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ABSTRACT

In the pursuit of superior video-processing MLLMs, we have encountered a per-
plexing paradox: the “anti-scaling law”, where more data and larger models lead
to worse performance. This study unmasks the culprit: “temporal hacking”, a
phenomenon where models shortcut by fixating on select frames, missing the full
video narrative. In this work, we systematically establish a comprehensive the-
ory of temporal hacking, defining it from a reinforcement learning perspective,
introducing the Temporal Perplexity (TPL) score to assess this misalignment, and
proposing the Unhackable Temporal Rewarding (UTR) framework to mitigate the
temporal hacking. Both theoretically and empirically, TPL proves to be a reliable
indicator of temporal modeling quality, correlating strongly with frame activa-
tion patterns. Extensive experiments reveal that UTR not only counters temporal
hacking but significantly elevates video comprehension capabilities. This work
not only advances video-AI systems but also illuminates the critical importance of
aligning proxy rewards with true objectives in MLLM development.

1 INTRODUCTION

Multimodal large language models (MLLMs) have recently achieved remarkable advancements,
demonstrating impressive results across various domains, including multimodal conversation (Ope-
nAI, 2023; Team et al., 2023), interactive agents (Hong et al., 2023; Li et al., 2023a), embodied
robots (Brohan et al., 2022; 2023), and even autonomous driving (Xu et al., 2023; Mao et al., 2023).
These models have approached or even surpassed human-level performance in image comprehen-
sion (Liu et al., 2024b; Zhu et al., 2023; Zhao et al., 2023b) and generation (Ge et al., 2023b; Dong
et al., 2024a; Sun et al., 2023). However, processing real-world videos remains a key challenge,
with existing MLLMs still falling short of human capabilities. Recently, GPT-4o (GPT-4o, 2024)
has demonstrated substantial potential for video-driven multimodal assistants in practical applica-
tions, motivating researchers to develop powerful video MLLMs for the open-source community.

The dominant paradigm in video foundation model construction relies on contrastive (Tong et al.,
2022; Feichtenhofer et al., 2022; Wang et al., 2024c) or generative learning (Cheng et al., 2024;
Zhang et al., 2024c) from extensive video-text pair datasets. However, recent studies have unveiled
a counterintuitive “anti-scaling law” phenomenon (Xu et al., 2024). Practically, increased data vol-
ume (Wang et al., 2024b) or model parameters (Xu et al., 2024) leads to performance degradation.
Our analysis in Figure 2(a) also shows that adding more training data decreases temporal modeling
performance due to the dilution of high-quality samples. Further investigation reveals models often
infer entire captions from a few key frames, typically just the initial (Figure 2(b)) or last one (Fig-
ure 1). This suggests that current methodologies inadvertently promote a form of shortcut learning.
Critically, this issue resists resolution through mere data and parameter scaling; such approaches
may, in fact, exacerbate the problem.

We propose to reframe this issue through the lens of reinforcement learning (RL) (Sutton & Barto,
2018). The generative modeling of MLLMs on video-text pairs can be formulated as a sequential
decision-making process where the model’s policy aims to maximize the expected reward of gen-
erating highly relevant text conditioned on video frame context. This formulation necessitates a
critical examination: Does our proxy reward function (video-text or video-caption pair) adequately
approximate the true reward (video-language alignment) we aim to optimize? Empirical evidence
suggests a significant misalignment. We observe a manifestation of reward hacking (Skalse et al.,
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🎬
video flow

Human

Video MLLM

V1: {frame1}
X1: Nick and Judy go

into an office.

V2: {frame1, frame2}
X2: Nick and Judy go into an

office and then talk to Flash.
… Vt: {frame1, frame2, frame3, …, frameT}

Xt: Summary: Nick and Judy go to the office to ask Flash
to check the license plate of a mysterious car.

…

V: {frame1, frame2, …, frameT-1, frameT}
X: Summary: Nick and Judy go to the office to ask Flash

Policy: Just seeing the last two frames is Okay!
I do not need to see the whole video.

to check the license plate of a mysterious car.Temporal hacking

🎬

Output: Nick is trying to eat Judy ! 

Wrong !:

💡

Figure 1: Illustration of temporal hacking. We select a scene from the Zootopia to vividly illustrate
the phenomenon of temporal hacking, where the fox is named Nick and the rabbit is named Judy.
Humans watch videos frame by frame, gradually building an understanding of the content, following
a “flow” similar to a Markov process. In contrast, MLLMs process the entire video and its content
at once, which can cause them to take shortcuts by focusing only on the most relevant frames.

2022) — termed “temporal hacking” in the context of video LLMs. This predicament mirrors a
boat in a racing game, furiously spinning in circles to collect “power-ups” while never advancing
towards the finish line (Jack & Dario, 2016).

Escaping the vortex of temporal reward hacking requires a shift in strategy, not merely increased
effort. That is, employing a more suitable proxy reward is key to overcoming this challenge. To
this end, we first investigate the causes of temporal reward hacking and introduce a novel metric,
Temporal Perplexity (TPL) score, to quantify its severity. Experiments reveal a striking correlation
between TP scores and models’ temporal modeling capabilities, with higher TPL scores consistently
associated with the activation of more video frames. Our analysis further leads to the proposal of
two key principles for designing an effective proxy reward function for video MLLMs: high frame
information density and high inter-frame information dynamics. Guided by these two principles, we
further propose an Unhackable Temporal Reward (UTR). UTR leverages spatiotemporal attributes
and bidirectional queries to model video-language alignment. Comprehensive experiments validate
that UTR, as an automated and scalable method, effectively achieves unhackable temporal modeling
by guiding the model’s observational tendencies across all frames.

Our contributions are threefold:

• We provide a novel RL perspective on the video MLLM unscaling phenomenon, systemat-
ically establishing “temporal hacking” theory as its first comprehensive explanation.

• We design the Temporal Perplexity (TPL) score, and through extensive experiments, TPL
has demonstrated a high correlation with the true performance of the model, providing a
reliable reference metric for mitigating temporal hacking.

• Through a series of theoretical and experimental analyses, we propose two principles
to guide the design of proxy rewards for video-language modeling and further propose
Unhackable Temporal Rewarding (UTR). Extensive experiments and analyses substantiate
the effectiveness of UTR, offering crucial insights into video MLLM temporal modeling.

2 BACKGROUND & EXAMPLE ANALYSIS

2.1 WHAT IS TEMPORAL HACKING?

Reward hacking (Skalse et al., 2022; Yuan et al., 2019), also known as reward exploitation or
reward gaming, refers to a phenomenon in reinforcement learning (RL) where an agent discovers a
way to maximize its reward signal without actually achieving the intended goal of the task designer.
Specifically, we first define a sequential decision problem M = (S,A, P,R, γ), typically formalized
as a Markov decision process (MDP), where S is the state space, A is the action space, P : S×A×
S → [0, 1] is the transition probability function, R : S × A × S → R is the reward function, and
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γ ∈ [0, 1] is the discount factor. The goal of RL is to find a policy π : S → A that maximizes the
expected cumulative discounted reward:

J(π) = Eτ∼π

[∑∞

t=0
γtR(st, at)

]
,

π∗ = argmax
π

Eτ∼π

[∑∞

t=0
γtR(st, at)

]
,

(1)

where τ = (s0, a0, s1, a1, ...) is a trajectory generated by following policy π. π∗ is the optimal
policy obtained under the current reward function. Reward hacking occurs when there exists a
policy πh (generally πh = π∗ ) such that:

J(πh) > J(π̂), however, K(πh) ≪ K(π̂), (2)

where π̂ is the optimal policy for achieving the intended task, and K denotes the true performance
of the policy model in the intended task. In essence, reward hacking indicates an optimization
misalignment, leading to policies that achieve high proxy rewards (J(πh)) but fail to accomplish the
true reward objectives (K(πh)).

