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Abstract

Cameras can be considered measurement devices complementary to acoustic
sensors when it comes to surveying marine environments. When calibrated
and used correctly, these visual sensors are well-suited for automated detec-
tion, quantification, mapping, and monitoring applications and when aiming at
high-accuracy 3D models or change detection. In underwater scenarios, cam-
eras are often set up in pressure housings with a flat glass window, a flat port,
which allows them to observe the environment. In this contribution, a geomet-
ric model for image formation is discussed that explicitly considers refraction
at the interface under realistic assumptions like a slightly misaligned camera
(w.r.t. the glass normal) and thick glass ports as common for deep sea applica-
tions. Then, starting from camera calibration, a complete, fully automated 3D
reconstruction system is discussed that takes an image sequence and produces
a 3D model. Newly derived refractive estimators for sparse two-view geometry,
pose estimation, bundle adjustment, and dense depth estimation are discussed
and evaluated in detail.
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1. Introduction

In the last decades, cameras in oceanography have advanced from a pure
qualitative inspection and manual evaluation tool to a visual sensor with great
potential for automated survey, measuring, mapping and monitoring. Applica-
tions for underwater imaging include construction and inspection in the offshore5

industry, marine habitat monitoring [1, 2], geological questions [3], archaeolog-
ical documentation [4, 5], exploration for deep sea mining, and many more.
All of the mentioned applications have in common, that scientist benefit from
a digital 3D model of the scene or object of interest in order to allow inter-
active inspection, measurements, documentation (over time), and classification10

and quantification. This work introduces a system for automated 3D recon-
struction from images, also called Structure from Motion (SfM), adapted to the
underwater imaging environment.

As with all sensors, the acquisition process for visual data has to be carefully
inspected to avoid systematic errors or biases in the observed data. In particular,15

submerged cameras view the underwater world from within a pressure housing,
often through a glass (or acrylic or sapphire) plate, called flat port. For deep sea
applications at high water pressure, the thickness of these ports can be in the
range of several centimeters (Fig. 2 on the right) and is therefore usually not
negligible. When light rays enter such a housing at a non-zero incidence angle,20

they are refracted due to the different media densities according to Snell’s law
[6]. This causes imaging geometry to deviate from classical photogrammetry
in air and the often used perspective (i. e. single-viewpoint) camera model to
become invalid [7]. Classical approaches for automated 3D reconstruction from
images [8, 9, 10] however do assume a single viewpoint model.25

Figure 1 shows the refraction effect on a temple model in a fish tank that is
flooded and viewed from outside, fully analogous to a camera being submerged
behind a flat port housing. It is clearly visible that the image is deformed,

Figure 1: A model of the entrance to the Abu Simbel temple in Egypt is placed in a fish tank.
A static camera views the scene through a flat glass. When increasing the water level in the
fish tank, refractive effects are clearly visible. These do not only scale the image (in 2D) but
allow to “look around” foreground objects (in 3D).
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Figure 2: Refractive camera with the perspective camera inside the housing in black. The
inner and outer glass interface planes are depicted in gray. The blue line shows the interface
normal intersecting the camera’s center of projection. In red and green are the ray segments
for two image points. Note how the dashed lines on the left do not intersect the camera’s
center of projection, but the blue line in different points. This shows that the perspective
camera model is invalid. The right image shows sample camera housings for 6000m (top,
port ca. 2 cm sapphire), several hundred meters (center, port ca. 1 cm glass) and flat water
(bottom, port ca. 1mm acrylic glass)

and, maybe less obvious, the deformation is distance dependent and cannot
be modeled by simple 2D image operations. The effect can also be depicted30

geometrically (Fig. 2): the rays coming from the water are refracted at the
water-glass interface and again at the glass-air interface.

When ignoring refraction (dashed lines), one can observe that the rays do
not intersect in a common center of projection any more, hence the often used
single-view-point camera model is invalid and a tailored solution is required.35

In the next section, the evolution of underwater imaging models and previous
work related to refractive imaging are discussed. Afterwards, we will derive
a model for the imaging process of flat port cameras based on the underlying
physical principles and define optimal estimation criteria under a Gaussian noise
assumption for image observations. In Section 4, the first complete refractive40

visual reconstruction system is proposed, consisting of refractive single view
and two view estimators for bootstrapping, refractive bundle adjustment, and
finally dense refractive stereo estimation. The approach is evaluated in detail
in Section 5. Here, we discuss also a potential benefit of refractive vision over
3D reconstruction in air, namely the potential to extract absolute scale from45

monocular image sequences. Finally, the system is demonstrated on several
real-world sequences.
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(a) true underwater rendering (b) ignoring water (c) 2D approx. of refraction

(d) true depth map (e) error of (b) / pixel (f) error of (c) / pixel

Figure 3: Left column: (a) synthetic underwater image (considering refraction) and (d) cor-
responding depth map below. Middle column: (b) rendered image with perspective camera
model ignoring refraction and (e) pixel movement compared to refractive image. Right col-
umn: (c) rendered image with perspective approximation of refraction and (f) pixel movement
compared to refractive image.

2. Previous Work and Novel Contributions

In photogrammetry it is well known that refraction should be considered in
order to obtain accurate measurements [7]. Nevertheless, in the earlier days50

of underwater photogrammetry and computer vision, computational power was
limited and tractable approximations were sought that described underwater im-
age observations. Towards this end, Freyer and Fraser [11], Harvey and Shortis
[12], and Lavest et al. [13] postulated that the refractive effect can be approxi-
mated essentially by an image stretch from the center in radial direction. These55

approximations ignore the dependence of the image deformation on the 3D scene
layout and model refraction as a pure 2D effect that can be absorbed into radial
distortion, focal length, and potentially other intrinsic camera parameters. It
can however be shown that the error depends on the distance between 3D point
and camera [14] and 2D approximations can have large systematic errors. Fig-60

ure 3 shows a comparison between images rendered with the correct refractive
camera model and with the perspective camera model. A refracted underwater
image and a depth map are displayed on the left. The middle column shows the
rendered image using the perspective camera model without any compensation
for refraction. The right column shows the rendering results for the perspective65

camera model with an approximation of the refractive effect as in [12].
In this case, the pixel-wise difference between refractive and perspective

image can be tens of pixels for high resolution cameras. Despite this error,
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a lot of works can be found in the literature, where the perspective camera
model is used in applications that utilize imaging geometry like mosaiking [15]70

or Structure from Motion [10, 16, 17].
One solution to eliminate the systematic modeling error is to use a general

camera model, where for each pixel, a ray or raxel [18] is determined. Several
works are concerned with reconstructing scenes based on such general camera
models, e. g. [19, 20]. However, robustly obtaining a precise camera calibration75

for a camera model where for each pixel a ray is calibrated independently is
often difficult. Therefore, it is also interesting to model refraction explicitly by
parameterizing the interface housing. Calibration approaches for this can be
found in [21, 22, 23, 24]. In [21] very thin glass and parallelism between glass
and imaging sensor are assumed. The authors of [22] calibrate a stereo rig for80

a camera housing with thick glass and interface inclination. Agrawal et al.[23]
demonstrate how to calibrate a monocular camera, where the glass thickness
can be modeled explicitly and a possible tilt between glass and imaging sensor
is calibrated as well. [24] uses the results in [23] as an initialization and applies
an Analysis-by-Synthesis approach for optimization.85

