforcing this symmetry, the structural consistency of the
 302 feature space is strengthened, which is crucial for maintaining cross-task stability while improving
 303 adversarial robustness. Formally, given a batch of clean and adversarial examples, the symmetric
 304 contrastive loss is defined as:

$$306 \quad \mathcal{L}_{\text{con}} = \frac{1}{2N} \sum_{i=1}^N \left[-\log \frac{\exp(\mathbf{a}_i^\top \mathbf{b}_i / \tau)}{\sum_{j=1}^N \exp(\mathbf{a}_i^\top \mathbf{b}_j / \tau)} - \log \frac{\exp(\mathbf{b}_i^\top \mathbf{a}_i / \tau)}{\sum_{j=1}^N \exp(\mathbf{b}_i^\top \mathbf{a}_j / \tau)} \right] \quad (15)$$

308 where τ is a temperature parameter controlling the sharpness of the similarity distribution.

310 Finally, the final loss function can be expressed as:

$$311 \quad \mathcal{L}_{\text{total}} = \mathcal{L}_{\text{CE}}(\mathbf{x}^{adv}, \mathbf{y}, \mathbf{p}) + \mu \cdot \mathcal{L}_{\text{con}} \quad (16)$$

313 where μ is a hyperparameter that balances the two loss terms. In addition, the details of the proposed
 314 algorithm are provided in Appendix D.

316 5 EXPERIMENTS

318 5.1 EXPERIMENTAL SETUP

320 **Datasets.** We conduct experiments on CIFAR-10 (Krizhevsky et al., 2009), CIFAR-100 (Krizhevsky
 321 et al., 2009), STL-10 (Coates et al., 2011), and Tiny-ImageNet (Le & Yang, 2015). Specifically,
 322 CIFAR-10 and STL-10 are split into 5 tasks with 2 classes per task, referred to as S-CIFAR10 and
 323 S-STL10. CIFAR-100 is divided into 10 tasks with 10 classes per task, denoted as S-CIFAR100.
 Tiny-ImageNet is divided into 10 tasks with 20 classes per task, denoted as S-TinyImageNet.

324 Table 1: Evaluation of several methods on ViT-B/32 without memory. We report Clean, PGD-10,
 325 Auto. accuracy (%), and *BWT* on S-CIFAR10 and S-STL10 under attack strength of 1/255. **Bold**
 326 for the best result, underline for secondary.

328	329	330	331	S-CIFAR10						S-STL10												
				332	333	Clean			PGD			Auto.			334	335	336	337	338	339	340	
						$\bar{A} \uparrow$	$A_{last} \uparrow$	$BWT \uparrow$	$\bar{A} \uparrow$	$A_{last} \uparrow$	$BWT \uparrow$	$A_{last} \uparrow$	$\bar{A} \uparrow$	$A_{last} \uparrow$	$BWT \uparrow$	$\bar{A} \uparrow$	$A_{last} \uparrow$	$BWT \uparrow$	$A_{last} \uparrow$	$\bar{A} \uparrow$	$A_{last} \uparrow$	$BWT \uparrow$
AT	332	333	334	TeCoA	35.70	10.12	-69.68	18.06	9.20	-41.70	0.09	93.59	86.79	-15.94	40.06	30.14	<u>-34.25</u>	0.27	335	336	337	338
				FARE	88.69	<u>81.75</u>	-17.66	33.10	27.33	-15.31	2.33	96.59	94.28	-6.52	51.57	43.02	-21.42	3.33				
				PMG-AFT	35.48	10.86	-68.78	17.98	9.11	<u>-41.66</u>	0.05	93.61	86.88	<u>-15.83</u>	39.88	30.06	-34.42	0.24				
				TGA-ZSR	52.98	28.34	-84.91	30.45	15.70	-65.55	10.78	90.92	81.22	-22.61	50.69	41.51	-41.02	16.44				
				R-LwF	45.19	19.82	-98.84	43.61	19.38	-95.05	19.34	51.94	36.72	<u>-77.25</u>	47.30	28.16	<u>-80.72</u>	27.02				
R-CIL	332	333	334	R-LwF-MC	55.48	33.81	-80.35	47.80	24.08	-97.60	23.42	71.93	69.04	-36.27	57.35	47.01	-52.61	36.41				
				R-EWC-on	45.00	19.74	-98.35	43.47	19.38	-94.40	19.38	50.08	32.15	-82.25	45.48	25.59	-83.45	25.30				
				R-SI	45.22	19.81	-98.94	43.59	19.38	-94.98	19.36	54.08	36.80	-77.17	48.61	27.50	-81.81	26.51				
				R-RAPF	46.36	19.88	-98.64	44.21	19.34	-94.95	19.32	55.09	40.02	-70.36	32.43	14.25	-66.05	13.85				
R-CIL-CLIP	332	333	334	R-SG	43.07	18.22	-60.66	42.99	18.46	-74.25	0.00	55.09	40.02	-32.98	47.40	30.19	-34.80	9.71				
				R-Proof	36.11	14.15	-75.04	34.01	13.61	-70.79	12.93	44.46	16.44	-96.16	41.73	15.29	-89.88	15.25				
RCIL	332	333	334	FLAIR	61.27	45.83	-66.05	<u>51.73</u>	<u>32.31</u>	-77.91	<u>30.90</u>	71.32	64.92	-42.17	<u>57.69</u>	<u>48.26</u>	-51.59	<u>41.65</u>				
				RCIL4CLIP	<u>72.36</u>	<u>63.67</u>	<u>-34.12</u>	61.75	47.85	-42.27	41.60	73.52	69.56	-33.36	63.96	54.31	-40.20	46.32				
335	336	337	338	SAGE (ours)	<u>± 0.65</u>	<u>± 1.60</u>	<u>± 1.50</u>	<u>± 0.43</u>	<u>± 1.15</u>	<u>± 1.52</u>	<u>± 0.93</u>	<u>± 0.49</u>	<u>± 1.09</u>	<u>± 1.58</u>	<u>± 0.41</u>	<u>± 0.40</u>	<u>± 1.27</u>	<u>± 0.73</u>				

341 Table 2: Evaluation of several methods on ViT-B/32 without memory. We report Clean, PGD-10,
 342 Auto. accuracy (%), and *BWT* on S-CIFAR100 and S-TinyImageNet under attack strength of
 343 1/255. **Bold** for the best result, underline for secondary.

344	345	346	347	S-CIFAR100						S-TinyImageNet												
				348	349	Clean			PGD			Auto.			350	351	352	353	354	355	356	357
						$\bar{A} \uparrow$	$A_{last} \uparrow$	$BWT \uparrow$	$\bar{A} \uparrow$	$A_{last} \uparrow$	$BWT \uparrow$	$\bar{A} \uparrow$	$A_{last} \uparrow$	$BWT \uparrow$								
AT	348	349	350	TeCoA	21.75	9.40	-77.17	11.36	7.12	-46.41	6.10	19.01	7.34	-60.48	11.39	4.85	-39.94	4.06	351	352	353	354
				FARE	65.63	<u>48.54</u>	<u>-16.49</u>	23.20	16.03	<u>-8.94</u>	4.40	59.42	49.52	<u>-14.84</u>	23.29	<u>20.85</u>	<u>-7.52</u>	10.07				
				PMG-AFT	24.98	9.34	-77.66	11.37	7.09	-46.61	6.41	19.34	7.45	-60.76	11.58	4.88	-40.51	4.11				
				TGA-ZSR	41.52	16.20	-67.68	17.74	7.73	-53.00	5.20	30.10	41.61	-55.49	12.73	4.88	-40.06	2.96				
				R-LwF	27.74	9.51	-90.83	24.41	8.72	-80.98	8.70	22.33	7.69	-73.96	17.27	6.17	-59.33	6.17				
R-CIL	348	349	350	R-LwF-MC	3.07	1.00	-0.00	2.96	1.00	-0.00	1.00	1.46	0.50	-0.00	1.46	0.50	-0.00	0.50				
				R-EWC-on	26.71	9.27	-88.89	23.43	8.50	-78.47	8.50	22.36	7.87	-74.26	17.30	6.10	-59.37	6.09				
				R-SI	28.12	9.81	-90.48	24.58	8.80	-81.04	8.80	22.42	7.52	-73.04	17.58	6.77	-59.69	8.64				
				R-RAPF	36.01	13.87	-88.17	28.57	10.67	-81.39	10.57	32.08	17.30	-73.06	22.87	11.00	-64.24	10.77				
R-CIL-CLIP	348	349	350	R-SG	46.36	27.52	-41.42	34.37	<u>19.00</u>	-35.81	<u>14.44</u>	29.53	12.88	-41.48	20.01	8.83	-29.77	7.06				
				R-Proof	13.88	3.59	-37.31	11.67	3.72	-32.87	3.39	6.33	1.93	-16.66	5.47	1.86	-15.04	1.56				
RCIL	348	349	350	FLAIR	3.05	1.00	-0.00	2.94	1.00	-0.00	1.00	1.46	0.50	-0.00	1.46	0.50	-0.00	0.50				
				RCIL4CLIP	<u>63.20</u>	49.02	-22.62	48.49	35.59	-19.89	28.98	<u>56.14</u>	<u>44.72</u>	-13.54	40.21	31.95	-9.49	26.18				
351	352	353	354	SAGE (ours)	<u>± 0.54</u>	<u>± 0.35</u>	<u>± 0.36</u>	<u>± 0.37</u>	<u>± 0.37</u>	<u>± 0.42</u>	<u>± 0.41</u>	<u>± 0.04</u>	<u>± 0.60</u>	<u>± 0.89</u>	<u>± 0.22</u>	<u>± 0.52</u>	<u>± 0.56</u>	<u>± 0.38</u>				

358 **Baseline.** We conduct experiments on five types of baselines: AT, R-CIL, R-CIL-CLIP, RCIL,
 359 and RCIL4CLIP. AT represents zero-shot adversarial robustness. R-CIL refers to conventional CIL
 360 methods enhanced with AT. R-CIL-CLIP denotes CIL methods built upon a CLIP backbone, like-
 361 wise enhanced with AT. RCIL encompasses robust class-incremental learning approaches. Finally,
 362 RCIL4CLIP denotes RCIL methods with CLIP, with our proposed approach as the primary repre-
 363 sentative. In addition, the training details of all baseline methods are provided in Appendix J.

364 **Training Details.** We conduct all experiments on a single NVIDIA RTX 3090 GPU. During ad-
 365 versarial training, we utilize l_∞ -norm PGD (Madry et al., 2018) with 2 iterations to generate adversarial
 366 examples, setting both the attack strength and step size to 1/255. The SGD optimizer is employed
 367 to minimize the loss, and the text prompt is set to “This is a photo of {}”. The hyperparameters are
 368 set to $\mu = 1.0$ and $k = 0.01$, with a learning rate of 0.1, a weight decay of 1e-5, and a batch size
 369 of 64. The model is trained for 20 epochs on S-CIFAR10 and S-STL10, and for 50 epochs on S-
 370 CIFAR100 and S-TinyImageNet. To evaluate adversarial robustness, we apply l_∞ -norm PGD with
 371 10 iterations, using an attack strength and attack step size of 1/255, and AutoAttack (Auto.) (Croce
 372 & Hein, 2020) with an adversarial strength of 1/255.

373 **Evaluation Metric.** Following previous work (Wang et al., 2022; Cho et al., 2025), we evaluate
 374 the average incremental accuracy $\bar{A} = \frac{1}{T} \sum_{t=1}^T A_t$, where A_t denotes the model’s average accuracy
 375 across all seen tasks after completing training on the t -th task. In addition, we report A_{last} , which
 376 represents the average accuracy of the model after completing training on the final task. To evaluate
 377 forgetting, we adopt the backward transfer (BWT) metric, defined as $BWT = \frac{1}{T-1} \sum_{t=1}^{T-1} (A_{T,t} -$
 $A_{t,t})$, where $A_{i,j}$ denotes the test accuracy on task j after completing training on task i .

378 Table 3: Evaluation of several methods on ViT-B/32 without memory. We report average PGD-10,
 379 Auto. accuracy (%) and BWT on S-CIFAR10, S-STL10, S-CIFAR100 and S-TinyImageNet under
 380 attack strengths of 1/255, 2/255, and 4/255. **Bold** for the best result, underline for secondary.