From reward hacking to temporal hacking. Autoregressive video-language modeling (Li et al.,
2023b; Zhang et al., 2023; 2024c), aims to replicate human video comprehension. As illustrated
in Figure 1, humans sequentially access each video frame, incrementally building an understanding
by integrating all prior information (Coltheart, 1980). Similarly, the model progressively generates
tokens for each frame with the preceding video context conditioned. It is natural to represent this
task as a sequential Markov decision process from an RL perspective.

Particularly, given a video frame sequence V = {vt}Tt=1(where T is the total number of frames) and
a specific time step t, the sequence of preceding frames V1:t constitutes the state space, and the cor-
responding text token xt forms the action space. During training, the policy π sequentially generates
tokens xt conditioned on state V1:t. The generated tokens’ quality and relevance to V1:t are eval-
uated by a reward function R, typically measured through the next token’s cross-entropy (Radford
et al., 2018; 2019). The objective can be formalized as:

J(π) = Eτ∼π

[∑T

t=1
γtR(V1:t, xt)

]
. (3)

By optimizing the policy model based on this objective function J , we obtain an optimal policy
model π∗ under the current reward function. However, as shown in Figure 1 and previous works (Xu
et al., 2024; Wang et al., 2024b), π∗ often fails to generate text that accurately aligns with video
content and user instructions. Instead, the model may optimize the objective by accessing only a
limited number of frames, leading to shortcut learning. This issue, termed temporal hacking in this
paper, reflects the discrepancy between proxy and true objectives as described by Eq. 2.

We provide an illustrative example in Figure 1, where it can be observed that the model, through
temporal hacking, has identified a “simpler” version of the true reward by focusing only on the last
two frames of the video. This learned proxy reward can be highly dangerous in certain situations,
leading to completely erroneous video understanding.

2.2 WHAT CAUSES TEMPORAL HACKING?

In this section, we will analyze the causes of temporal hacking phenomenon in video-language
modeling from both theoretical and experimental perspectives.

Theoretical perspectives. In reward hacking theory (Skalse et al., 2022; Yuan et al., 2019), mis-
alignment between proxy and true objectives (J(π) ̸= K(π)) leads to shortcut learning. For video-
language modeling, the true objective is to generate spatially and temporally comprehensive descrip-
tions that align with human understanding of the video. However, in practice, the surrogate objective
rewards consistency between model predictions and human-annotated captions (Wang et al., 2024b)
or curated internet content (Bain et al., 2021; Wang et al., 2023). This discrepancy can result in
suboptimal model behavior.

3
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(a)

Frame1 Frame2 Frame7 Frame10 Frame13 Frame14 Frame16
Tell me what happened in the video, and where did the blueberry go in the end?

… … … …

(b)
Figure 2: Analysis of the temporal hacking. (a) shows the relationship between temporal perplex-
ity and true performance. The size of the radius of the circle represents the amount of data. (b)
visualizes the attention map illustrating which specific frames the model’s output focuses on.

Ideally, as illustrated in Eq. 3, trajectories τ = (V1:1, x1, ..., V1:t, xt, ...) propagates along every
frame in the temporal sequence, implicitly necessitating a textual descriptions comprehensively de-
scribe each frame. However, due to frame redundancy and annotation costs, the text is often con-
ditioned only on a subset of frames or aggregated information from multiple frames, especially in
some static or low-motion scenarios. It is particularly challenging to provide a distinct description
for each frame. Consequently, the policy’s trajectory becomes τ = (V1:1, x1, ..., Vk:t, xt, ...) where
Vk:t represents any frame set satisfying description xt, and is a subset of V1:t. The resultant surrogate
objective can be expressed as:

J(π) = Eτ∼π

[∑T

t=1,1≤k≤t
γtR(Vk:t, xt)

]
. (4)

As illustrated in Figure 1, optimizing such a proxy is insufficient and prone to deviate from the
true objective of comprehensive video understanding. This reward hacking can be quantified by
subtracting Eq. 3 from Eq. 4, yielding ∆R:

∆R =
∑T

t=1,1≤k≤t
γt (R(V1:t, xt)−R(Vk:t, xt)) . (5)

From Eq. 5, it is evident that as t increases, or as the average subset size k increases (indicating that
video descriptions can be condensed to fewer frames), the reward gap widens. This elucidates the
observed “anti-scaling law” phenomenon in existing video-language models, where performance
degrades as video length increases.

Experimental perspectives. To shed light on reward hacking, we propose an extreme perspective to
probe ∆R. We leverage perplexity (Li et al., 2024d) Rppl to model the cumulative reward between
video context and its textual description. Higher similarity correlates with greater cumulative reward
and lower model perplexity. We simulate the true cumulative reward using a fully sampled video
sequence as video context. To model an extreme case of proxy cumulative reward, we use a single,
randomly sampled keyframe to represent the entire video context (i.e. k = t). This simulates a
scenario where the model attempts to describe the whole video based on minimal information. The
difference between these two rewards is defined in this paper as temporal perplexity (TPL, defined
as Ttpl) or temporal hackability. Formally,

Ttpl = − (Rppl(V1:T , xT )−Rppl(VT :T , xT )) . (6)

In practice, to avoid distributional shift, we utilize our own MLLM model, trained on the full set of
video data, to calculate perplexity. We record the mean negative log-likelihood (NLL) loss across all
text tokens for each sample (i.e.the logarithm of perplexity) to represent Rppl. By combining Eq. 5
and Eq. 6, we can intuitively infer that, under the same training setup, a lower TPL score indicates
a larger ∆R, which in turn leads to a more severe occurrence of temporal hacking. To prove this,
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we conduct two experiments as shown in Figure 2 for in-depth analysis of the relation between TPL
score and temporal hacking.

Specifically, we first fine-tuned models using subsets from VideoChat2 (Li et al., 2024c) data with
varying Ttpl ranges and then mixed the data with different TPL. Intuitively, higher average TPL
scores indicate a reduced likelihood of reward hacking, thereby leading to superior video compre-
hension performance. Figure 2(a) corroborates this, showing a significant correlation between video
performance and TPL scores across multiple benchmarks, indicating that temporal perplexity ef-
fectively measures ∆R and even reward hacking. Furthermore, we can also observe that when the
TPL score is low, increasing the amount of data does not lead to performance gains, indicating the
occurrence of the anti-scaling law phenomenon.

