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ABSTRACT

In real-world data labeling, annotators often provide imperfect labels. It is thus
common to employ multiple annotators to label data with some overlap between
their examples. We study active learning in such settings, aiming to train an accurate
classifier by collecting the fewest total annotations. Here we propose ActiveLab, a
practical method to decide what to label next that works with any classifier model
and can be used in pool-based batch active learning with one or multiple annotators.
ActiveLab automatically estimates when it is more informative to re-label examples
vs. labeling entirely new ones. This is a key aspect of producing high quality labels
and trained models within a limited annotation budget. In experiments on image
and tabular data, ActiveLab reliably trains more accurate classifiers with far fewer
annotations than a wide variety of popular active learning methods.

1 INTRODUCTION

Model-agnostic active learning methods use outputs from some arbitrary type of trained prediction
model in order to identify the most informative data to label, so that a more accurate version of the
same model can be trained. Such general approaches are popular because they can be directly applied
to many data modalities (image, text, etc.) as long as a reasonable model can be trained. Focusing on
highly practical settings, we consider model-agnostic pool-based active learning with multiple data
annotators that label a batch of many examples in between model (re)training runs. This setting is
easy to setup and allows us to address common issues in real-world active learning such as: labelers
who are imperfect, or expensive model (re)training that cannot be executed every time a new example
is labeled. Working with annotators that may provide incorrect labels, it is useful to sometimes ask
new annotators to provide extra labels for examples previously labeled by others. This allows us to
verify the current consensus label or estimate a better one.

Here we introduce ActiveLab1, a straightforward active learning algorithm that estimates when such
re-labeling will be more effective than labeling an entirely new example. A very general approach,
ActiveLab can be used: with any type of classifier model (or ensemble of multiple models) and data
modality, for active learning with multiple annotators where the set of annotators changes over time,
for traditional active learning where each example is labeled at most once (Appendix H), and for
active label cleaning where all data is already labeled by at least one annotator and the goal is to
establish the highest quality consensus labels within a limited annotation budget.

2 METHODS

This paper focuses on classification tasks with K classes, for which some (arbitrary) classifier model
M can be trained. For our ith example with feature values Xi, this model predicts a class probability
vector p̂M(Yi | Xi) estimating the likelihood that X belongs to each class k ∈ [K] := {1, 2, . . . ,K}.

In the pool-based batch active learning settings we consider, each round involves the steps described
below. In the beginning, we start with a training set D of examples that have at least one (noisy)

1Code for running our method: https://github.com/cleanlab/cleanlab/
Code for reproducing our benchmarks: https://github.com/cleanlab/

multiannotator-benchmarks/tree/main/active_learning_benchmarks
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annotation, where some of these examples may have been labeled by multiple annotators. We also
have a pool of unlabeled examples U that have zero annotations. Our proposed active learning method
may choose to collect new labels for examples in either D or U . Based on classifier predictions p̂ and
the currently-observed annotations D, ActiveLab estimates an acquisition score si for each example.
Examples with the lowest si values are those for which collecting an additional label is expected
to be most informative when subsequently training M. To avoid overfit/biased results, classifier
predictions p̂ should be out-of-sample, coming from a copy of the model M that has never been
trained with the example it is asked to predict the class of.

Active learning with multiple annotators

Input: D: labeled examples with at least one annotation
Input: U : unlabeled pool of examples (not yet annotated)

1: for r = 1, 2, . . . {rounds of active learning} do
2: Infer consensus labels Ŷi for annotated examples xi ∈ D (some have multiple annotations)
3: Train classifier model Mr with these labels: (xi, Ŷi)
4: Obtain (out-of-sample) predicted class probabilities: p̂ = Mr(x) for all x ∈ D ∪ U
5: Use active learning method to score all examples: si = A(p̂i;D) for all xi ∈ D ∪ U
6: Assemble batch B of the B best-scoring examples, collect one additional label Yij for each

xi ∈ B, and add new {Yij} to the training data (updating D,U)
7: end for

We can obtain out-of-sample predictions for every xi ∈ D by fitting our model via k-fold cross-
validation in Step 3. For examples currently in the unlabeled pool x ∈ U , Step 6 can collect their
first label, and there may be already-labeled examples x ∈ D in the selected batch B for which we
collect yet another label. There are many ways to operationalize the collection of labels in Step 6 of
active learning. The examples to acquire an extra label for could be divided amongst a limited pool
of annotators (some of which labeled other examples in previous active learning rounds), or these
examples could be given to new annotators to label.
Notation. In the remaining notation, all definitions of objects are given with respect to the current
round. Here we omit subscripts r and how objects change between rounds. In the current round,
the set of annotated examples D contains n examples labeled by m annotators in total. Yij ∈ [K]
denotes the class annotator Aj chose for example xi ∈ D, with Yij = ∅ if annotator Aj did not label
example i. Yi is the set of collected labels for example xi, with |Yi| = 0 if xi ∈ U . Ij is the subset
of examples labeled by annotator Aj , and Ji is the subset of annotators that labeled xi.