The obtained refractive calibration can be utilized in a refractive reconstruc-
tion approach. Towards this end, [25] derives a theory for refractive SfM for
a camera looking through a water surface, however, the investigation remains
theoretical. [26] is a system, where the camera views a scene on the bottom
of a fish tank through the water surface. It is assumed that the camera’s yaw90

and pitch are known. More general in terms of external sensors is the work of
Kang et al. [27]. This work is targeted to reconstructions of two photos and
requires manual elimination of outliers in the correspondences. A key problem
of refractive vision is that forward projection of 3D points into cameras is dif-
ficult. For the simple case of parallelism between glass and image sensor and95

negligible glass thickness, [28] showed how 3D points can be projected using a
4th-degree polynomial. However, in the more general case of practical deep sea
housings, forward projection can either be expensively approximated using back
projection and inverse methods or, as recently shown by Agrawal [23] through
the solution of a 12th-degree polynomial, which is still way more complicated100

than the simple matrix multiplication for solving the same problem in air. Due
to inefficient projections of 3D points into a refractive camera, it is infeasible to
extend [26, 27] to large scenes with many images.

Thus, no general system for refractive 3D reconstruction exists, which is the
aim of this paper. Explicitly modeling refraction allows to eliminate the system-105

atic model error introduced by applying methods designed for images captured
in air at the cost of expensive forward projection. To obtain a computationally
tractable procedure, an efficient error function is required in bundle adjustment,
which classically relies on many forward projections. This allows to optimize re-
constructions efficiently, and hence allows to apply the reconstruction algorithm110

to scenes with more than a few tens of images.
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Contributions

This work is the first to propose, implement, and evaluate a complete scal-
able 3D reconstruction system that can be used for deep sea flat port cameras. It
builds on and extends two preliminary conference publications (and for further115

aspects, the reader is also refered to [29]): [30], which introduces the refrac-
tive Structure-from-Motion routine and [31], which describes a refractive Plane
Sweep algorithm. In this work, both methods are combined into a complete
system for refractive reconstruction by improving the non-linear optimization
to work on larger scenes. In addition, the system is compared against a method120

based on a general camera model in air [19], which can be adapted to cover
refraction in the general camera. Additionally, we investigate in which cases
absolute scene scale is observable for monocular flat port cameras.

In the following, first the geometric image formation model will be intro-
duced. This includes an efficient formulation for maximum likelihood estimation125

given Gaussian noise on the image observations despite the fact that refractive
forward projection is expensive.
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3. Refractive Image Formation

In order to describe the geometric image formation, when observing an object
in the water using a camera inside a pressure housing, the interface of the
housing is explicitly considered. For the camera inside the pressure housing
we require a geometrical imaging model that allows computation of the ray
in space for each position in the image, i. e. that we can backproject pixels
onto 3D lines of sight in the air around the camera. Many different models
exist, for instance ideal pinhole cameras, wide angle lenses with radial and
tangential distortion [32], fisheyes [33], non-central cameras [18], and so on. For
simplicity of presentation, and since we will reason only about rays in space,
in the remainder of this document we will assume a pinhole camera with a
single center of projection (analogous considerations can be made for other
camera models). The intrinsic parameters of such cameras can be calibrated
with standard calibration toolboxes in air1 2 [34]. Given an image or image
coordinates for a camera with a certain set of intrinsics, it is straightforward to
compute the image or coordinates for a different setting of these parameters (e. g.
undistortion). Therefore, in the following, we assume without loss of generality
that we have a canonical camera with focal length 1 and principal point 0 and
no radial distortion (cf. also to [35, 36]) that maps 3D points wcX ∈ P

3 in world
coordinates to homogeneous 2D points x ∈ P

2 in the image:

x = (RT | −RTC)wcX (1)

Here, R and C represent the camera’s orientation matrix and euclidean position
vector respectively. In the remainder, 3D points will be annotated with wc or130

cc depending on whether they are in world or camera coordinates. The idea
of the proposed approach lies in explicitly modeling the camera housing, which
is assumed to contain a thick flat transparent window with parallel interfaces
to air and water. For deep sea applications in several kilometers water depth,
these ports can be several centimeters thick such that they cannot be considered135

infinitesimally small. The thickness depends on the material used, the pressure
(i.e. the depth), and the diameter of the opening. Consequently, for the most
general case, a light ray travels from an object through the water into the “glass”
and then into the air that surrounds the lens, before finally reaching the lens.
The refractive camera (a perspective camera inside an underwater housing) is140

then completed by a parametrization of refraction at the glass interface. These
parameters include the distance d between center of projection and glass, the
glass thickness dg, and the glass normal ñ in the camera coordinate system.
In addition, the indexes of refraction for air na, glass ng, and water nw are
required.145

The backprojection of an image point into space now works as follows: after
computing the (simply backprojected) normalized ray from the camera center

1http://www.opencv.org
2http://www.vision.caltech.edu/bouguetj/calib doc/
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Figure 4: Depicted in on the left is the plane of refraction (POR) for the green point shown
in Figure 2, containing all ray segments and the interface normal ñ. Depicted on the right is
the Flat Refractive Constraint (FRC), where a ray segment in water is transformed into the
local camera coordinates and compared to the local ray in water. The FRC states that the
angle α should be zero.
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inside the housing ccX̃a = Rx/||Rx||, it can be intersected with the glass and
refracted using Snell’s law to determine the ray direction in glass ccX̃g [23]:

ccXg =
na

ng

ccX̃a +

(

−
na

ng

ccX̃a

T
ñ+

√

1−
na

ng

(1− (ccX̃a

T
ñ)2)

)

ñ . (2)

