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ABSTRACT

Class-Incremental Learning (CIL) aims to enable a model to continuously recog-
nize new categories without forgetting previously learned ones. While most ex-
isting methods focus on alleviating catastrophic forgetting, they largely overlook
the vulnerability of CIL models to adversarial perturbations, which poses a critical
threat to their reliability in real-world applications. Motivated by this oversight,
we formalize a new problem setting, Robust Class-Incremental Learning (RCIL).
To address the conflict between adversarial robustness and class-incremental
learning, we propose Selective parameter optimization for Adversarial training
with GEometric constraint (SAGE), which selectively updates critical parame-
ters to protect knowledge learned from previous tasks. Beyond parameter effi-
ciency, SAGE introduces a theoretically grounded geometric constraint together
with a contrastive loss to preserve structural relationships among features. This
design enables stable and robust learning across tasks under adversarial attacks.
Extensive experiments demonstrate that SAGE effectively improves adversarial
robustness while mitigating catastrophic forgetting, leading to more reliable and
practical CIL models. The code is provided in the supplementary material.

1 INTRODUCTION

Real-world systems often operate in dynamic environments where new classes appear sequen-
tially and models must maintain performance on previously learned tasks. To address this, Class-
Incremental Learning (CIL) has been proposed as a learning paradigm that enables models to adapt
to new tasks while retaining knowledge from previous ones, without requiring access to all histori-
cal data (Li & Hoiem, 2017; Shin et al., 2017; Wang et al., 2022; Huang et al., 2024). Owing to its
effectiveness and practicality, CIL has been widely adopted across diverse domains, including im-
age classification (Kirkpatrick et al., 2017; Yu et al., 2020), image captioning (Nguyen et al., 2019;
Del Chiaro et al., 2020), and other vision-language tasks (Greco et al., 2019; Zhang et al., 2023;
Wu et al., 2025; Lin et al., 2025). The emergence of large-scale pre-trained vision-language mod-
els (Jia et al., 2021; Radford et al., 2021a;b; Yao et al., 2021), most notably CLIP (Radford et al.,
2021a), provides a new direction for advancing CIL. Leveraging its strong generalization and rich
multimodal representations, CLIP naturally emerged as a promising backbone for CIL (Thengane
et al., 2022), significantly outperforming conventional models. Building on this foundation, recent
studies (Yu et al., 2024a; Huang et al., 2024; Wang et al., 2023; Jha et al., 2024) further enhance
CLIP-based CIL by employing advanced regularization techniques, lightweight adapter modules, or
textual representations to mitigate forgetting and improve knowledge transfer.

Despite these advances in alleviating catastrophic forgetting, a critical vulnerability has been largely
overlooked, which is susceptibility to adversarial perturbations. These perturbations, crafted delib-
erately by adversarial attacks, are often imperceptible to humans yet can cause models to produce
incorrect predictions, leading to significant accuracy degradation (Szegedy et al., 2014; Madry et al.,
2018; Croce & Hein, 2020). Although techniques such as adversarial training (AT) (Zheng et al.,
2016; Shafahi et al., 2019b; Zhang et al., 2019) aim to enhance robustness by exposing models to
adversarial examples, the objectives of CIL and adversarial robustness are fundamentally distinct.
As a result, directly applying AT to CIL can result in suboptimal robustness while significantly
exacerbating catastrophic forgetting. Consequently, there is a need for methods that can simultane-
ously preserve knowledge across tasks while ensuring robustness against adversarial perturbations.
Robust Class-Incremental Learning (RCIL) addresses this gap by jointly tackling incremental
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learning and adversarial robustness, ensuring that models remain accurate and secure across both
clean and adversarial inputs throughout continual learning (Bai et al., 2023; Cho et al., 2025).

However, despite its importance, research on RCIL remains limited. A related but distinct line of
research, zero-shot adversarial robustness, partially echoes the objectives of RCIL by seeking both
robustness enhancement and knowledge preservation. Methods such as TeCoA (Mao et al., 2023),
PMG-AFT (Wang et al., 2024b), and TGA-ZSR (Yu et al., 2024b) presuppose a fixed global label
space, where robustness is optimized with full label access, limiting their applicability under contin-
ually expanding label spaces. These limitations underscore the need for RCIL-specific approaches.
Existing attempts in this direction remain scarce. For instance, TABA (Bai et al., 2023) increases
sample diversity via mixup, but this does not directly improve robustness, leaving the model vulner-
able to stronger attacks. FLAIR (Cho et al., 2025) enhances robustness by constraining distillation
with respect to the discrepancy between clean and adversarial outputs in the current task relative to
the previous task, implicitly regularizing gradients and Hessians. However, it only captures changes
in model outputs without explicitly considering the feature space structure. Consequently, the model
may suffer from feature shift, which can undermine the effectiveness of the distillation.

To address the challenge of simultaneously achieving adversarial robustness and knowledge preser-
vation in CIL, we observed that improving robustness often requires substantial parameter updates to
adjust decision boundaries, but such updates can destabilize previously learned knowledge, leading
to catastrophic forgetting. To reconcile this conflict, we propose a unified framework that combines
selective parameter optimization for adversarial training with a geometric constraint. By updat-
ing only the most critical parameters, the model rapidly reduces loss and maintains stability while
adapting to new tasks. At the same time, the geometric constraint preserves the structural consis-
tency of representations by aligning adversarial and clean embeddings across tasks. Together, these
components provide a principled solution for robust class-incremental learning.

Our main contributions can be summarized as follows:

• To the best of our knowledge, this is the first work to formalize the definition of Robust Class-
Incremental Learning (RCIL) and theoretically show that adversarial training, which requires ex-
tensive parameter updates, conflicts with the stability needed in class-incremental learning.

• We propose a novel method, SAGE, which selectively updates critical parameters identified via
gradient-weight products and incorporates a geometric constraint-based contrastive loss to simul-
taneously enhance robustness and mitigate forgetting.

• Extensive experiments demonstrate that SAGE not only significantly outperforms naive combina-
tions of class-incremental learning and adversarial training across multiple benchmarks, but also
achieves superior performance over existing baselines in robust class-incremental learning.

2 RELATED WORK

2.1 ADVERSARIAL ROBUSTNESS

Deep neural networks (DNNs) are expected to exhibit robustness to minor natural variations in in-
put and maintain consistent predictions. However, extensive studies (Szegedy et al., 2014; Madry
et al., 2018; Carlini & Wagner, 2017; Croce & Hein, 2020) have demonstrated that they are highly
vulnerable to adversarial perturbations, which can cause incorrect predictions. To enhance adver-
sarial robustness, various defense methods have been proposed. Adversarial training (AT) (Zheng
et al., 2016; Wu et al., 2020; Mao et al., 2023) is the most widely studied and empirically validated
defense paradigm. It enhances robustness by generating adversarial examples via various attack
methods and incorporating them into the training process, thereby exposing the model to challeng-
ing perturbations and improving its resilience. Adversarial purification (Nie et al., 2022; Lee &
Kim, 2023; Yang et al., 2022) leverages diffusion models to remove adversarial noise from inputs,
enabling downstream classifiers to make accurate predictions on the purified samples. Randomized
defenses (Ma et al., 2023; Dong & Xu, 2023) introduce stochasticity into the model architecture or
inference process to obfuscate gradients and hinder attack effectiveness. More recently, research
attention has shifted toward pre-trained vision-language models such as CLIP, which have attracted
wide interest for their strong generalization and zero-shot capabilities. Despite these strengths, re-
cent studies (Mao et al., 2023; Schlarmann et al., 2024) reveal that CLIP remains highly vulnerable
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to adversarial attacks, motivating a growing body of research (Li et al., 2024; Wang et al., 2024b;
Yu et al., 2024b) on improving the robustness of CLIP-based models.

2.2 CLASS-INCREMENTAL LEARNING

Class-Incremental Learning (CIL) aims to continuously learn new tasks while retaining knowledge
from previous ones, thereby mitigating catastrophic forgetting. Existing approaches are typically
categorized into three main groups. Regularization-based methods (Li & Hoiem, 2017; Kirkpatrick
et al., 2017; Zenke et al., 2017; Chaudhry et al., 2018a; Liu et al., 2018; Dhar et al., 2019; Rannen
et al., 2017) mitigate forgetting by introducing additional constraints during optimization. Replay-
based methods (Chaudhry et al., 2018b; Hou et al., 2019; Rebuffi et al., 2017; Buzzega et al., 2020;
Boschini et al., 2022) preserve previous knowledge by revisiting samples from earlier tasks while
training on new ones. Architecture-based methods (Mallya & Lazebnik, 2018; Mallya et al., 2018;
Fernando et al., 2017; Veniat et al., 2020; Ostapenko et al., 2021) dynamically increase model capac-
ity, allocating separate parameters or structures for each new task to minimize interference. Beyond
these conventional strategies, the advent of pre-trained models has opened new possibilities for
CIL, with vision-language models such as CLIP offering strong multimodal representations. Con-
sequently, several studies (Thengane et al., 2022; Yu et al., 2024a; Huang et al., 2024; Wang et al.,
2023; Jha et al., 2024) have explored CIL with CLIP, leveraging its strong visual representation and
rich language semantics to mitigate forgetting and enhance adaptability. Existing CIL methods pri-
marily focus on mitigating forgetting, yet recent studies (Bai et al., 2023; Cho et al., 2025) reveal
that they remain highly vulnerable to adversarial examples. To address this issue, Robust Class-
Incremental Learning (RCIL) jointly tackles CIL and adversarial robustness. However, these ap-
proaches rely on simple techniques and fail to exploit the rich representations of pre-trained models,
limiting their resilience against adversarial threats. Therefore, we explore RCIL with CLIP, aiming
to harness its strong multimodal representations for improved robustness and reduced forgetting.

3 PROBLEM DEFINITION

Robust Class-Incremental Learning (RCIL) extends CIL by explicitly incorporating adversarial ro-
bustness (Bai et al., 2023; Cho et al., 2025). As illustrated in Figure 1, its objective is to learn a
model that correctly classifies both clean and adversarial inputs across sequential tasks.

To formulate the sequential learning setting, following prior work (Thengane et al., 2022; Yu
et al., 2024a), we partition the full dataset D into a sequence of t disjoint tasks, denoted as
{D1,D2, · · · ,Dt}. Each task Dt = {Xt,Yt,Pt} consists of input samples Xt, their labels Yt,
and the set of text prompts Pt. The class sets across different tasks are strictly non-overlapping,
where Yi ∩ Yj = ∅ (i ̸= j). During training on task t, the model fθt(·) is trained solely on data
from the current task Dt, without access to data from earlier tasks D1:(t−1) = ∪t−1

i=1Di. Building on
this standard CIL setup, RCIL further augments the training dataset of each task by incorporating
dynamically generated adversarial examples. Specifically, adversarial examples xadv

t are generated
from the clean examples xt ∈ Xt, and we define the adversarial example set as:

X adv
t = {xadv

t |xadv
t = xt + δtraint , ∥δtraint ∥ ≤ ϵ,xt ∈ Xt} (1)

where ϵ controls the perturbation budget. The adversarial perturbation δtraint is obtained by:

arg max
∥δtrain

t ∥≤ϵ
LCE(xt + δtraint ,yt,pt), yt ∈ Y1:t, pt ∈ P1:t (2)

where LCE represents the cross-entropy loss, Y1:t = ∪ti=1Yi and P1:t = ∪ti=1Pi denote the cumula-
tive label and prompt spaces up to task t, respectively. Finally, the training dataset for task t is given
by Dtrain

t = {Xt,Yt,Pt} ∪
{
X adv

t ,Yt,Pt

}
.