2.1 ACTIVELAB

ActiveLab extends the CROWDLAB estimator of Goh et al. (2022). Some equations in this paper
overlap with CROWDLAB, but we present them for completeness. Not every CROWDLAB equation
is motivated here, curious readers can refer to detailed explanations by Goh et al. (2022).

Unlike ActiveLab, which is intended for guiding collection of additional labels, CROWDLAB is
intended for analyzing a static dataset labeled by multiple annotators. Empirically it performs
poorly when used for active learning. While both approaches estimate consensus labels in a similar
fashion, they score examples differently. CROWDLAB estimates the likelihood that each current
consensus label is correct or not, whereas ActiveLab estimates the utility of collecting another
label to further improve the consensus and model trained therewith. CROWDLAB assigns very
low scores to examples annotated by many labelers that heavily disagree, but even though their
consensus label is unreliable, ActiveLab recognizes there is less utility in collecting one more label
for such fundamentally difficult examples (vs. examples that currently have fewer annotations).
Unlike CROWDLAB, ActiveLab also scores examples which currently have not been labeled yet. It
must trade-off the potential information gain from collecting the 1st label for an example from U vs.
the jth label for an example already labeled j − 1 times.

We first describe how ActiveLab computes the score si for examples that have at least one annotation.
Both CROWDLAB and ActiveLab are straightforward weighted ensembles which linearly combine
multiple predictors to form a single estimate of class probabilities. In prediction competitions, such
ensembles are often more accurate and better calibrated. One of these predictors is the (out-of-sample
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predictions from a) trained classifier M, abbreviated as p̂M,i,k := p̂M(Yi = k | X = xi). The other
predictors are the annotators who previously labeled xi. From the label Yij chosen by annotator Aj ,
we form an annotator-estimated class probability vector p̂Aj ,i,k ≈ p(Yi = k | Yij) that is directly
comparable to the classifier predicted class probabilities (details further below). ActiveLab and
CROWDLAB take a weighted average of this collection of probabilistic predictions to form a single
vector of ensemble predicted class probabilities for each xi.

CROWDLAB subsequently selects the most likely class under this ensemble estimate as the
consensus label Ŷi representing our best guess of the true label Yi. In Step 2 of each active learning
round, we use CROWDLAB to estimate a single consensus label Ŷi that aggregates the available
annotations Yi for each example xi ∈ D. Subsequently in Step 5, ActiveLab scores xi ∈ D via the
likelihood that class Ŷi is correct under its ensemble estimate, expressed as:

If xi ∈ D : si =
wM · p̂M,i,Ŷi

+ wĀ · 1
K +

∑
j∈Ji

wj · p̂Aj ,i,Ŷi

wM + wĀ +
∑

j∈Ji
wj

(1)

If xi ∈ U : si =
wM ·maxk p̂M,i,k + wĀ · 1

K

wM + wĀ
(2)

The above estimates depend on wM, wj which determine how much to weigh the model M and each
annotator Aj . We estimate their relative trustworthiness (based on the observed annotations {Yij})
in order to select these weights, via the same procedure as CROWDLAB (details further below).
Intuitively our estimate should down-weigh untrustworthy annotators or a poorly trained classifier, see
Goh et al. (2022) for further discussion on this estimate’s robustness against bad annotators/models.
Unlike CROWDLAB, equation (1) also contains a uniform 1/K predictor that receives weight
wĀ := 1

m

∑m
j=1 wj , representing the weight assigned to our average annotator (across all examples).

Here is a fundamental difference between ActiveLab and CROWDLAB: under the former, the
estimated likelihood that Ŷi is the correct class for xi ∈ D is much lower (closer to uniform) for
examples with few annotations. This regularization has smaller effect on examples with many
annotations. Thus amongst the x ∈ D, ActiveLab naturally favors acquiring labels for examples that
currently have fewer annotations. ActiveLab also favors examples where annotators disagree with the
consensus (note p̂Aj ,i,Ŷi

is much smaller if Yij ̸= Ŷi) or the classifier predicts the consensus to be
unlikely. These are the xi ∈ D whose current consensus label may be wrong, warranting re-labeling
to determine whether a better label can be established.