Then we delved deeper by analyzing attention maps of models on identical video-text pairs. Fig-
ure 2(b) illustrates that models trained on data with higher average-Ttpl activate more frames during
inference on these well-described data. Conversely, models with lower-Ttpl, due to severe reward
hacking and inferior video modeling, activate fewer frames. These experiments demonstrate that
our TPL score can effectively reflect the extent of temporal hacking, providing a reliable metric for
exploring strategies to address this issue.

3 UNHACKABLE TEMPORAL REWARDING

3.1 HOW TO MITIGATE TEMPORAL HACKING?

Section 2 introduces, defines, and analyzes the concept of temporal hacking. A novel metric, tem-
poral perplexity (TPL score), is proposed to assess whether the issue of temporal hacking arises
in video-language modeling. At this point, the next important question arises: How can temporal
hacking be mitigated or prevented? Building upon the aforementioned analysis, we first propose
two principles to guide the design of an unhackable reward in video-language temporal modeling:

Principle I: High frame information density. The content of the video text should uniquely
correspond to as many frames as possible.

Principle II: High inter-frame information dynamics. Descriptions for different frames should
be coherent and reflect temporal variations and event progression.

The Principle I, as delineated by Eq. 5, aims to mitigate the ∆R by reducing k as discussed in Sec-
tion 2.2. This can be accomplished by ensuring each frame of the video is uniquely described. The
Principle II emphasizes continuous dynamics, not only to further reduce k and ∆R, but also to en-
sure the continuity of policy state transitions in Eq. 3, thereby enhancing the model’s understanding
of real-world physical laws.

Current temporal modeling approaches predominantly focus on maximizing the relevance and con-
sistency of video information (Principle II). However, addressing Principle I remains challenging
due to high frame rates and inter-frame redundancy, complicating textual descriptions of individual
frames. Advanced techniques such as InternVID (Wang et al., 2023) and COSMO (Wang et al.,
2024a) ameliorate information density to some extent through video interleave formats, yet they
still struggle with the high information density of frames and fail to effectively model spatiotempo-
ral dynamics, thus not fully addressing Principle II. Additionally, methods like COSA (Chen et al.,
2023b), which concatenate image-text pairs to create video data, fail to establish spatiotemporal
relationships between frames, entirely violating Principle II. To simultaneously satisfy the two pro-
posed principles, we further propose the Unhackable Temporal Rewarding (UTR) to boostrap the
video-language modeling.

3.2 UNHACKABLE TEMPORAL REWARDING

As validated in Section 2, suboptimal proxy rewards easily lead to temporal hacking in models. To
address this, we propose a novel temporal rewarding method adhering to the aforementioned prin-
ciples. Our approach, illustrated in Figure 3, extracts spatiotemporal attributes from video frames
(row 1) and uniformly queries them (row 2) to model video-language alignment. This automated
and scalable method achieves unhackable temporal modeling by guiding the model’s observational
tendencies across all frames.

5
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time: 2.0 ~ 3.5s 

1 Video
Grounding DINO

SAM2Grounded-SAM
GRiT RAM++
DetCLIP

Expert Models Attributions

Judy
Nick

Nick is grinning on the side, 
while Judy is scared.

A fox and a rabbit.
…

2

Tracking Algorithm

Track Anything

ByteTrack

DeepSort

Kalman Filter

IoU

Attribution Trajectories

frame1: <box1>Nick, a fox, is grinning on the 
side. <box2> Judy, a rabbit, is looking ahead 
and looks scared.  
frame2: .
..  ...  

Temporal
frame t1 – t2 

action: looking 
location: on the side

Spatial
coordinate: <box1>identity: <id1> / <id2>name: Judy / Nike 

appearance: rabbit, scared 
Track1: Nike<id1>frame1:<box1>;frame2: …</id1>
Track2:Judy<id2>frame1:<box1>;frame2: …</id2>

Select Query AttributionQuerying Attribution TrajectoryTask Conversation
Q: Please tell me what is frame t1:<boxt> doing 
and the corresponding whole trajectory. By the 
way, what happens in this video? 
A: It is Nick grinning on the side and its 
trajectory is Track1. This video shows that 
Nick and Judy go to the office to ask Flash to 
check the license plate of a mysterious car.

💡 Policy:  Oh! I need to see each
frame of the video !

：Good job !

Figure 3: Overall pipeline of Unhackable Temporal Rewarding (UTR). UTR begins by using
a mixture of expert models to extract unique spatiotemporal attributes and employs a tracking al-
gorithm to construct multiple subject trajectories based on confidence levels (data modeling, top).
It then performs bidirectional querying of temporal and spatial attributes to generate dialogue data
(task modeling, bottom), thereby learning spatiotemporal dynamics.

Spatiotemporal attributes are key to representing unique video frame content. Mitigating tem-
poral hacking is challenging due to high frame rates and information redundancy in videos as men-
tioned before. We propose extracting spatiotemporal attributes (e.g., trajectory, identity, action) to
capture relatively independent information from each frame. This approach offers two advantages:

• Frame-to-frame variations in attributes, especially positional coordinates, enable modeling of
frame-specific information, increasing information density (aligning with Principle I).

• These attributes function as queries to link information across the video, facilitating learning of
spatiotemporal dynamics (aligning with Principle II).

Specifically, given a video frame sequence V = {vt}Tt=1 with the same meaning in Eq. 3, we extract
the attribute information of subjects from each frame as follows:

Xt = {xloc
t , xapp

t , xact
t } = F (vt), (7)

where xloc
t , xapp

t , xact
t indicate the location, appearance, and action information of subjects in frame

vt, respectively. Function F extracts this information, using labeled data or specialized models such
as GRiT (Wu et al., 2022) and Grounding DINO (Liu et al., 2023a). We then organize this subject
information into trajectories corresponding to each subject:

{Yi}Ni=1 =
{
{ytri,t, yidi,t, yacti,t }Tt=1

}N

i=1
= A({Xt}Tt=1), (8)

where Yi is the trajectory of subject i and N is the number of subjects in the video. To be specific,
ytri,t, y

id
i,t, y

act
i,t indicate the trajectory, identity, and action information of subject i in frame vt, re-

spectively. Function A associates subjects across frames to form trajectories and identities, typically
using tracking algorithms like ByteTrack (Zhang et al., 2022).

Bidirectional querying explicitly models spatiotemporal dynamics. Previous methods (Wang
et al., 2023; 2024a) modeled relatively dense information by interleaving text with selected frames,
yet they neglected the critical spatiotemporal dynamics. Inspired by Merlin (Yu et al., 2023a), we
propose a bidirectional querying mechanism that uses any temporal or spatial attribute to query
global spatiotemporal attributes. This approach offers two benefits:

• Explicit modeling of spatiotemporal attributes forces the model to read each frame, aligning with
Principle I.

• The arbitrariness of querying across time and space enhances the model’s understanding of spa-
tiotemporal dynamics, and the stronger this arbitrariness, the deeper the understanding, aligning
with Principle II.
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Particularly, we randomly sample the information of one or more subjects as query attributes and
select several frames as query frames. The model must predict the complete subject information
based on the provided query data. Formally,

P (Y |V, Yq) ∼ P
(
{ysi}Ni=1|{vt}Tt=1, {ysi,tj}i,j

)
, (9)

where {si}Ni=1 ⊆ {1, 2, . . . , N} represents sampled subject identities, {tj}Mj=1 ⊆ {1, 2, . . . , T}
indicates selected query frames, and ysi,tj denotes attribute information of selected subjects sampled
from Y , which can be location, appearance, and action description.