This allows the model to learn from both clean and adversarial examples simultaneously. Accord-
ingly, the overall training objective at task t integrates the adversarial robustness loss LR

t with the
CIL loss LCIL

t to jointly promote robustness and retention:

LRCIL
t = LR

t (Xt ∪ X adv
t ,Yt,Pt) + LCIL

t (Xt ∪ X adv
t ,Yt,Pt) (3)

After training on task t, the model is evaluated on the joint evaluation set Deval
1:t = ∪ti=1Deval

i ,
which includes both clean and regenerated adversarial examples. Importantly, adversarial examples
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Figure 1: Illustration of Robust Class-Incremental Learning (RCIL). At each task t, adversarial ex-
amples are generated on the fly, and the model is jointly optimized on both clean and adversarial
examples. During evaluation, the test set includes clean examples and regenerated adversarial ex-
amples from all classes encountered thus far, reflecting the continually expanding class space.

are recomputed at each evaluation stage under the expanded class space, as shown in Figure 1. A
mismatch arises because during training on a previous task i (i < t), adversarial examples are
generated using Eq. 1 and 2 with respect to Y1:i. At evaluation stage, however, samples from Deval

i
are perturbed with the enlarged label set Y1:t, still following Eq. 1, but with a new perturbation term:

arg max
∥δeval

i ∥≤ϵ
LCE(xi + δevali ,yi,pi), yi ∈ Y1:t, pi ∈ P1:t (4)

This expansion of the class space significantly increases the challenge for the model, since the re-
generated adversarial examples are crafted against the current model and therefore more aggressive.

4 METHOD

4.1 OBSERVATION

In class-incremental learning (Wang et al., 2024a), a key challenge is to preserve performance
on previously learned tasks while effectively adapting to new ones. A theoretical motivation for
this challenge can be derived by analyzing how parameter updates affect the outputs of old tasks.
Specifically, for old-task data xt−1, we denote fθt−1(xt−1) as the model output before the parameter
update and fθt(xt−1) as the output after updating the parameters from θt−1 to θt. The output
difference can be approximated via a first-order Taylor expansion:

fθt(xt−1) ≈ fθt−1
(xt−1) +∇θt−1

fθt−1
(xt−1)

⊤∆θ (5)

where ∆θ = θt−θt−1, and∇θt−1fθt−1(xt−1) denotes the gradient of the model output with respect
to the parameters at θt−1. This shows that small parameter updates lead to bounded changes in the
outputs on data from previous tasks, helping preserve prior knowledge and mitigate forgetting.

Building on the above discussion, we next consider a complementary perspective from adversarial
robustness. Its key objective is to reduce the model’s sensitivity to input perturbations, thereby en-
suring stable predictions and improved robustness (Wu et al., 2020). Formally, given an adversarial
input xadv

t = xt + δ, the model output can be approximated by a first-order Taylor expansion:

fθt(xt + δ) ≈ fθt(xt) +∇xt
fθt(xt)

⊤δ (6)

where ∇xt
fθt(xt) represents the gradient of the model output with respect to the input. Since

δ is chosen by the adversary and cannot be directly controlled during training, the key objective
becomes reducing the first-order term ∇xt

fθt(xt), which measures the model’s local sensitivity to
input perturbations. Lowering this gradient effectively flattens the loss landscape around the input,
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leading to more robust predictions under adversarial noise. In neural networks, the input gradient
∇xt

fθt(xt) can be computed through the chain rule across all layers:

∇xtfθt(xt) =
∂fθt(xt)

∂xt
=

∂fθt(xt)

∂zn
· ∂zn
∂zn−1

· · · · · ∂z1
∂xt

(7)

where zn denotes the intermediate representation at the n-th layer. This formulation reveals that
the input gradient depends on the entire forward-backward propagation path through the network.
Therefore, effectively reducing ∇xt

fθt(xt) often necessitates coordinated updates across multiple
layers. In practice, this typically requires extensive parameter updates throughout the network,
which is why many adversarial defense methods (Mao et al., 2023; Wang et al., 2024b; Yu et al.,
2024b) adopt full-parameter training to modify the network’s sensitivity to input perturbations.

Thus, these objectives push feature representations in conflicting directions, leading to a trade-off.
This theoretical observation is further validated empirically in Appendix B, where naive combina-
tions of adversarial training and standard CIL significantly increase forgetting or reduce robustness.
This conflict reflects both the opposing nature of the optimization objectives and the empirical ob-
servations, motivating the need for methods in RCIL that can effectively balance these objectives.

4.2 SELECTIVE PARAMETER OPTIMIZATION FOR ADVERSARIAL TRAINING

To balance the competing demands of CIL and adversarial robustness, we adopt a selective param-
eter optimization strategy. Specifically, training updates only the critical parameters within each
layer, thereby balancing two objectives. In this process, important parameters are updated to rapidly
reduce loss and enhance robustness, while limiting the scope of updates alleviates feature drift and
mitigates forgetting. To identify critical parameters, we quantify their importance using a first-order
Taylor approximation of the loss. For a small perturbation ∆θ, the loss can be approximated as:

L(θ +∆θ) ≈ L(θ) +
∑

l
(
∂L(θ)
∂θl

·∆θl) (8)

This formulation allows us to approximate the effect of parameter removal. Following network
pruning methods (Sanh et al., 2020), we represent the hypothetical removal of a parameter θl as the
perturbation ∆θl = −θl. Substituting this into the above expansion yields the approximate change:

∆Ll ≈ −θl ·
∂L(θ)
∂θl

(9)

Based on this result, we define the importance of each parameter as the absolute magnitude of the
estimated loss change, that is, Il =

∣∣∣θl · ∂L(θ)
∂θl

∣∣∣. This metric provides a theoretically grounded

measure of parameter importance by quantifying how θl affects the loss. In addition, it is simple
and practical to compute since it only requires the parameter values and their gradients and does not
introduce extra hyperparameters. By selecting and updating only the top-k% parameters with the
highest importance values Il, we strike a balance between two conflicting objectives. To implement
this selective update mechanism, we introduce a binary mask ml defined as:

ml =

{
1, if Il ∈ Top -k%(I)

0, otherwise
(10)

Parameter updates are then performed in a masked manner θ ← θ + m ⊙ ∆θ, where ⊙ denotes
element-wise multiplication. This approach effectively restricts parameter modifications to those
most relevant for the current task, which is crucial for maintaining stability and performance in the
class-incremental setting.

4.3 GEOMETRIC-CONSTRAINT GUIDED CONTRASTIVE LEARNING

Merely constraining parameter updates is insufficient, since adversarial perturbations can still distort
feature representations and compromise consistency across tasks. Prior work in CIL (Kirkpatrick
et al., 2017; Zenke et al., 2017) similarly shows that parameter-level regularization only partially
prevents parameter drift, but it does not directly address adversarial threats. In particular, without
mechanisms to realign perturbed features with their correct class regions, the relational structure

5
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among features may still be severely compromised. This motivates the need to preserve structural
relationships within the feature space. To this end, we adopt cosine similarity as a measure of feature
alignment, which provides a principled foundation for our loss design.

We first introduce the notation for cosine similarity. For any three unit vectors a, b and c, we obtain:

γab = cos(a, b) = a⊤b, γac = cos(a, c) = a⊤c, γbc = cos(b, c) = b⊤c (11)

These cosine similarities are not independent but follow a geometric constraint, the proof of which
is provided in Appendix C:

γacγbc −
√

(1− γ2
ac)(1− γ2

bc) ≤ γab ≤ γacγbc +
√
(1− γ2

ac)(1− γ2
bc) (12)

The relations indicate that γab is bounded by a range determined by γac and γbc. When the con-
straint is not saturated, γab admits direct optimization with gradient ∂γab

∂θ . However, when the
constraint becomes active, γab is dictated by γac and γbc, and the gradient can be expressed:

∂γab
∂θ

=
∂F(γac, γbc)

∂γac
· ∂γac

∂θ
+

∂F(γac, γbc)
∂γbc

· ∂γbc
∂θ

(13)

where F(γac, γbc) denotes the bound γacγbc ±
√

(1− γ2
ac)(1− γ2

bc). Therefore, optimizing γab
implicitly affects γac and γbc whenever the constraint becomes active.

Specifically, we consider three feature representations: the current model’s embedding of the adver-
sarial example fθt(x

adv
t ), the previous model’s embedding of the clean examples fθt−1(xt), and the

current model’s embedding of the clean example fθt(xt). For clarity, we normalize them as:

a =
fθt(x

adv
t )∥∥fθt(xadv
t )

∥∥ , b =
fθt−1

(xt)∥∥fθt−1(xt)
∥∥ , c =

fθt(xt)

∥fθt(xt)∥
(14)

Here, γac corresponds to improving robustness, while γbc reflects preserving previously learned
knowledge. According to the geometric constraint in Eq. 12, optimizing the similarity γab implicitly
influences both γac and γbc. Therefore, by focusing on optimizing γab, we can simultaneously
improve robustness and mitigate forgetting, without the need to explicitly balance γac and γbc.

To fully exploit the relational structure of the embeddings and optimize cosine similarity, we intro-
duce a symmetric contrastive loss. By enforcing this symmetry, the structural consistency of the
feature space is strengthened, which is crucial for maintaining cross-task stability while improving
adversarial robustness. Formally, given a batch of clean and adversarial examples, the symmetric
contrastive loss is defined as:

Lcon =
1

2N

N∑
i=1

[
− log

exp(a⊤
i bi/τ)∑N

j=1 exp(a
⊤
i bj/τ)

− log
exp(b⊤i ai/τ)∑N
j=1 exp(b

⊤
i aj/τ)

]
(15)

where τ is a temperature parameter controlling the sharpness of the similarity distribution.

Finally, the final loss function can be expressed as:

Ltotal = LCE(x
adv,y,p) + µ · Lcon (16)

where µ is a hyperparameter that balances the two loss terms. In addition, the details of the proposed
algorithm are provided in Appendix D.

5 EXPERIMENTS

5.1 EXPERIMENTAL SETUP

Datasets. We conduct experiments on CIFAR-10 (Krizhevsky et al., 2009), CIFAR-100 (Krizhevsky
et al., 2009), STL-10 (Coates et al., 2011), and Tiny-ImageNet (Le & Yang, 2015). Specifically,
CIFAR-10 and STL-10 are split into 5 tasks with 2 classes per task, referred to as S-CIFAR10 and
S-STL10. CIFAR-100 is divided into 10 tasks with 10 classes per task, denoted as S-CIFAR100.
Tiny-ImageNet is divided into 10 tasks with 20 classes per task, denoted as S-TinyImageNet.

6
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Table 1: Evaluation of several methods on ViT-B/32 without memory. We report Clean, PGD-10,
Auto. accuracy (%), and BWT on S-CIFAR10 and S-STL10 under attack strength of 1/255. Bold
for the best result, underline for secondary.

Type Method

S-CIFAR10 S-STL10

Clean PGD Auto. Clean PGD Auto.

