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Interactive Object Segmentation with
Inside-Outside Guidance

Shiyin Zhang, Shikui Wei, Jun Hao Liew, Kunyang Han,
Yao Zhao, and Yunchao Wei

Abstract—This work explores how to harvest precise object segmentation masks while minimizing the human interaction cost. To
achieve this, we propose a simple yet effective interaction scheme, named Inside-Outside Guidance (IOG). Concretely, we leverage an
inside point that is clicked near the object center and two outside points at the symmetrical corner locations (top-left and bottom-right or
top-right and bottom-left) of an almost-tight bounding box that encloses the target object. The interaction results in a total of one
foreground click and four background clicks for segmentation. The advantages of our I0G are four-fold: 1) the two outside points can
help remove distractions from other objects or background; 2) the inside point can help eliminate the unrelated regions inside the
bounding box; 3) the inside and outside points are easily identified, reducing the confusion raised by the state-of-the-art DEXTR [1] in
labeling some extreme samples; 4) it naturally supports additional click annotations for further correction. Despite its simplicity, our IOG
not only achieves state-of-the-art performance on several popular benchmarks such as GrabCut [2], PASCAL [3] and MS COCO [4],
but also demonstrates strong generalization capability across different domains such as street scenes (Cityscapes [5]), aerial imagery
(Rooftop [6] and Agriculture-Vision [7]) and medical images (ssTEM [8]). Code is available at

https://github.com/shiyinzhang/Inside-Outside-Guidance.

Index Terms—Interactive segmentation, Image segmentation, Deep learning

1 INTRODUCTION

O VER the past few years, we have witnessed a revolutionary

advancement in semantic [9], [10], [11], [12], [13], [14],
[15], [16], [17], [18] and instance segmentation [19], [20], [21],
[221, [23], [24], [25], [26], [27], [28], [29] for different domains,
such as general scenes [3], [30], [31], autonomous driving [5],
[32], [33], aerial imagery [0], [7], medical diagnosis [8], [34],

etc. Successful segmentation models are usually built on the
shoulders of large volumes of high-quality training data. However,
the process to create the pixel-level training data necessary to build
these models is often expensive, laborious and time-consuming.
Thus, interactive segmentation, which allows the human annota-
tors to quickly extract the object-of-interest by providing some
user inputs such as bounding boxes [35], [2], [36] or clicks [37],
[38], [39], [40], appears to be an attractive and efficient way to
reduce the annotation effort.

Recently, Maninis et al. [1] explored the use of extreme
points (left-most, right-most, top, bottom pixels of an object) for
interactive image segmentation. Despite its simplicity, the extreme
points have demonstrated fast interactive annotation speed and
high segmentation quality across different application domains.
Nevertheless, we argue that the clicking paradigm of extreme
points also brings some issues: 1) annotating extreme points
requires users to carefully click at the object boundaries, which
usually consumes much more time as compared to the common
clicking setting where users can click at any of the interior
and exterior of object regions; 2) the annotation process can
sometimes be confusing when multiple extreme points appear at
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Fig. 1. Comparison of clicking paradigm: (a) User inputs of

DEXTR [1]. (b) User inputs of the proposed IOG-Click method. (c)
Overview of our I0G-Click framework. Our IOG paradigm consists
of 3 clicks, i.e., an interior click and two exterior clicks. Based on these
3 clicks, we crop the RGB image and concatenate it with the foreground
and background click maps to form the input for our segmentation
network to predict the segmentation mask.

similar spatial locations (pencil in Figure (a)) or when there are
unrelated objects or background lying inside the target object (dog
in Figure (a)).

To tackle the aforementioned issues as well as to promote the
effectiveness and efficiency of the interactive process, we pro-
pose an approach named Inside-Outside Guidance (I0G), which
requires only three points (an inside point and two outside points)
to indicate the target object. Specifically, the inside point usually
locates around the center of the object instance while the two out-
side ones can be clicked at any symmetrical corner locations of a
tight bounding box enclosing the target instance (either the top-left
and bottom-right or top-right and bottom-left pixels). Figure (b)
shows two examples of our proposed labeling scheme. Similar
to [1], our IOG relaxes the generated bounding box by several
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pixels before cropping from the input image to include context.
This results in a total of one foreground and four background
clicks (two clicked outside points and two additional inferred
ones based on the bounding box), which are then encoded as
foreground/ background localization heatmaps and concatenated
with the cropped image for training the segmentation network.
The overview of our IOG is shown in Figure (c).