After normalizing ccXg, it can be used to determine the ray in water ccX̃w

respectively. For each ray, its starting point in water on the outer glass plane
can be determined by ccXs =

d

ccX̃
T

a ñ

ccX̃a +
dg

ccX̃
T

g ñ

ccX̃g. The resulting ray in water

in the local camera coordinate system can then be transformed into the world
coordinate system by:

wcXs = RccXs + C wcX̃w = RccX̃w (3)

Agrawal et al. [23] determined several other interesting properties of refractive
underwater cameras: one major insight was that all rays coming from the water
intersect a common axis defined by the camera’s center of projection and the
interface normal (Fig. 2, left). In addition, [23] determines that according to
the second part of Snell’s law, all ray segments and the interface normal lie in
one common plane, the plane of refraction (POR), which allows to derive the
POR constraint (Figure 4 on the left):

(RTwcX−RTC)T(ñ× ccX̃w) = 0, (4)

which determines that a 3D point transformed into the camera coordinate sys-
tem should lie on the POR as well. A second useful constraint derived by [23]
is the flat refractive constraint (FRC) that states that a 3D point in camera
coordinates that is transferred onto the starting point ccXs should have a zero
angle with the ray in water ccX̃w (Figure 4 on the right):

(RTwcX−RTC− ccXs)×
ccX̃w = 0. (5)

Note that (5) allows to derive an angle error similar to the one used in [19] as
can be used for general camera models.

The fact that all ray segments lie in the POR allowed to derive a projection of
3D points into the image plane by solving a 12th degree polynomial. Compared
to solving the projection using iterative methods (similar to what is done in [37])150

and backprojection according to equation (2), this was a huge improvement.
Still, for reasonably large scenes, bundle adjustment and dense stereo require
millions of projections and can become intractable when the number of data
grows.

3.1. Lifting Observations from Image Space to Outer Glass Space155

Projecting 3D points into an image is a task that is at least implicitly re-
quired in several estimators, either as part of an objective function to be opti-
mized or as a means to classify correspondences into inliers and outliers accord-
ing to a model. In both cases, a 2D-3D correspondence exists, i. e. a computed
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Figure 5: For a 2D image position, the corresponding ray in water is intersected with the axis
defined by center of projection and interface normal (blue line). This intersection defines the
virtual camera center (green). The virtual camera’s optical axis is defined by the interface
normal. Consequently, for a 3D-2D correspondence, the 3D point can be projected into the
virtual camera perspectively and the 2D point can be transformed into the virtual camera,
thus defining a reprojection error that can be computed efficiently.

3D point and the corresponding observation, the 2D point in the image. After160

projecting the 3D point into the image, the difference of the projected point
to the observation is called reprojection error in the literature. Since refraction
makes projecting 3D points directly into the image prohibitively expensive, the
problem is reformulated such that the 2D observation is backprojected onto the
outer glass interface. This removes the need for considering any further refrac-165

tions in the objective function and simple linear projections can be used as in
air.

Instead of using the reprojection error, we propose a different, non-linear
error function that defines a virtual camera for each 2D observation, into which
the corresponding 3D point can be projected perspectively. The basic idea is170

similar to the idea in [20], however, here the virtual camera is defined for each
pixel and computes an exact error. An earlier version described in [38] required
long computation times due to the need to compute a caustic point for each
virtual camera. Here instead, we propose using the axis defined by center of
projection and interface normal, which is intersected by each ray in water [23]175

and serves as a virtual camera center Cv. The optical axis of the virtual camera
is determined by the interface normal. Note that the virtual camera error can
only be computed in case of existing 2D-3D correspondences, the 2D point
determines the virtual camera and can be transformed onto the virtual image
plane. The 3D point can be projected perspectively into the virtual camera,180

thus allowing to compute the reprojection error in this camera. The resulting
virtual camera error can be computed efficiently and analytic derivatives exist.

When running methods like bundle adjustment using a sum-of-squares error
function, it is assumed that the measurement error on the correspondences
is normally distributed, an assumption that can be made when no outliers are185

present in the data. We have empirically verified for practically relevant settings
of distance and glass inclination that a normally distributed observation error in
the image stays approximately Gaussian also in the virtual camera (Kolmogorov-
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Smirrnoff test[39] with 5% significance level). Normally distributed observation
errors in the virtual cameras mean that minimizing the sum of squared virtual190

reprojection errors is a maximum likelihood estimator.

3.2. Calibration

The model described above depends on the knowledge of camera parame-
ters, housing parameters and water parameters. In this section we will briefly
discuss calibration techniques to obtain these parameters3. The optical proper-195

ties of sea water and glass, i.e. their indexes of refraction, can be obtained from
oceanographic models or material property sheets, respectively. The same holds
for the thickness of the glass, which is usually known in practical systems.

The intrinsic camera parameters like focal length, but also the housing pa-
rameters need to be calibrated, which is achieved in two steps. First, the cam-200

era’s intrinsics are calibrated by capturing checkerboard images in air. The
method described in [34] uses an Analysis-by-Synthesis (AbyS) approach [40]
and can calibrate perspective monocular cameras, but also stereo rigs with high
accuracy. Second, the calibration approach for the housing parameters is also
based on a set of checkerboard images, this time captured below the water205

surface (see [24] for details).
In cases where only approximate information is available for certain param-

eters, or in case checkerboard calibration is not feasible, parameters can also be
optimized inside the Structure-from-Motion pipeline directly on the scientific
image sequences, i.e. during bundle adjustment. This Structure-from-Motion210

pipeline will be described in the next section.

3Calibration software, targets and instructions will be made available on
http://www.geomar.de/go/cameracalibration-e
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4. Automated Refractive Reconstruction

After having discussed refractive image formation and virtual camera errors,
in this section we will discuss the actual automated 3D reconstruction approach,
which follows a common sequential Structure-from-Motion (SfM, refer to [35, 36]215

for classic SfM methods): find image feature correspondences, robustly estimate
single view or two-view relations to reject outliers and to locally extend the
reconstruction, and perform bundle adjustment to obtain an optimal sparse
reconstruction. Then, for each key frame compute dense distance information
per pixel (a depth map) and fuse the depth maps to obtain the final 3D model.220

For all these steps different variations and strategies exist in the literature,
depending on whether motion models apply or unordered image collections are
reconstructed, depending on whether the goal is online or batch reconstruction
and which additional sensors are available. It should be noted that the actual
reconstruction strategy is not the main focus of this paper and that the modules225

presented could also be combined in another configuration. Rather, we want
to demonstrate feasibility of refractive reconstruction by presenting a complete
system that relies as much on the visual information as possible in order to
evaluate the difference refractive reconstruction makes.