Scoring examples from the unlabeled pool. Before delving into the details of wM, wj , and p̂Aj
,

we describe how ActiveLab scores xi ∈ U . This is detailed in equation (2). Since we have no
annotations for xi ∈ U , ActiveLab scores such examples only using the probabilistic predictions from
our classifier p̂M. Many traditional active learning methods also operate this way (Munro, 2021).
As seen in (2), the score si for xi ∈ U is similarly computed as for xi ∈ D, except for modifications
required to handle missing information. Since Ji = ∅ in this case, we simply drop the annotator-
predictors p̂Aj from the weighted ensemble in order to obtain its estimate for unlabeled examples.
And we simply take Ŷi = argmaxk p̂M,i,k, the class predicted by our classifier, since CROWDLAB
cannot estimate a consensus label for xi ∈ U . Amongst the unlabeled examples, ActiveLab thus
favors acquiring labels for those xi for which the classifier is least confident (Munro, 2021).

Details for estimating weights and annotator likelihood. ActiveLab estimates wM, wj , and p̂Aj

in the same fashion as CROWDLAB. We present the mathematical details here but refer readers
to the explanations/motivations articulated by Goh et al. (2022). In equation (1), p̂Aj

∈ Rk is an
“annotator likelihood” vector containing the probabilities that xi belongs to each class given that
annotator Aj chose the label Yij . It is very simply defined:

p̂Aj ,i,k ≈ p(Yi = k | Yij) :=

{
P when Yij = k
1−P
K−1 when Yij ̸= k

P ≥ 0 is a global parameter shared across all annotators, estimated by computing the average
annotator agreement across all examples that have more than one annotation. P reflects the probability
that an annotator would select the consensus label for some arbitrary example (Goh et al., 2022).
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The weights wM, wj in equation (1) estimate the trustworthiness of our classifier model and each
annotator. The model weight is defined in terms of the normalized accuracy of the classifier’s
predictions with respect to the consensus label, over the subset of examples with more than one
annotation. The weight wj for annotator Aj is defined in terms of how much labels chosen by Aj

agree with other annotators when they labeled the same examples as Aj . More formally:

wj := 1− 1− gj
1−AMLC

, wM :=

(
1− 1−AM

1−AMLC

)
·
√

1

n

∑
i∈D

|Ji|

where gj is the agreement between Aj and other annotators: gj :=

∑
i∈Ij

∑
ℓ∈Ji,ℓ̸=j 1(Yij = Yiℓ)∑
i∈Ij

(|Ji| − 1)

AM is the empirical accuracy of classifier model predictions with respect to the consensus labels:

AM :=
1

|I+|
∑
i∈I+

1

(
Ŷi = argmax

k
p̂M,i,k

)
(3)

Normalization factor AMLC is the baseline accuracy (with respect to consensus labels) achieved by pre-
dicting the overall most labeled class YMLC (amongst all annotations for the dataset) for every example.

AMLC :=
1

|I+|
∑
i∈I+

1(YMLC = Ŷi) (4)

To avoid bias (Goh et al., 2022), the accuracy estimates which determine P , wj , and wM are computed
over the labeled examples that received more than one annotation: I+ := {i ∈ D : |Ji| > 1}.

2.2 CALIBRATION OF CLASSIFIER PREDICTIONS

While cross-validation enables us to produce out-of-sample predictions for each xi ∈ D, some types
of models tend to nonetheless output overconfident predictions (Guo et al., 2017). Our active learning
methods rely on the classifier to determine what data to label next and subsequently retrain another
version of this same classifier. To mitigate overconfidence (or underconfidence), we calibrate the
classifier’s predicted class probabilities in Step 4 of each active learning round, before we compute
ActiveLab scores via equation (1). We perform this calibration against the empirical distribution of
the annotators’ labels Yi for each example in D. Calibration is done by temperature scaling (Guo
et al., 2017) the classifier’s predicted probabilities p̂M(Yi | Xi) to minimize their (soft) cross entropy
against the empirical distribution p̂emp of classes in Yi. We choose the temperature T to maximize:

∑
i∈D

K∑
k=1

p̂emp(Yi = k | {Yij}j∈Ji
) · log p̂(T )

M,i,k where p̂
(T )
M,i,k = softmax

(
p̂M,i,k

T

)
Subsequently, we calibrate the predictions for all examples in both D and U and compute ActiveLab
scores using p̂

(T )
M,i,k in place of p̂M,i,k. Empirically, this calibration step improved a variety of active

learning methods, allowing them to more robustly improve the accuracy of various types of models.

