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ABSTRACT

Self-supervised learning is one of the most promising approaches to acquiring
knowledge from limited labeled data. Despite the substantial advancements made
in recent years, self-supervised models have posed a challenge to practitioners, as
they do not readily provide insight into the model’s confidence and uncertainty.
Tackling this issue is no simple feat, primarily due to the complexity involved in
implementing techniques that can make use of the latent representations learned
during pre-training without relying on explicit labels. Motivated by this, we intro-
duce a new stochastic vision transformer that integrates uncertainty and distance
awareness into self-supervised learning (SSL) pipelines. Instead of the conven-
tional deterministic vector embedding, our novel stochastic vision transformer en-
codes image patches into elliptical Gaussian distributional embeddings. Notably,
the attention matrices of these stochastic representational embeddings are com-
puted using Wasserstein distance-based attention, effectively capitalizing on the
distributional nature of these embeddings. Additionally, we propose a regular-
ization term based on Wasserstein distance for both pre-training and fine-tuning
processes, thereby incorporating distance awareness into latent representations.
We perform extensive experiments across different tasks such as in-distribution
generalization, out-of-distribution detection, dataset corruption, semi-supervised
settings, and transfer learning to other datasets and tasks. Our proposed method
achieves superior accuracy and calibration, surpassing the self-supervised base-
line in a wide range of experiments on a variety of datasets. Our code is in the
supplementary material.

1 INTRODUCTION

Self-supervised representation learning has gained more importance in recent years owing to the ex-

pensive cost associated with obtaining real-life, well-labeled data. Through self-supervised learning,
models learn to extract features solely from the latent representations of the data without the need
for explicit labels. In recent years, self-supervised learning techniques have demonstrated state-of-
the-art performance in a wide range of tasks including natural language processing (NLP; (Devlin
et al., 2018; Brown et al.l |2020)), computer vision(Chen et al., 2020; Bardes et al., |2021a; |Grill
et al., 2020), as well as multimodal learning (Radford et al., 2021} |Li et al.l 2022 [Shi et al., [2022)).
However, most of the existing approaches do not provide adequate information on the models’ con-
fidence and reliability in both pretext learning and downstream tasks, therefore potentially yielding
unreliable, overconfident performance. Thorough estimation and investigation of a model’s output
provide insight into the model’s confidence and potential fail cases when the models are uncertain
of their predictions. In light of the potential crucial real-life deployment of self-supervised learning,
the development of methods that ensure reliable and safe self-supervised learning frameworks is a
crucial yet non-trivial task. We adhere to Plex’s (Tran et al.l [2022) definition of reliability, which
evaluates a model’s capability to consistently perform well across a variety of tasks. Specifically,
Tran et al.| (2022) introduces three key criteria for reliable machine learning systems: the model
should demonstrate robust generalization to new tasks, effectively adapt to new datasets, and faith-
fully represent the corresponding uncertainty.

In literature, Bayesian neural networks (BNNs; Neal|(2012)) and neural ensemble networks (Hansen
& Salamon, |1990)(Lakshminarayanan et al.,|2017) are popular and widely used methods for captur-
ing parameter distributions in machine learning. While the Bayesian paradigm offers a principled
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approach to uncertainty quantification, it is not ideal for self-supervised methods. Bayesian deep
learning, which typically involves sampling from the posterior distribution, faces scalability chal-
lenges with the prevalent large architectures in this field and relies heavily on having true labels y
for maximum-a-posterior (MAP) estimation. One possible solution for self-supervised learning is
to inject stochasticity directly into the encoder networks. In this manner, the models return a diverse
set of solutions through appropriate randomization of the weights, analogous to the randomization
of weights achieved through Deep Ensembles and Monte-Carlo (MC)-Dropout (Gal & Ghahramani,
2016)), without training multiple sets of large models.