4.1. Structure from Motion230

The calibration of the camera housing is utilized in a refractive Structure-
from-Motion (SfM) approach in order to determine the camera poses and 3D
points of the scene. The algorithmic pipeline can be seen in Fig. 6. After
loading a pair of consecutive images, SIFT-features are detected and matched
using [41], yielding what we call 2D-2D correspondences. Then, the relative pose235

of the second image with respect to the first needs to be computed robustly.
After that, a set of 3D points can be triangulated [42] and associated with
the 2D feature points. A new image can be added to the reconstruction by
matching its features to the features from existing frames, leading to a new set
of 2D-2D correspondences. Some of those have an associated 3D point, which240

allows robustly computing absolute pose using those 2D-3D correspondences
in a RANSAC-framework [43]. After adding an image to the reconstruction,
all camera poses and 3D points are optimized using bundle adjustment [44,
45]. Note that the same system can be used a) in case of classic perspective
reconstruction, b) for a ray-based reconstruction described in [19], and c) for245

the proposed refractive approach, thus allowing a direct comparison. In the
following, algorithms for refractive relative and absolute pose, as well as for
refractive bundle adjustment will be introduced.

4.1.1. Refractive Relative Pose

Based on a set of 2D-2D correspondences between two images, the relative
pose of the second image with respect to the first can be computed. For ease
of presentation, and without loss of generality, we assume that the first image
has been taken at the origin of the world and with orientation identity matrix.
Therefore, ccX̃w = wcX̃w and ccXs =

wcXs for all rays of the first image. Thus we
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j > 2

Figure 6: Experiments are conducted on a classic, sequential SfM pipeline. Images are loaded
and features are detected and matched to the last image. In case of the images being the first
two, the relative pose of the second image with respect to the first is computed as in initial-
ization. This allows to triangulate a set of 3D points for the 2D-2D image correspondences.
Other images are added sequentially by computing the absolute pose of the image with respect
to the existing 3D points. Additional 3D points are triangulated and bundle adjustment is
applied in order to improve the reconstructed scene.

seek orientation R and position C of the second image. In the perspective case,
relative pose relates to epipolar geometry [35] and minimal methods like for
example Nistér’s five-point algorithm can be applied [46]. In case of refractive
or other general camera models [47], [19], and [48] all examine a linear approach
based on intersecting Plücker lines for the 2D-2D correspondences:

0 = wcX̃w

T
(R(ccX̃′

w × ccX′

s)− [C]
×
RccX̃′

w) + (wcX̃w × wcXs)
T(RccX̃′

w) (6)

=

(
wcX̃w

(wcX̃w × wcXs)

)T (
− [C]

×
R R

R 03×3

)

︸ ︷︷ ︸

EGEC

(
ccX̃′

w

(ccX̃′
w × ccX′

s)

)

This is called Generalized Epipolar Constraint (GEC). 17 correspondences can
be used to construct a system of equations linear in the entries of EGEC [47]:

A vec(EGEC) = 0. (7)

Li et al. [48] propose to split the matrix A into two parts AE for − [C]
×
R and250

AR for R and solve the system (ARA
+
R − I)AE(e11...e33)

T = 0. This method
will be called Li method in the remainder. When using the general system of
equations with 17 correspondences, the fact that underwater cameras are axial
cameras cause the system (7) to have two zero singular values, and hence a
two-dimensional solution space (e11...e33)

T = µe1 + νe2, µ, ν ∈ R. µ can be255

set to one due to the solution being determined up to scale only and a suitable
ν can be found by utilizing a constraint on the rotation matrix. This method
outperformed the Li method in our experiments and will be called Pless method

in the evaluation.

A novel refractive relative pose solver. A different possibility for determining
refractive relative pose can be developed by using three geometrical constraints.
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The first one is that two corresponding rays in water intersect in the same 3D
point, which can be expressed by the triangulation constraint:

wcXs + κwcX̃w = RccX′

s + C+ κ′RccX̃′
w, (8)

where again R and C represent the transformation of the second camera relative
to the first, wcXs,

wcX̃w and ccX′

s,
ccX̃′

w are the rays in water for the two
corresponding points, and κ and κ′ are the scaling factors for the rays in water
in order for the rays to intersecting a common 3D point. Based on the same
entities, a constraint can be derived by transforming the ray of the second
camera pose into the first and applying the FRC Eq. (5):

(RccX′

s + C+ κ′RccX̃′
w − wcXs)×

wcX̃w = 0. (9)

Both constraints are non-linear in the unknowns R, C, κ and κ′ and we apply
an iterative approach to solve for the unknowns. A set of K correspondences
is used, where the κk and κ′

k
, k ∈ {1, ...,K} are all initialized with 3m, which

corresponds to common underwater visibility conditions, i. e. the 3D Points are
assumed to be 3m away from the camera. Then, of the 6 equations gained
from constraints (8) and (9), 3 are linearly independent and are used to stack a
linear equations system to solve for R and C. Next, the updated rotation and
translation are used to update all κk and κ′

k
using the POR constraint (4):

(RccX′

sk + C+ κ′

kR
ccX̃′

wk
)T(ñ× wcX̃wk

) = 0 (10)

(RTwcXsk − R̃TC+ κ′

kR
TwcX̃wk

)T(ñ× ccX̃′
wk

) = 0.

The resulting κk and κ′

k
are then used to update rotation and translation.260

Both, the iterative and the Pless method are embedded in a RANSAC[43]
framework in order to deal with outliers. Good solutions are optimized using
the virtual camera error of all inliers within the RANSAC framework.

Scene Scale. An interesting result of modeling refraction explicitly is that scene
scale can theoretically be determined from a two-view setting. This is in in265

contrast to the perspective case. Perspective reconstructions are determined up
to a similarity transform [35], i. e. absolute position, orientation, and a scale
factor are not observable from image data alone. Algebraically, a similarity
transformation T ∈ P

4×4 can be applied to perspective projection matrices and
points by x = PTT−1wcX without changing image observations. However,270

in the refractive case, such a transform would not scale interface distance and
thickness, and thereby not change the starting points and directions, which are
given in a fixed unit. Consequently, relative pose in the refractive camera case
is not invariant against changes in scale.

