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Abstract

Computer vision (CV) approaches applied to digital pathology have informed
biological discovery and clinical decision-making. However, batch effects in im-
ages represent a major challenge to effective analysis. A CV model trained using
Empirical Risk Minimization (ERM) risks learning batch-effects when they may
align with the labels and serve as spurious correlates. The standard methods to
circumvent learning such confounders include (i) application of image augmenta-
tion techniques and (ii) examination of the learning process by evaluating through
external validation (e.g., unseen data coming from a comparable dataset collected
at another hospital). The latter approach is data-hungry and the former, risks oc-
cluding biological signal. Here, we suggest two solutions from the Distributionally
Robust Optimization (DRO) families. Our contributions are i) a DRO algorithm
using abstention which is a slight variation over existing abstention-based DRO
algorithms and ii) a group-DRO method where groups are defined as hospitals from
which data are collected. We find that the model trained using abstention-based
DRO outperforms a model trained using ERM by 9.9% F1 in identifying tumor vs.
normal tissue in lung adenocarcinoma (LUAD) at the expense of coverage. Further,
by examining the areas abstained by the model with a pathologist, we find that the
model trained using a DRO method is more robust to heterogeneity and artifacts in
the tissue. Together, we propose selecting models that are more robust to spurious
features for translational discovery and clinical decision support. 1

1 Introduction

Computer vision (CV) approaches applied to cancer histopathology image data have demonstrated
potential for biological discovery, precision diagnostics, and as predictive biomarkers [1–5]. Previous
work has shown that models trained on one hospital and tested on another show varying levels of
performance [6]. This outcome could potentially result from the model learning spurious correlates
in the data, such as batch effects, which are artifacts introduced as a result of the Whole Slide Image
(WSI) preparation process, and induce a signal that is readily learnable, but not biologically relevant.

Mitigating batch effects parametrically incurs challenges, as they may arise from different parts of
the tissue pre-processing pipeline [7]. Further, large models are likely to learn spurious correlates
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when trained to near-zero training error [8], resulting in poor test performance in sub-populations of
the data, especially those that are under-represented in the training set [9].

This problem is especially exacerbated in the histopathology domain owing to the giga-pixel nature
of the images, which warrant the image to be processed in smaller patches whist attributing the
label given to the whole gigapixel image to all its patches - a phenomenon called weak labels [10].
A model risks learning spurious correlates on patches that don’t present the phenotype given to
the giga-pixel image it was taken from. Here, we propose circumventing this problem using DRO
methods [9, 11, 12] in a histopathology task with clinical relevance.

2 Experimental Setup

2.1 Network Architecture

2.1.1 ERM

We use a pretrained ResNet-50 convolutional neural network (CNN) [13] pre-trained on the ImageNet
dataset [14] to train an image classification model, herefore referred to as ‘the ERM model’. We used
a cross-entropy loss function where the loss is computed and aggregated over all samples of a batch.

2.1.2 group-DRO

In our implementation of a group-DRO method, we defined the groups as hospitals from which the
WSIs were taken. We trained an algorithm by backpropagating the loss over the tiles from the worst
performing hospital, measured by cumulative loss in a batch. However, the reported statistics, such
as F1, are reported over the whole validation / testing dataset, and not the worst performing hospital.

2.1.3 Model trained using Abstention

Input: abstention threshold p, forward function f , optimizer g, loss function L
Output: θ, the parameters of the model
Initialize θ;
for i← 1 to n do

ỹ = fθi(x);
ỹ′ = {ỹi‖ỹi < p ∨ ỹi > 1− p};
l = L(ỹ, y);
θi+1 ← g(θi, l);

end
Algorithm 1: Proposed DRO abstention algorithm

Models were trained using an abstention algorithm (Algorithm 1) whereby we only backpropagated
the losses on images for which the predicted softmax scores were greater a threshold p for the
predicted class. We first normalized the softmax scores using temperature scaling [15]. We ablated p
and measured the coverage (defined by [12] as the number of samples not abstained on) as well as
the F1 performance of the model on the samples not abstained on.

2.2 Lung Adenocarcinoma (LUAD)

We evaluated a DRO method on the task of detecting tumor tissue in LUAD WSIs from the Cancer
Genome Atlas (TCGA) (n = 522). We trained a binary classifier using slide-level labels to classify
tiles into tumor or normal tissue.

LUAD is one of the two major histologic subtypes of Non-Small Cell Lung Cancers (NSCLC).
Identification of the tumor in a WSI can help guide pathologic assessment and guide treatment
decisions [3,16,17]. However, identification of tumor may be confounded by scarring tissue from the
effects of smoking on lung tissue, amongst other features.