2.3 ACTIVELAB (ENSEMBLE)

Ensemble methods aggregate outputs from multiple models into a single set of predictions that can
be more accurate than any of the constituent models (Dietterich, 2000). Model ensembles are also
popular in active learning; disagreeing predictions between models indicate areas of high epistemic
uncertainty where annotating more data can greatly improve at least one of the constituent models
(Seung et al., 1992). Here we present a straightforward extension of ActiveLab to ensemble settings.

Assuming there are L trained models in an ensemble, let p̂Mℓ
(Yi | Xi) denote the class probabilities

for xi predicted by model Mℓ for ℓ = 1, 2, ..., L. Here we can apply ActiveLab similarly as in the
single-model case, but now allowing each model to have its own weight wM1 , wM2 , ..., wML

used
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for averaging estimates. We use the following ActiveLab scores in ensemble settings:

If xi ∈ D : si =

wĀ · 1
K +

L∑
ℓ=1

wMℓ
· p̂Mℓ,i,Ŷi

+
∑

j∈Ji

wj · p̂Aj ,i,Ŷi

wĀ +
L∑

ℓ=1

wMℓ
+

∑
j∈Ji

wj

(5)

If xi ∈ U : si =
wĀ · 1

K +
∑L

ℓ=1 wMℓ
· p̂Mℓ,i,Ỹi

wĀ +
∑L

ℓ=1 wMℓ

(6)

Above the annotator weights wj , wĀ and likelihoods p̂Aj have the same definitions as in ActiveLab
with a single model. Here consensus labels Ŷi are estimated from an similar ensemble extension of
CROWDLAB, in which we propose to set wĀ = 0 in equation (5) and identify which class Ŷi ∈ [K]
maximizes the expression. Equation (6) shows we handle examples from the unlabeled pool in the
same fashion as in the single-model case. For each xi ∈ U , we obtain a predicted class Ỹi ∈ [K]

from the ensemble classifier and treat Ỹi as a proxy for its consensus label.

The weights wMℓ
for each model are computed the same way as in ActiveLab with a single model.

Each model’s prediction accuracy with respect to consensus labels is again used to infer how
trustworthy each model is relative to the annotators, with AMℓ

and AMLC defined as in (3) and (4).

wMℓ
:=

(
1− 1−AMℓ

1−AMLC

)
·
√

1

n

∑
i

|Ji|

To predict with our ensemble classifier after training, we can also take a weighted average of each
model’s predicted class probabilities using the same weights wMℓ

.

3 EXPERIMENTS

Our subsequent experiments benchmark ActiveLab against many commonly used model/modality-
agnostic methods for active learning and data re-labeling. These are described in Appendix A. In our
experiments, each dataset is partitioned into train, test, and unlabeled pools. We have high-quality
(i.e. ground truth) labels for the test set, which facilitates accurate evaluation of trained classifiers.
No such ground-truth labels are available for the training set. Instead, all examples in the training
set have been labeled by one or more (potentially noisy) annotators, and we consider this to be the
dataset D for training an initial classifier, collected prior to active learning. At the outset, no labels
are available for examples in the unlabeled pool. The train/test/unlabeled pools and the initial training
annotations are identical across all runs/methods evaluated for the dataset. After training the model
in Step 3 of each round of active learning, we evaluate its test accuracy against ground truth labels
(only used for evaluation purposes). To acquire labels in Step 6, our experiments use a single new
annotator to label the entire selected batch of data from a round of active learning.

Our main evaluation criterion is the test accuracy of classifier trained in each round of active learning.
Each experiment (sequential active learning run) is repeated 5 times and we report the average model
accuracy across the trials. We evaluate active learning methods on datasets of different modalities,
training various classification models for these datasets to ensure our methods are model agnostic.

Wall Robot Navigation (Freire et al., 2009). This is a tabular dataset with 4 classes corresponding
to directions a robot should navigate which are to be predicted from its sensor measurements. The
initial train set for this dataset contains 500 examples, the unlabeled pool contains 1500 examples,
and the test set used to measure the model accuracy contains 1000 examples. In each round of active
learning between model training runs, we collect additional labels for the 100 examples with the
lowest active learning scores from a single new annotator. We simulate imperfect annotators for this
dataset. Some of these 100 examples may already have been previously labeled by other annotators
and some may not have been labeled at all yet.