Notably, the random selection of query frames {tj}Mj=1 ensures the model utilizes query information
from any part of the video—beginning, middle, or end—as cues to trace the entire trajectory. This
approach not only compels the model to fully observe and comprehend the entire video, avoiding
shortcuts like relying solely on initial or final frames, but also enhances its understanding of time-
dependent physical laws. By necessitating the model to infer states across various temporal intervals,
it implicitly learns concepts such as momentum, velocity, and acceleration, thereby strengthening
its grasp of fundamental spatiotemporal dynamics.

4 EMPIRICAL RESULT DETAILS

4.1 EXPERIMENT SETTINGS

Datasets. We primarily construct UTR-Data using several existing open-source video datasets,
namely HowTo100M (Miech et al., 2019), MeViS (Ding et al., 2023), and LaMOT (Li et al., 2024e).
To extract subject attributions from each video frame, we use the region-to-text detector GRiT (Wu
et al., 2022). Subsequently, we apply the ByteTrack (Zhang et al., 2022) tracking algorithm to
construct attribution trajectories. Further details can be found in the Appendix B.

Implementation Details. To apply our UTR modeling strategy within the current video MLLM,
we have developed a novel video MLLM, i.e., Video-UTR. For the specific Video-UTR pipeline, we
follow the general architecture in LLaVA-NEXT-Video (Zhang et al., 2024c), which consists of a
vision encoder, SigLIP-L (Zhai et al., 2023), a large language model, QWen-2 (Yang et al., 2024),
and a modality alignment projector, 2-layer GeLU-MLP. The training process consists of two stages.
(1) Stage I: Modality alignment, where only the projector is trained using the 558K LLaVA (Liu
et al., 2024b) dataset. (2) Stage II: Multi-task joint training, where the LLM is trained with various
task datasets including video instruction-following data. Here, we mainly apply our UTR in the
Stage II, which combines the constructed task data based on UTR with LLaVA-NEXT SFT data.
Further details about the training settings can be found in the Appendix B.

4.2 GENERAL COMPREHENSION EVALUATION

To showcase the generality and effectiveness of the proposed paradigm, we evaluated Video-UTR
across various understanding benchmarks. Using the standard MLLM evaluation framework and
the LLMs-Eval tool (Zhang et al., 2024a), we assessed major image and video understanding tasks.
Results are shown in Tables 1 and 2. For video understanding, we focused on three general bench-
marks: MVBench (Li et al., 2024c), TempCompass (Liu et al., 2024c), and VideoMME (Fu et al.,
2024), as well as four video QA benchmarks: MVSD-QA (Xu et al., 2017), MSRVTT-QA (Xu
et al., 2016), TGIF-QA (Jang et al., 2017), and ActivityNet-QA (Caba Heilbron et al., 2015). For
image understanding, we reported scores from popular benchmarks like MM-Vet (Yu et al., 2023b),
MMBench (Liu et al., 2023b), MMMU (Yue et al., 2024), MME (Fu et al., 2023), LLaVA-wild (Liu
et al., 2024b), SEED (Ge et al., 2023b), AI2D (Kembhavi et al., 2016), and RealWorldQA (xAI,
2024). For fairness, we used results from original papers.

Video Understanding. Table 1 shows that Video-UTR outperforms other video MLLMs on most
benchmarks, ranking first in 4 out of 7 tasks, highlighting its strong video understanding capabili-
ties. Its high scores on MVBench (58.78%), TempCompass (59.67%), and VideoMME (52.63%)
demonstrate its ability to handle complex tasks like temporal reasoning, identifying differences, lo-
cating objects, tracking motion, and interpreting dynamic scenes. Additionally, its performance on
four video QA benchmarks reflects exceptional understanding, particularly in managing temporally
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Table 1: General Video Understanding Performance Comparsion on 7 benchmarks, Video-UTR
outperforms competitors in 4 out of 7 benchmarks and ranks second on the others, despite these
competitors using larger training datasets or more parameters. Several benchmark names are abbre-
viated due to space limits. TempC: Tempcompass, ANet-QA: ActivityNet-QA. And Acc indicates
Accuracy. The best results are bold and the second-best results are underlined. * indicates metrics
reproduced by ourselves for evaluation.

Methods LLM
Data MVBench TempC VideoMME MSVD-QA MSRVVT-QA TGIF-QA ANet-QA

Scale Acc Score Acc Score Acc Score Acc Score

VideoChat (2023b) Vicuna-7B 765K 35.5 − − 56.3 2.8 45.0 2.5 34.4 2.3 − 2.2
VideoChat2 (2024c) Vicuna-7B 1.9M 51.1 38.5 − 70.0 3.9 54.1 3.3 − − 49.1 3.3
Video-ChatGPT (2023) Vicuna-7B 765K 32.7 31.8 − 51.6 2.5 29.6 1.8 − − 12.4 1.1
Video-LLaVA (2023) Vicuna-7B 765K 34.1 34.8 39.9 64.9 3.3 49.3 2.8 51.4 3.0 35.2 2.7
VideoLLaMA2 (2024) LLaMA2-7B 13.4M 54.6 − 46.6 70.9 3.8 − − − − 50.2 3.3
PLLaVA (2024) LLaMA2-7B 1M 46.6 − − 76.6 4.1 62.0 3.5 77.5 4.1 56.3 3.5
LLaVA-NEXT-Video (2024c) Qwen2-7B 860K 54.6 − 33.7 67.8 3.5 − − − − 53.5 3.2
LLaVA-OneVision(2024a) Qwen2-7B 1.6M 56.7 59.0∗ 58.2 65.3∗ 3.8∗ 43.3∗ 3.0∗ 52.8∗ 3.4∗ 56.6∗ 3.3∗

Video-UTR (Ours) Qwen2-7B 1.1M 58.8 59.7 52.6 73.5 4.1 58.3 3.6 56.4 3.6 55.0 3.2

Table 2: General Image Understanding Performance Comparision on 9 benchmarks, Video-
UTR achieves performance comparable to, or even surpassing, that of pure image-level MLLMs.
LLaVAW: LLaVA in the wild. The best results are bold and the second-best results are underlined.