In one set of experiments, we compared ERM against DRO methods trained on data from one hospital
and validated on an external validation set consisting of unseen data coming from a comparable
dataset collected at another hospital. We also compared the use of image augmentation via recoloring
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Figure 1: High Amount of heterogeneity in performance depending on which hospital’s data are used
to train (left). DRO with image augmentation (right) shows improvement over ERM with image
augmentation (middle). Middle and right grids shown are differences over grid on the left.

to help reduce the batch effects. In another set of experiments, we combined data from multiple
hospitals in our training set and ablated the number of hospitals contributing the external validation
dataset to measure the robustness of the ERM and DRO methods.

3 Results

i ERM Abstention threshold gDRO
0.6 0.7 0.8 0.9

1 91.1 93.1 96.6 98.4 97.2 92.6
2 88.3 88.6 89.1 93.3 95.2 85.5
3 78.6 77.5 78.9 78.6 82.0 78.7
4 81.1 78.9 80.4 84.0 91.0 82.6
5 72.2 73.4 71.9 76.3 79.7 72.8

i Abstention threshold
0.6 0.7 0.8 0.9

1 .96 .93 .85 .62
2 .95 .87 .79 .54
3 .95 .87 .84 .65
4 .94 .85 .74 .55
5 .96 .90 .84 .60

Table 1: Measuring the performance of ERM, abstention-based DRO and group-DRO (gDRO) models
while validating on data combined from from i hospitals; showing macro - F1 (left) and coverage of
the abstention models (right).

First, we evaluated models trained on a single source site and validated on either the same or different
single source site on a task of LUAD identification. Overall, we found significant heterogeneity
in model performance based on the hospital whose data were used to train and validate the model
(Figure 1). We also found that image augmentation produced only up to 0.15 improvement in F1, and
using our abstention model in addition to image augmentation produced up to 0.24 improvement in
F1.

When trained on data from multiple hospitals, we found that the DRO model outperformed a
conventional convolutional neural network trained using ERM for the task of detecting tissue with
LUAD under all numbers of hospitals held out, at the expense of coverage. (Table 1)

We subsequently conducted statistical testing on performances of models that were thresholded
post-hoc at the same thresholds that the models trained with abstention were trained with. We
found no statistically significant advantage to using models trained with abstention. However, as we
will discuss below, similarly performing models can learn drastically different features, particularly
spurious ones in the case of ERM models.

Upon investigation of the tiles that the DRO model with abstention abstained on, we noted that a
DRO model abstained on tiles that an ERM model predicted incorrectly (Figure 2, top). DRO models
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Figure 2: Showing methods thresholded at various confidences. First row: DRO models with higher
confidence thresholds abstain on tiles that an ERM model predicts as normal tissue (blue) in a slide
labeled as tumorous, thus avoiding learning contradictory features. Second row: ERM methods call
non-tumor region on the right hand side of the tissue as tumor, even at high confidence thresholds,
whereas DRO methods abstain on these tiles where the tissue does not bear tumor.

Figure 3: Showing methods thresholded at various confidences. ERM methods predict bubble artifacts
as healthy surrounding tissue. DRO methods at higher confidence thresholds abstain from making
predictions on artifacts.

could have presented better performance by abstaining from learning potentially conflicting features,
since these tiles might present contradictory features to their ground truth label. Further, the ERM
methods incorrectly predicted regions of a WSI as tumorous even at higher confidences, that were
confirmed by a pathologist as non-tumorous (Figure 2, bottom)). On the other hand the abstention
method abstained on these tiles. This could be because these tiles presented spuriously correlated
features of that were exclusively correlated with the label of tumor.

Also, ERM models predicted tiles covered by slide-preparation artifacts that leaked through the
QC pipeline such as air bubbles (Figure 3) as healthy surrounding tissue in three different slides,
implying that these air bubbles might have introduced a spurious correlate. DRO models trained at
high confidence thresholds abstained from making predictions on these regions of the WSI. By its
abstention from artifacts, the abstention method is less likely to learn spurious correlates.
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Figure 4: Comparison of Model Confidence Scores (prediction value distance from 0.5) for ERM
and DRO models. QC Map: included (pink) vs excluded (green) slide area from HistoQC standard
pipelines; Heatmaps display the average confidence of regions determined by watershed segmentation
(greater confidence indicated by darker color).