381	382	383	384	S-CIFAR10			S-STL10			S-CIFAR100			S-TinyImageNet					
				PGD			Auto.			PGD			Auto.					
				$\bar{A} \uparrow$	$A_{last} \uparrow$	$BWT \uparrow$	$\bar{A}_{last} \uparrow$	$A_{last} \uparrow$	$BWT \uparrow$	$\bar{A} \uparrow$	$A_{last} \uparrow$	$BWT \uparrow$	$\bar{A}_{last} \uparrow$	$A_{last} \uparrow$	$BWT \uparrow$			
AT	TeCoA	10.91	4.39	<u>-30.50</u>	0.03	19.39	16.23	<u>-17.72</u>	0.09	6.37	4.86	<u>-26.90</u>	3.20	6.36	2.91	<u>-23.29</u>	2.04	
	FARE	13.40	10.04	-6.90	0.78	26.09	20.24	-13.01	1.11	10.19	6.95	<u>-3.79</u>	1.62	9.75	<u>9.06</u>	<u>-3.10</u>	3.69	
	PMG-AFT	10.56	4.61	-28.99	0.02	19.21	16.10	<u>-17.44</u>	0.08	6.41	4.83	<u>-27.19</u>	3.32	6.43	2.94	<u>-23.41</u>	2.05	
	TGA-ZSR	17.46	10.04	<u>-37.73</u>	3.77	26.90	22.15	<u>-24.83</u>	5.53	9.13	4.74	<u>-28.68</u>	2.49	5.93	2.72	<u>-20.32</u>	1.34	
R-CIL	R-LwF	42.09	19.15	-91.04	14.37	43.60	22.37	<u>-82.52</u>	15.03	22.15	8.20	<u>-73.70</u>	6.86	13.79	5.01	<u>-48.20</u>	4.22	
	R-LwF-MC	44.08	20.57	-89.58	15.13	46.78	31.26	<u>-51.19</u>	15.43	2.93	1.00	-0.00	0.97	1.46	0.50	-0.00	0.50	
	R-EWC-on	41.63	18.96	-89.73	15.24	41.67	20.67	<u>-82.83</u>	15.56	20.48	7.72	<u>-68.31</u>	6.76	13.72	4.82	<u>-47.85</u>	4.16	
	R-SI	42.31	19.05	-91.59	14.20	44.28	21.85	<u>-83.14</u>	14.96	22.20	8.12	<u>-73.79</u>	6.81	13.99	5.28	<u>-48.53</u>	5.21	
R-CIL-CLIP	R-RAPF	40.02	18.46	-84.65	14.57	27.71	12.42	<u>-58.46</u>	11.45	22.82	8.89	<u>-69.47</u>	7.37	19.55	7.46	<u>-52.34</u>	6.47	
	R-SG	36.57	14.42	-61.63	0.00	40.65	22.90	<u>-34.55</u>	3.39	22.71	12.18	<u>-26.77</u>	7.02	12.56	5.51	<u>-56.63</u>	3.79	
	R-Proof	28.63	12.77	-61.38	10.87	35.21	12.43	<u>-71.66</u>	11.83	7.89	3.18	<u>-25.23</u>	2.33	4.30	1.68	<u>-12.69</u>	1.10	
RCIL		FLAIR	45.76	24.84	-78.63	18.43	46.35	30.79	-51.81	17.90	2.93	1.00	-0.00	0.90	1.46	0.50	-0.00	0.50
RCIL4CLIP		SAGE (ours)	47.28	30.24	-38.95	21.30	49.97	33.91	-42.18	23.37	32.54	21.59	-14.36	15.08	24.71	18.83	-6.58	13.37

391 Table 4: Effect on each module. We report the Clean, PGD-10, and Auto. A_{last} on S-CIFAR10 and
 392 S-CIFAR100 after fine-tuning with PGD-2. **Bold** for the best result.

(a) Effect of each contrastive loss.			(b) Effect of selective parameter optimization strategy.																	
Contrastive Loss			S-CIFAR10			S-CIFAR100			Parameter Importance			S-CIFAR10			S-CIFAR100					
$L_{con}(a, b)$	$L_{con}(a, c)$	$L_{con}(b, c)$	Clean	PGD	Auto.	Clean	PGD	Auto.	$ \theta^l \cdot \frac{\partial \mathcal{L}(\theta)}{\partial \theta^l} $	$ \theta^l $	$ \frac{\partial \mathcal{L}(\theta)}{\partial \theta^l} $	Clean	PGD	Auto.	Clean	PGD	Auto.			
395	396	397	✓	39.93	21.48	18.33	12.95	10.58	10.41	53.68	40.94	35.66	46.55	35.10	29.22					
				✓	28.73	19.15	0.31	13.64	9.19	0.02	59.48	44.60	38.65	46.30	33.67	27.52				
			✓	✓	62.37	20.25	5.63	43.10	20.48	11.52	60.77	38.73	30.14	41.19	25.38	17.84				
						63.67	47.85	41.60	49.02	35.59	28.98				63.67	47.85	41.60	49.02	35.59	28.98

5.2 MAIN RESULTS

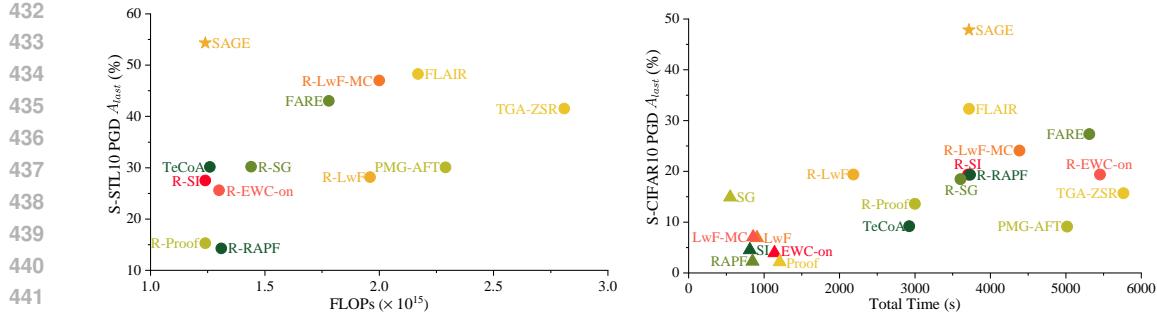
401 We conduct experiments on four datasets and report \bar{A} , A_{last} , and BWT metric for both clean and
 402 adversarial examples generated using PGD-10 with an attack strength of 1/255. Additionally, we
 403 also report A_{last} on adversarial examples generated by Auto. with the same attack strength.

404 **Experiments on Short Tasks.** Table 1 shows that directly applying adversarial training in class-
 405 incremental learning leads to severe forgetting, with BWT values dropping below -90%, and also
 406 fails to provide satisfactory adversarial robustness. Among the compared methods, R-LwF-MC
 407 and FLAIR rely on a binary cross-entropy loss that treats each class independently, which results
 408 in second-best performance. Our method further improves adversarial robustness on top of these
 409 approaches, achieving significant gains. For example, compared to FLAIR on S-CIFAR10, our
 410 method improves PGD A_{last} by 15.54%. However, it is worth noting that the clean accuracy of
 411 R-LwF-MC, FLAIR, and our method is lower than that of FARE. This is because FARE focuses on
 412 protecting clean accuracy first and only then improving adversarial robustness.

413 **Experiments on Long Tasks.** To further compare the performance of different methods, we con-
 414 duct experiments on S-CIFAR100 and S-TinyImageNet under the 10-task setting. As shown in
 415 Table 2, SAGE achieves the second-best performance on clean examples across both datasets and
 416 is comparable to FARE. On adversarial examples, however, SAGE demonstrates clear advantages.
 417 On S-CIFAR100, it surpasses the second-best method R-SG by 16.39% in PGD A_{last} , while on
 418 S-TinyImageNet it exceeds FARE by 11.10%. It is also noteworthy that methods such as FLAIR
 419 and R-LwF-MC, which perform well in short-task settings, show poor performance in this long-task
 420 setting, likely due to their shared reliance on binary cross-entropy (BCE) loss. Prior work shows
 421 that, unlike cross-entropy, BCE lacks normalization and inter-class competition, leading to weaker
 422 separability on large-scale datasets (Li et al., 2025). Consistent with this, our experiments reveal
 423 that BCE can cause output collapse, where the model predicts a single dominant class.

5.3 ABLATION STUDIES

424 **Impact of Adversarial Attack Strength.** The model is adversarially trained with a perturbation
 425 strength of 1/255. To further assess its robustness, we evaluate it under stronger perturbations of
 426 2/255 and 4/255, and report the averaged results across all settings. As shown in Table 3, although
 427 the performance of all methods decreases as the attack strength increases, SAGE consistently out-
 428 performs all baselines across different datasets. Notably, on the smaller S-STL10 dataset, SAGE
 429 shows a modest 2.65% improvement over the second-best method in PGD A_{last} . In contrast, on the
 430 larger S-TinyImageNet dataset, which has more classes and a longer task sequence, making it more



(a) Comparison of Robustness and Training FLOPs (b) Comparison of Robustness and Total Time across different methods on S-STL10. different methods on S-CIFAR10.

Figure 2: Comparison of computational cost (FLOPs) and total training time across different methods. \blacktriangle represents standard CIL approaches, \bullet denotes AT-based methods, and our method is highlighted with \star for clear visual distinction in the comparison.

difficult to retain prior knowledge and resist adversarial perturbations, SAGE achieves a substantial 9.77% improvement. These gains highlight that SAGE not only maintains robustness under mild perturbations but also demonstrates superior resilience as attack strength increases.

Module Ablation. To comprehensively evaluate the effectiveness of SAGE, we conduct ablation studies on both the contrastive loss formulations and the parameter importance strategies. As shown in Table 4a, using $L_{con}(a, c)$ ¹ and $L_{con}(b, c)$ individually causes the model to focus on only one aspect, leading to suboptimal performance. However, when combined, these losses enable the model to improve both adversarial robustness and resistance to catastrophic forgetting, leading to gains across multiple dimensions. Achieving the right balance between these two remains challenging. Our proposed $L_{con}(a, b)$ resolves this issue by eliminating the need to explicitly manage this trade-off, and it outperforms the combined use of $L_{con}(a, c)$ and $L_{con}(b, c)$, further demonstrating its superiority. Additionally, as shown in Table 4b, the selective parameter optimization strategy can improve the model’s clean accuracy to some extent. However, simpler parameter importance evaluation methods often lead to degraded performance, as demonstrated by a 9.72% drop in PGD A_{last} performance when using $|\theta^l|$ on S-CIFAR100. This underscores the need for a more robust evaluation approach, and the method we propose delivers improvements across multiple datasets.

For completeness, we present supplementary ablation experiments in the Appendix E, specifically analyzing the effect of top- $k\%$ parameter selection and the sensitivity of the loss weight μ .

5.4 EFFICIENCY OF COMPUTATION AND TRAINING TIME

Adversarial Training introduces a significant training-time overhead relative to standard CIL baselines that operate only on clean examples, calling its scalability into question for large incremental tasks. To address this concern, we carried out experiments specifically designed to assess computational efficiency and training time.

Comparison of Computational Cost (FLOPs). We compare the robustness and training FLOPs of our method with representative benchmark methods on S-STL10, as shown in Figure 2a. The results demonstrate that our method achieves consistently higher robustness under adversarial attacks while requiring substantially fewer training FLOPs than other baselines. In particular, SAGE achieves a 42.90% reduction in computational overhead compared to FLAIR, a strong baseline in the RCIL, while further enhancing robustness. These results highlight the effectiveness of SAGE, which not only strengthens robustness but also improves training efficiency, thus providing a favorable robustness-efficiency trade-off for class-incremental learning. Such a balance is especially important in practical class-incremental learning settings, where limited computational resources and robustness to adversarial attacks are critical requirements.

¹To simplify the notation, we use the definition from Eq. 14.

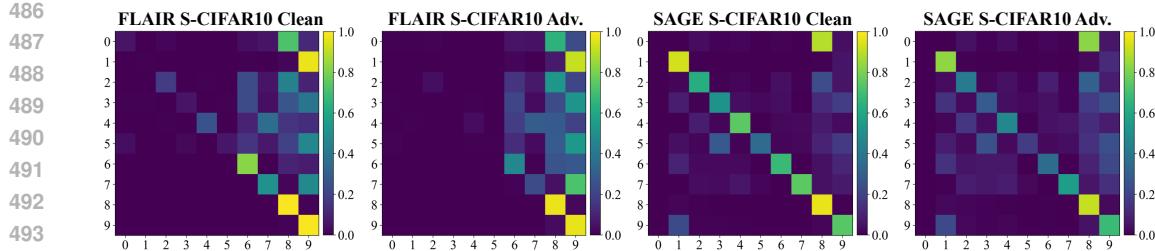


Figure 3: Confusion matrices for clean and adversarial examples on S-CIFAR10. The horizontal axis shows predicted classes, and the vertical axis shows ground-truth classes. Brighter diagonal values indicate higher classification accuracy, whereas off-diagonal values correspond to misclassifications.