Methods LLM MM-Vet MMBench MMMU MME LLaVAW POPE SEED AI2D RealWorldQA

Image-level MLLM
InstructBLIP (2024) Vicuna-7B 33.1 36.0 30.6 1137.1 59.8 86.1 53.4 40.6 36.9
Qwen-VL-Chat (2023b) Qwen-7B 47.3 60.6 37.0 1467.8 67.7 74.9 58.2 63.0 49.3
LLaVA-v1.5 (2024a) Vicuna-7B 30.5 64.3 35.7 1510.7 61.8 86.1 58.6 55.5 54.8
LLaVA-v1.5 Vicuna-13B 35.4 67.7 37.0 1531.3 66.1 88.4 61.6 61.1 55.3
ShareGPT4V (2023a) Vicuna-7B 37.6 68.8 37.2 1567.4 72.6 86.6 69.7 58.0 54.9
LLaVA-NEXT-Img (2024c) LLaMA3-8B 44.4 72.1 41.7 1551.5 63.1 87.1 − 71.6 60.0

Video-level MLLM
LLaMA-VID (2023c) Vicuna-7B − 66.6 − 1521.4 − 86.0 59.9 − −
Video-LLaVA (2023) Vicuna-7B 32.0 60.9 − − 73.1 84.4 − − −
LLaVA-NEXT-Video (2024c) QWen2-7B 42.9 74.5 42.6 1580.1 75.9 88.7 74.6 71.9 60.1
Video-UTR (Ours) Qwen2-7B 39.6 76.6 43.4 1583.6 69.4 88.9 74.7 72.1 63.7

sensitive information. Remarkably, Video-UTR achieves these results using only about 1.1M video
samples, a much smaller dataset compared to other models of similar performance, showcasing the
efficiency and effectiveness of our UTR approach.

Image Understanding. Table 2 shows that Video-UTR, despite being a video MLLM, delivers
highly competitive performance compared to image-level MLLMs. For instance, on key bench-
marks, Video-UTR matches or outperforms top image MLLMs like LLaVA-1.5 (Liu et al., 2024b)
(39.6% vs. 35.4% on MM-Vet) and the stronger LLaVA-Next-Img (Zhang et al., 2024c) (76.6%
vs. 72.1% on MMBench). It also performs well on hallucination benchmarks, achieving 88.9% on
POPE, and excels in image QA, with 63.7% on RealWorldQA, showing its ability to avoid misiden-
tification and misalignment with irrelevant image details. These results demonstrate that UTR not
only helps video MLLMs overcome temporal hacking but also enhances their ability to analyze and
understand images effectively.

4.3 ABALATION STUDY ABOUT UTR

Effectiveness of each component of UTR. In this ablation study, we evaluate the impact of remov-
ing the two key components of UTR: data modeling (UTR-Data) and task modeling (Bidirectional
Querying) from Video-UTR. We focus on three major video and image understanding benchmarks.
As shown in Table 3, removing UTR-Data and Bidirectional Querying leads to a significant drop
in performance on video understanding tasks, emphasizing their importance in handling complex
video reasoning tasks. Notably, removing UTR-Data causes a more consistent and pronounced de-
cline across all benchmarks, including both image and video tasks. This underscores the critical role
of data modeling in UTR, as it directly aligns with the two principles we proposed.
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Table 3: Abalation study of Video-UTR on both video and image understanding benchmarks.
Ablation Setting Data Scale MVBench TGIF-QA ANet-QA MMVet MMBench POPE

Video-UTR 1.1M 58.78 56.44 55.00 39.59 76.63 88.86
- Task Modeling 1.0M 58.45 56.11 54.21 37.33 76.37 89.29

- Data Modeling 780K 54.63 54.74 54.15 42.20 75.77 89.13
+ More VideoChat2 1.1M 57.65 53.39 53.65 36.56 75.95 88.76

Table 4: Scalability of video data size.
UTR-Data size MVBench TempCompass VideoMME

0K 54.63 58.88 53.37
180K 58.45 58.47 52.30
325K 58.78 59.67 52.63

Table 5: Scalability of frame length.
Frame length MVBench TempCompass VideoMME

8 50.93 56.28 52.56
24 50.08 56.14 52.81
32 51.40 56.11 52.07

At the same time, to eliminate the potential influence of video data volume, we also add an equivalent
amount of VideoChat2 (Li et al., 2024c) data. It can be observed that the additional video data did
not result in further gains, which further underscores the importance of data modeling. Video data
constructed in an improper manner will inevitably lead to temporal hacking, thus hindering the
improvement of true video understanding performance.

Ablation on the scalability of Video-UTR. In Section 2.2, we identify that the “anti-scaling law”
phenomenon observed in current video MLLMs is due to the issue of temporal hacking. To address
this, we propose UTR as a mitigation strategy. In this experiment, we will demonstrate whether
video MLLMs, with the integration of UTR, can exhibit scalability. As shown in Table 4 and Ta-
ble 5, thanks to the incorporation of UTR, Video-UTR demonstrates a certain degree of scalability in
the size of video data. Specifically, the larger the volume of video data, the better the model’s perfor-
mance. Additionally, we observe that under the condition of unchanged video content, an increased
number of video frames does not negatively impact the model’s performance. This scalability is
advantageous for further exploring the better performance of Video-UTR in the future.

4.4 SPATIAL-TEMPORAL UNDERSTANDING OF VIDEO-UTR

Table 6: Zero-shot spatial-temporal understanding
performance on MM-ID (Ji et al., 2024).

Methods Matching Location Q&A Caption
Open-source Models

MMICL (2023a) – – 3.53 3.18
SEED (2023a) – – 3.19 3.58

QwenVL-Chat (2023b) – 0.504 3.63 2.65
InternLM-XComposer2 (2024b) – 0.106 3.44 2.93

Closed-source APIs

QwenVL-Plus (2023b) 0.313 0.187 3.87 3.79
QwenVL-Max (2023b) 0.224 0.301 4.64 4.23

Gemini-pro (2023) 0.687 0.081 4.97 4.04
GPT-4V (2023) 0.627 0.244 4.77 4.67

Video-UTR (Ours) 0.277 0.328 4.36 3.62

Spatial and temporal comprehension are
equally important for multimodal video
understanding. Here, we evaluate Video-
UTR’s performance in these two areas us-
ing the latest benchmark, MM-ID, in a
zero-shot setting. MM-ID tests a model’s
ability to recognize identities across four
increasingly complex levels, focusing on
matching and locating objects with differ-
ent identities across frames. As shown
in Table 6, Video-UTR achieved highly
competitive scores on both the match-
ing and location sub-metrics without any
MM-ID training data. Moreover, it outperformed methods using significantly larger datasets, further
demonstrating the strength of the UTR approach. By leveraging spatiotemporal attribute modeling,
UTR effectively enables the model to learn both spatial and temporal aspects.

4.5 IN-DEPTH ANALYSIS ABOUT THE TPL SCORE

In Section 2.2, we design a novel metric, temporal perplexity (TPL score), to measure the alignment
degree between the proxy reward and the true reward. In this part, we aim to elucidate the correlation
between TP scores and true rewards more intuitively from the perspective of video data quality.
Specifically, we randomly select 100 video-text pairs from WebVid (Bain et al., 2021) and calculate
their temporal perplexity based on the definition in Eq. 6. Then we pick two representative examples
to illustrate the relationship between temporal perplexity (TPL) and the quality of video-text pairs.

As shown in Figure 4, it can be observed that higher TPL score indicates a higher information
density in the video or a more detailed description. In this scenario, the model struggles to describe
the entire video using just a single frame. Conversely, if the model’s performance based on a single
frame is nearly as good as when using all frames, it either suggests that the video’s dynamics are
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…

…

Caption: “Agapanthus flowers at Ile De Brehat, Bretagne France”
TPL Score: 0.0018573 

Caption: "Happy female and mother shopping online, watching photos on laptop together"
TPL Score: 0.5056167

Figure 4: Quantitative comparison of the video-text pair with different temporal perplexity

negligible, making it almost like an image, or the textual description is so sparse that additional
video information does not significantly improve modeling. The result aligns with our discussion
in Section 2.2 and the analysis in Figure 2. This case study demonstrates that the TPL score can
serve as a useful metric for filtering high-quality video-text pair data. Please refer to Appendix ??
for more in-depth investigation.