However, the above results might have been produced at the expense of coverage. Even at full
coverage, abstention-trained models show utility in the content of the signal used by each model, in
two examples in a task of distinguishing between the subtypes of Lung cancer (Figure 4). Models
trained with abstention, avoid making predictions on pen marks, while ERM allocates high confidence
(darker color) to these artifacts (top row). In a second example taken from a brain biopsy of a
metastatic lung cancer, we observed i) the ERM model placed importance on surrounding brain tissue
which was confirmed by a pathologist to not bear any tumor, and thus has learned spurious signal;
and ii) the model trained with stringent abstention in contrast completely disregards the brain tissue,
while placing modest confidence in the verified lung tumor tissue. We would like to highlight that no
coverage was lost to thresholding in visualizing these examples and all tiles of Whole Slide Image
(WSI) are shown. However, owing to the different training processes, the models learned different
features.

To further demonstrate the differences in features learned in each model type, we used each model to
separately produce “pruned” datasets: datasets consisting of tiles with maximum softmax value above
a certain threshold. We subsequently used these datasets to train a further set of ERM models to
distinguish lung subtypes. At higher confidence levels (0.8 and 0.9), models trained on DRO-pruned
data offered better performance than those trained on ERM-pruned data (0.61 ± 0.12 vs 0.42 ± 0.11
F1 [p = 0.10] at threshold 0.8; 0.81 ± 0.12 vs 0.53 ± 0.12 F1 [p = 0.047] at threshold 0.9).

4 Conclusion

Here, we evaluated the impact of batch effects and developed approaches to mitigate these funda-
mental challenges to digital pathology. We suggested potential causes of heterogeneity in model
performance that can impact downstream analyses and proposed models that are robust to the distri-
butional shifts between training and held-out test sets. Prospectively, consideration of batch effects in
CV histopathology analysis will guide successful biological investigations.

5 Discussion

Ultimately, we found that DRO methods that aim to either optimize the model’s performance on a
previously defined subgroup or a learned subgroup, defined in our case by the training samples that
the model performed well on, were able to provide better performances on an external validation
set. The latter approach is aligned with potential clinical support use cases, whereby a model can
be allowed to abstain if it is not at least p% confident that the data are not sampled from the same
distribution it has been trained on. We make the assumption that examples that a model predicts with
low confidence are OOD. However, this assumption needs further validation studies to confirm.
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A Appendix

A.1 Measurement details of task training on one hospital and validating on another

In one set of experiments done on TCGA-LUAD, we trained the model on data taken from one
hospital and validated it on data taken from another, to mimic a real-world setting where data is
private and cannot be shared between institutions. In a resource scarce setting, a model trained on one
hospital, cannot be re-trained on data from another. In order to study the effect of the preprocessing
steps employed by a singular hospital, we were limited in our analysis to data from hospitals that have
both tumor samples and surrounding normal tissue. In this set of experiments, we only performed
three cross validation trials, owing to resource limitations.

A.2 Training details

We train our models to minimize error and stop training if the error does not improve on the validation
set over five consecutive measurements [18]. The validation performance was measured four times
per epoch. We used image augmentation via jittering the RGB pixel values in the RGB space to
prevent overfitting to the color distribution by inducing random changes in the brightness, saturation,
and other properties of an image, also known as color jitter [19]. We used a random-crop size of 224
pixels within the 512 pixel patch during our training process as a method to prevent overfitting. We
performed 5-fold cross validation on all of our experiments. However, each fold of the cross-validation
was not forced to be non-overlapping, owing to data availablility constraints.

Color Jitter We used image augmentation via jittering the RGB pixel values in the RGB space to
prevent overfitting to the color distribution by inducing random changes in the brightness, saturation,
and other properties of an image, also known as color jitter [19]. To discretize the color jitter,
we defined a light version of the color jitter that allowed the brightness to be chosen uniformly at
random between [0.875, 1.125], the contrast to be chosen uniformly at random between [0.5, 1.5],
the saturation to be chosen uniformly at random between [0.5, 1.5] and the hue to be chosen between
[-0.1, 0.1]. We similarly defined a heavy version of the color jitter to be four times proportionally
higher. We allowed the brightness to be chosen uniformly at random between [0.5, 1.5], the contrast
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to be chosen uniformly at random between [0, 3], the saturation to be chosen uniformly at random
between [0, 3] and the hue to be chosen between [-0.4, 0.4]. The limit on the color jitter we could
introduce was placed by the hue, which was forced to be between [-0.5, 0.5]. We chose the heavy
color jitter to be less than the maximum allowed by the hue, to preserve some of the color signal
presented by the tile.
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