We consider 3 types of classifier models: Extremely Randomized Trees (Extra Trees) (Geurts
et al., 2006), which was the most accurate model from the sklearn package on this dataset,
fully-connected neural networks (MLP), K-Nearest Neighbors, and an ensemble composed of all 3.
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CIFAR-10H (Peterson et al., 2019). This image classification dataset offers many annotated labels for
each image in the CIFAR-10 test set, provided by different human annotators. Our experiment uses a
subset of 1000 images as the initial training set, 4000 images in the unlabeled pool, and 5000 images
in the test set. Our high-quality test set labels to measure model accuracy are those from the original
CIFAR-10 dataset (Krizhevsky & Hinton, 2009), as Northcutt et al. (2021a) found the CIFAR-10
labels contain few errors. In each round of active learning, we collect additional labels from one
new human annotator for the 500 images with the lowest scores si. We use an Imagenet-pretrained
ResNet-18 classifier for single-model active learning. For ensemble-model active learning, our
ensemble consists of three classifiers: ResNet-18, ResNet-34 and ResNet-50 (He et al., 2016).

4 RESULTS

Figures 1, 2 and S3 illustrate that ActiveLab significantly outperforms the other active learning
methods in both the single-model and ensemble setting. These findings demonstrate that ActiveLab
effectively selects examples to label and re-label in data of various modalities modeled with different
types of classifiers. Unsurprisingly, active learning with ensemble models can produce higher accuracy
than achieved with single models. Although note that single model accuracy when collecting data
with ActiveLab can attain comparable performance to the ensemble models, especially for strong
single models like in Figure 1
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Figure 1: Evaluating active learning methods on the Wall Robot dataset to train an: ExtraTrees
classifier (left) or ensemble of 3 models (right). Curves show test accuracy after each active learning
iteration, averaged over 5 runs with the standard deviation in results shaded.
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Figure 2: Evaluating active learning methods on CIFAR-10H to train a: ResNet-18 classifier (left) or
ensemble of ResNet-18/34/50 models. Curves show the test accuracy after each iteration of active
learning, averaged over 5 runs with the standard deviation in results shaded.
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Appendix – ActiveLab: Active Learning with
Re-Labeling by Multiple Annotators

A RELATED WORK AND BASELINE METHODS

While one can envision alternate methods that suggest which annotator should label which example
(Huang et al., 2017), we find such a tightly-controlled setting too rigid for many applications. Step
6 is intentionally flexible. We also do not consider methods that can ask more than one annotator
to review the same example within a round as such methods can be brittle (vs. our methods which
collect at most one new label for each example in a round) (Baldridge & Osborne, 2004).

The most popular active learning methods are those like ActiveLab that can used with any classifier
model for any data modality (Munro, 2021). While there has been extensive research on active learning
(Zhan et al., 2022) and analyzing crowdsourced labels (Paun et al., 2018), few model/modality-
agnostic active learning methods have been developed for settings with multiple annotators and data
re-labeling (Lin et al., 2014). Many of the active learning methods proposed for such settings are
specific to certain types of models or data types (Rodrigues et al., 2014; Zhao et al., 2011; Yan et al.,
2011; Yang et al., 2018; Huang et al., 2017; Gilyazev & Turdakov, 2018; Iraola & Yepes, 2021).
Other approaches like impact sampling (Lin et al., 2016) are too computationally expensive to run on
problems like the image classification task in Section 3.

Our experiments benchmark ActiveLab against the following commonly used model/modality-
agnostic methods for active learning and data re-labeling. Each method is applied in the same manner
as ActiveLab to iteratively label a dataset, except which xi are labeled is chosen via different si, and
consensus labels for all xi ∈ D are computed via majority-vote as used by Zheng et al. (2010).

Random. This method selects which examples to annotate entirely at random. It uses score: si = x
where x ∈ [0, 1] is sampled uniformly at random and independently of i.

Good Random. This is a better variant of random selection that accounts for the number of
annotations xi already has: si = x + |Yi| where x ∈ [0, 1] is sampled uniformly at random. This
pseudo-random selection prioritizes examples with the fewest number of labels collected thus far, a
simpler variant of the approach of Chen et al. (2022). The unlabeled pool is labeled first prior to any
re-labeling.