5 RELATED WORK

Multimodal video foundation models. Recently, vision-language models (Liu et al., 2024b; Zhu
et al., 2023; Zhao et al., 2023b; Wei et al., 2024) have demonstrated versatile visual understanding
through visual instruction tuning (Liu et al., 2024b; Zhu et al., 2023). However, real-world video
comprehension in multimodal models is still in its early stages. Due to the absence of powerful video
encoders in the community, existing mainstream video MLLMs (Zhang et al., 2024c; 2023; Cheng
et al., 2024) still rely on established images encoder, i.e., CLIP (Radford et al., 2021), to extract
visual information frame by frame. Subsequently, they integrate temporal modeling techniques,
e.g., Q-former (Zhang et al., 2023), 3D Conv (Cheng et al., 2024), and Pooling (Zhang et al., 2024c;
Xu et al., 2024), to compress the visual tokens before feeding them with language tokens into LLMs.

In addition to advancing the design of powerful temporal modules, recent works have increasingly
acknowledged the pivotal role of video-language modeling in video comprehension. Some works
try to design filtering mechanisms (Wang et al., 2024b) to obtain high-quality video data with fine-
grained description, while others aim to construct appropriate data structures (Wang et al., 2023;
2024a; Chen et al., 2023b) and task formats (Yu et al., 2023a) to enhance modeling performance.
In this work, we systematically present how to design effective video-language modeling from a
reinforcement learning perspective and propose guiding principles along with example frameworks.

Reward hacking theory was firstly introduced in the field of RL as a special case of Goodhart’s
Law (Goodhart, 1984; Leike et al., 2018), and later explored in the context of AI alignment (Leike
et al., 2017). (Krakovna & Legg, 2018) formalizes reward hacking by identifying types of reward
mis-specifications that lead to it. Subsequent works (Pan et al., 2022; Laidlaw et al., 2024) try to
deal with reward hacking from different aspects. On the other hand, reward hacking is not exclusive
to reinforcement learning, it also occurs in the optimization of pretrained visual generation models,
where approaches often optimize towards a reward model by directly backpropagating gradients
from a differentiable reward model (Li et al., 2024b; Zhang et al., 2024b). In this work, we transfer
the concept of reward hacking to video-language modeling and establish a novel temporal hacking
theory to explain the shortcut learning in the existing video MLLM.

6 CONCLUSION

In this work, we propose the theory of temporal hacking from a reinforcement learning perspective
to explain shortcut learning in video MLLMs. We introduce a novel metric, Temporal Perplexity
(TPL), to quantify the severity of temporal hacking. Through extensive experiments, we use the
TPL score to analyze the causes and features of temporal hacking, leading to the development of two
guiding principles for video-language modeling. We further propose Unhackable Video-Language
Modeling (UTR) and build a powerful video MLLM, i.e., Video-UTR. We hope this work offers a
new perspective and insights to help the community build more robust video-AI systems.
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A APPENDIX

In this appendix, we provide additional details about temporal hacking and our Unhackable
Temporal Rewarding (UTR), which were omitted due to the 10-page limit of the main paper. Specif-
ically, Section B elaborates on the dataset and training settings of Video-UTR. Section C presents
additional experiments to analyze UTR’s characteristics. Section D offers more qualitative examples
to demonstrate the capabilities of Video-UTR, and Section E provides further discussion of existing
approaches.

B ADDITIONAL DETAILS ABOUT EXPERIMENTAL SETTING

Additional information of the datasets. In Section 3.2 of the manuscript, we introduced how we
established the unhackable temporal rewarding (UTR) including data modeling (UTR-Data) and
task modeling (Bidirectional Querying). Now, in this section, we go into greater detail about how
we collected and built the UTR-Data and how we constructed task conversation. To start, we provide
an overview of our collected data in Table 7, and then dive into the step-by-step process of how it
was constructed.

Table 7: Training Data Statistics. We first build our UTR-Data mainly based on sampled
HowTo100M, MeViS, and LaMOT. Then we mix UTR-Data with several existing video conver-
sation data, i.e., LLaVA-NEXT-SFT and VideoChat2.

Modality Dataset Original Used Ratio% Training Stage

HowTo100M (Miech et al., 2019) 100M 50K 0.05% Stage II

MeViS (Ding et al., 2023) 443K 90K 20.3% Stage II

LaMOT (Li et al., 2024e) 2.44M 225K 10.5% Stage II
Video-Text

VideoChat2 (Li et al., 2024c) 2M 100K 5% Stage II

BLIP-558K (Liu et al., 2024b) 558K 558K 100% Stage I
Image-Text

LLaVA-NEXT-SFT (Zhang et al., 2024c) 790K 790K 100% Stage II

Vision-Language Total 106.231M 1.813M 1.71% Stage I & II

Specifically, we follow the steps below to pre-process the raw video data to construct UTR-Data

(1) Randomly sample the fixed number (16, 24 or 32) frames at a certain frame (gap = 3,4 or 5) or
random interval to form a video clip each time.

(2) Extract all spatiotemporal attribution trajectories containing their category, identity, action and
bounding boxes in each video clip. This can be accomplished through expert models, e.g., GRiT (Wu
et al., 2022), Grounding DINO (Liu et al., 2023a), and ByteTrack (Zhang et al., 2022) or directly
obtained from the annotations provided by datasets.

(3) Remove the trajectory containing too small objects (smaller than 1/32 of the image size).

(4) Random select observation (spatial or temporal attributions in the randomly selected frame) as
the query to conduct bidirectional querying task modeling.

(5) Compose the task format as the following:

Question: System prompt + query question.

Answer: query answer, cat1<idi>Frame1:<box>;Frame2:<box>;...</idi>,

where <query question, query answer> is the question-answer pair that is designed
based on the selected querying attributes.

Additional Training Setting Details. As stated in the manuscript, Video-UTR follows a two-stage
training procedure. In this part, we will provide a detailed overview of our training settings, includ-
ing the hardware used for training, the duration, and the training hyperparameters. All information
are recoderd in Table 8.
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Table 8: Training hyperparameters of Video-UTR. The hyperparameter placed in the middle
indicates that this hyperparameter is used in both stages.

Configuration Stage I Stage II
Machine NVIDIA Tesla A800 80GB GPU x 64
Training hours 1 hour 20 hours

ViT init. SigLIP-so400m-patch14-384 Video-UTR Stage I
LLM init. Qwen2-7B-Instruct Video-UTR Stage I
Projection init. random Video-UTR Stage I
Image resolution 3842 3842

ViT sequence length 2048 2048
LLM sequence length 32K 32K
Video Frame length 1 32
Optimizer AdamW
Optimizer hyperparameter β2 = 0.95, eps = 1e−8

Peak learning rate Vision Tower: 2e−6; LLM: 1e−5

Minimum learning rate 0
ViT learning rate decay 0.9 0
ViT Drop path rate 0
Learning rate schedule cosine decay
Weight decay 0.05
Gradient clip 1.0
Training steps 1k 5k
Warm-up ratio 0.003 0.003
Global batch size 512 256
Gradient Acc. 1 4
Numerical precision bfloat16
Optimizer sharding ✓
Activation checkpointing ✗
Model parallelism ✗
Pipeline parallelism ✗

Table 9: Video benchmark evaluation setting. We report some detailed setting during evaluation.
MCQ: Multi-choice question. QA: Question-answer.