In this paper, we formalize a comprehensive method for robustness and distance-aware self-
supervised learning through stochastic vision transformer encoders. Our novel method ensures more
robust predictions with a negligible decrease in predictive performance.

We summarize our contributions as follows:

1. We propose an alternative stochastic transformer architecture with distributional embed-
ding for masking-based vision SSL. We introduce stochasticity into the attention mech-
anism through a Wasserstein distance-based attention mechanism, which determines the
stochastic attention matrix between the embedded distributions.

2. We introduce novel Wasserstein distance-based regularization terms in the loss objectives
for both unsupervised pre-training and supervised downstream tasks. The regularization
terms leverage uncertainty and distance awareness into the training, encouraging similar
items to be embedded closer together in the distributional space.

3. We perform comprehensive experiments to show the advantage of our method compared to
deterministic approaches. We test our method’s predictive and uncertainty measurements
in 1) In-distribution tasks; 2) Out-of-distribution tasks; 3) Distribution shift via image
corruption tasks; and 4) Semi-supervised learning tasks; Our approach achieves superior
downstream predictive performance to uncertainty trade-off compared to the other meth-
ods, which highlights the promising benefit of distance-aware training to self-supervised
learning frameworks.

2 RELATED WORKS

Self-supervised Learning Due to the potential scarcity of labels in real-world applications, self-
supervised learning offers a feasible advantage over fully supervised learning as features are pre-
learned directly from the latent representation of the data during pre-text tasks without explicit
annotation. Current established self-supervised learning methods involve solving pre-text tasks,
ranging from masking-based data reconstruction (Baevski et al.| 2022)), contrastive learning (Caron
et al.| 2021a;|Chen et al.,|2020; Zbontar et al.,|2021), contrastive divergence learning (Rezaei et al.,
2021)), to knowledge distillation (Caron et al., | 2021b; [Vahidi et al., 2023a). The refinement of the
learned representations occurs in the subsequent downstream tasks, which, in most cases, involve
classic fully supervised learning tasks, such as visual object classification and sentiment analysis.
In some use cases such as anomaly detection (Bozorgtabar et al., 20215 Tran et al.} [2022) or out-of-
distribution detection (Mohseni et al., [2020; |Khalid et al., 2022} |Vahidi et al., 2023bta), the features
learned from pre-text tasks are directly used for inference. Previous works have sought to improve
the robustness of the pre-text of learning by tackling representation collapse (Bardes et al., [2021b;
Rezaei et al, [2023) or explicitly improving the models’ OOD performance (Winkens et al., 2020;
Sehwag et al| [2021; Rezaei et al.| [2022; |Tran et al., 2022)). Nevertheless, the concepts of robust-
ness and distance awareness of self-supervised learning frameworks have not been investigated to a
significant degree.

Transformer Uncertainty Estimation One possible way to inject uncertainty awareness within
self-supervised networks is to inject stochasticity into the encoders. In the case of transformer en-
coders, recent works have injected stochasticity into the self-attention mechanism of the transformer
using Gumbel softmax (Pei et al.| [2022), double stochastic attention matrix with Sinkhorn algorithm
(Sander et al.| [2022)), or Gaussian mixture model (Nguyen et al., [2022). While (Pei et al., 2022)
investigates the uncertainty estimation of its hierarchical stochastic transformer method in fully su-
pervised NLP tasks, no rigorous study on uncertainty estimation of the aforementioned stochastic
transformers in self-supervised learning networks has been performed. The stochastic transformer
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for recommendation system (Fan et al., |2022) has also implemented distributional embeddings,
Wasserstein distance-based attention mechanism, and loss term into the classical transformer, which
was nevertheless mainly developed to improve the predictive performance of the fully supervised
recommendation system tasks.