Our I0G strategy not only improves the annotation speed by
reducing the confusion raised by [1], but also naturally supports
annotation of additional points at the erroneous regions for further
refinement. We perform extensive experiments on GrabCut [2],
PASCAL [3] and MS COCO [30] to demonstrate the effectiveness
of our IOG as an annotation tool. In particular, given only three
points, our IOG achieves 93.2% mloU score on PASCAL, which
is the new state-of-the-art. Our IOG can further improve the
performance to to 94.4% by applying the 4th click for correction.

In addition, we also show that our model generalizes well in
cross-domain annotation, where our PASCAL- or COCO-trained
model produces high quality segmentation masks when annotating
street scenes [5], aerial imagery [0], [7] and medical images [&]
without the need of fine-tuning. Beyond this, we also propose a
simple two-stage solution that enables our IOG to harvest precise
instance segmentation masks from the off-the-shelf datasets with
bounding box annotations such as ImageNet [4] and Open Im-
ages [41] without any human interaction. We hope this work can
significantly benefit the future researchers in collecting large-scale
pixel-level annotations.

The contributions of this work are summarized as follows:

e We introduce a new Inside-Outside Guidance (IOG) scheme
to tackle the interactive object segmentation task. Despite its
simplicity, our IOG achieves the state-of-the-art performance
on all popular benchmarks, and shows strong generalization
ability for multiple cross-domain benchmarks.

o We investigate several principle adjustment strategies to make
our IOG be better applied to real-world data annotation
scenarios. Extensive user studies are performed to verify the
effectiveness of the proposed adjustment strategies.

e Our IOG can be employed to produce accurate instance
masks for existing datasets with off-the-shelf bounding box
annotations. Benefiting from the superiority of our IOG, we
contribute a new dataset, i.e., Pixel-ImageNet', which
includes 0.615M instance masks from 1K classes.

This paper is an extension of our previous conference ver-
sion [42]. Comparing to the initial version, this work makes the
following improvements. First, we extend the inside guidance of
our IOG from click- to scribble-paradigm, which we call I0OG-
Scribble. We show that significant improvements in accuracy
can be obtained without incurring too much annotation burden.
Besides, we additionally introduce a collaborative training strategy
that utilizes coarsely and finely annotated data to further improve
the segmentation quality along object boundaries. Second, more
user studies are performed to examine how to adjust the interaction
paradigm for practical annotation scenarios. Third, we perform ad-
ditional experiments on the much challenging Agriculture-Vision
dataset [7], where we show that our IOG greatly outperforms
the baseline even on images with unclear boundaries. Lastly, we
contribute Intelligent Pixel Annotation Tool (IPAT) 2 a web-
based annotation interface based on our IOG, which plays an

1. https://github.com/shiyinzhang/Pixel-ImageNet
2. https://github.com/KunyangHan/interactive-segmentation-editor
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important role in annotating our Pixel-ImageNet dataset. We
hope this can help reduce the annotation cost and time for future
segmentation benchmarks.

2 RELATED WORK

Interactive Segmentation: Prior to deep learning, early methods
mainly pose interactive segmentation as an optimization problem
to separate the foreground and background pixels. For example,
Boykov and Jolly [43] formulate interactive segmentation task
as a graph cut optimization problem. GrabCut [2] develops an
iterative optimization technique and employed bounding boxes
to guide the segmentation process. Bai and Sapiro [44] adopts
weighted geodesic distance to classify each pixel into foreground
and background class. Nevertheless, all these conventional ap-
proaches typically struggle in the case of complicated scenes
(e.g., substantial overlapping between foreground and background
appearances, complex illumination condition etc.) due to the use
of low-level features.

Given the success of deep convolutional neural networks
(CNN) in semantic segmentation task, recent interactive segmen-
tation have been mainly driven by CNN-based approaches [35],
[451, [46], [371, [38], [11, [47], [48], [491, [501, [51], [52], [53],
[54]. According to the human inputs, the interactive segmentation
approached can be roughly divided into click-based [37], [38], [1],
[47], [48], [49], [50], [51] and polygon-based [52], [53], [54].