Comparison of Total Time. We further compare the robustness and total time of our method with three categories of approaches: standard CIL baselines trained only on clean data, adversarially trained baselines (AT, R-CIL, and R-CIL-CLIP), and a robust class-incremental learning method. For standard CIL baselines, we adopt partial fine-tuning, where all methods update only the last block, except RAPF and Proof, which also update the added adapter module. To ensure adversarial robustness, all AT-based methods and RCIL use full fine-tuning. The total time (in seconds) for the entire training and validation process on S-CIFAR10 is reported in Figure 2b. The experiments show that standard CIL baselines achieve the fastest training, but at the cost of limited adversarial robustness. In comparison, SAGE operates within a similar computational budget while consistently providing notably stronger robustness.

5.5 VISUALIZATION OF CLEAN AND ADVERSARIAL CONFUSION MATRICES

Figure 3 provides further insights into the superior performance of our method SAGE. The baseline method exhibits a noticeable drop in performance, as evidenced by the reduced brightness along the diagonal, and tends to suffer from catastrophic forgetting, where predictions are biased toward the newly learned classes. This leads to outputs concentrated on the right side of the confusion matrix. In contrast, SAGE not only preserves strong classification accuracy on clean examples and achieves a balanced plasticity-stability trade-off, but also sustains robustness against adversarial perturbations. The confusion matrices clearly show that our approach alleviates class bias, maintains brighter diagonal patterns, and distributes predictions more uniformly across both old and new tasks, highlighting its effectiveness in both clean and adversarial settings.

In addition, we also provide the experimental results with replay in Appendix F, the performance on S-ImageNet-A in Appendix G, a comparison with free adversarial training in Appendix H, and an evaluation using a robust backbone initialization in Appendix I.

6 CONCLUSIONS

Although CIL mitigates catastrophic forgetting, its susceptibility to adversarial perturbations limits its practical applicability. Existing RCIL methods attempt to address this challenge but remain inadequate due to simplistic designs. To overcome these limitations, we introduce SAGE, which advances RCIL by integrating a selective parameter optimization scheme for adversarial training with a geometry-constrained contrastive loss, thereby improving adversarial robustness while mitigating forgetting. Extensive experiments show that SAGE not only surpasses a naive combination of CIL and AT but also consistently outperforms prior RCIL methods, yielding significant improvements across multiple datasets.

Limitations and Future Work. While SAGE achieves notable gains, it still depends on computationally intensive adversarial training, which may hinder scalability to larger models or datasets. In addition, the joint challenge of mitigating forgetting while enhancing adversarial robustness remains significant, leaving substantial room for further improvement. Future work will explore more efficient robustness techniques to reduce computational overhead and close the performance gap between RCIL and existing CIL methods.

540 **Ethics Statement.** This work does not involve human subjects, sensitive personal data, or experiments
 541 that could raise ethical concerns. All datasets used are publicly available and widely adopted
 542 in prior research. Our methodology focuses on improving robustness and knowledge retention in
 543 class-incremental learning, without introducing potential risks of harmful applications. In partic-
 544 ular, by enhancing adversarial robustness, our approach contributes to improving the security and
 545 reliability of models in real-world applications. Finally, we have adhered to the Code of Ethics
 546 throughout the research and submission process.

547 **Reproducibility Statement.** We have made significant efforts to ensure the reproducibility of our
 548 work. In Section 5.1, we describe the datasets, experimental settings, training configurations, and
 549 hyperparameters. We further provide detailed training procedures for all baseline methods in Ap-
 550 pendix J, and we also include our code in the supplementary material.

551 **REFERENCES**

552
 553
 554 Tao Bai, Chen Chen, Lingjuan Lyu, Jun Zhao, and Bihan Wen. Towards adversarially robust con-
 555 tinual learning. In *ICASSP 2023-2023 IEEE International Conference on Acoustics, Speech and*
 556 *Signal Processing (ICASSP)*, pp. 1–5. IEEE, 2023.

557 Matteo Boschini, Lorenzo Bonicelli, Pietro Buzzega, Angelo Porrello, and Simone Calderara. Class-
 558 incremental continual learning into the extended der-verse. *IEEE transactions on pattern analysis*
 559 and machine intelligence, 45(5):5497–5512, 2022.

560 Pietro Buzzega, Matteo Boschini, Angelo Porrello, Davide Abati, and Simone Calderara. Dark
 561 experience for general continual learning: a strong, simple baseline. In *Advances in neural infor-*
 562 *mation processing systems*, volume 33, pp. 15920–15930, 2020.

563 Nicholas Carlini and David Wagner. Towards evaluating the robustness of neural networks. In *2017*
 564 *ieee symposium on security and privacy (sp)*, pp. 39–57. Ieee, 2017.

565 Arslan Chaudhry, Puneet K Dokania, Thalaiyasingam Ajanthan, and Philip HS Torr. Riemannian
 566 walk for incremental learning: Understanding forgetting and intransigence. In *Proceedings of the*
 567 *European conference on computer vision (ECCV)*, pp. 532–547, 2018a.

568 Arslan Chaudhry, Marc’Aurelio Ranzato, Marcus Rohrbach, and Mohamed Elhoseiny. Efficient
 569 lifelong learning with a-gem. In *International Conference on Learning Representations*, 2018b.

570 Seungju Cho, Hongsin Lee, and Changick Kim. Enhancing robustness in incremental learning with
 571 adversarial training. In *Proceedings of the AAAI Conference on Artificial Intelligence*, volume 39,
 572 pp. 2518–2526, 2025.

573 Adam Coates, Andrew Ng, and Honglak Lee. An analysis of single-layer networks in unsupervised
 574 feature learning. In *Proceedings of the fourteenth international conference on artificial intelli-*
 575 *gence and statistics*, pp. 215–223. JMLR Workshop and Conference Proceedings, 2011.

576 Francesco Croce and Matthias Hein. Reliable evaluation of adversarial robustness with an ensemble
 577 of diverse parameter-free attacks. In *International conference on machine learning*, pp. 2206–
 578 2216. PMLR, 2020.

579 Riccardo Del Chiaro, Bartłomiej Twardowski, Andrew Bagdanov, and Joost Van de Weijer. Ratt:
 580 Recurrent attention to transient tasks for continual image captioning. In *Advances in Neural*
 581 *Information Processing Systems*, volume 33, pp. 16736–16748, 2020.

582 Prithviraj Dhar, Rajat Vikram Singh, Kuan-Chuan Peng, Ziyan Wu, and Rama Chellappa. Learning
 583 without memorizing. In *Proceedings of the IEEE/CVF conference on computer vision and pattern*
 584 *recognition*, pp. 5138–5146, 2019.

585 Minjing Dong and Chang Xu. Adversarial robustness via random projection filters. In *Proceedings*
 586 *of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp. 4077–4086, 2023.

587 Chrisantha Fernando, Dylan Banarse, Charles Blundell, Yori Zwols, David Ha, Andrei A Rusu,
 588 Alexander Pritzel, and Daan Wierstra. Pathnet: Evolution channels gradient descent in super
 589 neural networks. *arXiv preprint arXiv:1701.08734*, 2017.

594 Claudio Greco, Barbara Plank, Raquel Fernández, and Raffaella Bernardi. Psycholinguistics meets
 595 continual learning: Measuring catastrophic forgetting in visual question answering. In *Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics*, pp. 3601–3605,
 596 2019.

598 Dan Hendrycks, Kevin Zhao, Steven Basart, Jacob Steinhardt, and Dawn Song. Natural adversarial
 599 examples. In *Proceedings of the IEEE/CVF conference on computer vision and pattern recogni-*
 600 *tion*, pp. 15262–15271, 2021.

602 Saihui Hou, Xinyu Pan, Chen Change Loy, Zilei Wang, and Dahua Lin. Learning a unified classifier
 603 incrementally via rebalancing. In *Proceedings of the IEEE/CVF conference on computer vision*
 604 *and pattern recognition*, pp. 831–839, 2019.

605 Linlan Huang, Xusheng Cao, Haori Lu, and Xiaolei Liu. Class-incremental learning with clip: Adap-
 606 tive representation adjustment and parameter fusion. In *European Conference on Computer Vi-*
 607 *sion*, pp. 214–231. Springer, 2024.

608 Saurav Jha, Dong Gong, and Lina Yao. CLAP4CLIP: Continual learning with probabilistic finetun-
 609 ing for vision-language models. In *Advances in Neural Information Processing Systems*, 2024.

611 Chao Jia, Yinfei Yang, Ye Xia, Yi-Ting Chen, Zarana Parekh, Hieu Pham, Quoc Le, Yun-Hsuan
 612 Sung, Zhen Li, and Tom Duerig. Scaling up visual and vision-language representation learning
 613 with noisy text supervision. In *International conference on machine learning*, pp. 4904–4916.
 614 PMLR, 2021.

615 James Kirkpatrick, Razvan Pascanu, Neil Rabinowitz, Joel Veness, Guillaume Desjardins, Andrei A
 616 Rusu, Kieran Milan, John Quan, Tiago Ramalho, Agnieszka Grabska-Barwinska, et al. Overcom-
 617 ing catastrophic forgetting in neural networks. *Proceedings of the national academy of sciences*,
 618 114(13):3521–3526, 2017.

619 Alex Krizhevsky et al. Learning multiple layers of features from tiny images. 2009.

621 Ya Le and Xuan Yang. Tiny imagenet visual recognition challenge. *CS 231N*, 2015.

623 Minjong Lee and Dongwoo Kim. Robust evaluation of diffusion-based adversarial purification. In
 624 *Proceedings of the IEEE/CVF International Conference on Computer Vision*, pp. 134–144, 2023.

625 Lin Li, Haoyan Guan, Jianing Qiu, and Michael Spratling. One prompt word is enough to boost
 626 adversarial robustness for pre-trained vision-language models. In *Proceedings of the IEEE/CVF*
 627 *Conference on Computer Vision and Pattern Recognition*, pp. 24408–24419, 2024.

628 Qiufu Li, Huibin Xiao, and Linlin Shen. Bce vs. ce in deep feature learning. In *Forty-second*
 629 *International Conference on Machine Learning*, 2025.

631 Zhizhong Li and Derek Hoiem. Learning without forgetting. *IEEE transactions on pattern analysis*
 632 *and machine intelligence*, 40(12):2935–2947, 2017.

633 Zihan Lin, Zilei Wang, and Xu Wang. Towards continual universal segmentation. In *Proceedings of*
 634 *the Computer Vision and Pattern Recognition Conference*, pp. 29417–29427, 2025.

636 Xialei Liu, Marc Masana, Luis Herranz, Joost Van de Weijer, Antonio M Lopez, and Andrew D
 637 Bagdanov. Rotate your networks: Better weight consolidation and less catastrophic forgetting. In
 638 *2018 24th international conference on pattern recognition (ICPR)*, pp. 2262–2268. IEEE, 2018.

639 Yanxiang Ma, Minjing Dong, and Chang Xu. Adversarial robustness through random weight sam-
 640 pling. In *Advances in Neural Information Processing Systems*, volume 36, pp. 37657–37669,
 641 2023.

642 Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt, Dimitris Tsipras, and Adrian Vladu.
 643 Towards deep learning models resistant to adversarial attacks. In *International Conference on*
 644 *Learning Representations*, 2018.

646 Arun Mallya and Svetlana Lazebnik. Packnet: Adding multiple tasks to a single network by iterative
 647 pruning. In *Proceedings of the IEEE conference on Computer Vision and Pattern Recognition*,
 pp. 7765–7773, 2018.

648 Arun Mallya, Dillon Davis, and Svetlana Lazebnik. Piggyback: Adapting a single network to mul-
 649 tiple tasks by learning to mask weights. In *Proceedings of the European conference on computer*
 650 *vision (ECCV)*, pp. 67–82, 2018.

651

652 Chengzhi Mao, Scott Geng, Junfeng Yang, Xin Wang, and Carl Vondrick. Understanding zero-shot
 653 adversarial robustness for large-scale models. In *International Conference on Learning Repre-*
 654 *sentations*, 2023.