3 BACKGROUND AND PROBLEM FORMULATION

Attention Mechanism Transformers are developed as a competitive alternative to Recurrent Neural
Networks (RNN) for sequential data, enabling long-term dependencies of the data sequence in place
of short-term dependencies in RNNs. The key component of transformers is the attention mecha-
nism, which determines contextual correlations between the embedded vector components within
each batch. The input data is first tokenized into tokens of a given sequence length [ and vector di-
mensions d. Within each head of the multi-head attention of head size h, input data token x € Rixd

is linearly projected into three vectors, namely query Q € R/X"x %, key K € RIxhx #, and value
K € R*M*1 Attention is calculated by applying a scaled dot product to each element of the query
vector with each element of the key vector. The obtained scaled dot product is then subsequently
normalized with a Softmax function and multiplied with the value vectors. The self-attention mech-
anism can be summarized as follows:

T
Attention(Q, K, V') = softmax <Q§(§ > v (D

Q=Woz,K = Wge,V =Wyz; Wg, Wi, Wy € R¥*4 ()

Every component of the classical attention mechanism is deterministic, returning a single dot vector
output, thus rendering uncertainty estimation impossible. Therefore, we seek to introduce stochas-
ticity into the attention mechanism by applying Wasserstein distance in place of the dot product.

Probabilistic Embedding The conventional transformer embeds input data tokens into vector
points. Positional encoding is applied to maintain the positional information of the embedded vec-
tors. Again, the embedding components found in classical transformers are deterministic. An al-
ternative approach is to map the data tokens into probability distributions instead of point vectors.
The embedding of text data into Gaussian distributions has been explored by [Vilnis & McCallum
(2015) and |Q1an et al.[(2021), with the advocated benefit of uncertainty representation in the embed-
ding space and diversity of representation in comparison to the dot product. Gaussian distribution
embedding is also applied within the stochastic transformer for recommendation system sequences
(Fan et al.| 2022)). Inspired by these previous works, we map image tokens into elliptical Gaussian
distributions by encoding both mean and covariance vectors into the network. This paper introduces
additional positional embeddings for both the mean and covariance embeddings. The Elliptical
Gaussian distribution is chosen as it is relatively easy to parameterize and model in higher dimen-
sions. Additionally, closed-form solutions exist for statistical inference and measure operations with
Gaussian distributions, allowing computationally and methodically simpler stochastic implementa-
tions.

Wasserstein Distance in Machine Learning Due to its empirical success and relative ease of imple-
mentation, the Wasserstein distance is one of the most commonly used distance metrics employed
in machine learning applications which involve the learning of probability distributions. Given
the formulation of the p-Wasserstein distance with p > 1 in Eq. [3] calculating the p-Wasserstein
distance may be intractable for large p and arbitrary distribution functions. However, a tractable
closed-form solution exists for the case of 2-Wasserstein distance with Gaussian distribution func-
tions, formulated as follows (Dowson & Landaul [1982)(Olkin & Pukelsheim, [1982)(Knott & Smith,
1984)(Givens & Shortt, [1984)),

1/p
Wp(ﬂay)( inf / C(x,y)”dv(x,y)> 3)
YET (1) Jxx x
W2 (21, 20) = |1 — pa|)* + Tr(E1 + 55 — 2(5)/°5,55/%)1/2), )
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Figure 1: Illustration of our proposed pre-training pipeline. Given a mini-batch of X input sample,
the augmented view of x’ and the original view « are encoded into a set of features by the stochastic
encoder network to produce robust representations via stochastic elliptical Gaussian embeddings.

for Gaussian probability measures z; ~ AN(u1,%1) and 2o ~ AN(ug,X2) on RY. Tr denotes
the trace operator of the covariance matrices. While the Wasserstein distance has been essential
in various machine learning applications |Arjovsky et al.| (2017), the use of Wasserstein distances
in improving robustness and correlating distributional embeddings has not been explored in detail.
Distributionally robust optimization (Gao et al.,|2020; |Kuhn et al., 2019) has empirically demon-
strated the potential to capture uncertainty and improves the robustness of neural networks. We
build upon these previous works and introduce the tractable formulation of the 2-Wasserstein dis-
tance into transformers’ attention layer and an additional regularization term. Our main objective is
to leverage the distances between the stochastic Gaussian embeddings into the main learning process
of neural networks, facilitating more robust learning.