4.1.2. Refractive Absolute Pose275

Once the relative pose between the first two images is known, 3D points are
triangulated using refractive triangulation through the interface, choosing the
3D point with the smallest sum of squared distances to the projection rays [49].
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This allows to add more images to the reconstruction by computing the cam-
era’s absolute pose with respect to the 3D points. In case of perspective cameras,
a lot of methods for absolute pose exist, e. g. [50] which will be used for com-
paring perspective against refractive reconstruction. In case of general camera
models, Sturm et al. [51] and Nistér and Stewénius [52] both proposed meth-
ods that work on the minimal set of three 2D-3D correspondences. However,
these methods are strongly sensitive to noise in the correspondences. Usually,
2D-3D correspondences are classified into inliers and outliers, where the inliers
are assumed to have some measurement noise, which is assumed to be normally
distributed, while the outliers do not follow this distribution and can have very
large errors e. g. due to mismatches during correspondence search. When run-
ning the methods within a RANSAC framework [43], a lot of trials fail due to
the correspondences being noisy, even though they should all be classified as
inliers. This can happen especially when working on underwater images, where
contrast and visibility are often diminished, making feature detection difficult
due to an increased noise level. Therefore, rather than solving directly for the
absolute pose using a minimal solution, we propose an iterative scheme for com-
puting absolute pose based on c > 3 (we use c = 7) correspondences. For each
point correspondence the following constraint is used:

wcX = RccXs + C+ κRccX̃w, (11)

which is non-linear in the unknowns R, C, and κ. Initializing κ for each corre-
spondence with 1 allows to use a similar iterative scheme as in the relative pose
case, by solving for R and C using (11) first, and updating all κ afterwards:

κ = (RccX̃w)
T(wcX− C−RccXs). (12)

4.1.3. Refractive Bundle Adjustment

The techniques for relative pose, absolute pose and triangulation described280

so far consider only a subset of the data and not all observations in all images at
once. Although their results can serve as approximations for scene geometry and
camera motion, the estimates are not optimal, in particular in presence of noisy
observations. This is the goal of bundle adjustment [45], where all camera poses
and 3D points are optimized to jointly best match the observed feature position,285

i. e. bundle adjustment is a maximum likelihood estimator in case of normally
distributed observations. A good introduction to bundle adjustment can be
found in [45] and [44] and for increased readability we use the same symbols
and letters for parameters (p), observations (l), covariances (Cll), constraints
(g(p, l) and h(p)) and Jacobian matrices (Ag and Bg) as the latter.290

The objective function to be minimized in bundle adjustment contains the
sum of squared distances between projected 3D points and measured 2D points
in the images. This leads to an explicit functional dependence of the expected
observations from the parameters f(p) = l, were p contains the parameters
for all images and points and the vector l contains all observations, i. e. all295

measured 2D points in all images. Depending on the number of camera images
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Figure 7: Visualizations of bundle adjustment matrix N. Left: the blue part contains param-
eters for the 3D points, green is for the camera extrinsics, magenta for the local rig transform,
orange for the housing parameters, and cyan for constraints between parameters like quater-
nion unit length or unit length of the camera housing. Middle: matrix for monocular ad-
justment without optimization of housing parameters, only colored parts are non-zero. Left:
adjustment matrix for stereo optimization with optimization of rig transform and housing
parameters of both cameras.

and the number of 3D points, the number of 3D point projections into the
images during optimization in standard bundle adjustment can be in the order
of tens of thousands or even millions in case of large scale reconstructions.

However, as already seen in Section 3, projecting a point into a refractive
camera requires solving a 12th degree polynomial, hence causing refractive bun-
dle adjustment to be infeasible. This problem is solved by using the virtual
camera error function introduced in Section 3, where 3D points can be projected
perspectively. Additionally, it is possible to compute analytic derivatives, thus
allowing efficient computation of the parameter Jacobian Ag = ∂g

∂p
. However,

using the proposed virtual camera error function causes the constraint g(p, l) = 0

to be implicit. This is the reason why the Gauss-Helmert model [44, 45] needs to
be used for optimization. Compared to the Gauss-Markov model, which is com-
monly used in classic bundle adjustment, the Gauss-Helmert model is a more
general formulation of the optimization problem, allowing to deal with implicit
constraints. Due to the dependence of g on the observations, the observation
Jacobian Bg = ∂g

∂l
needs to be computed in addition to the parameter Jacobian,

yielding the linearized system of equations:
[
AT

g (BgCllB
T
g )

−1Ag HT
h

Hh 0

]

︸ ︷︷ ︸

N

[
∆p

kh

]

=

[
−AT

g (BgCllB
T
g )

−1g(p, l)
−h(p)

]

, (13)

where Cll is the observation covariance, h are constraints between parameters300

like quaternion unit length, with Hh = ∂h
∂p

being the Jacobian of the parameter
constraints, and k being a set of Lagrange Multipliers.

Solving (13) then leads to successive updates ∆p on the parameter vector.
Note that in case of using the Gauss Helmert model, a parameter ordering can
be found that causes the sparse matrix N to have a large block diagonal part305

with the 3D point parameters that allows applying the Schur complement for
solving the equation (13) efficiently (see also Figure 7). Convergence and run-
time of the proposed algorithm is comparable to the perspective counterpart as

16



0.00

0.20

0.40

0.60

0.80

1.00

 0  2  4  6  8

n
o

rm
al

iz
ed

 e
rr

o
r

# iteration 

ref 3000
ref 5000
per 3000
per 5000

Figure 8: Bundle adjustment convergence. Depicted are four different runs on random data,
where camera poses and 3D points were optimized. The red and green trial are runs on
underwater data with the virtual camera error with 3000 and 5000 3D points respectively.
The blue and magenta curves depict runs on perspective data. Due to the absolute errors not
being comparable, all errors depicted have been normalized.

can be observed in Fig. 8. In summary, using the virtual camera error with the
analytically computed derivatives allows to run bundle adjustment in seconds310

rather than hours, allowing to apply refractive SfM to large image sequences.