Benchmark Evaluation type Prompts Input frames Answer selection

MCQ Question + “Please directly give the best option:” 32

Yes or No Question + “Please answer yes or no:” 32

Caption Matching Question + “Please directly give the best option:” 32
Temoral
Compass

Captioning Question 32

GPT score

MVBench Video - MCQ ”Question” + Question +“Option:” + Options + “Only give the best option.” 32 Option matching

VideoMME Video-MCQ
These are the frames of a video. Select the best answer to the following multiple-choice

question based on the video. Respond with only the letter (A, B, C, or D) of the correct option. 32 Option matching

MSVD Video QA Question 32 GPT Score

ActivityNetQA Video QA Question+ “Answer the question using a single word or phrase.” 32 GPT Score

TGIFQA Video QA Question 32 GPT Score

VideoChatGPT Video QA Question 32 GPT Score

Additional Testing Setting Details. In the inference and evaluation phase, we essentially follow
the settings of PLLaVA (Xu et al., 2024) and LLaVA-NeXT-Video (Zhang et al., 2024c), including
the system prompt for inference, the number of frames extracted, and so on, while conducting eval-
uations on the existing video benchmark. Specifically, as illustrated in Table 9, we mainly use the
uniform frame sampling for frame selection. For answer selection based on GPT score, we mainly
use the gpt-3.5-turbo-0613 version to evaluate the responses of our model.

C ADDITIONAL EXPERIMENTAL ANALYSIS
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Frame1 Frame2 Frame7 Frame10 Frame13 Frame14 Frame16Low TPL: In the 
video, a person is 
seen picking up blue 
berries from a bowl 
and placing them in 
another bowl. The 
blue berry ends up 
in the second bowl 
of the video.

High TPL: In the 
video, a person is 
seen picking up blue 
berries from a bowl 
and placing it into 
another bowl. The 
blue berry was then 
placed on a plate, 
and finally, it ended 
up in a white bowl

Tell me what happened in the video, and where did the blueberry go in the end?Question:

Figure 6: Output attention visualization. We compute the average output layer attention of the
tokens generated by the model for each frame in the QA task and visualized the results.
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Figure 5: Quantitative TPL statistic of VideoChat2.

More analysis about tem-
poral perplexity (TPL). In
the Section 4.5, we present
a case study to illustrate the
relationship between the pro-
posed TPL score and data
quality, where a higher TPL
score indicates better data
quality. In this part, we fur-
ther present the relationship
between TPL and data qual-
ity from a quantitative sta-
tistical perspective. Specifi-
cally, we calculate the TPL
score for different data sub-
sets in VideoChat2 (Li et al.,
2024c) and computed their average values. The results are shown in Figure 5. We can observe
that the TPL distribution for the YouCook2 (Zhou et al., 2018) and TextVR (Wu et al., 2025) sub-
set is relatively high. This suggests that these two data subsets are of relatively high quality. As we
know, these datasets, such as YouCook2, contain a large amount of first-person perspective and high-
motion video data. These videos are rich in high information density and dynamic content, which
is beneficial for the model’s temporal modeling. The results further prove that TPL provides a ref-
erence for selecting high-quality data from VideoChat2. Based on the TPL distribution, sampling
more reasoning data is likely to be more beneficial for achieving better video-language modeling.

More attention visualization analysis. In Figure 2(b), we present the attention map visualizations
of frame tokens under model responses at different TPL levels. In this part, we further provide
more detailed attention analysis. As shown in Figure 6 & 7, we conduct two forms of attention
visualization. The first involves video QA, visualizing the attention values between the answer
content and the tokens of each video frame. The second form calculates the self-attention when
inputting the video-text pair into the model simultaneously. From both visualization results, we can
observe that our Video-UTR, while achieving a higher TPL score, clearly attends to more frames,
thereby avoiding the loss of crucial details in the video and making the answers more accurate and
detailed.
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A blueberry was taken out of a bowl. The person initially intended to put the blueberry into a 
cup, but instead of doing so, he placed the blueberry into a white bowl.

Video

Text

Figure 7: Video-text input attention visualization. The left is the attention map of the model with
low TPL while the right is the attention map with high TPL score.

D ADDITIONAL QUALITATIVE ANALYSIS

In this section, to more intuitively demonstrate the unhackable capability of Video-UTR, we present
several subjective video Q&A cases, as shown in Figure 8. Compared to our baseline, LLaVA-Next-
Video, our Video-UTR demonstrates a more accurate video understanding capability, specifically by
better comprehending user queries, focusing on more video details, and providing more precise and
less hallucinated responses. These results further validate the effectiveness of our proposed UTR
modeling.

E MORE DISSCUSIONS

E.1 DEPENDENCY ON EXPERT MODELS FOR UTR

As introduced in Section 3.2 of the main text, UTR leverages existing expert models to extract
spatiotemporal attribute cues, which serve as the foundation for data modeling and task modeling.
Therefore, the capability of the selected expert models and the quality of the extracted attributes are
critical variables that significantly influence the effectiveness of UTR modeling. In this part, we will
delve into the significance of selecting expert models, the selection criteria, the details of attribute
extraction, and the validation of attribute quality.

The importance and rationale behind selecting expert models for attribute extraction. The use
of expert models to support MLLM training has become a widely adopted strategy in the current
development stage. Notable implementations include models such as PaLI-X (Chen et al., 2023c),
Qwen-VL (Bai et al., 2023a), InternVL (Chen et al., 2024), and LLaMA3.2-Vision (Meta, 2024),
which integrate domain-specific expert models spanning areas like detection, grounding, and OCR
to scale up training data annotation. The effectiveness of this approach has been well-validated
through extensive empirical studies. Fundamentally, these pipelines operate as a distillation pro-
cess, transferring knowledge from expert models to MLLMs to enhance specific capabilities, such
as fine-grained perception. In line with this paradigm, our proposed UTR framework employs expert
models to extract spatiotemporal attributes from video data, thereby strengthening the spatiotempo-
ral perception abilities of video MLLMs. This improvement is substantiated by the empirical results
presented in Table 4.4 of our manuscript.

Extraction and filtering of high-quality attributes. To select specific expert models, we conducted
a systematic evaluation based on existing benchmarks, e.g., COCO (Lin et al., 2014), Lvis (Gupta
et al., 2019), VG (Krishna et al., 2017), etc., of the performance of various options, such as
GRiT (Wu et al., 2022) and GroundingDINO (Liu et al., 2023a), to identify the most suitable candi-
dates. For the proposed spatiotemporal attributes—including bounding boxes, captions, identities,
and actions, as illustrated in Figure 3 of our manuscript—we implemented a multi-stage selection
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LLaVA-NeXT-Video: In the video, a person is seen picking up blue berries from a bowl and placing 
them in another bowl. The blue berry ends up in the second bowl of the video.