655 Giang Nguyen, Tae Joon Jun, Trung Tran, Tolcha Yalew, and Daeyoung Kim. Contcap: A scalable
 656 framework for continual image captioning. *arXiv preprint arXiv:1909.08745*, 2019.

657

658 Weili Nie, Brandon Guo, Yujia Huang, Chaowei Xiao, Arash Vahdat, and Animashree Anandkumar.
 659 Diffusion models for adversarial purification. In *International Conference on Machine Learning*,
 660 pp. 16805–16827. PMLR, 2022.

661 Oleksiy Ostapenko, Pau Rodriguez, Massimo Caccia, and Laurent Charlin. Continual learning via
 662 local module composition. In *Advances in Neural Information Processing Systems*, volume 34,
 663 pp. 30298–30312, 2021.

664

665 Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
 666 Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual
 667 models from natural language supervision. In *International conference on machine learning*, pp.
 668 8748–8763. PMLR, 2021a.

669

670 Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
 671 Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual
 672 models from natural language supervision. In *International conference on machine learning*, pp.
 673 8748–8763. PMLR, 2021b.

674

675 Amal Rannen, Rahaf Aljundi, Matthew B Blaschko, and Tinne Tuytelaars. Encoder based lifelong
 676 learning. In *Proceedings of the IEEE international conference on computer vision*, pp. 1320–
 677 1328, 2017.

678

679 Sylvestre-Alvise Rebuffi, Alexander Kolesnikov, Georg Sperl, and Christoph H Lampert. icarl:
 680 Incremental classifier and representation learning. In *Proceedings of the IEEE conference on*
 681 *Computer Vision and Pattern Recognition*, pp. 2001–2010, 2017.

682

683 Victor Sanh, Thomas Wolf, and Alexander Rush. Movement pruning: Adaptive sparsity by fine-
 684 tuning. In *Advances in neural information processing systems*, volume 33, pp. 20378–20389,
 685 2020.

686

687 Christian Schlarbmann, Naman Deep Singh, Francesco Croce, and Matthias Hein. Robust clip: Un-
 688 supervised adversarial fine-tuning of vision embeddings for robust large vision-language models.
 689 In *International Conference on Machine Learning*, 2024.

690

691 Ali Shafahi, Mahyar Najibi, Amin Ghiasi, Zheng Xu, John Dickerson, Christoph Studer, Larry S
 692 Davis, Gavin Taylor, and Tom Goldstein. Adversarial training for free! In *Proceedings of the*
 693 *33rd International Conference on Neural Information Processing Systems*, pp. 3358–3369, 2019a.

694

695 Ali Shafahi, Mahyar Najibi, Mohammad Amin Ghiasi, Zheng Xu, John Dickerson, Christoph
 696 Studer, Larry S Davis, Gavin Taylor, and Tom Goldstein. Adversarial training for free! In
 697 *Advances in neural information processing systems*, volume 32, 2019b.

698

699 Hanul Shin, Jung Kwon Lee, Jaehong Kim, and Jiwon Kim. Continual learning with deep generative
 700 replay. *Advances in neural information processing systems*, 30, 2017.

701

702 Christian Szegedy, Wojciech Zaremba, Ilya Sutskever, Joan Bruna, Dumitru Erhan, Ian Goodfel-
 703 low, and Rob Fergus. Intriguing properties of neural networks. In *International Conference on*
 704 *Learning Representations*, 2014.

705

706 Vishal Thengane, Salman Khan, Munawar Hayat, and Fahad Khan. Clip model is an efficient con-
 707 tinual learner. *arXiv preprint arXiv:2210.03114*, 2022.

702 Tom Veniat, Ludovic Denoyer, and Marc'Aurelio Ranzato. Efficient continual learning with modular
 703 networks and task-driven priors. In *International Conference on Learning Representations*, 2020.
 704

705 Liyuan Wang, Xingxing Zhang, Hang Su, and Jun Zhu. A comprehensive survey of continual
 706 learning: Theory, method and application. *IEEE transactions on pattern analysis and machine*
 707 *intelligence*, 46(8):5362–5383, 2024a.

708 Runqi Wang, Xiaoyue Duan, Guoliang Kang, Jianzhuang Liu, Shaohui Lin, Songcen Xu, Jinhu Lü,
 709 and Baochang Zhang. Attriclip: A non-incremental learner for incremental knowledge learning.
 710 In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp.
 711 3654–3663, 2023.

712 Sibo Wang, Jie Zhang, Zheng Yuan, and Shiguang Shan. Pre-trained model guided fine-tuning for
 713 zero-shot adversarial robustness. In *Proceedings of the IEEE/CVF conference on computer vision*
 714 *and pattern recognition*, pp. 24502–24511, 2024b.

715 Zifeng Wang, Zizhao Zhang, Chen-Yu Lee, Han Zhang, Ruoxi Sun, Xiaoqi Ren, Guolong Su, Vin-
 716 cent Perot, Jennifer Dy, and Tomas Pfister. Learning to prompt for continual learning. In *Pro-
 717 ceedings of the IEEE/CVF conference on computer vision and pattern recognition*, pp. 139–149,
 718 2022.

719 Dongxian Wu, Shu-Tao Xia, and Yisen Wang. Adversarial weight perturbation helps robust gen-
 720 eralization. In *Advances in neural information processing systems*, volume 33, pp. 2958–2969,
 721 2020.

722 Qirui Wu, Shizhou Zhang, De Cheng, Yinghui Xing, Di Xu, PENG WANG, and Yanning Zhang.
 723 Demystifying catastrophic forgetting in two-stage incremental object detector. In *International*
 724 *Conference on Machine Learning*, 2025.

725 Zhaoyuan Yang, Zhiwei Xu, Jing Zhang, Richard I. Hartley, and Peter Tu. Adversarial purification
 726 with the manifold hypothesis. In *AAAI Conference on Artificial Intelligence*, 2022.

727 Lewei Yao, Runhui Huang, Lu Hou, Guansong Lu, Minzhe Niu, Hang Xu, Xiaodan Liang, Zhenguo
 728 Li, Xin Jiang, and Chunjing Xu. Filip: Fine-grained interactive language-image pre-training. In
 729 *International Conference on Learning Representations*, 2021.

730 Lu Yu, Bartłomiej Twardowski, Xialei Liu, Luis Herranz, Kai Wang, Yongmei Cheng, Shangling
 731 Jui, and Joost van de Weijer. Semantic drift compensation for class-incremental learning. In
 732 *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)*,
 733 June 2020.

734 Lu Yu, Zhe Tao, Hantao Yao, Joost Van de Weijer, and Changsheng Xu. Exploiting the semantic
 735 knowledge of pre-trained text-encoders for continual learning. *arXiv preprint arXiv:2408.01076*,
 736 2024a.

737 Lu Yu, Haiyang Zhang, and Changsheng Xu. Text-guided attention is all you need for zero-shot
 738 robustness in vision-language models. In *The Thirty-eighth Annual Conference on Neural Infor-
 739 mation Processing Systems*, 2024b.

740 Friedemann Zenke, Ben Poole, and Surya Ganguli. Continual learning through synaptic intelligence.
 741 In *International conference on machine learning*, pp. 3987–3995. PMLR, 2017.

742 Hongyang Zhang, Yaodong Yu, Jiantao Jiao, Eric Xing, Laurent El Ghaoui, and Michael Jordan.
 743 Theoretically principled trade-off between robustness and accuracy. In *International conference*
 744 *on machine learning*, pp. 7472–7482. PMLR, 2019.

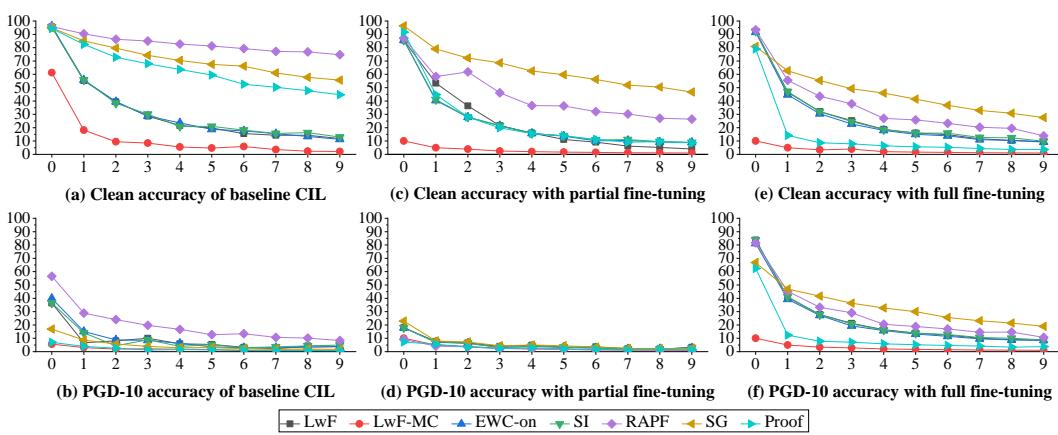
745 Xi Zhang, Feifei Zhang, and Changsheng Xu. Vqacl: A novel visual question answering continual
 746 learning setting. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern*
 747 *Recognition*, pp. 19102–19112, 2023.

748 Stephan Zheng, Yang Song, Thomas Leung, and Ian Goodfellow. Improving the robustness of deep
 749 neural networks via stability training. In *Proceedings of the ieee conference on computer vision*
 750 *and pattern recognition*, pp. 4480–4488, 2016.

756 Da-Wei Zhou, Yuanhan Zhang, Yan Wang, Jingyi Ning, Han-Jia Ye, De-Chuan Zhan, and Ziwei Liu.
757 Learning without forgetting for vision-language models. *IEEE Transactions on Pattern Analysis
758 and Machine Intelligence*, 2025.
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

810 A LLM USAGE STATEMENT
811

812 We used a large language model, ChatGPT, as a general-purpose assistant to help with language
813 polishing and stylistic improvements of the manuscript. The LLM was not involved in research
814 ideation, experimental design, data analysis, or interpretation of results, and all scientific contribu-
815 tions and conclusions presented in this work are solely those of the authors.

817 B EXPERIMENTAL VALIDATION OF THE TRADE-OFF IN RCIL
818

819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Figure 4: Incremental performance (clean and PGD-10 accuracy) of different methods in the CIL setting on S-CIFAR100. (a) and (b) show the clean and PGD-10 accuracy of baseline CIL. (c) and (d) show the clean and PGD-10 accuracy of CIL with adversarial training (AT) using partial fine-tuning (all methods update only the last block, except RAPF and Proof that additionally update the added adapter module). (e) and (f) show the clean and PGD-10 accuracy of CIL with AT using full fine-tuning.

Most existing CIL methods focus on alleviating catastrophic forgetting, but they largely overlook the vulnerability of CIL models to adversarial perturbations. Such vulnerability poses a critical threat to the reliability and safety of CIL in real-world applications. This trade-off is formally captured in Eq. ??, where prior work tends to emphasize the first term, while enforcing stability for past tasks, which ignores the second term, which promotes robustness against adversarial perturbations. As a result, models that achieve high accuracy on clean examples often collapse under adversarial ones, producing incorrect or misleading predictions and leading to nearly zero accuracy (see Figure 4 (a, b)). Incorporating adversarial training into CIL provides a natural way to address this issue by encouraging models to balance robustness and adaptive learning across tasks. However, striking this balance remains highly challenging, as robustness and stability impose conflicting requirements on parameter updates. For example, Figure 4 (c, d) shows that updating only a limited set of parameters yields minimal robustness gains with less forgetting, whereas Figure 4 (e, f) shows that updating all parameters improves robustness at the cost of severe forgetting.

These observations highlight the fundamental difficulty of designing RCIL algorithms that can simultaneously retain past knowledge and defend against adversarial perturbations, underscoring the necessity of new approaches that explicitly address this robustness-stability trade-off.