A ↑ Alast ↑ BWT ↑ A ↑ Alast ↑ BWT ↑ Alast ↑ A ↑ Alast ↑ BWT ↑ A ↑ Alast ↑ BWT ↑ Alast ↑

AT

TeCoA 35.70 10.12 -69.68 18.06 9.20 -41.70 0.09 93.59 86.79 -15.94 40.06 30.14 -34.25 0.27
FARE 88.69 81.75 -17.66 33.10 27.33 -15.31 2.33 96.59 94.28 -6.52 51.57 43.02 -21.42 3.33
PMG-AFT 35.48 10.86 -68.78 17.98 9.11 -41.66 0.05 93.61 86.88 -15.83 39.88 30.06 -34.42 0.24
TGA-ZSR 52.98 28.34 -84.91 30.45 15.70 -65.55 10.78 90.92 81.22 -22.61 50.69 41.51 -41.02 16.44

R-CIL

R-LwF 45.19 19.82 -98.84 43.61 19.38 -95.05 19.34 51.94 36.72 -77.25 47.30 28.16 -80.72 27.02
R-LwF-MC 55.48 33.81 -80.35 47.80 24.08 -97.60 23.42 71.93 69.04 -36.27 57.35 47.01 -52.61 36.41
R-EWC-on 45.00 19.74 -98.35 43.47 19.38 -94.40 19.38 50.08 32.15 -82.25 45.48 25.59 -83.45 25.30
R-SI 45.22 19.81 -98.94 43.59 19.38 -94.98 19.36 54.08 36.80 -77.17 48.61 27.50 -81.81 26.51

R-CIL-CLIP
R-RAPF 46.36 19.88 -98.64 44.21 19.34 -94.95 19.32 55.09 40.02 -70.36 32.43 14.25 -66.05 13.85
R-SG 43.07 18.22 -60.66 42.99 18.46 -74.25 0.00 55.09 40.02 -32.98 47.40 30.19 -34.80 9.71
R-Proof 36.11 14.15 -75.04 34.01 13.61 -70.79 12.93 44.46 16.44 -96.16 41.73 15.29 -89.88 15.25

RCIL FLAIR 61.27 45.83 -66.05 51.73 32.31 -77.91 30.90 71.32 64.92 -42.17 57.69 48.26 -51.59 41.65

RCIL4CLIP SAGE (ours) 72.36
± 0.65

63.67
± 1.60

-34.12
± 1.50

61.75
± 0.43

47.85
± 1.15

-42.27
± 1.52

41.60
± 0.93

73.52
± 0.49

69.56
±1.09

-33.36
± 1.58

63.96
± 0.41

54.31
± 0.40

-40.20
± 1.27

46.32
± 0.73

Table 2: Evaluation of several methods on ViT-B/32 without memory. We report Clean, PGD-10,
Auto. accuracy (%), and BWT on S-CIFAR100 and S-TinyImageNet under attack strength of
1/255. Bold for the best result, underline for secondary.

Type Method

S-CIFAR100 S-TinyImageNet

Clean PGD Auto. Clean PGD Auto.

A ↑ Alast ↑ BWT ↑ A ↑ Alast ↑ BWT ↑ Alast ↑ A ↑ Alast ↑ BWT ↑ A ↑ Alast ↑ BWT ↑ Alast ↑

AT

TeCoA 21.75 9.40 -77.17 11.36 7.12 -46.41 6.10 19.01 7.34 -60.48 11.39 4.85 -39.94 4.06
FARE 65.63 48.54 -16.49 23.20 16.03 -8.94 4.40 59.42 49.52 -14.84 23.29 20.85 -7.52 10.07
PMG-AFT 24.98 9.34 -77.66 11.37 7.09 -46.61 6.41 19.34 7.45 -60.76 11.58 4.88 -40.51 4.11
TGA-ZSR 41.52 16.20 -67.68 17.74 7.73 -53.00 5.20 30.10 41.61 -55.49 12.73 4.88 -40.06 2.96

R-CIL

R-LwF 27.74 9.51 -90.83 24.41 8.72 -80.98 8.70 22.33 7.69 -73.96 17.27 6.17 -59.33 6.17
R-LwF-MC 3.07 1.00 -0.00 2.96 1.00 -0.00 1.00 1.46 0.50 -0.00 1.46 0.50 -0.00 0.50
R-EWC-on 26.71 9.27 -88.89 23.43 8.50 -78.47 8.50 22.36 7.87 -74.26 17.30 6.10 -59.37 6.09
R-SI 28.12 9.81 -90.48 24.58 8.80 -81.04 8.80 22.42 7.52 -73.04 17.58 6.77 -59.69 8.64

R-CIL-CLIP
R-RAPF 36.01 13.87 -88.17 28.57 10.67 -81.39 10.57 32.08 17.30 -73.06 22.87 11.00 -64.24 10.77
R-SG 46.36 27.52 -41.42 34.37 19.00 -35.81 14.44 29.53 12.88 -41.48 20.01 8.83 -29.77 7.06
R-Proof 13.88 3.59 -37.31 11.67 3.72 -32.87 3.39 6.33 1.93 -16.66 5.47 1.86 -15.04 1.56

RCIL FLAIR 3.05 1.00 -0.00 2.94 1.00 -0.00 1.00 1.46 0.50 -0.00 1.46 0.50 -0.00 0.50

RCIL4CLIP SAGE (ours) 63.20
± 0.54

49.02
± 0.35

-22.62
± 0.36

48.49
± 0.37

35.59
± 0.37

-19.89
± 0.42

28.98
± 0.41

56.14
± 0.04

44.72
± 0.60

-13.54
± 0.89

40.21
± 0.22

31.95
± 0.52

-9.49
± 0.56

26.18
± 0.38

Baseline. We conduct experiments on five types of baselines: AT, R-CIL, R-CIL-CLIP, RCIL,
and RCIL4CLIP. AT represents zero-shot adversarial robustness. R-CIL refers to conventional CIL
methods enhanced with AT. R-CIL-CLIP denotes CIL methods built upon a CLIP backbone, like-
wise enhanced with AT. RCIL encompasses robust class-incremental learning approaches. Finally,
RCIL4CLIP denotes RCIL methods with CLIP, with our proposed approach as the primary repre-
sentative. In addition, the training details of all baseline methods are provided in Appendix J.

Training Details. We conduct all experiments on a single NVIDIA RTX 3090 GPU. During adver-
sarial training, we utilize l∞-norm PGD (Madry et al., 2018) with 2 iterations to generate adversarial
examples, setting both the attack strength and step size to 1/255. The SGD optimizer is employed
to minimize the loss, and the text prompt is set to “This is a photo of {}”. The hyperparameters are
set to µ = 1.0 and k = 0.01, with a learning rate of 0.1, a weight decay of 1e-5, and a batch size
of 64. The model is trained for 20 epochs on S-CIFAR10 and S-STL10, and for 50 epochs on S-
CIFAR100 and S-TinyImageNet. To evaluate adversarial robustness, we apply l∞-norm PGD with
10 iterations, using an attack strength and attack step size of 1/255, and AutoAttack (Auto.) (Croce
& Hein, 2020) with an adversarial strength of 1/255.

Evaluation Metric. Following previous work (Wang et al., 2022; Cho et al., 2025), we evaluate
the average incremental accuracy A = 1

T

∑T
t=1 At, where At denotes the model’s average accuracy

across all seen tasks after completing training on the t-th task. In addition, we report Alast, which
represents the average accuracy of the model after completing training on the final task. To evaluate
forgetting, we adopt the backward transfer (BWT) metric, defined as BWT = 1

T−1

∑T−1
t=1 (AT,t −

At,t), where Ai,j denotes the test accuracy on task j after completing training on task i.

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Table 3: Evaluation of several methods on ViT-B/32 without memory. We report average PGD-10,
Auto. accuracy (%) and BWT on S-CIFAR10, S-STL10, S-CIFAR100 and S-TinyImageNet under
attack strengths of 1/255, 2/255, and 4/255. Bold for the best result, underline for secondary.

Type Method

S-CIFAR10 S-STL10 S-CIFAR100 S-TinyImageNet

PGD Auto. PGD Auto. PGD Auto. PGD Auto.

A ↑ Alast ↑ BWT ↑ Alast ↑ A ↑ Alast ↑ BWT ↑ Alast ↑ A ↑ Alast ↑ BWT ↑ Alast ↑ A ↑ Alast ↑ BWT ↑ Alast ↑

AT

TeCoA 10.91 4.39 -30.50 0.03 19.39 16.23 -17.72 0.09 6.37 4.86 -26.90 3.20 6.36 2.91 -23.29 2.04
FARE 13.40 10.04 -6.90 0.78 26.09 20.24 -13.01 1.11 10.19 6.95 -3.79 1.62 9.75 9.06 -3.10 3.69
PMG-AFT 10.56 4.61 -28.99 0.02 19.21 16.10 -17.44 0.08 6.41 4.83 -27.19 3.32 6.43 2.94 -23.41 2.05
TGA-ZSR 17.46 10.04 -37.73 3.77 26.90 22.15 -24.83 5.53 9.13 4.74 -28.68 2.49 5.93 2.72 -20.32 1.34

R-CIL

R-LwF 42.09 19.15 -91.04 14.37 43.60 22.37 -82.52 15.03 22.15 8.20 -73.70 6.86 13.79 5.01 -48.20 4.22
R-LwF-MC 44.08 20.57 -89.58 15.13 46.78 31.26 -51.19 15.43 2.93 1.00 -0.00 0.97 1.46 0.50 -0.00 0.50
R-EWC-on 41.63 18.96 -89.73 15.24 41.67 20.67 -82.83 15.56 20.48 7.72 -68.31 6.76 13.72 4.82 -47.85 4.16
R-SI 42.31 19.05 -91.59 14.20 44.28 21.85 -83.14 14.96 22.20 8.12 -73.79 6.81 13.99 5.28 -48.53 5.21

R-CIL-CLIP
R-RAPF 40.02 18.46 -84.65 14.57 27.71 12.42 -58.46 11.45 22.82 8.89 -69.47 7.37 19.55 7.46 -52.34 6.47
R-SG 36.57 14.42 -61.68 0.00 40.65 22.90 -34.55 3.39 22.71 12.18 -26.77 7.02 12.56 5.51 -56.63 3.79
R-Proof 28.63 12.77 -61.38 10.87 35.21 12.43 -71.66 11.83 7.89 3.18 -25.23 2.33 4.30 1.68 -12.69 1.10

RCIL FLAIR 45.76 24.84 -78.63 18.43 46.35 30.79 -51.81 17.90 2.93 1.00 -0.00 0.90 1.46 0.50 -0.00 0.50

RCIL4CLIP SAGE (ours) 47.28 30.24 -38.95 21.30 49.97 33.91 -42.18 23.37 32.54 21.59 -14.36 15.08 24.71 18.83 -6.58 13.37

Table 4: Effect on each module. We report the Clean, PGD-10, and Auto. Alast on S-CIFAR10 and
S-CIFAR100 after fine-tuning with PGD-2. Bold for the best result.

(a) Effect of each contrastive loss.

Contrastive Loss S-CIFAR10 S-CIFAR100

Lcon(a, b) Lcon(a, c) Lcon(b, c) Clean PGD Auto. Clean PGD Auto.

✓ 39.93 21.48 18.33 12.95 10.58 10.41
✓ 28.73 19.15 0.31 13.64 9.19 0.02

✓ ✓ 62.37 20.25 5.63 43.10 20.48 11.52
✓ 63.67 47.85 41.60 49.02 35.59 28.98

(b) Effect of selective parameter optimization strategy.
Parameter Importance S-CIFAR10 S-CIFAR100∣∣∣θl · ∂L(θ)

∂θl

∣∣∣ ∣∣θl∣∣ ∣∣∣∂L(θ)
∂θl

∣∣∣ Clean PGD Auto. Clean PGD Auto.

53.68 40.94 35.66 46.55 35.10 29.22
✓ 59.48 44.60 38.65 46.30 33.67 27.52

✓ 60.77 38.73 30.14 41.19 25.38 17.84
✓ 63.67 47.85 41.60 49.02 35.59 28.98

5.2 MAIN RESULTS

We conduct experiments on four datasets and report A, Alast, and BWT metric for both clean and
adversarial examples generated using PGD-10 with an attack strength of 1/255. Additionally, we
also report Alast on adversarial examples generated by Auto. with the same attack strength.