Click-based methods. iFCN [37] is first proposed to conduct
interactive segmentation by guiding a CNN with positive (fore-
ground) and negative (background) points clicked by the users.
RIS-Net [38] improves the iFCN by augmenting a local context
branch. Maninis et al. [1] propose DEXTR that leverages only 4
extreme points for segmentation. MultiSeg [49] presents a scale-
diverse interactive segmentation network, which can generate
diverse yet plausible segmentation results conforming to the given
user input. BRS [50] adopts back-propagation refinement strategy
to correct the mislabeled pixels. However, the continuous steps
of forward and backward pass often lead to high computational
budget per click, which is time consuming. f-BRS [51] improves
the BRS by requiring only a small part of a network for forward
and backward passes, which greatly saves the calculation con-
sumption. Andriluka ef al. [46] further extend interaction scheme
from instance-level to full-image level. Polygon-based methods.
Polygon-RNN [52] poses interactive segmentation as a polygon
prediction task, which is convenient for users to interact with.
Polygon-RNN allows users to correct the vertex of the polygon for
more accurate result. Polygon-RNN++ [53] improves the Polygon-
RNN by updating the network architecture, using reinforcement
learning as train strategy, and increasing the resolution of the out-
put polygon. Curve-GCN [54] uses graph convolutional networks
to predict the vertices of the polygon.

Semantic Segmentation: The success of CNN-based interac-
tive segmentation algorithms [37], [38], [39], [1] have benefited
significantly from the development of semantic segmentation
architecture, especially, FCN [9], DeepLab series [13], [14], [15],
PSP [11], CCNet [16] and SPGNet [17]. Several recent newer deep
architectures studies have gained higher predictive performance.
Typically, the spatial pyramid pooling structure, such as Pyramid
Scene Parsing (PSP) [55] module and Atrous Spatial Pyramid
Pooling (ASPP) [56] module, utilizes multi-scale pooling layers
with diverse steps to combine local information about global infor-
mation. Encoder-decoder structure [57], [58] has also advanced the
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state-of-the-art by combining multi-dimensional features. The en-
coder module acquires stronger semantic information but reduces
the size of the feature. The decoder module aims at recovering the
spatial information. Cascaded structure [59] contains multi-stage
which provides current practice for performance refining. All the
stages have gradually facilitated the prediction from coarse to fine,
by end-to-end training. In this work, we investigate which type of
network is more suitable for conducting interactive segmentation
tasks and choose to adopt a coarse-to-fine network structure [60]
as the backbone of our IOG method. We experimentally validate
our choice can further boost the accuracy of interactive segmenta-
tion by a large margin.

Instance Segmentation: Our work is also related to instance
segmentation task, which operates on the detection and segmen-
tation of individual objects. We also focus on individual objects
of each image. There are the following examples of the instance
segmentation. Two-stage instance segmentation methods such as
[29], [28], [61], [62], first generate a set of region-of-interests
(ROIs) and then segment them into masks. One-stage instance
segmentation methods such as [63], [26], [64], [65], [66] generate
position sensitive maps to acquire the final segmentation mask.
However, instance segmentation and interactive segmentation have
two fundamental differences. First, interactive segmentation re-
quires the guidance from human. We can decide what we want
to segment according to the user’s interaction. Second, interactive
segmentation often supports further refinement if the predictions
are incorrect.

Weakly Supervised Segmentation: Among many alternatives
in addressing the expensive pixel-level annotations, weakly su-
pervised learning has been extensively studied in the literature.
Particularly, image-level labels [67], [68], [69], [70], [71], [72],
points [73], [74], bounding boxes [75], [76], scribbles [77], [78],
[79] have been employed as guidance to supervise the training of
semantic segmentation networks. Different from these methods,
our proposed IOG still relies on fully annotated masks as supervi-
sion and utilizes three additional points as the guidance to produce
the segmentation mask of the target object.

Other Works on Interactive Annotation: Some works attempt
to improve annotation efficiency from other perspectives. Interac-
tive full image segmentation [80] aims at segmenting all object
and stuff regions simultaneously in one image. For each object in
one image, the other objects are used as background information.
Rupprecht et al. [81], [82] use natural language as feedback for
interactive segmentation correction. They combine an interactive
segmentation framework with a language module whose input
is like “there is a man riding in the corner”. Finally, several
works [83] propose an interactive framework for annotating 3D
object by drawing scribble in 2D views.