C DETAILED PROOF OF THE GEOMETRIC INEQUALITY

In particular, for any three unit vectors \mathbf{a} , \mathbf{b} , and \mathbf{c} , the vector \mathbf{a} can be orthogonally decomposed into two components: one lying in the direction of \mathbf{c} , and the other residing in the subspace orthogonal to \mathbf{c} . Formally,

$$\mathbf{a} = (\mathbf{a}^\top \mathbf{c}) \mathbf{c} + \mathbf{a}_\perp, \quad \text{where } \mathbf{a}_\perp \perp \mathbf{c} \text{ and thus } \mathbf{a}_\perp^\top \mathbf{c} = 0 \quad (17)$$

Similarly, the vector \mathbf{b} can be decomposed as:

$$\mathbf{b} = (\mathbf{b}^\top \mathbf{c}) \mathbf{c} + \mathbf{b}_\perp, \quad \text{where } \mathbf{b}_\perp \perp \mathbf{c} \text{ and thus } \mathbf{b}_\perp^\top \mathbf{c} = 0 \quad (18)$$

864 Thus, the inner product $\mathbf{a}^\top \mathbf{b}$ becomes:
 865

$$\begin{aligned} 866 \mathbf{a}^\top \mathbf{b} &= ((\mathbf{a}^\top \mathbf{c}) \mathbf{c} + \mathbf{a}_\perp)^\top ((\mathbf{b}^\top \mathbf{c}) \mathbf{c} + \mathbf{b}_\perp) \\ 867 &= (\mathbf{a}^\top \mathbf{c})(\mathbf{b}^\top \mathbf{c}) \mathbf{c}^\top \mathbf{c} + (\mathbf{a}^\top \mathbf{c}) \mathbf{c}^\top \mathbf{b}_\perp + (\mathbf{a}^\top \mathbf{c}) \mathbf{c}_\perp^\top \mathbf{c} + \mathbf{a}_\perp^\top \mathbf{b}_\perp \\ 868 &= (\mathbf{a}^\top \mathbf{c})(\mathbf{b}^\top \mathbf{c}) + \mathbf{a}_\perp^\top \mathbf{b}_\perp \\ 869 \end{aligned} \quad (19)$$

870 Therefore, the deviation from the product of cosine similarities is:
 871

$$\begin{aligned} 872 |\mathbf{a}^\top \mathbf{b} - (\mathbf{a}^\top \mathbf{c})(\mathbf{b}^\top \mathbf{c})| &= |\mathbf{a}_\perp^\top \mathbf{b}_\perp| \\ 873 &\leq \|\mathbf{a}_\perp\| \cdot \|\mathbf{b}_\perp\| \\ 874 &= \|\mathbf{a} - (\mathbf{a}^\top \mathbf{c}) \mathbf{c}\| \cdot \|\mathbf{b} - (\mathbf{b}^\top \mathbf{c}) \mathbf{c}\| \\ 875 \end{aligned} \quad (20)$$

876 Because they are unit vectors, we have:
 877

$$878 \|\mathbf{a} - (\mathbf{a}^\top \mathbf{c}) \mathbf{c}\|^2 = \mathbf{a}^\top \mathbf{a} - 2(\mathbf{a}^\top \mathbf{c})^2 + (\mathbf{a}^\top \mathbf{c})^2 \mathbf{c}^\top \mathbf{c} = 1 - (\mathbf{a}^\top \mathbf{c})^2 \quad (21)$$

880 Combining these results yields:
 881

$$882 |\mathbf{a}^\top \mathbf{b} - (\mathbf{a}^\top \mathbf{c})(\mathbf{b}^\top \mathbf{c})| \leq \|\mathbf{a} - (\mathbf{a}^\top \mathbf{c}) \mathbf{c}\| \cdot \|\mathbf{b} - (\mathbf{b}^\top \mathbf{c}) \mathbf{c}\| = \sqrt{1 - (\mathbf{a}^\top \mathbf{c})^2} \cdot \sqrt{1 - (\mathbf{b}^\top \mathbf{c})^2} \quad (22)$$

884 Because $\gamma_{ab} = \cos(\mathbf{a}, \mathbf{b}) = \mathbf{a}^\top \mathbf{b}$, $\gamma_{ac} = \cos(\mathbf{a}, \mathbf{c}) = \mathbf{a}^\top \mathbf{c}$, and $\gamma_{bc} = \cos(\mathbf{b}, \mathbf{c}) = \mathbf{b}^\top \mathbf{c}$, we obtain:
 885

$$886 |\gamma_{ab} - \gamma_{ac}\gamma_{bc}| \leq \sqrt{1 - \gamma_{ac}^2} \cdot \sqrt{1 - \gamma_{bc}^2} \quad (23)$$

888 This implies the final bound:
 889

$$890 \gamma_{ac}\gamma_{bc} - \sqrt{(1 - \gamma_{ac}^2)(1 - \gamma_{bc}^2)} \leq \gamma_{ab} \leq \gamma_{ac}\gamma_{bc} + \sqrt{(1 - \gamma_{ac}^2)(1 - \gamma_{bc}^2)} \quad (24)$$

892 D PSEUDO CODE FOR SAGE

894 To provide a clearer exposition of our method, we present the corresponding pseudo code in Algo-
 895 rithm 1.

897 Algorithm 1 PSEUDO CODE FOR SAGE.

898 **Input:** Incremental Datasets: $\{\mathcal{D}_1, \mathcal{D}_2, \dots, \mathcal{D}_T\}$, Pre-trained CLIP image encoder and text en-
 899 coder: $f(\cdot), g(\cdot)$

900 **Output:** Robust incrementally trained CLIP model

```

901 1: for  $t = 1$  to  $T$  do
902 2:   Extract input samples  $\mathcal{X}_t$ , corresponding labels  $\mathcal{Y}_t$ , and text prompts  $\mathcal{P}_t$  from  $\mathcal{D}_t$ 
903 3:   for epoch = 1 to max_epochs do
904 4:     Sample a mini-batch: input samples  $\mathbf{x}_t$ , corresponding labels  $\mathbf{y}_t$ , and text prompts  $\mathbf{p}_t$ 
905 5:     for iter = 1 to max_iterations do
906 6:       Generate adversarial examples  $\mathbf{x}_t^{adv}$  using PGD via Eq. 1
907 7:     end for
908 8:     if  $t > 1$  then
909 9:       Compute the total loss  $\mathcal{L}_{\text{total}}$  via Eq. 16
910 10:    else
911 11:      Compute the cross-entropy loss  $\mathcal{L}_{\text{CE}}$ 
912 12:    end if
913 13:    Perform backpropagation to compute gradients  $\frac{\partial \mathcal{L}}{\partial \theta}$ 
914 14:    Compute parameter importance scores  $I$ 
915 15:    Determine the binary mask  $m$  via Eq. 10
916 16:    Update the parameters of the image encoder via  $\theta \leftarrow \theta + m \odot \Delta \theta$ 
917 17:  end for
918 18: end for

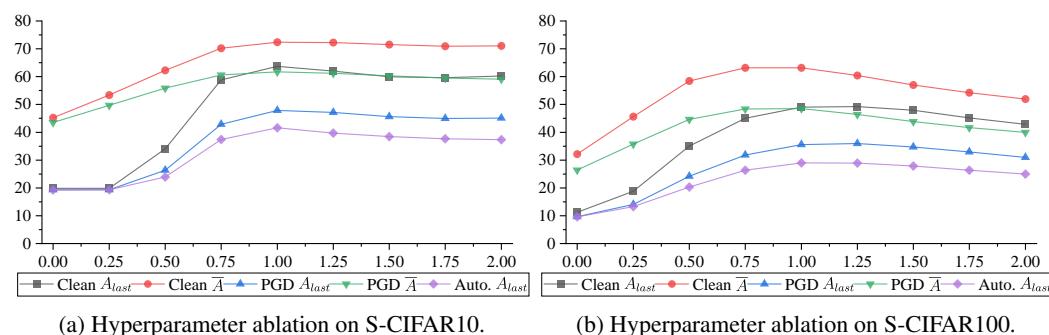
```

918 E SUPPLEMENTARY ABLATION EXAMPLES
919920 **Effect of the Top- $k\%$ Parameter Selection.**

921 We update the top- $k\%$ of parameters in each
922 layer based on their importance score I . To as-
923 sess the impact of different k values on the fi-
924 nal performance, we conduct experiments with
925 $k = 1e-3, 1e-2, 1e-1$. The results in Ta-
926 ble 5 show that when k is small (e.g., $1e-3$),
927 the model tends to exhibit weaker robustness.

928 This effect is not obvious on datasets with fewer classes, but on S-CIFAR100, the PGD \bar{A} score
929 decreases by 3.79% compared to $k = 1e-2$. On the other hand, when k is large (e.g., $1e-1$), the
930 generalization performance is worse than that of $k = 1e-2$. This observation is consistent with our
931 discussion in Section 4.1, where class-incremental learning tends to update fewer parameters to mit-
932 igate forgetting, while adversarial robustness benefits from updating a larger portion of parameters
933 to enforce robustness. Considering the trade-off, we set $k = 1e-2$.

934 **Sensitivity of the Loss Weight μ .** Figure 5 illustrates the sensitivity of the weight μ on S-CIFAR10
935 and S-CIFAR100. The results indicate that the model exhibits sharp performance degradation when
936 $\mu < 0.75$, indicating a high sensitivity to under-weighting the loss term. For instance, on S-
937 CIFAR10, the PGD A_{last} drops sharply from 47.85% at $\mu = 1$ to 19.31% at $\mu = 0$. Once $\mu > 0.75$,
938 both clean and robust accuracies become relatively stable, with values around $\mu = 1$ achieving the
939 best trade-off. Overall, extreme values of μ substantially impair performance, whereas settings close
940 to $\mu = 1$ yield stable and optimal results. Hence, we choose $\mu = 1$ as the default setting.



951 Figure 5: Effect of varying the loss weight μ on performance for S-CIFAR10 and S-CIFAR100 after
952 fine-tuning with PGD-2: (a) S-CIFAR10; (b) S-CIFAR100.

955 F EXPERIMENTAL RESULTS WITH REPLAY

958 In addition to the above methods, we also compare with TABA (Bai et al., 2023), a replay-based
959 RCIL approach. To enable replay, we adopt iCaRL (Rebuffi et al., 2017) to store 500 exemplars from
960 previous tasks, which improves the model’s performance and allows evaluation under the exemplar-
961 replay setting. As shown in Table 6, all methods achieve performance gains over the no-replay
962 setting. Across all four datasets, our method SAGE consistently outperforms the others in terms of
963 PGD A_{last} , yielding the smallest improvement of 3.26% on S-STL10 and the largest improvement
964 of 18.40% on S-CIFAR100 compared to the second-best approach. Meanwhile, our method also
965 achieves the best results on Auto. A_{last} . This further demonstrates the effectiveness of our approach,
966 showing that it maintains strong performance in both replay and no-replay settings.

968 G EXPERIMENTAL RESULTS ON IMAGENET-A
969

970 To evaluate the performance of our method SAGE in realistic continual learning scenarios, we extend
971 our experiments to ImageNet-A Hendrycks et al. (2021). This dataset consists of natural images that
are particularly challenging for standard ImageNet-trained models, selected to highlight common

972
 973
 974
 975
 976 Table 6: Evaluation of several methods on ViT-B/32 with 500 size of memory buffer. We report
 977 average PGD-10, Auto. accuracy (%) and BWT on S-CIFAR10, S-STL10, S-CIFAR100 and S-
 978 TinyImageNet under attack strength of 1/255. **Bold** for the best result, underline for secondary.
 979
 980
 981
 982
 983
 984
 985

Type	Method	S-CIFAR10			S-STL10			S-CIFAR100			S-TinyImageNet						
		PGD		Auto.													
		$\bar{A} \uparrow$	$A_{last} \uparrow$	$BWT \uparrow$	$\bar{A} \uparrow$	$A_{last} \uparrow$	$BWT \uparrow$	$\bar{A} \uparrow$	$A_{last} \uparrow$	$BWT \uparrow$	$\bar{A} \uparrow$	$A_{last} \uparrow$	$BWT \uparrow$				
AT	TeCoA	18.05	9.42	<u>-41.56</u>	0.13	44.65	35.72	-24.34	0.36	13.71	7.99	<u>-47.90</u>	6.83				
	FARE	38.64	30.88	-10.76	3.69	57.91	49.85	<u>-8.70</u>	9.78	25.66	18.97	-6.10	5.72				
	PMG-AFT	18.16	9.07	-42.13	0.05	44.07	35.45	-24.09	0.31	13.89	8.31	<u>-47.94</u>	7.18				
	TGA-ZSR	38.67	19.28	-63.45	13.55	62.55	54.30	-17.44	26.10	25.72	13.71	-48.67	8.86				
R-CIL	R-LwF	72.98	58.04	-46.46	57.51	81.08	71.34	-23.11	69.55	41.27	21.02	<u>-67.76</u>	20.79				
	R-LwF-MC	56.41	34.42	-73.58	31.50	55.03	29.50	-68.11	16.89	2.93	1.00	-1.11	1.00				
	R-EWC-on	72.38	57.82	-46.61	57.55	79.01	67.14	-28.59	66.67	37.28	17.00	-68.97	16.88				
	R-SI	74.11	59.05	-45.25	58.53	80.33	70.58	-25.55	68.61	42.45	20.63	-68.42	20.46				
R-CIL-CLIP	R-RAPF	72.20	56.49	-49.13	0.00	59.52	62.92	-25.77	61.94	46.34	26.17	-62.80	25.69				
	R-SG	55.64	50.57	2.40	0.00	76.32	70.75	-16.23	62.84	39.24	24.56	-32.93	20.04				
	R-Proof	33.79	13.87	-69.00	13.14	64.70	33.98	-61.52	32.10	13.31	4.83	-41.10	4.42				
RCIL	TABA	62.39	40.34	-64.36	36.52	62.73	37.91	-34.42	22.12	2.94	1.00	-1.11	1.00				
	FLAIR	58.10	40.52	-67.11	35.59	62.95	47.78	-49.89	26.41	2.93	1.00	-1.11	1.00				
RCIL4CLIP	SAGE (ours)	75.09	66.26	-13.15	58.82	81.30	74.60	<u>-1.33</u>	72.19	55.36	44.57	<u>-1.67</u>	38.42	43.57	37.14	<u>-1.19</u>	31.30