Experiments on Short Tasks. Table 1 shows that directly applying adversarial training in class-
incremental learning leads to severe forgetting, with BWT values dropping below -90%, and also
fails to provide satisfactory adversarial robustness. Among the compared methods, R-LwF-MC
and FLAIR rely on a binary cross-entropy loss that treats each class independently, which results
in second-best performance. Our method further improves adversarial robustness on top of these
approaches, achieving significant gains. For example, compared to FLAIR on S-CIFAR10, our
method improves PGD Alast by 15.54%. However, it is worth noting that the clean accuracy of
R-LwF-MC, FLAIR, and our method is lower than that of FARE. This is because FARE focuses on
protecting clean accuracy first and only then improving adversarial robustness.

Experiments on Long Tasks. To further compare the performance of different methods, we con-
duct experiments on S-CIFAR100 and S-TinyImageNet under the 10-task setting. As shown in
Table 2, SAGE achieves the second-best performance on clean examples across both datasets and
is comparable to FARE. On adversarial examples, however, SAGE demonstrates clear advantages.
On S-CIFAR100, it surpasses the second-best method R-SG by 16.39% in PGD Alast, while on
S-TinyImageNet it exceeds FARE by 11.10%. It is also noteworthy that methods such as FLAIR
and R-LwF-MC, which perform well in short-task settings, show poor performance in this long-task
setting, likely due to their shared reliance on binary cross-entropy (BCE) loss. Prior work shows
that, unlike cross-entropy, BCE lacks normalization and inter-class competition, leading to weaker
separability on large-scale datasets (Li et al., 2025). Consistent with this, our experiments reveal
that BCE can cause output collapse, where the model predicts a single dominant class.

5.3 ABLATION STUDIES

Impact of Adversarial Attack Strength. The model is adversarially trained with a perturbation
strength of 1/255. To further assess its robustness, we evaluate it under stronger perturbations of
2/255 and 4/255, and report the averaged results across all settings. As shown in Table 3, although
the performance of all methods decreases as the attack strength increases, SAGE consistently out-
performs all baselines across different datasets. Notably, on the smaller S-STL10 dataset, SAGE
shows a modest 2.65% improvement over the second-best method in PGD Alast. In contrast, on the
larger S-TinyImageNet dataset, which has more classes and a longer task sequence, making it more
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(b) Comparison of Robustness and Total Time across
different methods on S-CIFAR10.

Figure 2: Comparison of computational cost (FLOPs) and total training time across different meth-
ods. ▲ represents standard CIL approaches, ● denotes AT-based methods, and our method is high-
lighted with ★ for clear visual distinction in the comparison.

difficult to retain prior knowledge and resist adversarial perturbations, SAGE achieves a substantial
9.77% improvement. These gains highlight that SAGE not only maintains robustness under mild
perturbations but also demonstrates superior resilience as attack strength increases.

Module Ablation. To comprehensively evaluate the effectiveness of SAGE, we conduct ablation
studies on both the contrastive loss formulations and the parameter importance strategies. As shown
in Table 4a, using Lcon(a, c)

1 and Lcon(b, c) individually causes the model to focus on only one as-
pect, leading to suboptimal performance. However, when combined, these losses enable the model to
improve both adversarial robustness and resistance to catastrophic forgetting, leading to gains across
multiple dimensions. Achieving the right balance between these two remains challenging. Our pro-
posed Lcon(a, b) resolves this issue by eliminating the need to explicitly manage this trade-off, and
it outperforms the combined use of Lcon(a, c) and Lcon(b, c), further demonstrating its superiority.
Additionally, as shown in Table 4b, the selective parameter optimization strategy can improve the
model’s clean accuracy to some extent. However, simpler parameter importance evaluation methods
often lead to degraded performance, as demonstrated by a 9.72% drop in PGD Alast performance
when using

∣∣θl∣∣ on S-CIFAR100. This underscores the need for a more robust evaluation approach,
and the method we propose delivers improvements across multiple datasets.

For completeness, we present supplementary ablation experiments in the Appendix E, specifically
analyzing the effect of top-k% parameter selection and the sensitivity of the loss weight µ.

5.4 EFFICIENCY OF COMPUTATION AND TRAINING TIME

Adversarial Training introduces a significant training-time overhead relative to standard CIL base-
lines that operate only on clean examples, calling its scalability into question for large incremental
tasks. To address this concern, we carried out experiments specifically designed to assess computa-
tional efficiency and training time.

Comparison of Computational Cost (FLOPs). We compare the robustness and training FLOPs
of our method with representative benchmark methods on S-STL10, as shown in Figure 2a. The
results demonstrate that our method achieves consistently higher robustness under adversarial at-
tacks while requiring substantially fewer training FLOPs than other baselines. In particular, SAGE
achieves a 42.90% reduction in computational overhead compared to FLAIR, a strong baseline in
the RCIL, while further enhancing robustness. These results highlight the effectiveness of SAGE,
which not only strengthens robustness but also improves training efficiency, thus providing a fa-
vorable robustness-efficiency trade-off for class-incremental learning. Such a balance is especially
important in practical class-incremental learning settings, where limited computational resources
and robustness to adversarial attacks are critical requirements.

1To simplify the notation, we use the definition from Eq. 14.
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FLAIR S-CIFAR10 Clean  FLAIR S-CIFAR10 Adv.       SAGE S-CIFAR10 Clean    SAGE S-CIFAR10 Adv.

Figure 3: Confusion matrices for clean and adversarial examples on S-CIFAR10. The horizontal axis
shows predicted classes, and the vertical axis shows ground-truth classes. Brighter diagonal values
indicate higher classification accuracy, whereas off-diagonal values correspond to misclassifications.

Comparison of Total Time. We further compare the robustness and total time of our method with
three categories of approaches: standard CIL baselines trained only on clean data, adversarially
trained baselines (AT, R-CIL, and R-CIL-CLIP), and a robust class-incremental learning method.
For standard CIL baselines, we adopt partial fine-tuning, where all methods update only the last
block, except RAPF and Proof, which also update the added adapter module. To ensure adversarial
robustness, all AT-based methods and RCIL use full fine-tuning. The total time (in seconds) for
the entire training and validation process on S-CIFAR10 is reported in Figure 2b. The experiments
show that standard CIL baselines achieve the fastest training, but at the cost of limited adversarial
robustness. In comparison, SAGE operates within a similar computational budget while consistently
providing notably stronger robustness.

5.5 VISUALIZATION OF CLEAN AND ADVERSARIAL CONFUSION MATRICES

Figure 3 provides further insights into the superior performance of our method SAGE. The baseline
method exhibits a noticeable drop in performance, as evidenced by the reduced brightness along
the diagonal, and tends to suffer from catastrophic forgetting, where predictions are biased toward
the newly learned classes. This leads to outputs concentrated on the right side of the confusion
matrix. In contrast, SAGE not only preserves strong classification accuracy on clean examples
and achieves a balanced plasticity-stability trade-off, but also sustains robustness against adversarial
perturbations. The confusion matrices clearly show that our approach alleviates class bias, maintains
brighter diagonal patterns, and distributes predictions more uniformly across both old and new tasks,
highlighting its effectiveness in both clean and adversarial settings.

In addition, we also provide the experimental results with replay in Appendix F, the performance on
S-ImageNet-A in Appendix G, a comparison with free adversarial training in Appendix H, and an
evaluation using a robust backbone initialization in Appendix I.

6 CONCLUSIONS

Although CIL mitigates catastrophic forgetting, its susceptibility to adversarial perturbations lim-
its practical applicability. Existing RCIL methods attempt to address this challenge but remain
inadequate due to simplistic designs. To overcome these limitations, we introduce SAGE, which ad-
vances RCIL by integrating a selective parameter optimization scheme for adversarial training with
a geometry-constrained contrastive loss, thereby improving adversarial robustness while mitigating
forgetting. Extensive experiments show that SAGE not only surpasses a naive combination of CIL
and AT but also consistently outperforms prior RCIL methods, yielding significant improvements
across multiple datasets.

Limitations and Future Work. While SAGE achieves notable gains, it still depends on compu-
tationally intensive adversarial training, which may hinder scalability to larger models or datasets.
In addition, the joint challenge of mitigating forgetting while enhancing adversarial robustness re-
mains significant, leaving substantial room for further improvement. Future work will explore more
efficient robustness techniques to reduce computational overhead and close the performance gap
between RCIL and existing CIL methods.
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Ethics Statement. This work does not involve human subjects, sensitive personal data, or experi-
ments that could raise ethical concerns. All datasets used are publicly available and widely adopted
in prior research. Our methodology focuses on improving robustness and knowledge retention in
class-incremental learning, without introducing potential risks of harmful applications. In partic-
ular, by enhancing adversarial robustness, our approach contributes to improving the security and
reliability of models in real-world applications. Finally, we have adhered to the Code of Ethics
throughout the research and submission process.

Reproducibility Statement. We have made significant efforts to ensure the reproducibility of our
work. In Section 5.1, we describe the datasets, experimental settings, training configurations, and
hyperparameters. We further provide detailed training procedures for all baseline methods in Ap-
pendix J, and we also include our code in the supplementary material.

REFERENCES

Tao Bai, Chen Chen, Lingjuan Lyu, Jun Zhao, and Bihan Wen. Towards adversarially robust con-
tinual learning. In ICASSP 2023-2023 IEEE International Conference on Acoustics, Speech and
Signal Processing (ICASSP), pp. 1–5. IEEE, 2023.

Matteo Boschini, Lorenzo Bonicelli, Pietro Buzzega, Angelo Porrello, and Simone Calderara. Class-
incremental continual learning into the extended der-verse. IEEE transactions on pattern analysis
and machine intelligence, 45(5):5497–5512, 2022.

Pietro Buzzega, Matteo Boschini, Angelo Porrello, Davide Abati, and Simone Calderara. Dark
experience for general continual learning: a strong, simple baseline. In Advances in neural infor-
mation processing systems, volume 33, pp. 15920–15930, 2020.

Nicholas Carlini and David Wagner. Towards evaluating the robustness of neural networks. In 2017
ieee symposium on security and privacy (sp), pp. 39–57. Ieee, 2017.

Arslan Chaudhry, Puneet K Dokania, Thalaiyasingam Ajanthan, and Philip HS Torr. Riemannian
walk for incremental learning: Understanding forgetting and intransigence. In Proceedings of the
European conference on computer vision (ECCV), pp. 532–547, 2018a.

Arslan Chaudhry, Marc’Aurelio Ranzato, Marcus Rohrbach, and Mohamed Elhoseiny. Efficient
lifelong learning with a-gem. In International Conference on Learning Representations, 2018b.

Seungju Cho, Hongsin Lee, and Changick Kim. Enhancing robustness in incremental learning with
adversarial training. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 39,
pp. 2518–2526, 2025.

Adam Coates, Andrew Ng, and Honglak Lee. An analysis of single-layer networks in unsupervised
feature learning. In Proceedings of the fourteenth international conference on artificial intelli-
gence and statistics, pp. 215–223. JMLR Workshop and Conference Proceedings, 2011.

Francesco Croce and Matthias Hein. Reliable evaluation of adversarial robustness with an ensemble
of diverse parameter-free attacks. In International conference on machine learning, pp. 2206–
2216. PMLR, 2020.

Riccardo Del Chiaro, Bartłomiej Twardowski, Andrew Bagdanov, and Joost Van de Weijer. Ratt:
Recurrent attention to transient tasks for continual image captioning. In Advances in Neural
Information Processing Systems, volume 33, pp. 16736–16748, 2020.

Prithviraj Dhar, Rajat Vikram Singh, Kuan-Chuan Peng, Ziyan Wu, and Rama Chellappa. Learning
without memorizing. In Proceedings of the IEEE/CVF conference on computer vision and pattern
recognition, pp. 5138–5146, 2019.

Minjing Dong and Chang Xu. Adversarial robustness via random projection filters. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4077–4086, 2023.