3 METHOD
3.1 Inside-Outside Guidance

Our Inside-Outside Guidance (IOG) clicking paradigm consists
of two components: inside guidance and outside guidance. De-
pending on the interaction mode, the inside guidance contains
two possible instantiations, i.e., click and scribble, which we refer
to IOG-Click and I0G-Scribble, respectively. The click-based
guidance consists of three points: an interior click (inside point)
located roughly at the object center and two exterior clicks (outside
points) at any symmetrical corner locations (either top-left and
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bottom-right or top-right and bottom-left) that form an almost-
tight bounding box enclosing the target-of-interest. On the other
hand, compared with the click-based paradigm, scribble-based
guidance can often achieve better segmentation accuracy given
slight additional annotation overhead. In particular, it consists of
two exterior clicks (same as the click-based guidance) and coarse
scribble(s) marked across the object-to-segment. In this way, the
two exterior clicks, together with two additional inferred ones
based on the generated bounding box, provide an “outside” guid-
ance (indicating the background regions) while the interior click
or scribble gives an “inside” guidance (indicating the foreground
regions), thus giving the name Inside-Outside Guidance (10G).
Figure 2 shows an example of our IOG clicking paradigm.

Outside Guidance: The outside guidance is formulated by the
corners of the bounding box enclosing the object. However, it was
previously reported that drawing a tight box can be time consum-
ing ([84] reported 25.5s for drawing one box on ImageNet [4]°).
This is due to the difficulty of clicking on the corners of an
imaginary box where these corners are often not on the object [87].
Thus, several adjustments are usually needed to ensure the result-
ing box is tight. However, with some simple modifications to the
annotation interface, such as using a horizontal and a vertical guide
line to make the box visible when clicking on a corner, the burden
of drawing a bounding box can be largely relieved as shown in
Figure 2(a)-(b). Moreover, in our case, we do not necessarily need
a tight bounding box where an almost-tight box usually suffices. In
our user study, we observe that drawing a bounding box typically
take about 6.7s with the help of the guide lines.

Inside Guidance: The main purpose of inside guidance is to
disambiguate the segmentation target from its surrounding back-
ground since there could be multiple objects within the same box.
In this work, we provide two possible instantiations of inside
guidance, i.e., click and scribble. The click-based inside guidance
is formulated as an interior click located around the object center
whereas the scribble-based inside guidance represents the object-
of-interest with a coarse scribble. The corresponding I0OG are
respectively denoted as IOG-Click and IOG-Scribble.

(a) IOG-Click: To simulate clicks annotated by human annotators,
we propose to sample the inside point at the location that is furthest
away from the object boundaries. In particular, let F and 5 denote
the pixels belonging to the foreground and background, respec-
tively, we first compute a distance map D based on Euclidean
distance transformation as follows:

D,; = \glé% dist(4, 5), (1)

where D, refers to the value of D at pixel location 7 while
dist(z, 5) denotes the Euclidean distance between pixel locations
¢ and j. Then, the interior click is sampled at the location
k = argmaxy;cr D;. The validity of such sampling scheme is
verified in Section 4.5 by comparing with the actual interior click
collected from real users. Note that annotating the inside point is
very fast, taking about 1.5s in our user study.

Compared with existing click-based [37], [!] and box-
based [35] interactive segmentation approaches, our proposed IOG
has the best of both worlds: (i) flexibility: since the annotated
three points are encoded as foreground and background clicks, our

3. Some papers reported much faster timings (e.g.[85] reported 10.21s while
[86] reported 7.0s). However, [87] argue that the annotated boxes are of low
quality (not tight around the object).
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Fig. 2. Inside-Outside Guidance. (a) The vertical and horizontal guide lines are used to assist the user in clicking on the corner of an imaginary
box enclosing the object. (b) A box is generated on-the-fly when the user moves the cursor. (c)(d) and (e)(f) show two different instantiations of
inside guidance, i.e., I0G-Click and 10G-Scribble. (c) For IOG-Click, an interior click is placed around the object center whereas for (e) I0G-
Scribble, a scribble is placed across the object-of-interest. (d)(f) The box is relaxed by several pixels before cropping to include context. The interior
click/scribble (red) with four exterior clicks (two clicked corners and two automatically inferred ones) (blue) constitute our IOG that encode the
foreground and background regions, respectively. (g) Our method naturally supports additional clicks annotation for further refinement.

IOG naturally supports additional clicks annotations for further
correction (Figure 2(e)); (ii) more information: our approach
encodes more prior information about the object, including the
location of hard background and the rough size of the target.

(b) I0OG-Scribble: We additionally provide an alternative inter-
action strategy that employs scribbles to indicate the object-of-
interest. Compared with IOG-Click, scribbles provide more prior
information about the target, such as the spatial extent and rough
shape of the object (Figure 2). To simulate scribbles for training,
we propose to sample the inside scribble as the line crossing most
part of the object [88]. Similar to IOG-Click, we also compare
with real user-drawn scribbles to verify its validity. Although IOG-
Scribble incurs slight additional annotation overhead (3s in total
according to our user study), it brings significant improvement in
segmentation quality as demonstrated in the experimental section.