4 METHOD
Given a mini-batch of training data, randomly sampled and defined as X = [z1,... ,acn]N IS
RN *P and transformation function 7 that operates on this data. The transformation function plays a

crucial role in improving the training process by generating an augmented view, & = () for each
sample in X. The augmentation process involves sampling 7 from a distribution of suitable data
transformations. Examples of such transformations include partially masking image patches (He
et al, [2022) or applying various image augmentation techniques (Chen et al.| 2020). Later, we
create an image token using a pre-trained convolutional neural network (CNN) to extract features
from each image and then aggregate these features into a token representation tJ, ..., 5 for each
image in the batch similar to (Dosovitskiy et al., 2021)). As depicted in Figure |1} the image token
is generated both for the original input data and for the augmented samples. Differing deterministic
vector representation, we create two vectors of mean p and variance o based on a sequence of tokens
of augmented samples & which are fed to our proposed stochastic Gaussian embedding layer.

4.1 STOCHASTIC GAUSSIAN EMBEDDING

We represent tokens in the stochastic Gaussian embedding space with mean ¢ and variance o vec-
tors, thereby instilling distributional information throughout the entire architecture. In contrast to
deterministic embedding representations, we append two separate positional encoding vectors for p
and o, forming the stochastic Gaussian embeddings zg, . zﬁ and 20, ..., zZ which are then passed
to the stochastic transformer encoder blocks. Each encoder block comprises normalization layers,
stochastic Wasserstein attention, and a projection head.

Wasserstein Attention We propose an attention mechanism based on the Wasserstein distance,
enabling effective focus on stochastic Gaussian embeddings. The stochastic embeddings undergo
linear transformations, forming stochastic Gaussian Q(Query), K(Key), and V(Value) representa-
tions Zqxy ~ N (fgkv, Oqkv), formulated as follows,
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Hgko = ZHW:kv (5)
ogkv = ELU(diag(2,Wg,)) + 1.

The ELU activation function preserves the positive definite property of the covariance matrix. By

evaluating the negative 2-Wasserstein distance instead of using dot-product attention between the

stochastic Gaussian ) and K embeddings, we derive the attention scores. This is formulated as

follows:

2
Agi = ~(WEQ.K)) = —(||lng — nx|” + Tr(Sq + £k — 2(S5° 0T *)V?),  (©)

A, = softmax ({3’;) . @)

We obtain the stochastic Wasserstein embedding by multiplying the attention scores with the corre-
sponding stochastic value embeddings as in Equation [§]and Equation[9] Repeating this calculation
across the block depth ensures that the weights comprehensively learn the spatial correlation of the
embedded stochastic distributions through the evaluated distances between the Gaussian distribu-
tions.

A=AV, 8
A, = A%V, 9)

4.2 CONTRASTIVE WASSERSTEIN REGULARIZATION

We formulate a contrastive Wasserstein distance-based regularization term that enables the learning
of distances between the embedded stochastic Gaussian embedding. The main deterministic training
objective remains in place, thereby ensuring a comprehensive learning of the representations while
also encoding robustness into the objective. Given the contrastive nature of the regularization term,
we distinguish the case between unsupervised pre-training and supervised fine-tuning, whereby pos-
itive and negative example pairs are to be considered. Consider one mini-batch of the output embed-
dings returned from the stochastic transformer encoder z,,: ~ N (fout, Tout ), the trained stochastic
embedding layer f., and the positive example y™. The cumulative loss term during pre-training of
a self-supervised learning framework is given as follows:

L;D = £p - )‘IOg(U(_WZQ(zOuty fz(y+)))a (10)

where £, is the deterministic unsupervised pre-training loss term and W3 is the 2-Wasserstein oper-
ation. We consider the unmasked image patches as the positive unsupervised pre-training example.
The 2-Wasserstein operation encourages the network to minimize the distance between the stochas-
tic representations of the masked and unmasked image patches. We control the magnitude of the
regularization term with the parameter A. Similarly, the fine-tuning objective with the correspond-
ing regularization parameters A; and Ao, is given as follows:

Lf - ‘CC’E - )\lll(zouh y+a y_) + >\2l2(zout7 y+7 y_)7 (11)

whereby the distributional regularization terms [; and I, are given as follows:
ll(zouh y+> y_) = log(J(WQQ(zouta fz (y+)) - W22(zout7 fz(y_))))ﬂ (12)
lQ(Zc)ut; era yi) = [Wg(zouh fz(er)) - W22(fz(y+); fz(yi»]-‘r' (13)

Lc is the supervised cross-entropy loss term, [z]+ = max(z,0) is the hinge loss operator, y*
and y~ are the positive and negative examples. The extended regularization terms correspond to
the comprehensive contrastive learning from both positive and negative examples. The term [y
regularizes the distance between the stochastic embeddings of the input data and the examples,
while [, enforces a larger distance between the positive and negative examples. We consider the
unaugmented image patches to be positive examples. The access to ground truth labels facilitates
the explicit random sampling of images belonging to other classes which serve as negative examples.
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5 EXPERIMENTAL SETTINGS

We conducted several experiments to assess the robustness of our stochastic transformer method
during both pretext and downstream tasks.

Network Architecture Our implemented method builds upon the data2vec self-supervised learn-
ing framework (Baevski et al., [2022)) with a ViT backbone (Dosovitskiy et al.,[2020). Data2vec is a
masking-based framework that enables the backbone networks to acquire knowledge by reconstruct-
ing latent representations of masked data using the latent representations of the original, unmasked
data. In the pretext task, our primary learning objective involves minimizing the smoothed L1 loss
of the reconstruction of the masked data while the cross-entropy loss is used during the downstream
tasks. For our experiments, we chose to train with the ViT-B backbone. In addition, we introduced
regularization terms to enhance the robustness of the learning process, as explained in the previous
section.

Optimization The hyperparameters and model parameters optimized are in line with the values
used for both pretext and downstream training of the data2vec framework for the imaging modality
unless otherwise stated. For the pretraining, we optimize the network with a total batch size of 1024,
a learning rate of 2 x 1073, and the stochastic regularization term \ of 1 x 10~ for a total of 300
epochs. For the downstream task, we optimize the network with a total batch size of 512, a learning
rate of 5 x 1073, the stochastic regularization terms A; of 1 x 10™* and Ay of 1 x 10~* for 50
epochs.

Dataset We conducted our experiments using the following datasets: CIFAR-100and CIFAR-
10 (Krizhevskyl 2009) : These datasets consist of tiny images with dimensions of 32 x 32 featuring
100 and 10 distinct classes, respectively. The images are split into 50,000 training images and 10,000
validation images for both datasets. SVHN (Street View House Numbers) (Netzer et al.,2011)): This
dataset is composed of 600,000 RGB 32 x 32 images of 10 classes of house numbers ( 0 to 9 ) taken
from Google Street View. CIFAR-100-C and CIFAR-100-P (Hendrycks & Dietterichl, 2019) are
commonly used benchmarks to evaluate a model’s robustness against corruptions and perturbations,
respectively. CIFAR-100-C consists of CIFAR-100 images that have been subjected to 18 distinct
types of image corruption each at five different severity levels. On the other hand, CIFAR-100-P in-
cludes sequences of image frames from CIFAR-100 with specific perturbation applied progressively
over the time frames.