Chrisantha Fernando, Dylan Banarse, Charles Blundell, Yori Zwols, David Ha, Andrei A Rusu,
Alexander Pritzel, and Daan Wierstra. Pathnet: Evolution channels gradient descent in super
neural networks. arXiv preprint arXiv:1701.08734, 2017.

11



594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Claudio Greco, Barbara Plank, Raquel Fernández, and Raffaella Bernardi. Psycholinguistics meets
continual learning: Measuring catastrophic forgetting in visual question answering. In Proceed-
ings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 3601–3605,
2019.

Dan Hendrycks, Kevin Zhao, Steven Basart, Jacob Steinhardt, and Dawn Song. Natural adversarial
examples. In Proceedings of the IEEE/CVF conference on computer vision and pattern recogni-
tion, pp. 15262–15271, 2021.

Saihui Hou, Xinyu Pan, Chen Change Loy, Zilei Wang, and Dahua Lin. Learning a unified classifier
incrementally via rebalancing. In Proceedings of the IEEE/CVF conference on computer vision
and pattern recognition, pp. 831–839, 2019.

Linlan Huang, Xusheng Cao, Haori Lu, and Xialei Liu. Class-incremental learning with clip: Adap-
tive representation adjustment and parameter fusion. In European Conference on Computer Vi-
sion, pp. 214–231. Springer, 2024.

Saurav Jha, Dong Gong, and Lina Yao. CLAP4CLIP: Continual learning with probabilistic finetun-
ing for vision-language models. In Advances in Neural Information Processing Systems, 2024.

Chao Jia, Yinfei Yang, Ye Xia, Yi-Ting Chen, Zarana Parekh, Hieu Pham, Quoc Le, Yun-Hsuan
Sung, Zhen Li, and Tom Duerig. Scaling up visual and vision-language representation learning
with noisy text supervision. In International conference on machine learning, pp. 4904–4916.
PMLR, 2021.

James Kirkpatrick, Razvan Pascanu, Neil Rabinowitz, Joel Veness, Guillaume Desjardins, Andrei A
Rusu, Kieran Milan, John Quan, Tiago Ramalho, Agnieszka Grabska-Barwinska, et al. Overcom-
ing catastrophic forgetting in neural networks. Proceedings of the national academy of sciences,
114(13):3521–3526, 2017.

Alex Krizhevsky et al. Learning multiple layers of features from tiny images. 2009.

Ya Le and Xuan Yang. Tiny imagenet visual recognition challenge. CS 231N, 2015.

Minjong Lee and Dongwoo Kim. Robust evaluation of diffusion-based adversarial purification. In
Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 134–144, 2023.

Lin Li, Haoyan Guan, Jianing Qiu, and Michael Spratling. One prompt word is enough to boost
adversarial robustness for pre-trained vision-language models. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pp. 24408–24419, 2024.

Qiufu Li, Huibin Xiao, and Linlin Shen. Bce vs. ce in deep feature learning. In Forty-second
International Conference on Machine Learning, 2025.

Zhizhong Li and Derek Hoiem. Learning without forgetting. IEEE transactions on pattern analysis
and machine intelligence, 40(12):2935–2947, 2017.

Zihan Lin, Zilei Wang, and Xu Wang. Towards continual universal segmentation. In Proceedings of
the Computer Vision and Pattern Recognition Conference, pp. 29417–29427, 2025.

Xialei Liu, Marc Masana, Luis Herranz, Joost Van de Weijer, Antonio M Lopez, and Andrew D
Bagdanov. Rotate your networks: Better weight consolidation and less catastrophic forgetting. In
2018 24th international conference on pattern recognition (ICPR), pp. 2262–2268. IEEE, 2018.

Yanxiang Ma, Minjing Dong, and Chang Xu. Adversarial robustness through random weight sam-
pling. In Advances in Neural Information Processing Systems, volume 36, pp. 37657–37669,
2023.

Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt, Dimitris Tsipras, and Adrian Vladu.
Towards deep learning models resistant to adversarial attacks. In International Conference on
Learning Representations, 2018.

Arun Mallya and Svetlana Lazebnik. Packnet: Adding multiple tasks to a single network by iterative
pruning. In Proceedings of the IEEE conference on Computer Vision and Pattern Recognition,
pp. 7765–7773, 2018.

12



648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Arun Mallya, Dillon Davis, and Svetlana Lazebnik. Piggyback: Adapting a single network to mul-
tiple tasks by learning to mask weights. In Proceedings of the European conference on computer
vision (ECCV), pp. 67–82, 2018.

Chengzhi Mao, Scott Geng, Junfeng Yang, Xin Wang, and Carl Vondrick. Understanding zero-shot
adversarial robustness for large-scale models. In International Conference on Learning Repre-
sentations, 2023.

Giang Nguyen, Tae Joon Jun, Trung Tran, Tolcha Yalew, and Daeyoung Kim. Contcap: A scalable
framework for continual image captioning. arXiv preprint arXiv:1909.08745, 2019.

Weili Nie, Brandon Guo, Yujia Huang, Chaowei Xiao, Arash Vahdat, and Animashree Anandkumar.
Diffusion models for adversarial purification. In International Conference on Machine Learning,
pp. 16805–16827. PMLR, 2022.

Oleksiy Ostapenko, Pau Rodriguez, Massimo Caccia, and Laurent Charlin. Continual learning via
local module composition. In Advances in Neural Information Processing Systems, volume 34,
pp. 30298–30312, 2021.

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual
models from natural language supervision. In International conference on machine learning, pp.
8748–8763. PMLR, 2021a.

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual
models from natural language supervision. In International conference on machine learning, pp.
8748–8763. PMLR, 2021b.

Amal Rannen, Rahaf Aljundi, Matthew B Blaschko, and Tinne Tuytelaars. Encoder based lifelong
learning. In Proceedings of the IEEE international conference on computer vision, pp. 1320–
1328, 2017.

Sylvestre-Alvise Rebuffi, Alexander Kolesnikov, Georg Sperl, and Christoph H Lampert. icarl:
Incremental classifier and representation learning. In Proceedings of the IEEE conference on
Computer Vision and Pattern Recognition, pp. 2001–2010, 2017.

Victor Sanh, Thomas Wolf, and Alexander Rush. Movement pruning: Adaptive sparsity by fine-
tuning. In Advances in neural information processing systems, volume 33, pp. 20378–20389,
2020.

Christian Schlarmann, Naman Deep Singh, Francesco Croce, and Matthias Hein. Robust clip: Un-
supervised adversarial fine-tuning of vision embeddings for robust large vision-language models.
In International Conference on Machine Learning, 2024.

Ali Shafahi, Mahyar Najibi, Amin Ghiasi, Zheng Xu, John Dickerson, Christoph Studer, Larry S
Davis, Gavin Taylor, and Tom Goldstein. Adversarial training for free! In Proceedings of the
33rd International Conference on Neural Information Processing Systems, pp. 3358–3369, 2019a.

Ali Shafahi, Mahyar Najibi, Mohammad Amin Ghiasi, Zheng Xu, John Dickerson, Christoph
Studer, Larry S Davis, Gavin Taylor, and Tom Goldstein. Adversarial training for free! In
Advances in neural information processing systems, volume 32, 2019b.

Hanul Shin, Jung Kwon Lee, Jaehong Kim, and Jiwon Kim. Continual learning with deep generative
replay. Advances in neural information processing systems, 30, 2017.

Christian Szegedy, Wojciech Zaremba, Ilya Sutskever, Joan Bruna, Dumitru Erhan, Ian Goodfel-
low, and Rob Fergus. Intriguing properties of neural networks. In International Conference on
Learning Representations, 2014.

Vishal Thengane, Salman Khan, Munawar Hayat, and Fahad Khan. Clip model is an efficient con-
tinual learner. arXiv preprint arXiv:2210.03114, 2022.

13



702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Tom Veniat, Ludovic Denoyer, and Marc’Aurelio Ranzato. Efficient continual learning with modular
networks and task-driven priors. In International Conference on Learning Representations, 2020.

Liyuan Wang, Xingxing Zhang, Hang Su, and Jun Zhu. A comprehensive survey of continual
learning: Theory, method and application. IEEE transactions on pattern analysis and machine
intelligence, 46(8):5362–5383, 2024a.

Runqi Wang, Xiaoyue Duan, Guoliang Kang, Jianzhuang Liu, Shaohui Lin, Songcen Xu, Jinhu Lü,
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A LLM USAGE STATEMENT

We used a large language model, ChatGPT, as a general-purpose assistant to help with language
polishing and stylistic improvements of the manuscript. The LLM was not involved in research
ideation, experimental design, data analysis, or interpretation of results, and all scientific contribu-
tions and conclusions presented in this work are solely those of the authors.

B EXPERIMENTAL VALIDATION OF THE TRADE-OFF IN RCIL
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( c )  C l e a n  a c c u r a c y  w i t h  p a r t i a l  f i n e - t u n i n g

( d )  P G D - 1 0  a c c u r a c y  w i t h  p a r t i a l  f i n e - t u n i n g
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( e )  C l e a n  a c c u r a c y  w i t h  f u l l  f i n e - t u n i n g

( f )  P G D - 1 0  a c c u r a c y  w i t h  f u l l  f i n e - t u n i n g

Figure 4: Incremental performance (clean and PGD-10 accuracy) of different methods in the CIL
setting on S-CIFAR100. (a) and (b) show the clean and PGD-10 accuracy of baseline CIL. (c) and
(d) show the clean and PGD-10 accuracy of CIL with adversarial training (AT) using partial fine-
tuning (all methods update only the last block, except RAPF and Proof that additionally update the
added adapter module). (e) and (f) show the clean and PGD-10 accuracy of CIL with AT using full
fine-tuning.

Most existing CIL methods focus on alleviating catastrophic forgetting, but they largely overlook the
vulnerability of CIL models to adversarial perturbations. Such vulnerability poses a critical threat
to the reliability and safety of CIL in real-world applications. This trade-off is formally captured in
Eq. ??, where prior work tends to emphasize the first term, while enforcing stability for past tasks,
which ignores the second term, which promotes robustness against adversarial perturbations. As a
result, models that achieve high accuracy on clean examples often collapse under adversarial ones,
producing incorrect or misleading predictions and leading to nearly zero accuracy (see Figure 4
(a, b)). Incorporating adversarial training into CIL provides a natural way to address this issue by
encouraging models to balance robustness and adaptive learning across tasks. However, striking this
balance remains highly challenging, as robustness and stability impose conflicting requirements on
parameter updates. For example, Figure 4 (c, d) shows that updating only a limited set of parameters
yields minimal robustness gains with less forgetting, whereas Figure 4 (e, f) shows that updating all
parameters improves robustness at the cost of severe forgetting.

These observations highlight the fundamental difficulty of designing RCIL algorithms that can si-
multaneously retain past knowledge and defend against adversarial perturbations, underscoring the
necessity of new approaches that explicitly address this robustness-stability trade-off.