Entropy (Cohn et al., 1996). This method scores examples via the entropy of the model-predicted
probabilities.

si =

K∑
k=1

p̂M,i,k · log p̂M,i,k (7)

Uncertainty (Cohn et al., 1996). Measures how confident the model is in its predicted class:
si = maxk p̂M,i,k.

Active Label Cleaning (Bernhardt et al., 2022). This approach was recently proposed for efficiently
re-labeling an already-labeled dataset with multiple annotators. To select which data to collect an
extra annotation for, Bernhardt et al. (2022) introduce a score that is a difference of two terms.
The first term is the cross-entropy between the M-predicted class probabilities and the empirical
distribution of the annotators’ labels for a particular example, and the second term is the entropy of
the M-predicted class probabilities.

si =

K∑
k=1

p̂M,i,k · log p̂M,i,k (8)

−
K∑

k=1

p̂emp(Yi = k | {Yij}j∈Ji) · log p̂M,i,k
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Disagreement (Ensemble) (Seung et al., 1992). Like ActiveLab (Ensemble), disagreement also
employs an ensemble of multiple classifier models. This method measures the level of disagreement
between different individual models’ predictions. We employ a standard measure of disagreement for
predicted class probabilities, where the score is defined as the total (soft) cross entropy between each
model’s predicted probabilities and the average estimate over all the models (McCallum et al., 1998).

si = − 1

L

L∑
ℓ=1

K∑
k=1

p̂Mℓ,i,k · p̂M̄,i,k (9)

where p̂M̄,i,k =
1

L

L∑
ℓ=1

p̂Mℓ,i,k

To produce predictions from our ensemble classifier after running this method, we simply average the
predictions from the individual models.

B TO LABEL OR RE-LABEL?

Since they are computed in a similar fashion, the si are directly comparable between xi ∈ D vs. U .
ActiveLab thus naturally suggests when it is better to re-label an example from D vs. labeling a new
example from U . Cases when this might be true for some example xi ∈ D include settings where:
its annotations disagree (indicating that some annotators are noisy), or the model has atypically low
confidence in its prediction (indicating xi may be an outlier or high-influence datapoint whose label
we should really get right), or the model confidently disagrees with the annotations. This last case
is especially pertinent for examples xi that only have a single annotation, where we may prefer to
trust a confident prediction from a well-trained classifier over the given label which may be wrong
(Northcutt et al., 2021a; Kuan & Mueller, 2022). Fixing labels for existing training data can improve
a classifier more than noisily labeling additional data (Northcutt et al., 2021b; Iraola & Yepes, 2021).
Section C empirically explores this. Mathematically, it is evident that ActiveLab will always prefer to
label new examples from U if every annotation and the classifier (confidently) agree for all xi ∈ D.

When does ActiveLab prefer to re-label Consider xi with a single annotation Yij and a different
xℓ ∈ U , such that our classifier is equally confident in its predictions for both. In this case, deciding
whether to re-label xi vs. labeling xℓ specifically depends on: whether Yij matches the classifier’s
predicted class argmaxk p̂M,i,k, and how much ActiveLab weights this annotator (wj) vs. the
average annotator (wĀ) and the classifier (wM). If the classifier’s prediction matches Yij , then
ActiveLab will prefer to label xℓ. If the classifier disagrees with the annotation, then ActiveLab will
prefer to re-label xi whenever the CROWDLAB consensus label Ŷi ̸= Yij . This occurs if:

wM
(
p̂M,i,k∗ − p̂M,i,Yij

)
> wj

(
p̂Aj ,i,Yij − p̂Aj ,i,k∗

)
where k∗ := argmaxk p̂M,i,k ̸= Yij in this example. The inequality is satisfied if: wM ≫ wj (i.e.
ActiveLab estimates the classifier is more trustworthy than annotator Aj) and p̂M,i,k∗ − p̂M,i,Yij

≫
p̂Aj ,i,Yij

− p̂Aj ,i,k∗ (i.e. the classifier predicts Yij is not the correct label confidently relative to the
estimated accuracy of the data annotators).

C LABELING NEW EXAMPLES VS RE-LABELING IF WE HAVE INFINITE DATA

Traditional active learning only considers collecting at most one label per example and focuses
entirely on the unlabeled pool rather than considering the option to re-label. If we have a huge
unlabeled pool and a limited labeling budget, is there any utility in re-labeling? Our previous results
clearly demonstrate the value of smart re-labeling when the size of U and labeling budgets are suitably
matched. But with near-perfect annotators and an near-infinite unlabeled pool, re-labeling might not
seem like a good idea (Lin et al., 2014). Thus we empirically investigate the question: At what degree
of annotation-noise is there value in re-labeling when the size of U greatly exceeds our labeling
budget?