Tasks We assess the effectiveness of our approach across various tasks considering evaluation pro-
tocols by self-supervised learning (Chen et al.| [2020) and robustness evaluations suggested by
Plex (Tran et al., [2022)). In particular, we evaluate the model’s performance on In-Domain gen-
eralization (IND), Out-Of-Distribution (OOD) detection, semi-supervised learning, and corrupted
and perturbed dataset robustness tasks.

Evaluation Metrics We report the performance metrics using the following notation: upward arrows
signify that higher values are considered more optimal while downward arrows indicate the opposite.
Top-1 Accuracy T: the number of correct top-1 class predictions for a given test sample batch. Top-
1 Accuracy measures the predictive performance of the model. AUROC 1: Area Under Receiver
Operating Characteristic curve. This metric measures the model’s ability to differentiate positive
and negative classes. For OOD detections, a sample has a negative class if it is OOD and a positive
class otherwise. NLL |: the negative log-likelihood of the predicted distribution given the true target
values. NLL measures the difference between the predicted confidence and true confidence, with
lower values indicating that the model is better at predicting the true labels. ECE |: measures the
discrepancy between accuracy and confidence scores. A lower ECE value signifies better-calibrated
models, returning higher accuracy when they are more confident and vice-versa. mCE |: used in
corrupted dataset evaluations. Previous works defined mCE as the average of corruption errors over
several corruption types and severity (Wang et al., 2022)(Hendrycks et al.,2020). MFP |: measures
the probability that two adjacent perturbation sequence frames of the same image result in a flip of
two distinct output classes in perturbed dataset evaluation. (Hendrycks & Dietterich, 2019)). Top-5
distance |: measures the stability of top-5 predictions across perturbation sequence (Hendrycks &
Dietterich, [2019).

Compared Methods We benchmark our method against the following competing approaches.
Baseline Baseline self-supervised data2vec framework (Baevski et all [2022) for image modal-
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ity . Deep Ensembles We consider deep ensembles with 10 random seeds of the baseline net-
works. MC-Dropout Baseline encoders with dropout regularization applied during pre-training,
fine-tuning, and inference with 10 forward passes. Sinkformer Baseline networks with stochastic
Sinkhorn algorithm-based transformer architecture applied during both pre-training and fine-tuning.
SNGP Baseline networks with spectral normalization and Gaussian process layers instead of linear
layer applied during fine-tuning. The results shown were averaged over 5 runs.

6 RESULTS AND DISCUSSION

In-Distribution Generalization For the in-distribution generalization evaluation, we measure the
top-1 accuracy and the calibration error of the methods detailed in the previous section. We pre-
train and fine-tune the networks with the training set. The top-1 accuracy and calibration errors are
obtained from inference with the test set. An ideal solution offers high predictive performance while
maintaining low calibration errors. Table [T] summarizes the evaluation results for both CIFAR-100
and CIFAR-10 datasets. In terms of ECE and NLL, our method outperforms the Deep Ensembles
and Baseline methods. Moreover, our method achieves a higher top-1 accuracy value in comparison
to the other uncertainty quantification methods and stochastic transformer methods. The results
suggest that our method leads to more robust and generalizable self-supervised learning predictions
without sacrificing the prediction accuracy.

Table 1: Results of In-Distribution accuracy and calibration error for our stochastic embedding
networks trained with CIFAR-100/10. The best score for each metric is shown in bold, and the
second-best is underlined

Methods CIFAR-100 CIFAR-10
Acc(t) NLL{) ECE() Acc(f) NLL({) ECE()
Baseline 69.720 1.198 0.456 76.933 0.816 0.415

Ensembles k=10  69.040 1.229 0.454 76.470 0.789 0.402
Sinkformer 59.360 1.591 0.474 56.970 1.327 0.437
MC-Dropout 0.3  54.180 1.834 0.450 73.086 0.905 0.429
SNGP 64.896 1.411 0.487 74.580 0.894 0.437