C DETAILED PROOF OF THE GEOMETRIC INEQUALITY

In particular, for any three unit vectors a, b, and c, the vector a can be orthogonally decomposed into
two components: one lying in the direction of c, and the other residing in the subspace orthogonal
to c. Formally,

a = (a⊤c) c+ a⊥, where a⊥ ⊥ c and thus a⊤
⊥c = 0 (17)

Similarly, the vector b can be decomposed as:
b = (b⊤c) c+ b⊥, where b⊥ ⊥ c and thus b⊤⊥c = 0 (18)
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Thus, the inner product a⊤b becomes:

a⊤b = ((a⊤c) c+ a⊥)
⊤((b⊤c) c+ b⊥)

= (a⊤c)(b⊤c)c⊤c+ (a⊤c)c⊤b⊥ + (a⊤c)c⊤⊥c+ a⊤
⊥b⊥

= (a⊤c)(b⊤c) + a⊤
⊥b⊥

(19)

Therefore, the deviation from the product of cosine similarities is:∣∣a⊤b− (a⊤c)(b⊤c)
∣∣ = |a⊤

⊥b⊥|
≤ ∥a⊥∥ · ∥b⊥∥
=

∥∥a− (a⊤c) c
∥∥ · ∥∥b− (b⊤c) c

∥∥ (20)

Because they are unit vectors, we have:∥∥a− (a⊤c) c
∥∥2 = a⊤a− 2(a⊤c)2 + (a⊤c)2 c⊤c = 1− (a⊤c)2 (21)

Combining these results yields:∣∣a⊤b− (a⊤c)(b⊤c)
∣∣ ≤ ∥∥a− (a⊤c) c

∥∥ · ∥∥b− (b⊤c) c
∥∥ =

√
1− (a⊤c)2 ·

√
1− (b⊤c)2 (22)

Because γab = cos(a, b) = a⊤b, γac = cos(a, c) = a⊤c, and γbc = cos(b, c) = b⊤c, we obtain:

|γab − γacγbc| ≤
√

1− γ2
ac ·

√
1− γ2

bc (23)

This implies the final bound:

γacγbc −
√
(1− γ2

ac)(1− γ2
bc) ≤ γab ≤ γacγbc +

√
(1− γ2

ac)(1− γ2
bc) (24)

D PSEUDO CODE FOR SAGE

To provide a clearer exposition of our method, we present the corresponding pseudo code in Algo-
rithm 1.

Algorithm 1 PSEUDO CODE FOR SAGE.
Input: Incremental Datasets: {D1,D2, · · · ,DT }, Pre-trained CLIP image encoder and text en-
coder: f(·), g(·)
Output: Robust incrementally trained CLIP model

1: for t = 1 to T do
2: Extract input samples Xt, corresponding labels Yt, and text prompts Pt from Dt

3: for epoch = 1 to max epochs do
4: Sample a mini-batch: input samples xt, corresponding labels yt, and text prompts pt

5: for iter = 1 to max iterations do
6: Generate adversarial examples xadv

t using PGD via Eq. 1
7: end for
8: if t > 1 then
9: Compute the total loss Ltotal via Eq. 16

10: else
11: Compute the cross-entropy loss LCE
12: end if
13: Perform backpropagation to compute gradients ∂L

∂θ
14: Compute parameter importance scores I
15: Determine the binary mask m via Eq. 10
16: Update the parameters of the image encoder via θ ← θ +m⊙∆θ
17: end for
18: end for
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E SUPPLEMENTARY ABLATION EXAMPLES

Table 5: Effect of the Top-k% parameter selec-
tion. Bold for the best result.

Top-k% S-CIFAR10 S-CIFAR100

Clean A PGD A Auto. Alast Clean A PGD A Auto. Alast

1e− 3 72.93 60.57 41.32 59.83 44.70 25.70
1e− 2 72.36 61.75 41.60 63.20 48.49 28.98
1e− 1 70.77 61.11 40.07 61.68 47.99 29.09

Effect of the Top-k% Parameter Selection.
We update the top-k% of parameters in each
layer based on their importance score I . To as-
sess the impact of different k values on the fi-
nal performance, we conduct experiments with
k = 1e − 3, 1e − 2, 1e − 1. The results in Ta-
ble 5 show that when k is small (e.g., 1e − 3),
the model tends to exhibit weaker robustness.
This effect is not obvious on datasets with fewer classes, but on S-CIFAR100, the PGD A score
decreases by 3.79% compared to k = 1e− 2. On the other hand, when k is large (e.g., 1e− 1), the
generalization performance is worse than that of k = 1e−2. This observation is consistent with our
discussion in Section 4.1, where class-incremental learning tends to update fewer parameters to mit-
igate forgetting, while adversarial robustness benefits from updating a larger portion of parameters
to enforce robustness. Considering the trade-off, we set k = 1e− 2.

Sensitivity of the Loss Weight µ. Figure 5 illustrates the sensitivity of the weight µ on S-CIFAR10
and S-CIFAR100. The results indicate that the model exhibits sharp performance degradation when
µ < 0.75, indicating a high sensitivity to under-weighting the loss term. For instance, on S-
CIFAR10, the PGD Alast drops sharply from 47.85% at µ = 1 to 19.31% at µ = 0. Once µ > 0.75,
both clean and robust accuracies become relatively stable, with values around µ = 1 achieving the
best trade-off. Overall, extreme values of µ substantially impair performance, whereas settings close
to µ = 1 yield stable and optimal results. Hence, we choose µ = 1 as the default setting.

0 . 0 0 0 . 2 5 0 . 5 0 0 . 7 5 1 . 0 0 1 . 2 5 1 . 5 0 1 . 7 5 2 . 0 0
0

1 0
2 0
3 0
4 0
5 0
6 0
7 0
8 0

 C l e a n   C l e a n   P G D   P G D   A u t o .  
(a) Hyperparameter ablation on S-CIFAR10.
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0
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 C l e a n   C l e a n   P G D   P G D   A u t o .  
(b) Hyperparameter ablation on S-CIFAR100.

Figure 5: Effect of varying the loss weight µ on performance for S-CIFAR10 and S-CIFAR100 after
fine-tuning with PGD-2: (a) S-CIFAR10; (b) S-CIFAR100.

F EXPERIMENTAL RESULTS WITH REPLAY

In addition to the above methods, we also compare with TABA (Bai et al., 2023), a replay-based
RCIL approach. To enable replay, we adopt iCaRL (Rebuffi et al., 2017) to store 500 exemplars from
previous tasks, which improves the model’s performance and allows evaluation under the exemplar-
replay setting. As shown in Table 6, all methods achieve performance gains over the no-replay
setting. Across all four datasets, our method SAGE consistently outperforms the others in terms of
PGD Alast, yielding the smallest improvement of 3.26% on S-STL10 and the largest improvement
of 18.40% on S-CIFAR100 compared to the second-best approach. Meanwhile, our method also
achieves the best results on Auto. Alast. This further demonstrates the effectiveness of our approach,
showing that it maintains strong performance in both replay and no-replay settings.

G EXPERIMENTAL RESULTS ON IMAGENET-A

To evaluate the performance of our method SAGE in realistic continual learning scenarios, we extend
our experiments to ImageNet-A Hendrycks et al. (2021). This dataset consists of natural images that
are particularly challenging for standard ImageNet-trained models, selected to highlight common
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Table 6: Evaluation of several methods on ViT-B/32 with 500 size of memory buffer. We report
average PGD-10, Auto. accuracy (%) and BWT on S-CIFAR10, S-STL10, S-CIFAR100 and S-
TinyImageNet under attack strength of 1/255. Bold for the best result, underline for secondary.

Type Method

S-CIFAR10 S-STL10 S-CIFAR100 S-TinyImageNet

PGD Auto. PGD Auto. PGD Auto. PGD Auto.

A ↑ Alast ↑ BWT ↑ Alast ↑ A ↑ Alast ↑ BWT ↑ Alast ↑ A ↑ Alast ↑ BWT ↑ Alast ↑ A ↑ Alast ↑ BWT ↑ Alast ↑

AT

TeCoA 18.05 9.42 -41.56 0.13 44.65 35.72 -24.34 0.36 13.71 7.99 -47.90 6.83 12.75 5.66 -40.23 4.45
FARE 38.64 30.88 -10.76 3.69 57.91 49.85 -8.70 9.78 25.66 18.97 -6.10 5.72 24.80 22.63 -5.70 11.36
PMG-AFT 18.16 9.07 -42.13 0.05 44.07 35.45 -24.09 0.31 13.89 8.31 -47.94 7.18 13.27 5.88 -40.88 4.65
TGA-ZSR 38.67 19.28 -63.45 13.55 62.55 54.30 -17.44 26.10 25.72 13.71 -48.67 8.86 17.22 8.53 -36.56 5.34

R-CIL

R-LwF 72.98 58.04 -46.46 57.51 81.08 71.34 -23.11 69.55 41.27 21.02 -67.76 20.79 23.85 8.76 -56.19 8.62
R-LwF-MC 56.41 34.42 -73.58 31.50 55.03 29.50 -68.11 16.89 2.93 1.00 -1.11 1.00 1.46 0.50 -0.00 0.50
R-EWC-on 72.38 57.82 -46.61 57.55 79.01 67.14 -28.59 66.67 37.28 17.00 -68.97 16.88 21.07 8.23 -52.46 8.13
R-SI 74.11 59.05 -45.25 58.53 80.33 70.58 -25.55 68.61 42.45 20.63 -68.42 20.46 24.99 10.56 -55.61 10.38

R-CIL-CLIP
R-RAPF 72.20 56.49 -49.13 0.00 59.52 62.92 -25.77 61.94 46.34 26.17 -62.80 25.69 34.28 21.85 -51.34 21.34
R-SG 55.64 50.57 2.40 0.00 76.32 70.75 -16.23 62.84 39.24 24.56 -32.93 20.04 25.38 14.09 -20.74 11.11
R-Proof 33.79 13.87 -69.00 13.14 64.70 33.98 -61.52 32.10 13.31 4.83 -41.10 4.42 5.02 1.97 -12.82 1.49

RCIL TABA 62.39 40.34 -64.36 36.52 62.73 37.91 -34.42 22.12 2.94 1.00 -1.11 1.00 1.46 0.50 -0.00 0.50
FLAIR 58.10 40.52 -67.11 35.59 62.95 47.78 -49.89 26.41 2.93 1.00 -1.11 1.00 1.46 0.50 -0.00 0.50

RCIL4CLIP SAGE (ours) 75.09 66.26 -13.15 58.82 81.30 74.60 -1.33 72.19 55.36 44.57 -1.67 38.42 43.57 37.14 -1.19 31.30

Table 7: Evaluation of several methods on ViT-
B/32 without memory. We report Clean, PGD-10,
Auto. accuracy (%), and BWT on S-ImageNet-A
under attack strength of 1/255. Bold for the best
result, underline for secondary.

Type Method

S-ImageNet-A

Clean PGD Auto.

A ↑ Alast ↑ BWT ↑ A ↑ Alast ↑ BWT ↑ Alast ↑

AT

TeCoA 12.16 2.40 -24.68 0.81 1.63 -3.72 0.07
FARE 24.53 12.82 -15.50 2.13 1.53 -0.96 0.26
PMG-AFT 12.39 2.40 -25.64 0.89 1.63 -3.98 0.07
TGA-ZSR 13.69 3.50 -29.26 2.54 2.42 -8.18 0.86

R-CIL

R-LwF 7.48 3.75 -22.70 3.53 2.21 -11.60 1.51
R-LwF-MC 1.14 0.39 -0.00 1.14 0.39 -0.00 0.79
R-EWC-on 7.72 3.27 -23.06 3.71 2.60 -11.51 1.71
R-SI 7.54 2.98 -22.11 3.46 2.21 -10.52 1.51

R-CIL-CLIP
R-RAPF 2.22 1.92 -8.38 1.89 1.63 -6.53 1.05
R-SG 5.36 3.01 -5.60 2.45 1.51 -1.89 0.92
R-Proof 5.13 1.63 -12.78 2.82 1.54 -8.12 0.59

RCIL FLAIR 1.14 0.39 -0.00 1.14 0.39 -0.00 0.79

RCIL4CLIP SAGE (ours) 20.45 13.81 -8.61 8.91 6.69 -3.38 4.94

failure cases. The images exhibit diverse
and complex visual conditions such as un-
usual viewpoints, occlusions, lighting varia-
tions, blur, and background clutter. Using this
dataset allows us to assess how well our method
handles the challenges posed by real-world, di-
verse, and hard-to-classify images. ImageNet-
A is divided into 10 tasks with 20 classes per
task, denoted as S-ImageNet-A. The relatively
limited sample size further increases the diffi-
culty, since each class contains far fewer exam-
ples than conventional large-scale benchmarks,
making continual learning more sensitive to
overfitting and feature drift. The results in
Table 7 show that SAGE consistently delivers
higher robustness and lower forgetting on S-
ImageNet-A, remaining stable even under se-
vere distribution shifts and limited samples, demonstrating its effectiveness in realistic continual
learning settings.