986
 987
 988 failure cases. The images exhibit diverse
 989 and complex visual conditions such as un-
 990 usual viewpoints, occlusions, lighting varia-
 991 tions, blur, and background clutter. Using this
 992 dataset allows us to assess how well our method
 993 handles the challenges posed by real-world, di-
 994 verse, and hard-to-classify images. ImageNet-
 995 A is divided into 10 tasks with 20 classes per
 996 task, denoted as S-ImageNet-A. The relatively
 997 limited sample size further increases the diffi-
 998 culty, since each class contains far fewer exam-
 999 ples than conventional large-scale benchmarks,
 1000 making continual learning more sensitive to
 1001 overfitting and feature drift. The results in
 1002 Table 7 show that SAGE consistently delivers
 1003 higher robustness and lower forgetting on S-
 1004 ImageNet-A, remaining stable even under se-
 1005 vere distribution shifts and limited samples, demon-
 1006 strating its effectiveness in realistic continual
 1007 learning settings.

H COMPARISON WITH FREE ADVERSARIAL TRAINING

1009 To strengthen the assessment of practicality, we
 1010 additionally include Free Adversarial Training
 1011 (FreeAT) Shafahi et al. (2019a) as a lightweight
 1012 robustness baseline. FreeAT avoids generating
 1013 adversarial examples in separate steps and
 1014 instead updates the model and the adversarial
 1015 perturbation within the same backward pass.
 1016 This design greatly reduces the computational
 1017 overhead during training. For FreeAT, we set
 1018 the nominal number of epochs to be consistent
 1019 with those used for the other methods in order
 1020 to ensure a fair comparison. Because FreeAT
 1021 performs m gradient update hops within each
 1022 epoch, its effective number of passes over the
 1023 data becomes epochs divided by m . In our exper-
 1024 iments, we use $m = 2$, which keeps the com-
 1025 putational cost comparable across methods while still following the update mechanism required by
 FreeAT. The results in Table 8 show that across all sequential tasks and both attacks, SAGE consis-
 tently and significantly outperforms FreeAT, delivering stronger robustness and much less forgetting,
 making it a more suitable choice for robust class-incremental learning.

Table 7: Evaluation of several methods on ViT-B/32 without memory. We report Clean, PGD-10,
 Auto. accuracy (%), and BWT on S-ImageNet-A under attack strength of 1/255. **Bold** for the best
 result, underline for secondary.

Type	Method	S-ImageNet-A			Clean		PGD	Auto.	
		Clean		PGD	Clean		PGD	Auto.	
		$\bar{A} \uparrow$	$A_{last} \uparrow$	$BWT \uparrow$	$\bar{A} \uparrow$	$A_{last} \uparrow$	$BWT \uparrow$	$\bar{A} \uparrow$	$A_{last} \uparrow$
AT	TeCoA	12.16	2.40	<u>-24.68</u>	0.81	1.63	<u>-3.72</u>	0.07	
	FARE	24.53	<u>12.82</u>	-15.50	2.13	1.53	<u>-0.96</u>	0.26	
	PMG-AFT	12.39	2.40	-25.64	0.89	1.63	<u>-3.98</u>	0.07	
	TGA-ZSR	13.69	3.50	-29.26	2.54	2.42	<u>-8.18</u>	0.86	
R-CIL	R-LwF	7.48	3.75	-22.70	3.53	2.21	<u>-11.60</u>	1.51	
	R-LwF-MC	1.14	0.39	-0.00	1.14	0.39	-0.00	0.79	
	R-EWC-on	7.72	3.27	-23.06	3.71	2.60	<u>-11.51</u>	1.71	
	R-SI	7.54	2.96	-22.11	3.46	2.21	<u>-10.52</u>	1.51	
R-CIL-CLIP	R-RAPF	2.22	1.92	-8.38	1.89	1.63	<u>-6.53</u>	1.05	
	R-SG	5.36	3.01	<u>-5.60</u>	2.45	1.51	<u>-1.89</u>	0.92	
	R-Proof	5.13	1.63	-12.78	2.82	1.54	<u>-8.12</u>	0.59	
RCIL4CLIP	FLAIR	1.14	0.39	-0.00	1.14	0.39	-0.00	0.79	
RCIL4CLIP	SAGE (ours)	20.45	13.81	<u>-8.61</u>	8.91	6.69	<u>-3.38</u>	4.94	

Table 8: Evaluation of several methods on ViT-B/32 without memory. We report Clean, PGD-10,
 Auto. accuracy (%), and BWT on S-CIFAR10,
 S-STL10, S-CIFAR100, and S-TinyImageNet un-
 der attack strength of 1/255. **Bold** for the best re-
 sult.

Dataset	Method	Clean			PGD			Auto.			
		$\bar{A} \uparrow$		$A_{last} \uparrow$	$BWT \uparrow$	$\bar{A} \uparrow$		$A_{last} \uparrow$	$BWT \uparrow$	$\bar{A} \uparrow$	
		$\bar{A} \uparrow$	$A_{last} \uparrow$	$BWT \uparrow$	$\bar{A} \uparrow$	$A_{last} \uparrow$	$BWT \uparrow$	$\bar{A} \uparrow$	$A_{last} \uparrow$	$BWT \uparrow$	$\bar{A} \uparrow$
S-CIFAR10	FreeAT	44.85	19.78	<u>-98.23</u>	41.90	19.15	<u>-90.81</u>	18.03			
	SAGE (ours)	72.36	63.67	<u>-34.12</u>	61.75	47.85	<u>-42.27</u>	41.60			
S-STL10	FreeAT	54.66	39.81	<u>-73.77</u>	44.63	24.49	<u>-80.11</u>	17.74			
	SAGE (ours)	73.52	69.56	<u>-33.16</u>	63.96	54.31	<u>-40.20</u>	46.52			
S-CIFAR100	FreeAT	26.68	9.38	<u>-89.61</u>	20.85	7.78	<u>-69.96</u>	7.36			
	SAGE (ours)	63.20	49.02	<u>-22.62</u>	48.49	35.59	<u>-19.89</u>	28.98			
S-TinyImageNet	FreeAT	21.36	7.65	<u>-70.81</u>	12.71	4.37	<u>-43.34</u>	4.23			
	SAGE (ours)	56.14	44.72	<u>-13.54</u>	40.21	31.95	<u>-9.49</u>	26.18			

1026 I EVALUATING PERFORMANCE WITH ROBUST BACKBONE INITIALIZATION

1028 To assess whether a robustly fine-tuned backbone can further enhance our approach, we
 1029 initialized the model using a FARE Schlar-
 1030 mann et al. (2024) pretrained Tiny-ImageNet
 1031 checkpoint. As shown in Table 9, this ini-
 1032 tialization leads to consistent improvements on
 1033 S-CIFAR10, S-STL10, and S-TinyImageNet,
 1034 while yielding a small drop on S-CIFAR100.
 1035 The overall trend shows that robust initializa-
 1036 tion helps SAGE adapt more confidently to
 1037 most continual learning scenarios and encour-
 1038 ages a more stable progression of robustness.
 1039

1040 J TRAINING 1041 DETAILS OF BASELINES

1042 CLIP (Radford et al., 2021a) consists of an image encoder $f(\cdot)$ and a text encoder $g(\cdot)$, which maps
 1043 a given image-text pair (\mathbf{x}, \mathbf{p}) into corresponding image embedding $f(\mathbf{x})$ and text embedding $g(\mathbf{p})$.
 1044 The prediction for the correspondence between image \mathbf{x} and \mathbf{p} is computed as:

$$1045 \mathcal{S}_{i,j} = \tau \cdot \frac{f(\mathbf{x}_i)}{\|f(\mathbf{x}_i)\|} \cdot \left(\frac{g(\mathbf{p}_j)}{\|g(\mathbf{p}_j)\|} \right)^\top \quad (25)$$

$$1046 \mathbf{q}_{i,j} = \frac{\mathcal{S}_{i,j}}{\sum_k \mathcal{S}_{i,k}}$$

1047 where i and j index the image and text samples respectively, and τ is a temperature parameter
 1048 that scales the similarity scores. Here, we denote by \mathcal{S}^{adv} the output generated from adversarial
 1049 examples \mathbf{x}^{adv} and by \mathbf{q}^{adv} the corresponding predictions, while \mathcal{S}_t represents the output after
 1050 learning the t -th task. Furthermore, $\mathcal{S}_t|_i^j$ denotes the output restricted to the classes introduced from
 1051 task i through task j , after completing the training of the current task t . In this work, we update all
 1052 model parameters during training, adopt the SGD optimizer to minimize the objective function, and
 1053 employ the text prompt template “This is a photo of {}”.
 1054

1055 J.1 ZERO-SHOT ADVERSARIAL ROBUSTNESS

1056 J.1.1 THE TRAINING DETAILS OF TECOA

1057 TeCoA (Mao et al., 2023) is a simple yet effective approach to enhance adversarial robustness. It
 1058 introduces a text-guided contrastive adversarial training loss, which enforces alignment between the
 1059 adversarial visual features and their corresponding text embeddings. Thus, the loss is defined as:

$$1060 \mathcal{L}_{\text{total}} = \mathcal{L}_{\text{CE}}(\mathbf{q}_t^{adv}, \mathbf{y}) \quad (26)$$

1061 where \mathbf{q}_t^{adv} denotes the prediction vector of adversarial examples from task t , and \mathbf{y} represents the
 1062 one-hot vector label.
 1063

1064 For S-CIFAR10 and S-STL10, the model is trained for 20 epochs with a learning rate of 0.001, a
 1065 weight decay of 1e-5, and a batch size of 64. For S-CIFAR100 and S-TinyImageNet, we use the
 1066 same hyperparameters but extend the training to 50 epochs.
 1067

1068 J.1.2 THE TRAINING DETAILS OF FARE

1069 FARE (Schlar mann et al., 2024) is an unsupervised adversarial fine-tuning scheme designed to ob-
 1070 tain a robust CLIP vision encoder, thereby improving robustness across downstream vision tasks. It
 1071 enforces that the features of adversarially perturbed inputs remain close to those of the unperturbed
 1072 inputs produced by the original CLIP model. In a class-incremental learning setting, we adapt this
 1073

1074 Table 9: Evaluation of several methods on ViT-
 1075 B/32 without memory. We report Clean, PGD-10,
 1076 Auto. accuracy (%), and BWT on S-CIFAR10,
 1077 S-STL10, S-CIFAR100, and S-TinyImageNet un-
 1078 der attack strength of 1/255. **Bold** for the best re-
 1079 sult.