Construct Click & Scribble Representations: We use the same
click representation as DEXTR[I] by centering a 2D Gaussian
around each click, creating two separate heatmaps for foreground
and background clicks. For I0OG-Scribble, we directly employ
the scribble mask as the foreground heatmap without additional
processing. In particular, the scribble mask M can be computed
as follows:

, 1€S8,

M; = .
{O, i¢S,

where S denotes the set of pixels belonging to the scribble.
The resulting heatmaps are then concatenated with the RGB input
image to form a 5-channel input for the segmentation network.
Similar to [1], the bounding box is first relaxed by several pixels
to include context, followed by cropping to focus on the object-
of-interest (Figure 2(d)).

2

3.2 Segmentation Network

Here, we discuss the architectural design of our segmentation
network. We employ a ResNet-50 [90]-based DeepLabv3+ [15]
as our starting point and we already observe decent segmentation
performance (90.0% IoU on PASCAL), demonstrating the effec-
tiveness of our proposed IOG. Nevertheless, closer inspection on
the segmentation quality reveals that segmentation errors mostly
occur along the object boundaries as shown in Figure 4. Simply
replacing the backbone with a deeper network such as ResNet-
101 only brings marginal improvement (Vanilla IOG in Figure
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6 right), suggesting some architectural modifications have to be
made to ensure the network focuses on refining the inaccurate
segmentation along the object boundaries.

In this work, we propose to adopt a coarse-to-fine design
for addressing the aforementioned issue (Figure 3). In particu-
lar, we employ a cascaded structure similar to [60] which was
originally proposed for human pose estimation task. Specifically,
the segmentation network consists of two subnetworks. The first
subnetwork, CoarseNet applies an FPN-like design [10] that
progressively fuses the semantic information from the deeper
layers with low-level details from the earlier layers via lateral
connections. The CoarseNet consists of three components, i.e.,
backbone, global context module, and decoder. Different from
[60], we append a Pyramid Scene Parsing (PSP) module [11] as
the global context module at the deepest layer of the backbone
for enriching the representation with global contextual informa-
tion. Given a coarse prediction from the CoarseNet, the second
subnetwork, FineNet aims at recovering the missing boundary
details. This is achieved with a multi-scale fusion structure that
fuses the information across different levels in the CoarseNet via
upsampling and concatenation operations. Similar to [60], we also
apply more convolution blocks for features at deeper layers for
better trade-off between the accuracy and efficiency. We refer the
readers to the supplementary materials for more details. Note that
we do not claim any novelty in the network design. Instead, our
contribution lies in the finding that a coarse-to-fine structure is
necessary for obtaining more precise segmentation masks whereas
stacking more layers does not. We believe other coarse-to-fine
structure might also work and we leave it as our future works.

Composition of Input: To generate inputs for the segmentation
network, we first employ the Inside-Outside guidance to annotate
the target object. Then, we crop the RGB image based on the
bounding box and resize it to 512x512. Finally, we concatenate
the cropped RGB image with the two-channel Gaussian heatmaps
generated from the click or scribble representations in Section 3.1.
The detailed pipeline can be found in Figure 3.

Training and Testing: Our segmentation network is trained
end-to-end using binary cross-entropy loss. In addition, we also
apply side losses at each level of CoarseNet as a form of deep
supervision [60]. During inference, the segmentation mask can
be obtained by simply thresholding the final network prediction.
Since our approach does not involve any post-processing, it is
extremely fast, where a single forward pass on a ResNet-101
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Fig. 3. Network architecture. (a)-(b) Our segmentation network adopts a coarse-to-fine structure similar to [
] for aggregating global contextual information. (c) We also append a lightweight branch before the PSP module to accept

parsing (PSP) module [

], augmented with a pyramid scene

the additional clicks input for interactive refinement. To improve the segmentation quality along object boundaries, our collaborative training strategy

augments the coarsely annotated samples (e.g., SBD [89] or COCO [

]) with finely annotated samples (e.g., PASCAL VOC [3]) within each training

batch, progressively increasing the ratio of finely annotated samples throughout the training process.

¥
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Fig. 4. Qualitative comparison in terms of segmentation errors. Note
that the segmentation errors mostly occur along the object boundaries
when using DeeplLabv3+ [15] as backbone whereas our coarse-to-fine
structure produces precise boundaries.

backbone typically requires only 20 ms on a Nvidia GeForce
GTX 1080 GPU. It is thus well-suited for practical interactive
image segmentation application.