Our method 69.420 1.223 0.445 76.630 0.784 0.397

Out-of-Distribution Detection OOD predictions gauge the models’ capability to identify unseen
test samples stemming from different distributions. We pre-train and fine-tune the models with the
ID training datasets and perform zero-shot OOD inference with OOD training datasets. Table[2]sum-
marizes the OOD detection experiment results for differing datasets and methods. From the AUROC
values obtained, our method outperforms the other competing methods, notably the distance-aware
SNGP, highlighting the importance of the distance-aware regularization and distributional embed-
dings to the out-of-distribution robustness of the networks.

Table 2: Results of Out-of-distribution AUROC for our stochastic embedding networks trained with
CIFAR-100/10. The best score for each metric is shown in bold, and the second-best is underlined.

Methods CIFAR-100 ID CIFAR-10ID
CIFAR-10 (1) SVHN (1) SVHN (1)

Baseline 0.519 0.483 0.483
Ensembles k = 10 0.518 0.492 0.487
Sinkformer 0.559 0.489 0.462
MC-Dropout 0.3 0.485 0.512 0.480
SNGP 0.584 0.505 0.486
Wasserstein 0.629 0.498 0.490

Corrupted and Perturbed Dataset Evaluation Given the stochastic nature of real-life observa-
tions, it is crucial for models to infer robust predictions from data affected by distribution shifts,
for example through noisy images. The corrupted and perturbed dataset experiments emulate the
possible real-life distribution shifts induced by noise and distortions. We pre-train and fine-tune the
models with the in-distribution datasets. We then perform zero-shot inference with the corrupted
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Table 3: Results of the CIFAR-100-C/CIFAR-100-P test dataset inference. The best score for each
metric is shown in bold, and the second-best is underlined.

CIFAR-100-C CIFAR-100-P

Methods mCE())  MFP(}) Top-5()
Baseline 0.506 14.294 2.647
Ensembles k = 10 0.505 12.815 2.394
Sinkformer 0.581 16.654 3.072
MC-Dropout 0.3 0.602 14.235 2.782
SNGP 0.527 15.211 2.680
Our method 0.487 12.808 2410

Table 4: Semi-supervised classification accuracy for both baseline data2vec and stochastic Wasser-
stein transformer data2vec networks. The best score for each metric is shown in bold.

Label fraction
Methods 1% 10%
Top-1 ECE NLL Top-l1 ECE NLL
Baseline 22.260 0.287 3.091 56980 0.466 1.676
Wasserstein  21.710 0.283 3.086 57.860 0.462 1.578

CIFAR-100/10-C dataset and the corrupted CIFAR-100/10-P dataset. Our findings are illustrated in
Table[3] The lower CE Error and Mean Flip Probability values substantiate the improved robustness
and generalization ability of the data2vec network applied with our method. While the ensemble
method performs better in terms of the Top-5 distance metric, our method’s performance is almost
on par with the deep ensembles. The distributional embeddings and distance-aware regularization
facilitate more robust predictions under distribution shifts.

Semi-Supervised Learning In semi-supervised learning, models are trained in low data regimes,
emulating the possible real-life case of labeled data scarcity. We freeze the encoders of the networks
that are pre-trained with the training set and subsequently fine-tune the linear classifier with 1% and
10% of the training set. The resulting top-1 accuracy, ECE, and NLL values from Table E] indicate
that our method facilitates more optimal and robust training in low data regimes.

7 ABLATION STUDIES

To develop a better understanding of the behavior and observed performance of our proposed
method, we conducted a series of ablation studies to explore various aspects of our approach. These
studies included (i) the analysis of computational cost compared to baseline and model ensemble,
(ii) the impact of data augmentation, (iii) the impact of hyperparameters such as mini-batch size
and number of epochs, as well as (iv) the impact of hyperparameters of our proposed regularization
term.