H COMPARISON WITH FREE ADVERSARIAL TRAINING

Table 8: Evaluation of several methods on ViT-
B/32 without memory. We report Clean, PGD-10,
Auto. accuracy (%), and BWT on S-CIFAR10,
S-STL10, S-CIFAR100, and S-TinyImageNet un-
der attack strength of 1/255. Bold for the best re-
sult.

Dataset Method Clean PGD Auto.

A ↑ Alast ↑ BWT ↑ A ↑ Alast ↑ BWT ↑ Alast ↑

S-CIFAR10 FreeAT 44.85 19.78 -98.23 41.90 19.15 -90.81 18.03
SAGE (ours) 72.36 63.67 -34.12 61.75 47.85 -42.27 41.60

S-STL10 FreeAT 54.66 39.81 -73.77 44.63 24.49 -80.11 17.74
SAGE (ours) 73.52 69.56 -33.16 63.96 54.31 -40.20 46.32

S-CIFAR100 FreeAT 26.68 9.38 -89.61 20.85 7.78 -69.96 7.36
SAGE (ours) 63.20 49.02 -22.62 48.49 35.59 -19.89 28.98

S-TinyImageNet FreeAT 21.36 7.65 -70.81 12.71 4.37 -43.34 4.23
SAGE (ours) 56.14 44.72 -13.54 40.21 31.95 -9.49 26.18

To strengthen the assessment of practicality, we
additionally include Free Adversarial Training
(FreeAT) Shafahi et al. (2019a) as a lightweight
robustness baseline. FreeAT avoids generat-
ing adversarial examples in separate steps and
instead updates the model and the adversarial
perturbation within the same backward pass.
This design greatly reduces the computational
overhead during training. For FreeAT, we set
the nominal number of epochs to be consistent
with those used for the other methods in order
to ensure a fair comparison. Because FreeAT
performs m gradient update hops within each
epoch, its effective number of passes over the
data becomes epochs divided by m. In our experiments, we use m = 2, which keeps the com-
putational cost comparable across methods while still following the update mechanism required by
FreeAT. The results in Table 8 show that across all sequential tasks and both attacks, SAGE consis-
tently and significantly outperforms FreeAT, delivering stronger robustness and much less forgetting,
making it a more suitable choice for robust class-incremental learning.
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I EVALUATING PERFORMANCE WITH ROBUST BACKBONE INITIALIZATION

Table 9: Evaluation of several methods on ViT-
B/32 without memory. We report Clean, PGD-10,
Auto. accuracy (%), and BWT on S-CIFAR10,
S-STL10, S-CIFAR100, and S-TinyImageNet un-
der attack strength of 1/255. Bold for the best re-
sult.

Dataset Method Clean PGD Auto.

A ↑ Alast ↑ BWT ↑ A ↑ Alast ↑ BWT ↑ Alast ↑

S-CIFAR10

FLAIR 61.27 45.83 -66.05 51.73 32.31 -77.91 30.90
FLAIR + FARE 48.15 25.66 -91.76 44.34 20.26 -94.80 19.51
SAGE 72.36 63.67 -34.12 61.75 47.85 -42.27 41.60
SAGE + FARE 73.52 66.86 -34.24 62.22 50.33 -45.00 45.52

S-STL10

FLAIR 71.32 64.92 -42.17 59.69 48.26 -51.59 41.65
FLAIR + FARE 79.21 81.11 -22.44 62.81 51.39 -54.02 42.76
SAGE 73.52 69.56 -33.16 63.96 54.31 -40.20 46.32
SAGE + FARE 80.07 82.42 -17.97 70.91 66.75 -30.97 60.59

S-CIFAR100

FLAIR 3.05 1.00 -0.00 2.94 1.00 -0.00 1.00
FLAIR + FARE 3.15 1.00 -1.18 3.03 1.00 -1.12 1.00
SAGE 63.20 49.02 -22.62 48.49 35.59 -19.89 28.98
SAGE + FARE 60.07 44.65 -35.89 46.00 30.75 -34.48 24.76

S-TinyImageNet

FLAIR 1.46 0.50 -0.00 1.46 0.50 -0.00 0.50
FLAIR + FARE 1.46 0.50 -0.00 1.46 0.50 -0.00 0.50
SAGE 56.14 44.72 -13.54 40.21 31.95 -9.49 26.18
SAGE + FARE 61.03 52.74 -23.52 43.59 36.31 -21.98 30.51

To assess whether a robustly fine-tuned back-
bone can further enhance our approach, we
initialized the model using a FARE Schlar-
mann et al. (2024) pretrained Tiny-ImageNet
checkpoint. As shown in Table 9, this ini-
tialization leads to consistent improvements on
S-CIFAR10, S-STL10, and S-TinyImageNet,
while yielding a small drop on S-CIFAR100.
The overall trend shows that robust initializa-
tion helps SAGE adapt more confidently to
most continual learning scenarios and encour-
ages a more stable progression of robustness.

J TRAINING
DETAILS OF BASELINES

CLIP (Radford et al., 2021a) consists of an image encoder f(·) and a text encoder g(·), which maps
a given image-text pair (x,p) into corresponding image embedding f(x) and text embedding g(p).
The prediction for the correspondence between image x and p is computed as:

Si,j = τ · f(xi)

∥f(xi)∥
· ( g(pj)

∥g(pj)∥
)⊤

qi,j =
Si,j∑
k Si,k

(25)

where i and j index the image and text samples respectively, and τ is a temperature parameter
that scales the similarity scores. Here, we denote by Sadv the output generated from adversarial
examples xadv and by qadv the corresponding predictions, while St represents the output after
learning the t-th task. Furthermore, St|ji denotes the output restricted to the classes introduced from
task i through task j, after completing the training of the current task t. In this work, we update all
model parameters during training, adopt the SGD optimizer to minimize the objective function, and
employ the text prompt template “This is a photo of {}”.

J.1 ZERO-SHOT ADVERSARIAL ROBUSTNESS

J.1.1 THE TRAINING DETAILS OF TECOA

TeCoA (Mao et al., 2023) is a simple yet effective approach to enhance adversarial robustness. It
introduces a text-guided contrastive adversarial training loss, which enforces alignment between the
adversarial visual features and their corresponding text embeddings. Thus, the loss is defined as:

Ltotal = LCE(q
adv
t ,y) (26)

where qadv
t denotes the prediction vector of adversarial examples from task t, and y represents the

one-hot vector label.

For S-CIFAR10 and S-STL10, the model is trained for 20 epochs with a learning rate of 0.001, a
weight decay of 1e-5, and a batch size of 64. For S-CIFAR100 and S-TinyImageNet, we use the
same hyperparameters but extend the training to 50 epochs.

J.1.2 THE TRAINING DETAILS OF FARE

FARE (Schlarmann et al., 2024) is an unsupervised adversarial fine-tuning scheme designed to ob-
tain a robust CLIP vision encoder, thereby improving robustness across downstream vision tasks. It
enforces that the features of adversarially perturbed inputs remain close to those of the unperturbed
inputs produced by the original CLIP model. In a class-incremental learning setting, we adapt this
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idea by replacing the original CLIP model with the previous CLIP model. Specifically, the loss is
defined as:

Ltotal = ∥fθt(xadv
t )− fθt−1

(xt)∥22 (27)
where fθt−1

(xt) denotes the feature representation generated by the model before updating from
θt−1 to θt, and fθt(xt) is the corresponding output after the update.

For S-CIFAR10 and S-STL10, the model is trained for 20 epochs with a learning rate of 0.001, a
weight decay of 1e-4, and a batch size of 64. For S-CIFAR100 and S-TinyImageNet, we use the
same hyperparameters but extend the training to 50 epochs.

J.1.3 THE TRAINING DETAILS OF PMG-AFT

PMG-AFT (Wang et al., 2024b) proposes a pretrained model guided adversarial fine-tuning method,
which leverages supervision from the original pretrained model through a carefully designed aux-
iliary branch to enhance robustness. Specifically, it minimizes the distance between the features of
adversarial examples in the target model and those in the pretrained model. In a class-incremental
learning setting, we adapt this idea by replacing the original CLIP model with the previous CLIP
model. The loss is defined as:

Ltotal = LCE(q
adv
t ,y) + α · LKL(Sadvt |t−1

1 ∥ Sadvt−1) + β · LKL(Sadvt ∥ St) (28)

The hyperparameters are set to α = 1.0 and β = 1.0. For S-CIFAR10 and S-STL10, the model is
trained for 20 epochs with a learning rate of 0.001, a weight decay of 1e-5, and a batch size of 64.
For S-CIFAR100 and S-TinyImageNet, we use the same hyperparameters but extend the training to
50 epochs.

J.1.4 THE TRAINING DETAILS OF TGA-ZSR

TGA-ZSR (Yu et al., 2024b) observes that adversarial perturbations induce a noticeable shift in text-
guided attention. To address this, it introduces a simple yet effective strategy that aligns the text-
guided attention of adversarial examples obtained from the target model with that of clean examples
produced by the original model. In addition, it enforces consistency of text-guided attention between
the target and original models on clean examples. In a class-incremental learning setting, we adapt
this idea by replacing the original model with the previous model. The loss is defined as:

A(x) = f(x) · g(p)⊤, A(x) ∈ RP×1

Ltotal = LCE(q
adv
t ,y) + α · ∥At(x

adv)|t−1
1 −At−1(x)∥2 + β · ∥At(x)|t−1

1 −At−1(x)∥2
(29)

We define the text-guided attention asA(x) ∈ RP×1, where P denotes the number of image patches.
The notationAt(·) refers to the text-guided attention derived from the current model at task t, while
At(·) corresponds to that of the previous task model. Moreover, the operator |t−1

1 indicates that the
attention vector is restricted to the classes observed from tasks 1 through t− 1.

The hyperparameters are set to α = 0.08 and β = 0.05. For S-CIFAR10 and S-STL10, the model
is trained for 20 epochs with a learning rate of 0.001, a weight decay of 1e-5, and a batch size of 64.
For S-CIFAR100 and S-TinyImageNet, we use the same hyperparameters but extend the training to
50 epochs.

J.2 CLASS-INCREMENTAL LEARNING

J.2.1 THE TRAINING DETAILS OF R-LWF

LwF (Li & Hoiem, 2017) is a regularization-based strategy that mitigates catastrophic forgetting
through knowledge distillation. It combines a cross-entropy loss with a distillation loss. To enhance
its adversarial robustness, we replace the clean examples in the cross-entropy term with adversarial
examples, denoted as R-LwF:

Ltotal = LCE(q
adv
t ,y) + α · LKL(St|t−1

1 || St−1) (30)

The hyperparameter is set to α = 1.0. For S-CIFAR10 and S-STL10, the model is trained for 20
epochs with a learning rate of 0.1, a weight decay of 1e-5, and a batch size of 64. For S-CIFAR100
and S-TinyImageNet, the model is trained for 50 epochs with a learning rate of 0.5, a weight decay
of 1e-5, and a batch size of 64.
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J.2.2 THE TRAINING DETAILS OF R-LWF-MC

LwF-MC (Dhar et al., 2019) is an improved variant of LwF that replaces both the cross-entropy loss
and the KL-divergence term with a binary cross-entropy (BCE) loss, allowing each output dimen-
sion to be treated independently and thereby alleviating catastrophic forgetting more effectively.
To enhance its adversarial robustness, we replace the clean examples in the first BCE term with
adversarial examples, denoted as R-LwF-MC:

ratio = len(yt−1) / len(yt)

Ltotal = (1− ratio) · LBCE(Sadvt |tt−1,1y) + ratio · LBCE(St|t−1
1 , sigmoid(St−1))

(31)

which 1y denotes the binary one-hot vector indicating the ground-truth class y, sigmoid(·) denotes
the sigmoid activation function, and ratio is defined as the proportion of previously learned relative
to the total number of classes after task t.