3.3 Refinement

Our IOG naturally supports the scheme of adding additional fore-
ground or background clicks for further correction if annotators
are not satisfied with the current segmentation output. To achieve
this target, we append a lightweight branch (heatmap encoder) be-
fore the PSP module to accept the two-channel Gaussian heatmaps
encoding all the foreground and background clicks (Figure 3(c)).
We empirically found that this setting not only works better
than modifying the inputs at the beginning of the segmentation
network, but also runs much faster since the encoder features
only needs to be computed once. During training, we adopt an
iterative training strategy to simulate the interactive process where
an additional click is introduced to the erroneous regions by the
user for correction. More specifically, depending on the interaction
mode, either three clicks (IOG-Click) or a scribble with two
exterior clicks (IOG-Scribble) are used to first obtain an initial
segmentation mask. A new click is then added to the center of the
largest erroneous region and second forward pass is conducted.

© 2022 IEEE, Personal use is permitted, but republication/redistribution requires IEEE

Note that our IOG-Scribble also supports adding of corrective
scribbles, but we only consider clicks for refinement in this work
for simplicity. Results presented in Section 4.3 shows that such
iterative training strategy is necessary.

Composition of Refinement: The corrective click is added to
the previous clicks set before generating the updated two-channel
Gaussian heatmaps, which are then fed into the heatmap encoder
(Figure 3).

3.4 Collaborative Training Strategy

Existing interactive object segmentation algorithms [1], [49], [91]
are typically trained on the combination of a finely annotated
PASCAL VOC [3] and a coarsely annotated SBD [89] dataset
(Fig. 3). However, we notice that the coarser annotations often
lead to classification confusion along the boundary regions. While
introducing an additional edge refinement branch could alleviate
this issue, it comes at the cost of increased computation. Instead,
we proposed a simple collaborative training strategy to improve
the segmentation quality along the object boundaries without
incurring extra computation. Specifically, we combine coarsely
annotated images and finely annotated images within each training
batch, and progressively increase the ratio of finely annotated
samples « throughout the training process:

Ibatch = Icoarse U Iﬁne (3)
I ne
_ Manel [0,1] )
‘[coarse|

where I oarse and Igipe refer to the image set with coarse and fine
annotations, respectively. The final loss £ can then be computed
as follows:

L= 5£coarsc + (1 - ﬂ)ﬁﬁncv 5 € [O; 1] (5)

where Lcoarse and Lgpne correspondingly denote the loss of
coarsely and finely annotated samples. In our experiments, we
use PASCAL-1k * as the finely annotated dataset to assist training
on PASCAL-10k and COCO datasets.

4. We denote the PASCAL train set augmented with additional labels from
SBD [89] and the one without SBD labels as PASCAL-10k (10,582 images)
and PASCAL-1k (1,464 images), respectively.
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Number of Clicks ToU(%) @ 4 clicks
Methods P@85% G@90% P G
Graph cut iccvor [43] > 20 >20 41.1 59.3
Random walker (reamioe) [92] 16.1 15 55.1 56.9
Geodesic matting (ccvor [44] > 20 >20 459 55.6
iFCN (cverie) [35] 8.7 7.5 75.2 84.0
RIS-Net iceviz [38] 5.7 6 80.7 85.0
DEXTR (cveris) [ 1] 4 4 91.5 94.4
ITIS (Bmveis) [39] 3.4 5.7 - -
CMG (cveriol [93] 3.58 3.62 - -
BRS (cveriop [50] 6.59 3.60 - -
F-BRS-B (cvrroo) [51] 4.81 2.72 - -
FCA-Net (cveroo) [47] 2.14 2.96 - -
10G (ours, outside only) 2 2 90.9 914
I0G-Click (ours) 3 3 93.2 96.3
10G-Click' (ours) 4 4 94.4 96.9

TABLE 1

Comparison with the state-of-the-art methods on PASCAL (P) and
GrabCut (G) in terms of the number of clicks to reach a certain loU and
in terms of quality at 4 clicks. { denotes our I0G with refinement.

Fig. 5. Comparison between I0G-Click (first row) and I0G-Scribble
(second row). On the basis of not increasing too much annotation effort,
our IOG-Scribble achieves better segmentation quality than I0G-Click.