Dataset	Method	Clean			PGD			Auto.	
		$\bar{A} \uparrow$	$A_{last} \uparrow$	$BWT \uparrow$	$\bar{A} \uparrow$	$A_{last} \uparrow$	$BWT \uparrow$	$A_{last} \uparrow$	
S-CIFAR10	FLAIR	61.27	45.83	-66.05	51.73	32.31	-77.91	30.90	
	FLAIR + FARE	48.15	25.66	-91.76	44.34	20.26	-94.80	19.51	
	SAGE	72.36	63.67	-34.12	61.75	47.85	-42.27	41.60	
	SAGE + FARE	73.52	66.86	-34.24	62.22	50.33	-45.00	45.52	
S-STL10	FLAIR	71.32	64.92	-42.17	59.69	48.26	-51.59	41.65	
	FLAIR + FARE	79.21	81.11	-22.44	62.81	51.39	-54.02	42.76	
	SAGE	73.52	69.56	-33.16	63.96	54.31	-40.20	46.32	
	SAGE + FARE	80.07	82.42	-17.97	70.91	66.75	-30.97	60.59	
S-CIFAR100	FLAIR	3.05	1.00	-0.00	2.94	1.00	-0.00	1.00	
	FLAIR + FARE	3.15	1.00	-1.18	3.03	1.00	-1.12	1.00	
	SAGE	63.20	49.02	-22.16	48.49	35.59	-19.89	28.98	
	SAGE + FARE	60.07	44.65	-35.89	46.00	30.75	-34.48	24.76	
S-TinyImageNet	FLAIR	1.46	0.50	-0.00	1.46	0.50	-0.00	0.50	
	FLAIR + FARE	1.46	0.50	-0.00	1.46	0.50	-0.00	0.50	
	SAGE	56.14	44.72	-13.54	40.21	31.95	-9.49	26.18	
	SAGE + FARE	61.03	52.74	-23.52	43.59	36.31	-21.98	30.51	

1080 idea by replacing the original CLIP model with the previous CLIP model. Specifically, the loss is
 1081 defined as:

$$\mathcal{L}_{\text{total}} = \|f_{\theta_t}(\mathbf{x}_t^{adv}) - f_{\theta_{t-1}}(\mathbf{x}_t)\|_2^2 \quad (27)$$

1083 where $f_{\theta_{t-1}}(\mathbf{x}_t)$ denotes the feature representation generated by the model before updating from
 1084 θ_{t-1} to θ_t , and $f_{\theta_t}(\mathbf{x}_t)$ is the corresponding output after the update.

1085 For S-CIFAR10 and S-STL10, the model is trained for 20 epochs with a learning rate of 0.001, a
 1086 weight decay of 1e-4, and a batch size of 64. For S-CIFAR100 and S-TinyImageNet, we use the
 1087 same hyperparameters but extend the training to 50 epochs.

1089 J.1.3 THE TRAINING DETAILS OF PMG-AFT

1091 PMG-AFT (Wang et al., 2024b) proposes a pretrained model guided adversarial fine-tuning method,
 1092 which leverages supervision from the original pretrained model through a carefully designed aux-
 1093 illiary branch to enhance robustness. Specifically, it minimizes the distance between the features of
 1094 adversarial examples in the target model and those in the pretrained model. In a class-incremental
 1095 learning setting, we adapt this idea by replacing the original CLIP model with the previous CLIP
 1096 model. The loss is defined as:

$$\mathcal{L}_{\text{total}} = \mathcal{L}_{\text{CE}}(\mathbf{q}_t^{adv}, \mathbf{y}) + \alpha \cdot \mathcal{L}_{\text{KL}}(\mathcal{S}_t^{adv}|_1^{t-1} \parallel \mathcal{S}_{t-1}^{adv}) + \beta \cdot \mathcal{L}_{\text{KL}}(\mathcal{S}_t^{adv} \parallel \mathcal{S}_t) \quad (28)$$

1097 The hyperparameters are set to $\alpha = 1.0$ and $\beta = 1.0$. For S-CIFAR10 and S-STL10, the model is
 1098 trained for 20 epochs with a learning rate of 0.001, a weight decay of 1e-5, and a batch size of 64.
 1099 For S-CIFAR100 and S-TinyImageNet, we use the same hyperparameters but extend the training to
 1100 50 epochs.

1102 J.1.4 THE TRAINING DETAILS OF TGA-ZSR

1104 TGA-ZSR (Yu et al., 2024b) observes that adversarial perturbations induce a noticeable shift in text-
 1105 guided attention. To address this, it introduces a simple yet effective strategy that aligns the text-
 1106 guided attention of adversarial examples obtained from the target model with that of clean examples
 1107 produced by the original model. In addition, it enforces consistency of text-guided attention between
 1108 the target and original models on clean examples. In a class-incremental learning setting, we adapt
 1109 this idea by replacing the original model with the previous model. The loss is defined as:

$$\mathcal{A}(\mathbf{x}) = f(\mathbf{x}) \cdot g(\mathbf{p})^\top, \quad \mathcal{A}(\mathbf{x}) \in \mathbb{R}^{P \times 1} \quad (29)$$

$$\mathcal{L}_{\text{total}} = \mathcal{L}_{\text{CE}}(\mathbf{q}_t^{adv}, \mathbf{y}) + \alpha \cdot \|\mathcal{A}_t(\mathbf{x}^{adv})|_1^{t-1} - \mathcal{A}_{t-1}(\mathbf{x})\|_2 + \beta \cdot \|\mathcal{A}_t(\mathbf{x})|_1^{t-1} - \mathcal{A}_{t-1}(\mathbf{x})\|_2$$

1110 We define the text-guided attention as $\mathcal{A}(\mathbf{x}) \in \mathbb{R}^{P \times 1}$, where P denotes the number of image patches.
 1111 The notation $\mathcal{A}_t(\cdot)$ refers to the text-guided attention derived from the current model at task t , while
 1112 $\mathcal{A}_t(\cdot)$ corresponds to that of the previous task model. Moreover, the operator $|_1^{t-1}$ indicates that the
 1113 attention vector is restricted to the classes observed from tasks 1 through $t - 1$.

1114 The hyperparameters are set to $\alpha = 0.08$ and $\beta = 0.05$. For S-CIFAR10 and S-STL10, the model
 1115 is trained for 20 epochs with a learning rate of 0.001, a weight decay of 1e-5, and a batch size of 64.
 1116 For S-CIFAR100 and S-TinyImageNet, we use the same hyperparameters but extend the training to
 1117 50 epochs.

1118 J.2 CLASS-INCREMENTAL LEARNING

1123 J.2.1 THE TRAINING DETAILS OF R-LWF

1125 LwF (Li & Hoiem, 2017) is a regularization-based strategy that mitigates catastrophic forgetting
 1126 through knowledge distillation. It combines a cross-entropy loss with a distillation loss. To enhance
 1127 its adversarial robustness, we replace the clean examples in the cross-entropy term with adversarial
 1128 examples, denoted as R-LwF:

$$\mathcal{L}_{\text{total}} = \mathcal{L}_{\text{CE}}(\mathbf{q}_t^{adv}, \mathbf{y}) + \alpha \cdot \mathcal{L}_{\text{KL}}(\mathcal{S}_t|_1^{t-1} \parallel \mathcal{S}_{t-1}) \quad (30)$$

1131 The hyperparameter is set to $\alpha = 1.0$. For S-CIFAR10 and S-STL10, the model is trained for 20
 1132 epochs with a learning rate of 0.1, a weight decay of 1e-5, and a batch size of 64. For S-CIFAR100
 1133 and S-TinyImageNet, the model is trained for 50 epochs with a learning rate of 0.5, a weight decay
 1134 of 1e-5, and a batch size of 64.

1134 J.2.2 THE TRAINING DETAILS OF R-LwF-MC
1135

1136 LwF-MC (Dhar et al., 2019) is an improved variant of LwF that replaces both the cross-entropy loss
1137 and the KL-divergence term with a binary cross-entropy (BCE) loss, allowing each output dimension
1138 to be treated independently and thereby alleviating catastrophic forgetting more effectively.
1139 To enhance its adversarial robustness, we replace the clean examples in the first BCE term with
1140 adversarial examples, denoted as R-LwF-MC:

$$1141 \quad \text{ratio} = \text{len}(\mathbf{y}_{t-1}) / \text{len}(\mathbf{y}_t) \quad (31)$$

$$1142 \quad \mathcal{L}_{\text{total}} = (1 - \text{ratio}) \cdot \mathcal{L}_{\text{BCE}}(\mathcal{S}_t^{adv}|_{t-1}^t, \mathbf{1}_y) + \text{ratio} \cdot \mathcal{L}_{\text{BCE}}(\mathcal{S}_t|_1^{t-1}, \text{sigmoid}(\mathcal{S}_{t-1}))$$

1143 which $\mathbf{1}_y$ denotes the binary one-hot vector indicating the ground-truth class y , $\text{sigmoid}(\cdot)$ denotes
1144 the sigmoid activation function, and ratio is defined as the proportion of previously learned relative
1145 to the total number of classes after task t .

1146 For S-CIFAR10 and S-STL10, the model is trained for 20 epochs with a learning rate of 0.1, a weight
1147 decay of 1e-5, and a batch size of 64. For S-CIFAR100 and S-TinyImageNet, the model is trained
1148 for 50 epochs with a learning rate of 0.5, a weight decay of 1e-5, and a batch size of 64.

1149 J.2.3 THE TRAINING DETAILS OF R-EWC-ON
1150

1151 EWC (Kirkpatrick et al., 2017) is a regularization-based approach that constrains parameter up-
1152 dates based on their estimated importance to previously learned tasks. By discouraging significant
1153 changes to critical parameters, EWC effectively preserves prior knowledge and mitigates catas-
1154 trofic forgetting. To enhance its adversarial robustness, we replace the clean examples in the
1155 cross-entropy term with adversarial examples, denoted as R-EWC-on:

$$1156 \quad \mathcal{L}_{\text{total}} = \mathcal{L}_{\text{CE}}(\mathbf{q}_t^{adv}, \mathbf{y}) + \sum_i \frac{\alpha}{2} F_i(\theta_t^i - \theta_{t-1}^i)^2 \quad (32)$$

1157 where F_i is the Fisher information estimating the importance of parameter θ^i , θ_t denotes the model
1158 parameters after learning task t , and α controls the strength of the regularization term.

1159 The hyperparameter λ is set to 25. The model is trained with a weight decay of 1e-5 and a batch size
1160 of 32. For S-CIFAR10 and S-STL10, the model is trained for 20 epochs with a learning rate of 0.1,
1161 while for S-CIFAR100 and S-TinyImageNet, it is trained for 50 epochs with a learning rate of 0.5.

1162 J.2.4 THE TRAINING DETAILS OF R-SI
1163

1164 SI (Zenke et al., 2017) builds on a concept similar to EWC but introduces intelligent synapses that in-
1165 incorporate aspects of biological plasticity into artificial neural networks. Each synapse incrementally
1166 accumulates task-relevant information and uses this knowledge to efficiently integrate new memories
1167 while preserving previously acquired ones, thereby mitigating catastrophic forgetting. To enhance
1168 its adversarial examples, we replace the clean examples in the cross-entropy term with adversarial
1169 examples, denoted as R-SI:

$$1170 \quad \mathcal{L}_{\text{total}} = \mathcal{L}_{\text{CE}}(\mathbf{q}_t^{adv}, \mathbf{y}) + \alpha \cdot \sum_i \Omega_i(\theta_t^i - \theta_{t-1}^i)^2 \quad (33)$$

1171 where Ω_i is each synapse incrementally accumulates task-relevant information, and c controls the
1172 strength of the regularization term.

1173 The hyperparameter α is fixed at 0.5. The model is trained with a weight decay of 1e-5 and a batch
1174 size of 64. For S-CIFAR10 and S-STL10, the model is trained for 20 epochs with a learning rate of
1175 0.1, while for S-CIFAR100 and S-TinyImageNet, it is trained for 50 epochs with a learning rate of
1176 0.5.