4.1.4. Stereo Sequences

If a stereo camera system is used instead of a monocular camera system,
the refractive image formation theory and estimators can be applied in a very
similar way. The main differences for an SfM system lie in the different steps of315

the reconstruction, i. e. the system is calibrated beforehand using the method in
[38]. This provides a fixed generalized essential matrix for 2D-2D inlier/outlier
determination within a stereo pair. Inliers within a stereo pair can be trian-
gulated to obtain 3D points and subsequent stereo pairs can be added to the
reconstruction using absolute pose estimation using 2D-3D correspondences of320

both cameras at the same time (no relative pose initialization is required). Bun-
dle adjustment is parametrized in a way that for each stereo-pair only one pose
is computed and the relative transformation between the cameras of the stereo
system is the same for all image pairs. Fixing the distance between the two
stereo cameras also fixes the scale of the 3D reconstruction.325

4.2. Dense Depth Estimation Using Refractive Plane Sweep

The camera path and sparse 3D point cloud are utilized for dense depth
computation, in order to gain a detailed 3D model. In case of refractive cameras,
the dense depth algorithm needs to fulfill several design constraints:

• 3D to 2D projections are expensive and should not be used330

• rectification approaches known from pinhole cameras

• homographies are invalid (as single-view-point camera model is invalid)
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target camera

reference camera

plane image

Figure 9: Refractive plane sweep. Top left: camera configuration with plane image. The
green camera is the target camera (image), the red the reference camera. Top right: the cor-
responding input images. The bottom row shows typical artifacts by forward mapping as they
would appear without GPU interpolation, and which would hinder depth estimation. From
left to right: plane image of target camera, plane image of reference camera, and difference
image of the two plane images. The interpolated images on the GPU (not displayed) do not
contain this distortion.

When considering dense depth estimation for an image pair, the image for
which the depth is to be computed will be called target image, the second image
reference image. The proposed algorithm that meets all three constraints has335

a simple basic idea. It is in essence a plane sweep algorithm [53], however,
instead of warping entire images using homographies, a plane image is defined
on the current hypothesis plane (see also Figure 9). For the target image,
hypothesis planes are swept through the space in front of the camera. For each
hypothesis plane, the four image corners of the target image are back-projected340

using (2) and intersect the hypothesis plane defining the corners of the plane
image. Both target and reference image are then warped onto the hypothesis
plane, which poses a forward mapping, causing the plane image to be incomplete.
However, by implementing the method on the GPU, holes in both plane images
can be filled efficiently by interpolation. As common in plane sweep, also more345

than two images can now be utilized to increase robustness (we use three views
in our experiments). Any appropriate local (dis-)similarity measures can be
chosen to evaluate the agreement of the images on the plane hypothesis, such
as normalized cross correlation (NCC) or sum of absolute differences (SAD).
Our sample implementation uses two sweeps with different measures. During350

the first sweep, NCC is used for patch comparison yielding a preliminary depth
map. In the second sweep, SAD with a shiftable window approach is used for
patch comparison and good NCC results are used as weights. Note that the
algorithm can be applied to all camera models for which a ray with starting
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point and direction can be computed, thus is also applicable to a wide range of355

other general cameras including the perspective camera.
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Figure 10: Top row: exemplary images from the rendered scenes. Bottom row: scene structure
and camera trajectory. Note that the scenes differ not only in structure and camera path,
but also in camera-object distance, i. e. in the first scene the closest views have camera-object
distances between 550mm and 1900mm and the furthest have 1300mm-2300mm. In the
second (stereo) scene, the camera was moved in an approximate orbit around the scene, hence
the camera-object distances were almost constant for all views (3000mm-6000mm).

5. Evaluation

The system described in the previous sections was evaluated on numerical
data, synthetically rendered images, and real underwater data. The experiments
on synthetic data allow a comparison of the results against ground truth and also360

against other methods. On real data, the system using the classical perspective
camera model is compared against the newly proposed refractive method. The
images in this case were captured in a controlled lab environment in a fish tank.
Finally, the new method is applied to real deep sea data captured on different
scientific cruises.365

5.1. Numerical Experiments on Refractive Relative Pose and Scene Scale

Figure 11 shows the results of running the Pless method and the iterative
method on 100 synthetic data sets with normal distributed noise with increasing
variance σ on a scene of size 4m in each direction. The iterative method slightly
outperforms the linear method, both are comparable in accuracy to standard370

perspective methods like the 8-point algorithm [35] on perspective data. Note,
that the methods were run within a RANSAC framework with newly created
data sets for each σ, which explains the non-monotonicity of the curves.

In Fig.12 we investigate an interesting property of the refractive formulation:
while in classical perspective monocular reconstructions in air, the absolute375
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Figure 11: Results of relative pose estimation. Left: orientation error for linear and iterative
method, right: translation error. Bottom: reprojection error for both methods.
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Figure 12: Observability of absolute scale in two-view relative pose setting under different
levels of noise. Left: ultra wide angle camera with 1mm distance to port, 1mm thickness.
Center: wide angle camera with 25mm from port, 10mm thickness. Right: theoretical setup
with ultra wide angle, distance 200mm, glass thickness 100mm. We plot the residual error in
pixels when changing the scale of the scene and the distance of the housings (but keeping the
known interface thickness and distance) from the correct value of 1. Absolute scale becomes
more clearly observable with thicker glass, larger distance and wider field of view of the camera
and can be identified in noiseless data easily (peak in front rows). As the noise level increases
it becomes quickly infeasible to find the exact minimum reliably (back rows of plots correspond
to only 0.6 pixels noise level).
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scale of the scene is not observable [35], the fixed glass thickness and interface
distance (known in mm by calibration) carry information about the absolute
scale of a scene when observed underwater. For different camera types (ultra
wide angle action camera, wide angle deep sea system and an extreme setting
with a wide angle lens camera and glass distance d = 200mm and glass distance380

dg = 100mm, we simulate two images with image size 800 × 600 pixels, with a
camera baseline of 0.5m. The 3D points were between 0.5m and 4m from the
cameras. In the wide angle case, the focal length was 100 pixels, while in the wide
angle deep sea case, the focal length was 700 pixels. After adding noise to the
correspondences, the scale of the baseline between the two cameras is changed385

without scaling interface distance and glass thickness and the reprojection error
is computed. It can be seen that in all cameras, there is a clear minimum for
the resulting average reprojection error when no noise is present. However,
for realistic noise levels the correct scale of the scene generates only a visible
minimum in the error function for the extreme camera setting on the right390

and therefore this insight does not seem to be practically usable for standard
underwater cameras. In the next section, the perspective and refractive methods
are applied to synthetic image sequences.