4 EXPERIMENTS
4.1 Comparison with the State-of-the-art Approaches

We conduct extensive experiments on 11 publicly available
benchmarks, including PASCAL [3], GrabCut [2], COCO [30],
ImageNet [4], Open Images [4], Cityscapes [5], Rooftop [6],
Agriculture-Vision [7], ssTEM [8], Pascal-Context [94], and
COCO-Stuff [95], to demonstrate the effectiveness and the gen-
eralization capabilities of our IOG. We choose ResNet-50 and
ResNet-101 as the two backbones of the IOG for fair comparison
with previous approaches. Following the common practice [1], we
employ PASCAL as the main benchmark to verify the importance
of each component proposed in our I0G.

4.2 Implementation Details

Training and Testing Details: 10G is trained on PASCAL 2012
Segmentation for a maximum of 100 epochs or on MS COCO
2014 for a maximum of 10 epochs. We acquire the results from
the best performing epoch. For PASCAL, the batch size is set to
5 whereas for COCO, we train on 2 GPUs with an effective batch
size of 10. For COCO, we also construct a set of “void” pixels
around the boundaries of the ground truth masks and ignore them
during training. The learning rate, momentum and weight decay
are set to 1078, 0.9 and 5 x 10, respectively. When using
collaborative training strategy, « gradually increases from 0 to 0.3
for PASCAL whereas for COCO, we fix « to 1. We set 3 to 0.5.

Simulated Outside Click: We use the ground truth masks to
generate the inside-outside points for training. For outside points,
we take the corners of the bounding-box extracted from ground
truth masks and relax by 10 pixels to simulate a loosen box
provided by real users.

Simulated Inside Click: For the inside click, we sample a
click that is furthest from the object boundaries. To simulate the

. . ©2022 |IEEE. Personal use is permitted, but republication/redistribution requires IEEEgermission. See https://www.ieee.org/publications/rights/index.html for more information.
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Fig. 6. (left) The effect of iterative training for interactive refinement.
“early” and “late” denote adding clicks input to the beginning or inter-
mediate layer of the network, respectively. “iter” implies iterative training
(Section 3.3) while “+” denotes training on larger dataset (PASCAL-10k).
(right) Comparison between IOG points and extreme points.

Backbone Context FineNet Side losses Dataset IoU
ResNet-50 X v v PASCAL-1k  91.2
ResNet-50 v X v PASCAL-1k  90.8
ResNet-50 v v X PASCAL-1k  90.6
ResNet-50 v v v PASCAL-1k  91.6
ResNet-50 v v v PASCAL-10k  92.8
ResNet-101 v v v PASCAL-1k  92.0
ResNet-101 v v 4 PASCAL-10k  93.2
TABLE 2

Ablation Study. Justification of each component in the segmentation
network on the PASCAL VOC 2012 val set.

randomness in manual annotation, we apply random perturbation
during training to improve the model’s robustness to real user
clicks. The effects of perturbation are studied in Section 4.5.

Simulated Inside Scribble: For the inside scribble, we sample a
scribble that covers the object following [88]. In cases when the
object is split into several components (e.g., due to occlusion), we
additionally sample a scribble for each object component. Differ-
ent from the inside click, we do not apply random perturbation
to the simulated scribble. When tested with human annotations,
we fine-tune the model using 30% of PASCAL-1k with manually-
drawn scribbles collected from real users.

We compare our IOG with the state-of-the-art approaches
on two popular benchmarks, i.e., PASCAL and GrabCut. The
results are summarized in Table 1. Here, we only report the
performance of click-based I0OG for fair comparison. We first
notice that when evaluated in term of number of clicks needed
to reach a certain performance (e.g., 85% IoU in PASCAL), our
I0OG with only outside guidance (please refer to Section 4.6 for
more details) already outperforms all the state-of-the-art methods.
When inspecting closer, we further observe that our complete
IOG model with only 3 clicks performs significantly better than
the best-performing models by more than 1.7% and 1.9% IoU
on PASCAL and GrabCut, respectively. When allowing iterative
refinement (i.e., from 3 to 4 clicks), the performance can be
further enhanced to 94.4% and 96.9%, which well demonstrates
the effectiveness of our IOG in handling the additional user inputs
for further correction.