Analysis of computational cost We evaluated the efficiency of our proposed method and com-
pared it with baseline and deep ensemble in terms of the number of parameters, memory usage, and
training time for 300 epochs. The results obtained in Table[5]show the SSL-Ensemble method leads
to a notable increase in both memory and computational demands compared to the baseline while
our method exhibits better efficiency in terms of a number of parameters, memory usage as well as
training time.

Table 5: Computational Cost in § DGX-A40 60G GPUs on CIFAR100.

Methods Members  Parameters = Memory/GPU  Time / 300-ep

Baseline(SSL) 1 86.3 M 312G 4.0 (h)
SSL-Ensemble 10 10 x86.3M 10x31.2G 10 x 4.0 (h)
Our method 1 115.8 M 423G 9.3 (h)
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Impact of augmentation magnitudes and severity We analyze the influence of augmentation
magnitudes and severity by adjusting the RandAugment augmentation policy applied to our net-
works. Our findings are summarized in Table[7] Higher magnitude and more severe augmentation
policies enforce a stronger contrastive regularization term, in alignment with the expected property
of a contrastive loss term. This finding further highlights the importance of balancing the main
deterministic loss objective and the contrastive regularization term.

Impact of hyperparameters The influence of pre-training batch size and training epochs on the
downstream performance is summarized in Figure 2] We observe that a smaller pre-training batch
size leads to a generally better performance. Meanwhile, a batch size of 512 impedes the learning
of representations, while a batch size of 1024 leads to a more satisfactory performance. We believe
that the learning of representations is determined by the interplay between the deterministic loss term
and the stochastic regularization loss term. For masked token reconstruction-based SSL networks,
large batch sizes generally lead to improved unsupervised pre-training. However, with bigger batch
sizes, the contrastive regularization term dominates the overall training loss, in alignment with the
expected property of a contrastive loss term.

Impact of regularization parameters Table [f] shows that appropriate tuning of the contrastive
regularization coefficients A\; and Ag is crucial to the stability and performance of our stochastic
Wasserstein network. Excessively high or low values impede the model’s capacity to learn. A large
coefficient value results in the contrastive regularisation term taking precedence over the training
process, while a small coefficient value causes unstable training.

Table 6: Performance of Wasserstein atten-
tion transformers with differing stochastic
regularization parameters.

801 Batch size
. 256
70 4 512
. 1024

A1 A2 Accuracy(1)
le=* 1le7? 69.420
le 3 1le—3 61.310
le=* 1le73 60.460
le=3  le* 59.390
le=5 1le=® 51.160

Table 7: Performance of Wasserstein atten-
tion transformers with differing augmenta-
% S 499 t@ons magnitude and amount. The augmenta-

tions are constructed with the RandAugment
augmentation policy.

Figure 2: Linear ablation evaluation of

the robust stochastic transformer pre-trained Magnitude Amt. Aug  Accuracy (1)
with different batch sizes and epochs. Each 9 2 09.420
bar is a single training run. 9 4 58.780

9 1 71.370

10 2 66.560

6 2 70.920

8 CONCLUSION

In this paper, we presented stochastic Gaussian embeddings for learning robust representation of
self-supervised framework. Specifically, we introduced a stochastic Wasserstein distance-based at-
tention mechanism to attend to the embedded tokens, passing down the stochastic information in the
process. The Wasserstein-distance-based regularization term is proposed to leverage the distance
between embedded output distributions into the learning process. Our distance-aware stochastic
implementation encourages more robust self-supervised learning performance, as evident from the
promising in-distribution generalization, OOD detection, corrupted dataset evaluation, and semi-
supervised learning evaluation in comparison to other well-established methods. In future work, we
will explore our stochastic embedding implementations with other data modalities. Additionally, we
will perform intensive investigations into the information geometry aspect of the embedded data, al-
ternative distances, and numerical approximations which are optimized for the stochastic embedding
of higher dimensional data.
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