We consider two settings: one where we only label new examples in each active learning round
(single label case), and another where we can re-label examples if ActiveLab chooses to do so

2



Workshop on the pitfalls of limited data and computation for Trustworthy ML, ICLR 2023

(multiannotator label case). We run these approaches on a few variants of the Wall Robot Navigation
dataset where we simulate annotators with different label noise rates. A higher noise rate annotator
produces labels which are often wrong, while an annotator with noise rate 0 always selects labels
that are correct. Similar to our previous Wall Robot benchmark, we conduct this experiment with an
initial train set of 500 labeled examples, an unlabeled pool of 1500 examples, and test set of 1000
well-labeled examples. We label batches of 100 examples in each active learning round. Both single
label and multiannotator label experiments start with the same labeled subset D (and always have
the same annotator noise rates). In the single label experiment, active learning is done using the
traditional entropy score only considering examples in U . In the multiannotator label experiment,
active learning is done via ActiveLab, which often selects a mixture of examples from D and U to
collect an additional label for.
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Figure S1: Comparing active learning methods that exclusively label new examples (single labels)
vs. can also re-label examples instead (multiannotator labels), when annotators have different noise
rates. Shown is the test accuracy of an ExtraTrees classifier trained on a certain number of total
labels (corresponding to each iteration of active learning) for the Wall Robot Dataset. Curves are the
average over 5 runs, and the standard deviation in results is shaded.

Figure S1 reveals that across all annotator noise levels, the model accuracy for the mulitannotator
labels case is equal or better than for single labels. As expected, the difference in model accuracy
between single labels and mulitannotator labels is larger when annotators are more noisy. This
suggests it is rarely a bad idea to allow re-labeling if you have a method to do it adaptively like
ActiveLab. It appears vital to re-label in settings with over 20% label noise. Our findings run contrary
to the study of Lin et al. (2014), who acknowledged they were missing an effective active learning
method with re-labeling at the time of their study.

D ACTIVE LABEL CLEANING

We also consider an active label cleaning setting, in which there are no additional unlabeled examples
(Bernhardt et al., 2022). Here the goal is simply to selectively re-label the x ∈ D to establish the best
consensus labels for this dataset. We evaluate various methods for this task using the Wall Robot
Complete dataset described below. ActiveLab and other active learning methods are applied in the
same manner as before, there is simply no unlabeled pool of examples to consider.

Wall Robot Complete. Similar to the Wall Robot Navigation tabular dataset, a key difference is that
Wall Robot Complete has 2000 labeled examples in the initial training set, 1000 examples in the test
set, and there is no unlabeled pool. As for Wall Robot Navigation, we collect additional labels for
the 100 examples with the lowest active learning scores in each active learning round. Since all the
examples already start out with some labels, this is a re-labeling (i.e. label cleaning) task, where we
aim to obtain accurate consensus labels by having multiple annotators review the examples where
this is necessary (Bernhardt et al., 2022).
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Figure S2 shows that ActiveLab is also the best method for active label cleaning (re-labeling an
already labeled dataset). It even outperforms the method Bernhardt et al. (2022) designed specifically
for this setting. Unlike Bernhardt et al. (2022), ActiveLab estimates account for the number of
annotations each example has and the quality of the annotators behind them. Existing active learning
methods do not appear well-suited for such label cleaning tasks.
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Figure S2: Evaluating active learning methods on the Wall Robot Complete dataset to train an:
ExtraTrees classifier (left) or ensemble of 3 models (right). This is an active label cleaning task,
with no unlabeled pool of examples. Curves show test accuracy after each iteration of re-labeling,
averaged over 5 runs with the standard deviation shaded.

E DETAILS OF THE WALL ROBOT NAVIGATION DATASET

The original Wall-Following Robot Navigation dataset only has one label for each example. We adapt
this dataset for our multi-annotator benchmark by simulating many different annotators to provide
labels for requested examples. To simulate human annotators that make imperfect decisions (i.e.
occasional labeling errors), we take the original set of labels from the Wall Robot dataset as ground
truth labels. For each annotator, we add some random noise to their labels (noise rate = 0.15 for Wall
Robot Navigation and noise rate = 0.2 for Wall Robot Complete), representing mislabeled examples.
The randomly selected noisy annotations have an incorrect class (flipped probabilistically) that does
not match the ground truth label. Using this method, we obtained 30 sets of labels, representing 30
annotators.