5.2. Synthetic Image Sequences

The synthetic images are rendered using the simulator described in [54]. The395

experimental setup was as follows:

• create synthetic scene

• create camera housing configurations with different interface distances
chosen from d ∈ [−10mm, 150mm] and interface tilts defined by θ1 = 30◦

and θ2 ∈ [0◦, 3◦]400

• for each housing configuration, render a set of refractive, underwater
checkerboard images

• calibrate perspectively based on the checkerboard images in order to ap-
proximate refractive effect

• for each housing configuration, render synthetic scene with constant cam-405

era trajectory

• compute 3D point cloud and camera path using different methods

• evaluate reconstruction errors compared to known ground truth

Two such scenes were rendered, the first one with a monocular camera and
the second one with a stereo camera rig. Both scenes and camera trajectories410

are depicted in Figure 10. In case of the monocular camera, the proposed
method is compared against two other methods, one using the approximative,
perspective camera, and another based on the angle error described for general
camera models in air in [19]. Although not designed as an underwater system
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θ1

θ2

Figure 13: Angles θ1 and θ2 describing the interface tilt.

its ray-based reasoning can be used to avoid the systematic error present in415

the other underwater systems. The authors of [19] use the linear relative pose
method described in Section 4.1.1 and run a maximum-likelihood estimation
(optimization based on the angle error between rays), which is equivalent to
the FRC (5) for underwater cameras. For absolute pose computation, they
use a non-linear optimization minimizing the angle error within a RANSAC420

framework. Bundle adjustment is based on the angle error as well. In our tests,
the initialization with the linear method often failed when using image data, and
we used the iterative method as a fall back. In terms of implementation, the
bundle adjustment using the angle error parametrizes rotations with incremental
Euler angles, while the refractive bundle adjustment used quaternions. Note425

that all three methods were configured to follow the outline shown in Fig. 6 in
order to be comparable.

The results are summarized in Figure 14. From left to right the columns
show the results using the perspective approximation as a camera model, the
angle error, and the newly proposed refractive method. The x- and y-axis430

show the interface distance and tilt respectively. The first row shows the 3D
error, i. e. the error of the 3D points compared to their ground truth points.
The second row shows resulting errors in camera translation, and the last row
shows the reprojection error. The results concerning the estimation of baseline
scaling showed that in the refractive case, scale can be computed as long as435

there is no noise on the correspondences. In the perspective case, scene scale
cannot be estimated. Therefore, the results in Figure 14 assume a known scene
scale between the first two view points, which is kept constant throughout the
reconstruction. This assumption can often be met in real oceanic applications
by utilizing the platform’s navigation data or adding a pair of lasers with known440

distance to the system. It is clearly visible that using the perspective camera
model causes the reconstruction to have a systematic modeling error, which
depends on the interface distance and especially the interface tilt. The method
based on the angle error does not have such a systematic modeling error, but
a fairly large error altogether. When using the refractive camera model, the445

systematic modeling error is eliminated completely and the results are much
more accurate than in the angle error case. The reason for this is that minimizing
the angular error as proposed in [19] is not a maximum likelihood estimator for
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Figure 14: Results of monocular SfM on fish sequence. Left column: perspective camera
model on underwater images. Middle column: results of the method described in [19] with
the iterative relative pose method as a fall back. Right column: refractive camera model on
underwater images. From top to bottom: 3D error in mm, camera translation error in mm,
and reprojection error in pixels.
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Figure 15: Results of stereo SfM on orbit-like sequence. Left column: perspective camera
model on underwater images. Right column: refractive camera model on underwater images.
From top to bottom: 3D error in mm, camera translation error in mm, and reprojection error
in pixels.

observation with Gaussian noise in perspective images, while the novel system
is. Even though the resulting errors do not seem to be very large in this example,450

one has to keep in mind, that the reconstructed camera trajectories were fairly
short. In real image sequences, hundreds or several thousands of images are
common and the systematic error will accumulate over time.

Figure 15 shows reconstruction results on the second, orbit-like sequence
using a stereo camera rig. As in case of the first scene, the systematic modeling455

error in case of using the perspective camera model is clearly visible and removed
completely in case of using the refractive camera model.

As the next evaluation after the so far sparse reconstructions, the described
refractive plane sweep algorithm is applied to the image in order to obtain dense
depth maps. Exemplary result images can be seen in Figure 16. The left column460

shows a ground truth depth map and input image, the second column shows
the resulting depth map using the perspective camera model and an error image
compared to ground truth. The third column shows results in case of using
the proposed refractive method. Note, that the error images are inverted for
better visibility, i. e. darker colors mean a high error. It is clearly visible that465

the refractive result has less errors than the perspective result. In addition, the
error in case of the perspective depth map is depending on the distance between
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Figure 16: Exemplary result of refractive plane sweep with housing configuration d = 100mm
and θ2 = 3◦. Top row: ground truth depth map, resulting depth map using the perspective
model, and resulting depth map using the refractive model. Bottom row: input image, pixel-
wise difference to ground truth for perspective result, and pixel-wise difference to ground truth
for refractive result.

the camera and the 3D objects, which can be observed on the floor and back
wall, where the error reaches the order of 20 cm. The average error across all
images and pixels is depicted in Figure 17. As in the case of the SfM results,470

the systematic modeling error in case of using the perspective camera model on
underwater data (Figure 17, left) is clearly visible. When using the refractive
camera model, it is eliminated completely, the remaining error is in the order
of the quantization error induced by the discrete depth hypothesis planes of the
Plane Sweep algorithm. In summary, the results clearly demonstrate that it is475

important to model refraction correctly, when reconstructing from underwater
data captured with flat port underwater camera housings and that the proposed
method is superior to the angle error method, which was designed for more
general camera models.

5.3. Real Data480

5.3.1. Abu Simbel Sequence

In order to test the approach on real data, an image sequence was recorded
in a controlled lab environment. The use of a camera housing with different
configurations was simulated by placing the cameras in front of a fish tank at
different distances and camera tilts (see Figure 18, top). Note that the image485

does not depict the experiment setup with correct scales. The camera was placed
at distances between 7mm and 149mm from the glass. The fish tank itself was
of the size 500mm × 1000mm × 500mm and was filled with water. Inside, a
model of the entrance to the Abu Simbel temple in Egypt was roughly rotated
around its vertical axis, while capturing images. As can be seen in Figure 18490

in the second row, the model is reflected at the bottom, but also on the sides
of the lab tank. In addition, the tank itself, but also small gas bubbles on the
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Figure 17: Refractive plane sweep results. Results for a close scene with distances up to
2300mm. Left: results of perspective model on perspective images. Right: results of perspec-
tive camera on underwater images, and results of refractive camera on underwater images.