1177 J.3 CLASS-INCREMENTAL LEARNING WITH CLIP
11781179 J.3.1 THE TRAINING DETAILS OF R-PROOF
1180

1181 Proof (Zhou et al., 2025) trains task-specific projection layers on top of frozen image and text en-
1182 coders. For each task, additional projections are introduced while the previous ones remain fixed,

thereby mitigating the forgetting of previously learned concepts. Furthermore, a fusion module is incorporated to better exploit cross-model information. By jointly refining visual and textual representations, the model captures richer task-specific semantic information that facilitates recognition. To enhance its adversarial robustness, we replace the clean examples with adversarial examples, leading to our variant termed R-Proof:

$$\begin{aligned}
 1193 \quad & PI_t(\mathbf{x}^{adv}) = \sum_{m=1}^b PI_t^m(f(\mathbf{x}^{adv})), \quad PT_t(\mathbf{p}) = \sum_{m=1}^b PT_t^m(g(\mathbf{p})) \\
 1194 \quad & \mathbf{P}_t = [PI_t(pro_1), PI_t(pro_2), \dots, PI_t(pro_b)], \quad \mathbf{T}_t = [PT_t(\mathbf{p}_1), PT_t(\mathbf{p}_2), \dots, PT_t(\mathbf{p}_b)] \\
 1195 \quad & \mathbf{C} = [\mathbf{c}_1, \mathbf{c}_2, \dots, \mathbf{c}_b], \quad [\widetilde{PI}_t(\mathbf{x}^{adv}), \tilde{\mathbf{P}}_t, \tilde{\mathbf{T}}_t, \tilde{\mathbf{C}}] = Attn([PI_t(\mathbf{x}^{adv}), \mathbf{P}_t, \mathbf{T}_t, \mathbf{C}]) \\
 1196 \quad & S_{i,j}^{pm} = \tau \cdot \frac{PI_t(\mathbf{x}_i^{adv})}{\|PI_t(\mathbf{x}_i^{adv})\|} \cdot \left(\frac{PT_t(\mathbf{p}_j)}{\|PT_t(\mathbf{p}_j)\|} \right)^\top, \quad \mathbf{q}^{pm} = \frac{S_{i,j}^{pm}}{\sum_k S_{i,k}^{pm}} \\
 1197 \quad & S_{i,j}^{vm} = \tau \cdot \frac{\widetilde{PI}_t(\mathbf{x}_i^{adv})}{\|\widetilde{PI}_t(\mathbf{x}_i^{adv})\|} \cdot \left(\frac{\widetilde{PI}_t(pro_j)}{\|\widetilde{PI}_t(pro_j)\|} \right)^\top, \quad \mathbf{q}^{vm} = \frac{S_{i,j}^{vm}}{\sum_k S_{i,k}^{vm}} \\
 1198 \quad & S_{i,j}^{tm} = \tau \cdot \frac{\widetilde{PI}_t(\mathbf{x}_i^{adv})}{\|\widetilde{PI}_t(\mathbf{x}_i^{adv})\|} \cdot \left(\frac{\widetilde{PT}_t(\mathbf{p}_j)}{\|\widetilde{PT}_t(\mathbf{p}_j)\|} \right)^\top, \quad \mathbf{q}^{tm} = \frac{S_{i,j}^{tm}}{\sum_k S_{i,k}^{tm}} \\
 1199 \quad & \mathcal{L}_{\text{total}} = \mathcal{L}_{\text{CE}}(\mathbf{q}^{pm}, \mathbf{y}) + \mathcal{L}_{\text{CE}}(\mathbf{q}^{vm}, \mathbf{y}) + \mathcal{L}_{\text{CE}}(\mathbf{q}^{tm}, \mathbf{y})
 \end{aligned} \tag{34}$$

Here, $PI_t^m(\mathbf{x}^{adv})$ and $PT_t^m(\cdot)$ denote the m -th image and text projections, respectively, and their sum yield $PI_t(\mathbf{x}^{adv})$ and $PT_t(\mathbf{p})$. The collections of projected features are denoted as $PI_t(\mathbf{x}^{adv})$ for adversarial images, \mathbf{P}_t for visual prototypes, \mathbf{T}_t for text prompts, and \mathbf{C} for additional context embeddings. These features are then refined by the attention module, producing refined representations $\widetilde{PI}_t(\mathbf{x}^{adv})$, $\tilde{\mathbf{P}}_t$, $\tilde{\mathbf{T}}_t$, and $\tilde{\mathbf{C}}$. Based on these fine features, three types of similarity scores are computed: $S_{i,j}^{pm}$ for projected matching between adversarial examples and text prompts, $S_{i,j}^{vm}$ for visual matching between adversarial examples and visual prototypes, and $S_{i,j}^{tm}$ for text matching between adversarial examples and text prompts. Each similarity score is normalized across all candidate classes, resulting in probability distributions \mathbf{q}^{pm} , \mathbf{q}^{vm} , and \mathbf{q}^{tm} , respectively. These distributions are then used to compute the total loss, which combines cross-entropy terms over three matching perspectives.

The model is trained with a learning rate of 0.001, a weight decay of 0.05, and a batch size of 64. For S-CIFAR10 and S-STL10, the model is trained for 20 epochs, while for S-CIFAR100 and S-TinyImageNet, it is trained for 50 epochs.

J.3.2 THE TRAINING DETAILS OF R-RAPF

RAPF (Huang et al., 2024) introduces a linear adapter layer W appended to the image encoder. After fine-tuning this adapter, it employs a decomposed parameter fusion method to integrate parameters from both the new and old adapters. To enhance category separation, RAPF computes distances between new and old text embeddings and leverages these distances to select statistical features of hard examples from previous tasks for sampling, thereby guiding the fine-tuning of the adapter on new tasks. To enhance its adversarial robustness, we replace the clean examples in the cross-entropy term with adversarial examples and compute statistical features from these adversarial examples for sampling, denoted as R-RAPF:

$$\begin{aligned}
 1234 \quad & \mathcal{L}_{\text{total}} = \mathcal{L}_{\text{CE}}(\mathbf{q}_t^{adv}, \mathbf{y}) + \mathcal{L}_{\text{hinge}} \\
 1235 \quad & \mathcal{L}_{\text{hinge}} = \sum_{k=1}^{|\mathcal{P}|} \max(dist(W(\mathbf{e}^{adv}), g(\mathbf{p}_t)) - dist(W(\mathbf{e}^{adv}), g(\mathbf{p}_{1:t-1})) + m, 0)
 \end{aligned} \tag{35}$$

where $\mathcal{P} = \{(i, j) | d_{i,j} < \lambda\}$, $d_{i,j} = dist(g(\mathbf{p}_t), g(\mathbf{p}_{1:t-1}))$, $dist(\cdot, \cdot)$ denotes the Euclidean distance, and m is a constant margin. The sampled data of the old category \mathbf{q}_{old} , derived from the statistical features of adversarial examples, is denoted by \mathbf{e}^{adv} . In R-RAPF, \mathcal{L}_{CE} is used to update all parameters of the model, including both the image encoder and the adapter, whereas $\mathcal{L}_{\text{hinge}}$ is applied exclusively to update the adapter.

We employ the text prompt template “a good photo of a {}”. The hyperparameters are set as $\lambda = 0.5$, $m = 1.0$ and the max ratio to 0.6. The model is trained with a learning rate of 0.01, a weight decay of 0, and a batch size of 64. For S-CIFAR10 and S-STL10, the model is trained for 20 epochs, while for S-CIFAR100 and S-TinyImageNet, it is trained for 50 epochs.

J.3.3 THE TRAINING DETAILS OF R-SG

SG (Yu et al., 2024a) leverages semantic information as auxiliary knowledge to improve the effectiveness of class-incremental learning. Specifically, it utilizes intra-task semantic relationships to generate more informative labels for the current task. Furthermore, it exploits inter-task semantic relationships to enhance knowledge distillation, thereby mitigating the forgetting of previously acquired knowledge. To enhance its adversarial robustness, we replace the clean examples with adversarial examples, denoted as R-SG:

$$\begin{aligned} \mathcal{L}_{\text{total}} &= \mathcal{L}_{\text{CE}}(\mathbf{q}_t^{adv}, \mathbf{y}) + \alpha \cdot \mathcal{L}_{\text{KL}}(\mathbf{q}_t^{adv} \parallel \mathbf{y}^{sg}) + \beta \cdot \mathcal{L}_{\text{KL}}(\mathbf{q}_t^{adv}|_1^{t-1} \parallel \mathbf{q}_{t-1}^{adv}) \\ \mathbf{y}_{i,j}^{sg} &= \frac{\mathcal{S}_{i,j}^{c \leftrightarrow c}}{\sum_k \mathcal{S}_{i,k}^{c \leftrightarrow c}}, \quad \mathcal{S}_{i,j}^{c \leftrightarrow c} = \tau \cdot \frac{g(\mathbf{p}_i)}{\|g(\mathbf{p}_i)\|} \cdot \left(\frac{g(\mathbf{p}_j)}{\|g(\mathbf{p}_j)\|} \right)^\top \end{aligned} \quad (36)$$

Here, $\mathbf{y}_{i,j}^{sg}$ represents semantically-guided labels. $\mathbf{q}_t^{adv}|_1^{t-1}$ refers to the predictions of the new-task model restricted to the classes from previously learned tasks, while \mathbf{q}_{t-1}^{adv} represents the predictions by the model trained on those previous tasks.

We employ the text prompt template “a bad photo of {}”. The hyperparameters are set as $\alpha = 0.5$ and $\beta = 0.5$. For S-CIFAR10, the model is trained for 20 epochs with a learning rate of 0.1, a weight decay of 2e-4, and a batch size of 64, whereas for S-STL10, the learning rate is set to 0.01 with the same weight decay and batch size. For S-CIFAR100 and S-TinyImageNet, the model is trained for 50 epochs with a learning rate of 0.1, a weight decay of 2e-4, and a batch size of 64.

J.4 ROBUST CLASS-INCREMENTAL LEARNING

J.4.1 THE TRAINING DETAILS OF TABA

TABA (Bai et al., 2023) adopts an idea similar to LwF-MC, but differs in that it enhances data diversity through augmentation. Specifically, it first selects boundary samples, as these samples are more vulnerable to attacks, and denotes this set as \mathcal{B} . Then, it applies mixup between the current task’s data set \mathcal{B}_t and the previous tasks’ data set \mathcal{B}_o , and defines the resulting set as $\mathcal{D}_{\text{TABA}}$. Finally, training is performed jointly on the current task data set \mathcal{D}_t and $\mathcal{D}_{\text{TABA}}$.

$$\begin{aligned} \text{ratio} &= \text{len}(\mathbf{y}_{t-1}) / \text{len}(\mathbf{y}_t) \\ \mathcal{L}_{\text{total}} &= (1 - \text{ratio}) \cdot \mathcal{L}_{\text{BCE}}(\mathcal{S}_t^{adv}|_{t-1}^t, \mathbf{1}_y) + \text{ratio} \cdot \mathcal{L}_{\text{BCE}}(\mathcal{S}_t^{adv}|_1^{t-1}, \text{sigmoid}(\mathcal{S}_{t-1})) \end{aligned} \quad (37)$$

TABA is evaluated under the replay-based setting. The model is trained with a weight decay of 1e-5 and a batch size of 64. For S-CIFAR10 and S-STL10, we use a learning rate of 0.1 and train for 20 epochs, while for S-CIFAR100 and S-TinyImageNet, we use a learning rate of 0.5 and train for 50 epochs.

J.4.2 THE TRAINING DETAILS OF FLAIR

FLAIR (Cho et al., 2025) systematically establishes a framework for robust class-incremental learning. It first explores a series of baselines that combine incremental learning with existing adversarial training methods and observes that such integration leads to conflicts between acquiring new knowledge and retaining previously learned knowledge. It then further investigates this challenge by analyzing the output differences between clean and adversarial examples through a Taylor expansion, revealing that these discrepancies are governed by the model’s gradients and Hessians. It can be math:

$$\begin{aligned} \mathcal{L}_{\text{total}} &= \mathcal{L}_{\text{BCE}}(\mathcal{S}_t^{adv}|_{t-1}^t, \mathbf{1}_y) + \alpha \cdot \mathcal{L}_{\text{BCE}}(\mathcal{S}_t^{adv}|_1^{t-1}, \text{sigmoid}(\mathcal{S}_{t-1}^{adv})) \\ &\quad + \beta \cdot \mathcal{L}_{\text{KL}}(\mathcal{S}_t^{adv}|_1^{t-1} - \mathcal{S}_t|_1^{t-1} \parallel \mathcal{S}_{t-1}^{adv} - \mathcal{S}_{t-1}) \end{aligned} \quad (38)$$

where $\text{sigmoid}(\cdot)$ denotes the sigmoid activate function.

1296 The hyperparameters are set as $\alpha = 0.5$ and $\beta = 2.0$. For S-CIFAR10 and S-STL10, the model is
1297 trained for 20 epochs with a learning rate of 0.1, a weight decay of 1e-5, and a batch size of 64. For
1298 S-CIFAR100, the model is trained for 50 epochs with a learning rate of 0.5, a weight decay of 1e-5,
1299 and a batch size of 64, whereas for S-TinyImageNet, the learning rate is set to 1.0 with the same
1300 weight decay and batch size.

1301

1302

1303

1304

1305

1306

1307

1308

1309

1310

1311

1312

1313

1314

1315

1316

1317

1318

1319

1320

1321

1322

1323

1324

1325

1326

1327

1328

1329

1330

1331

1332

1333

1334

1335

1336

1337

1338

1339

1340

1341

1342

1343

1344

1345

1346

1347

1348

1349