To setup the initial labeled and unlabeled pools D and U , we completely dropped all the annotator
labels for examples that begin unlabeled, while dropping a random fraction of the annotator labels for
the examples in D that are labeled from the start, ensuring we keep at least one annotation for these
examples. When collecting additional labels in each round of active learning, we simulate another
annotator in the same fashion who labels the entire batch.

We also considered a second version of this benchmark with more heterogeneous annotators (including
some very inaccurate outliers), and the results of the evaluation remained mostly the same as those
presented here.
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F EXPERIMENT DETAILS

In each round of active learning, we fit all models to D using 5-fold cross-validation. Additional
details not mentioned here can be found in the code2 for reproducing our experiments, as can the raw
results of all active learning methods on all datasets.

For the experiments on the tabular Wall Robot dataset, we fit our classifier models using the sklearn
package (Pedregosa et al., 2011). The models used were the: ExtraTreesClassifier with default
hyperparameters, MLPClassifier with default hyperparameters except the max iteration set to 500 (to
ensure convergence), and KNeighborsClassifier with default hyperparameters.

The image classifier models for our experiments on CIFAR-10H were fit using the AutoGluon
AutoML package (Erickson et al., 2020) in order to avoid having to manually tune models and their
optimization. We used various ResNet models initialized with default Imagenet-pretrained weights
and then fine-tuned them on our dataset D (in a cross-valdated manner).

G ADDITIONAL RESULTS FOR WALL ROBOT

In addition to the Extra Trees model reported in Section 3, we repeat our single-model active learning
experiments on the Wall Robot dataset using a Multilayer Perceptron (feedforward neural network)
classifier. These additional results demonstrate that ActiveLab reliably produces larger improvement
in model accuracy than other active learning methods, regardless which type of classifier model is
being trained.
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Figure S3: Evaluating active learning methods on the Wall Robot dataset to train a MLP classifier.
Curves show the test accuracy after each active learning iteration, averaged over 5 runs with the
standard deviation in results shaded.

2https://github.com/cleanlab/multiannotator-benchmarks/tree/main/
active_learning_benchmarks
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Figure S4: Evaluating active learning methods on the Wall Robot Complete dataset to train a MLP
classifier. Curves show the test accuracy after each iteration of re-labeling, averaged over 5 runs with
the standard deviation shaded.

6



Workshop on the pitfalls of limited data and computation for Trustworthy ML, ICLR 2023

H ACTIVE LEARNING IN SINGLE-LABEL SETTINGS

While ActiveLab is designed for scenarios where multiple annotators can label the same example, the
method can also be applied for traditional active learning settings where we collect at most one label
for each example. In this singly-labeled setting, we only score the xi ∈ U , as is common practice in
pool-based active learning.

In such settings, we do not have data from multiple annotators to estimate the relative trustworthiness
of the annotators and our model. Thus ActiveLab weights are undefined, but they are also not needed
since we are only scoring unlabeled data without annotations in this setting. As a result, the natural
ActiveLab score in such settings is:

si =
maxk p̂M,i,k + 1

K

2
for xi ∈ U (10)

This is equivalent to simply relying on the confidence of the classifier, and thus equivalent to selecting
examples via the aforementioned Uncertainty baseline method, a classic technique for active learning
(Cohn et al., 1996; Munro, 2021).

In this singly-labeled setting, we provide a benchmark of this active learning method against two
alternatives: randomly selecting examples to label, or using the entropy score. We use the same
version of the Wall Robot Navigation dataset as our other benchmarks (with a noisy annotator). The
initial train set contains 500 examples, and there are 1500 examples in the unlabeled pool. Each
round, we select the 100 unlabeled examples with the lowest score to label and add them to the
labeled subset. After training, model accuracy is similarly measured on a held-out test set of 1000
examples.

Figure S5 shows that ActiveLab exhibits comparable performance to the entropy baseline method
in the singly-labeled setting. Both methods significantly outperform random selection of examples,
even in this setting with noisy labels.
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Figure S5: Evaluating active learning methods in the traditional singly-labeled setting on the Wall
Robot dataset to train an ExtraTrees classifier. Curves show the test accuracy after each active learning
iteration, averaged over 5 runs with the standard deviation shaded.
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