Ours: In the video, a person is seen picking up blue berries from a bowl and placing it into another 
bowl. The blue berry was then placed on a plate, and finally, it ended up in a white bowl

Human: Tell me what happened in the video, and where did the blueberry go in the end?

LLaVA-NeXT-Video: The man and woman are standing in the dark, and the man is holding her hand. They 
seem to be enjoying each other’s company as they stand close together. The video shows them from different 
angles, but it is clear that they are sharing a romantic moment.

Ours: In the video, a man and woman are seen walking down a street at night. The man is wearing a black 
jacket, and they both appear to be in their late teens or early twenties. They continue walking for a while, with 
the man occasionally glancing over at her. Eventually, they stop and stand facing each other, and the man leans 
in to kiss her. The woman reciprocates the kiss, and they stand there for a moment before pulling away from 
each other. Overall, the video depicts a romantic moment between two young people who seem to have a strong 
connection.

Human: Tell me what is the man doing with the woman? Please describe in detail.

Ours: In the video, a man is seen in a hallway and entering a room. He then proceeds to walk towards the woman who 
is getting out of the room. The man appears to be in a playful mood as he starts making funny faces at the woman, 
seemingly trying to entertain her. Overall, the video depicts a light-hearted moment between two individuals who seem 
to be having a good time together.

LLaVA-NeXT-Video: The man and woman are standing in a hallway, and the man is holding a white bag. They seem 
to be having a conversation, but it’s unclear what they’re saying. The woman is wearing a blue shirt, and the man is 
wearing a black shirt. There is a green door behind them, and a window on the wall. The man appears to be looking at 
something off-camera, while the woman looks directly at the camera.

Human: Please describe the video in detail.

Figure 8: Qualitative examples visualization of Video-UTR. Please note that we only display the
most important frames from the full video (32 frames) to conserve space.

and filtering process. First, we filtered the attributes based on the confidence scores provided by
the expert models. Next, we applied a multi-object tracking algorithm, i.e., ByteTrack (Zhang et al.,
2022), to analyze contextual correlations within the video content. This analysis included examining
factors such as the Intersection over Union (IoU) of bounding boxes across frames and trajectory
continuity metrics, ensuring that trajectory lengths exceeded predefined thresholds. This compre-
hensive process ensures the reliability and consistency of the extracted attribute trajectories, thereby
enhancing their overall quality and utility.
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Table 10: Human validation of extracted attributes.

Validation Location Description Consistency
Human 2.98 2.23 2.57

Human validation of the extracted at-
tributes. To further validate the effec-
tiveness of the extracted spatiotemporal
attributes from video data, we conducted
a human evaluation experiment. Specif-
ically, 100 data samples generated using
our UTR pipeline were randomly selected for assessment by human evaluators. Human annotators
will score these data based on three criteria: the accuracy of the subject bounding box, the correct-
ness of the attribute descriptions, and the consistency of the attribute trajectories, using a scoring
range of 1 to 3. The results is shown in Table 10. We can observe that the average quality score
of the extracted attributes is quite high, indicating a strong level of reliability. The results of this
evaluation highlight the robustness and high quality of both the extracted spatiotemporal attributes
and the constructed data, confirming the reliability of our pipeline.

E.2 CONSISTENCY OF TPL WITH HUMAN JUDGMENT

Table 11: Consistency between TPL score and human judgment.

Validation High Medium Low

Richness Relevance Richness Relevance Richness Relevance
TPL level 3 3 2 2 1 1
Human 2.85 2.76 2.15 1.85 1.61 1.64

In Section 4.5, we point out that TPL not only reflects the degree of temporal hacking in the video-
language modeling process, but it can also serve as a high-order metric to indicate the quality of
video-text pairs. In this part, we plan to further explore this issue by examining the consistency of
TPL with human judgment, highlighting the reliability of TPL score as a data filtering metric.

Specifically, we first randomly select 100 video-text pairs from VideoChat2 (Li et al., 2023b) and
calculate their temporal perplexity based on the definition in Eq. 6. Next, we sort the data by their
TPL values and divide it into three groups: high, medium, and low. We then invite several human
annotators to rate these sampled video-text pairs on a scale of 1 to 3. The criteria for scoring includes
two aspects, i.e., the richness of the video-text information (considering both information density and
dynamics) and the relevance of the video to the text. Based on the annotators’ scores, Based on the
annotators’ scores, the consistency can be evaluated based on the average human ratings and their
alignment with the level categories.

The results is shown in Table 11. We can observe that the groupings based on TPL scores and those
based on human judgments are generally consistent. This indicates that our proposed TPL score is
a reliable metric for filtering high-quality video-text pair data.

E.3 FAILURE CASE ANALYSIS OF UTR

Although our proposed UTR significantly mitigates temporal hacking from both data modeling and
task modeling perspectives, it still has limitations in some situation, and we identify several rep-
resentative examples on the VideoMME (Fu et al., 2024) benchmark. As illustrated in Figure 9,
the top case shows that Video-UTR does not perform as well on certain knowledge-oriented Video
MCQ tasks. This type of question tests the inherent knowledge base of large language models, so
our UTR method does not result in a significant improvement. The bottom case illustrates that in
scenarios where the answer can be determined by analyzing a single frame or a few frames, our UTR
method does not demonstrate a significant advantage. Placing more emphasis on the overall video
content does not provide notable benefits in addressing such questions.

The aforementioned failure cases analysis also highlights the need to design better video under-
standing benchmarks that can more reasonably and reliably evaluate the ability of video MLLMs
to observe and comprehend the overall video content, rather than relying heavily on the inherent
capabilities of LLMs.
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Options：
Question: What happened when Irish imiggrants brought the tradition of St. Patrick's Day to America?

…

A. They began to center around drinking and celebrating the festival.
B. St. Patrick moved to America.
C. They celebrated St. Patrick's birth instead.
D. They attended the church and gather for feasts.

Model output: B

Options：
Question: What is the shape of the paper shown in the video?

…

A. Circle B. Rectangle

Model output: D
C. Square D. Triangle

Figure 9: Failure case visualization of Video-UTR. We select two representative failure cases from
the VideoMME (Fu et al., 2024) benchmark.

E.4 LIMITAION AND FURTURE WORK.

Limitation of Unhackable Temporal Hacking. Although our proposed UTR significantly miti-
gates temporal hacking from both data modeling and task modeling perspectives, it has a notice-
able limitation in terms of its reliance on expert model accuracy. Since UTR modeling is based
on extracted subject attributes, the quality of these attributes—such as positional accuracy, pre-
cise descriptions of the subject’s appearance and actions, and the accuracy of trajectory associa-
tions—directly impacts the overall performance of the final model. Therefore, improving the quality
of these extracted subject attributes represents a highly valuable direction for future improvement.

Future work. On the other hand, seamlessly integrating the constructed attribute trajectories into
dialogues poses yet another challenging issue. Exploring whether a single multimodal large lan-
guage model can be utilized to handle the entire data processing and task construction pipeline is a
highly promising research direction.
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