For S-CIFAR10 and S-STL10, the model is trained for 20 epochs with a learning rate of 0.1, a weight
decay of 1e-5, and a batch size of 64. For S-CIFAR100 and S-TinyImageNet, the model is trained
for 50 epochs with a learning rate of 0.5, a weight decay of 1e-5, and a batch size of 64.

J.2.3 THE TRAINING DETAILS OF R-EWC-ON

EWC (Kirkpatrick et al., 2017) is are regularization-based approach that constrains parameter up-
dates based on their estimated importance to previously learned tasks. By discouraging significant
changes to critical parameters, EWC effectively preserves prior knowledge and mitigates catas-
trophic forgetting. To enhance its adversarial robustness, we replace the clean examples in the
cross-entropy term with adversarial examples, denoted as R-EWC-on:

Ltotal = LCE(q
adv
t ,y) +

∑
i

α

2
Fi(θ

i
t − θit−1)

2 (32)

where Fi is the Fisher information estimating the importance of parameter θi, θt denotes the model
parameters after learning task t, and α controls the strength of the regularization term.

The hyperparameter λ is set to 25. The model is trained with a weight decay of 1e-5 and a batch size
of 32. For S-CIFAR10 and S-STL10, the model is trained for 20 epochs with a learning rate of 0.1,
while for S-CIFAR100 and S-TinyImageNet, it is trained for 50 epochs with a learning rate of 0.5.

J.2.4 THE TRAINING DETAILS OF R-SI

SI (Zenke et al., 2017) builds on a concept similar to EWC but introduces intelligent synapses that in-
corporate aspects of biological plasticity into artificial neural networks. Each synapse incrementally
accumulates task-relevant information and uses this knowledge to efficiently integrate new memories
while preserving previously acquired ones, thereby mitigating catastrophic forgetting. TO enhance
its adversarial examples, we replace the clean examples in the cross-entropy term with adversarial
examples, denoted as R-SI:

Ltotal = LCE(q
adv
t ,y) + α ·

∑
i

Ωi(θ
i
t − θit−1)

2 (33)

where Ωi is each synapse incrementally accumulates task-relevant information, and c controls the
strength of the regularization term.

The hyperparameter α is fixed at 0.5. The model is trained with a weight decay of 1e-5 and a batch
size of 64. For S-CIFAR10 and S-STL10, the model is trained for 20 epochs with a learning rate of
0.1, while for S-CIFAR100 and S-TinyImageNet, it is trained for 50 epochs with a learning rate of
0.5.

J.3 CLASS-INCREMENTAL LEARNING WITH CLIP

J.3.1 THE TRAINING DETAILS OF R-PROOF

Proof (Zhou et al., 2025) trains task-specific projection layers on top of frozen image and text en-
coders. For each task, additional projections are introduced while the previous ones remain fixed,
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thereby mitigating the forgetting of previously learned concepts. Furthermore, a fusion module is
incorporated to better exploit cross-model information. By jointly refining visual and textual repre-
sentations, the model captures richer task-specific semantic information that facilitates recognition.
To enhance its adversarial robustness, we replace the clean examples with adversarial examples,
leading to our variant termed R-Proof:

PIt(x
adv) =

b∑
m=1

PImt (f(xadv)), PTt(p) =

b∑
m=1

PTm
t (g(p))

Pt = [PIt(pro1), P It(pro2), P It(prob)], Tt = [PTt(p1), PTt(p2), · · · , PTt(pb)]

C = [c1, c2, · · · , cb], [P̃ It(x
adv), P̃t, T̃t, C̃] = Attn([PIt(x

adv),Pt,Tt,C])

Spm
i,j = τ · PIt(x

adv
i )∥∥PIt(xadv
i )

∥∥ · ( PTt(pj)

∥PTt(pj)∥
)⊤, qpm =

Spm
i,j∑

k S
pm
i,k

Svm
i,j = τ · P̃ It(x

adv
i )∥∥∥P̃ It(xadv
i )

∥∥∥ · ( P̃ It(proj)∥∥∥P̃ It(proj)
∥∥∥ )⊤, qvm =

Svm
i,j∑

k S
vm
i,k

Stm
i,j = τ · P̃ It(x

adv
i )∥∥∥P̃ It(xadv
i )

∥∥∥ · ( P̃ T t(pj)∥∥∥P̃ T t(pj)
∥∥∥ )⊤, qvm =

Stm
i,j∑

k S
tm
i,k

Ltotal = LCE(q
pm,y) + LCE(q

vm,y) + LCE(q
tm,y)

(34)

Here, PImt (xadv) and PTm
t (·) denote the m-th image and text projections, respectively, and their

sum yield PIt(x
adv) and PTt(p). The collections of projected features are denoted as PIt(x

adv for
adversarial images, Pt for visual prototypes, Tt for text prompts, and C for additional context em-
beddings.These features are then refined by the attention module, producing refined representations
P̃ It(x

adv), P̃t, T̃t, and C̃. Based on these fine features, three types of similarity scores are com-
puted: Spm

i,j for projected matching between adversarial examples and text prompts, Svm
i,j for visual

matching between adversarial examples and visual prototypes. and Stm
i,j for text matching between

adversarial examples and text prompts. Each similarity score is normalized across all candidate
classes, resulting in probability distributions qpm, qvm, and qtm, respectively. These distributions
are then used to compute the total loss, which combines cross-entropy terms over three matching
perspectives.

The model is trained with a learning rate of 0.001, a weight decay of 0.05, and a batch size of
64. For S-CIFAR10 and S-STL10, the model is trained for 20 epochs, while for S-CIFAR100 and
S-TinyImageNet, it is trained for 50 epochs.

J.3.2 THE TRAINING DETAILS OF R-RAPF

RAPF (Huang et al., 2024) introduces a linear adapter layer W appended to the image encoder. After
fine-tuning this adapter, it employs a decomposed parameter fusion method to integrate parameters
from both the new and old adapters. To enhance category separation, RAPF computes distances
between new and old text embeddings and leverages these distances to select statistical features of
hard examples from previous tasks for sampling, thereby guiding the fine-tuning of the adapter on
new tasks. To enhance its adversarial robustness, we replace the clean examples in the cross-entropy
term with adversarial examples and compute statistical features from these adversarial examples for
sampling, denoted as R-RAPF:

Ltotal = LCE(q
adv
t ,y) + Lhinge

Lhinge =

|P|∑
k=1

max(dist(W (eadv), g(pt))− dist(W (eadv), g(p1:t−1)) +m, 0)
(35)

where P = {(i, j)|di,j < λ}, di,j = dist(g(pt), g(p1:t−1)), dist(·, ·) denotes the Euclidean dis-
tance, and m is a constant margin. The sampled data of the old category qold, derived from the
statistical features of adversarial examples, is denoted by eadv . In R-RAPF, LCE is used to update
all parameters of the model, including both the image encoder and the adapter, whereas Lhinge is
applied exclusively to update the adapter.
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We employ the text prompt template “a good photo of a {}”. The hyperparameters are set as λ = 0.5,
m = 1.0 and the max ratio to 0.6. The model is trained with a learning rate of 0.01, a weight decay
of 0, and a batch size of 64. For S-CIFAR10 and S-STL10, the model is trained for 20 epochs, while
for S-CIFAR100 and S-TinyImageNet, it is trained for 50 epochs.

J.3.3 THE TRAINING DETAILS OF R-SG

SG (Yu et al., 2024a) leverages semantic information as auxiliary knowledge to improve the effec-
tiveness of class-incremental learning. Specifically, it utilizes intra-task semantic relationships to
generate more informative labels for the current task. Furthermore, it exploits inter-task seman-
tic relationships to enhance knowledge distillation, thereby mitigating the forgetting of previously
acquired knowledge. To enhance its adversarial robustness, we replace the clean examples with
adversarial examples, denoted as R-SG:

Ltotal = LCE(q
adv
t ,y) + α · LKL(q

adv
t || ysg) + β · LKL(q

adv
t |t−1

1 || qadv
t−1)

ysg
i,j =

Sc↔c
i,j∑

k Sc↔c
i,k

, Sc↔c
i,j = τ · g(pi)

∥g(pi)∥
· ( g(pj)

∥g(pj)∥
)⊤

(36)

Here, ysg
i,j represents semantically-guided labels. qadv

t |t−1
1 refers to the predictions of the new-task

model restricted to the classes from previously learned tasks, while qadv
t−1 represents the predictions

by the model trained on those previous tasks.

We employ the text prompt template “a bad photo of {}”. The hyperparameters are set as α = 0.5
and β = 0.5. For S-CIFAR10, the model is trained for 20 epochs with a learning rate of 0.1, a
weight decay of 2e-4, and a batch size of 64, whereas for S-STL10, the learning rate is set to 0.01
with the same weight decay and batch size. For S-CIFAR100 and S-TinyImageNet, the model is
trained for 50 epochs with a learning rate of 0.1, a weight decay of 2e-4, and a batch size of 64.

J.4 ROBUST CLASS-INCREMENTAL LEARNING

J.4.1 THE TRAINING DETAILS OF TABA

TABA (Bai et al., 2023) adopts an idea similar to LwF-MC, but differs in that it enhances data
diversity through augmentation. Specifically, it first selects boundary samples, as these samples are
more vulnerable to attacks, and denotes this set as B. Then, it applies mixup between the current
task’s data set Bt and the previous tasks’ data set Bo, and defines the resulting set as DTABA. Finally,
training is performed jointly on the current task data set Dt and DTABA.

ratio = len(yt−1) / len(yt)

Ltotal = (1− ratio) · LBCE(Sadvt |tt−1,1y) + ratio · LBCE(Sadvt |t−1
1 , sigmoid(St−1))

(37)

TABA is evaluated under the replay-based setting. The model is trained with a weight decay of 1e-5
and a batch size of 64. For S-CIFAR10 and S-STL10, we use a learning rate of 0.1 and train for 20
epochs, while for S-CIFAR100 and S-TinyImageNet, we use a learning rate of 0.5 and train for 50
epochs.

J.4.2 THE TRAINING DETAILS OF FLAIR

FLAIR (Cho et al., 2025) systematically establishes a framework for robust class-incremental learn-
ing. It first explores a series of baselines that combine incremental learning with existing adversarial
training methods and observes that such integration leads to conflicts between acquiring new knowl-
edge and retaining previously learned knowledge. It then further investigates this challenge by
analyzing the output differences between clean and adversarial examples through a Taylor expan-
sion, revealing that these discrepancies are governed by the model’s gradients and Hessians. It can
be math:

Ltotal = LBCE(Sadvt |tt−1,1y) + α · LBCE(Sadvt |t−1
1 , sigmoid(Sadvt−1))

+β · LKL(Sadvt |t−1
1 − St|t−1

1 || Sadvt−1 − St−1)
(38)

where sigmoid(·) denotes the sigmoid activate function.
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The hyperparameters are set as α = 0.5 and β = 2.0. For S-CIFAR10 and S-STL10, the model is
trained for 20 epochs with a learning rate of 0.1, a weight decay of 1e-5, and a batch size of 64. For
S-CIFAR100, the model is trained for 50 epochs with a learning rate of 0.5, a weight decay of 1e-5,
and a batch size of 64, whereas for S-TinyImageNet, the learning rate is set to 1.0 with the same
weight decay and batch size.
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