Trial #images d / mm θ / ◦ µ∆ / mm σ∆ / mm

a 46 7.88 0.34 350.879 312.876
b 52 10.60 0.25 24.791 4.423
c 67 51.95 0.29 26.4426 14.4046
d 65 61.47 7.36 186.571 82.5256
e 76 76.96 29.29 115.596 31.4714
f 87 95.45 0.12 609.384 194.478
g 79 149.39 0.12 79.5105 37.9085

Table 1: The two rightmost columns show the average distance µ∆ and standard deviation
σ∆ between estimated classical perspective and novel refractive camera positions for seven
different camera-glass configurations. Note the large differences in trials a) and f), which are
cases, where the classical perspective model failed (compare to Fig. 18).

glass violate the rigid scene assumption when rotating the model. Therefore,
each image was roughly segmented prior to reconstruction. Reconstructions a)
- g) in Figure 18 show reconstruction results using the refractive (blue) and the495

perspective camera model. The number of input images, glass configuration, and
the resulting average distance and standard deviation between perspective and
refractive camera poses are summarized in Table 1. Although there is no ground
truth available in this case, it is clear, that the proposed refractive method
outperforms the perspective method. Additionally, the increasing difference to500

between the perspective and refractive results with increasing interface distance
and tilt indicate the same systematic modeling error as observed in the synthetic
case.

5.3.2. Deep Sea Data

Apart from testing on real images captured in a controlled lab environment,505

the refractive reconstruction was also applied to deep ocean data. In this case,
the camera was an HDTV video camera enclosed in an underwater housing
rated for water depths of 6000m equipped with a flat glass port. The camera
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1000mm

Figure 18: The first image shows the experimental setup. The camera was placed at different
configurations in front of a lab tank. Note that for better visibility, the tank is not up to
scale. The second row shows an exemplary input image. Due to the mirrored scene in the
tank bottom and other features like small air bubbles on the tank walls, all input images have
been roughly segmented (second image in second row). Images a) to g) show reconstruction
results for the seven different camera-glass configurations. Blue is the camera trajectory and
point cloud from the refractive reconstruction, red is from perspective reconstruction (refer to
Table 1 for differences in mm between perspective and refractive results).
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was attached to the ROV Kiel 60004. It is used to explore deep sea structures
as can be seen in Figure 19. The top row shows input images of a black smoker,510

a hydrothermal vent found at the Middle Atlantic ridge.
The formation of black smokers, their composition, growth rates and also

the faunal communities that populate the habitats around them are important
research topics in several ocean science disciplines. The results shown here can
be used for volumetric and surface measurements and they can serve as a frame515

for visualizing biological data, for biomass assessment and many other scenarios.
If the same black smoker is visited again, it will be possible to determine changes
in volume over time and therefore to monitor its development. The second row
in Figure 19 shows the reconstruction result with sparse 3D point cloud and
camera path, exemplary depth map, and textured 3D model.520

Figure 20 shows input images and reconstruction of a part of the inner flank
of an underwater volcano found near the Cape Verdes at approximately 3000m
water depth. Here, a geologic research question lies in the actual formation
process of this particular volcano. The typical field work flow requires studying
the flanks and searching for fault and joint lines, which is however very difficult525

from small field of view image data and closeup video. However, the digital 3D
model resulting from our method allows to interactively view and investigate
the entire volcano flank after the dive either on a 2D or 3D screen or even in
a 3D viewing arena. This is much closer to how geologists usually do their
field on land (compare also [3]). Finally, Figure 21 shows input images and530

reconstruction of the inside wall of an underwater lava lake. The structure was
formed by sinking lava levels in the lake causing the edges to tear horizontally.
By the resulting 3D model the structures are documented and reconstructed on
a mm-scale (depending on the camera’s viewing distance).

4http://www.geomar.de/en/centre/central-facilities/tlz/rovkiel6000/
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Figure 19: Results of refractive 3D reconstruction of a black smoker at the middle Atlantic
ridge. Top row: Sample images from video sequence. Bottom row: 3D point cloud with
camera path (left), sample depth map (center) and textured 3D model (right)

Figure 20: Results on underwater volcano (Cape Verdes, 3500m water depth). Top row:
sample images from video. Bottom row: reconstructed point cloud with camera path (left),
reconstructed 3D model with exemplary detected geological feature (center) and a joint (right,
marked in red rectangle) according to [3].
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Figure 21: Reconstruction of an inside wall of a lava lake as the middle Atlantic ridge (4◦48’S,
12◦22.5’W). Top row: sample images from video. Bottom row: sparse point cloud and cameras
(left), sample depth map (center), 3D model (right).
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6. Conclusion and Future Work535

When capturing visual oceanographic data for measuring, mapping, and re-
construction, cameras are often mounted in a pressure housing with a flat port.
For deep sea housings, the glass becomes significantly thick leading to two re-
fractions per ray. On top, high resolution cameras nowadays provide an angular
resolution (e. g. 5000 pixels covering 50◦ field of view) that makes it difficult540

to align the optical axis of the camera perfectly (to less than a pixel) with the
normal of the port. The approach taken in this paper models the physical pa-
rameters of the housing explicitly and integrates them into a refractive image
formation model for practical 3D reconstruction of deep sea sequences.

While this refractive projection would be computationally infeasible for large545

scale vision when applied in a brute force manner, the key idea proposed here
is to lift the feature observations from the image onto the outer glass interface
of the port. Optimizing a virtual camera error is still a maximum likelihood
estimator for the original problem when the image observations contain Gaus-
sian noise. In bundle adjustment this required switching from estimation in the550

Gauss-Markov model (as for traditional bundle adjustment in air) to the more
general Gauss-Helmert model that supports implicit constraints, but which runs
at comparable computational costs as perspective bundle adjustment.

The different steps of the refractive reconstruction pipeline have been eval-
uated in detail on several image sequences and showed similar performance as555

their counterparts without refraction. The estimation of absolute scale from
monocular image sequences, which is not possible without refraction, is feasi-
ble in noise-free settings. However, the signal-to-noise ratio for standard action
cameras in underwater housings or our deep sea housings at reasonable working
distances to the scene is poor. In any case, the reconstruction usually needs to560

be geo-referenced using absolute navigation data, which are then also used to
determine the scale of the reconstruction. The resulting 3D models, as shown
for the geology applications, proved the usefulness of the system.

Limitations and Failure Cases. Refractive direct solvers, as needed for recon-
structing unordered image collections are still less reliable, as e. g. the general-565

ized essential matrix requires using many correspondences and minimal solvers
did not cope well with the high noise often present in real oceanographic data.
Also, when purely relying on vision data, reconstructions are often disrupted
when no visual structures are present or when sediment is dispersed into the
water column. This study should therefore be seen as one component of a bigger570

system that should detect vision failure and integrates and weights also other
sensors such as sonar or any kind of navigation.
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