4.3 Ablation Study

Justification of Each Component of IOG: We perform ablation
experiments on PASCAL VOC val set to validate the effectiveness
of each component in our segmentation network. Particularly, we
quantitatively justify various design choices, including the differ-
ent backbones (ResNet-50 v.s. ResNet-101), different number of
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Train Test DEXTR I0G-Click IOG-Scribble
PASCAL COCO MVal(seen)  79.9% 81.7% 86.4%
PASCAL COCO MVal(unseen) 80.3% 82.1% 86.9%
PASCAL COCO MVal 80.1% 81.9% 86.6%

CoCco COCO MVal 82.1% 85.2% 88.9%

coco PASCAL 87.8% 91.6% 92.3%
PASCAL PASCAL 89.8% 93.2% 96.4%

TABLE 3

Comparison in terms of generalization ability between the
state-of-the-art DEXTR and our IOG. Top and bottom rows correspond
to Unseen Classes and Generalization settings, respectively.

Fig. 7. Interactive refinement. Our proposed |IOG supports interactive
adding of new clicks for further refinement.

training images (PASCAL-1K v.s. PASCAL-10K), inclusion of
PSP module for global contextual information (Context), FineNet
and the use of side losses for training. As shown in Table 2,
“Context”’, “FineNet” and “Side losses” can respectively lead to
performance boost of 0.4%, 0.8% and 1.0% under the setting
of ResNet-50 and PASCAL-1K. When augmenting additional
labels from SBD (PASCAL-10k), the performance can be further
improved from 91.6% to 92.8%. Finally, we obtain the state-of-
the-art performance when replacing the backbone with ResNet-
101 (93.2%).

Iterative Training for Interactive Refinement: In the previous
section, we have demonstrated the effectiveness of our IOG under
the default setting when only 3 clicks are provided. Next, we
examine the case when the user is not satisfied with the result
and wants to annotate additional clicks for correction. Specifically,
we progressively add a new click to the center of the largest
erroneous regions similar to [37], [39]. The results are summarized
in Figure 6 (left). We can observe that: 1) additional clicks do
not bring significant performance gains without iterative training,
demonstrating the importance of iterative training for interactive
refinement; 2) adding the clicks to the intermediate layers of the
segmentation network (Section 3.3) is more effective than modi-
fying the inputs at the beginning of the network. An interesting
observation is that adding clicks to the beginning of the model
without iterative training will lead to performance degradation.
One possible reason is that the inside points always locate around
the object center whereas the newly added correction clicks are

PASCAL (IoU)
Methods w/o Refinement w/ Refinement
I0G-Click 93.2 94.4
I0G-Scribble 96.4 96.8
TABLE 4

Comparison between IOG-Click and I0G-Scribble on PASCAL Val Set.
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Fig. 8. Comparison between I0G and IOG with collaborative training
strategy (IOG+). The 10G+ achieves better boundary segmentation
quality than I0G.
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usually distributed near the object boundaries, which confuses
the trained model and harms the performance. Some qualitative
examples of interactive refinement can be found in Figure 7.

I0OG Points v.s. Extreme Points: We study the performance
of our proposed IOG points when compared with the extreme
points used in DEXTR. For fair comparison, we use the released
code’ and re-train DEXTR using DeepLabv3+ [15] as the fully
convolutional architecture on PASCAL-1K. All the models are
pre-trained only on ImageNet [4]. We conduct experiments using
three different backbones, i.e., ResNet-34, ResNet-50 and ResNet-
101, to validate the robustness of the proposed method. As
shown in Figure 6 (right), our proposed IOG points consistently
outperform the extreme points given the same network architecture
(Vanilla IOG vs. DEXTR). When using a coarse-to-fine network
structure (Section 3.2), we can see that our IOG significantly
outperforms the baselines by a large margin. Interestingly, our
IOG with ResNet-34 as backbone already surpasses the state-of-
the-art DEXTR using ResNet-101, demonstrating the effectiveness
of the proposed IOG over the extreme points.

IOG-Click v.s. IOG-Scribble: We also compare the different
interaction paradigm of IOG (click v.s. scribble). Both models
are trained on PASCAL-10k and evaluated on PASCAL VOC
val set for fair comparison. As shown in Table 4, IOG-Scribble
significantly outperforms I0G-Click by 3.2%, demonstrating the
effectiveness of scribbles in encoding more prior object infor-
mation (e.g., spatial extent and rough object shape) to assist
segmentation task. More interestingly, IOG-Scribble without re-
finement attains much higher accuracy than that of I0G-Click
with refinement (96.4% v.s. 94.4%). Despite the already high
accuracy, we notice that the performance can be further boosted to
96.8% when applying iterative refinement (i.e., adding 4th click).
Although drawing a scribble introduces slight annotation overhead
compared to clicking (3s for scribbling v.s. 1.5s for clicking),
we argue that the performance boost makes it more effective for
practical application. Some qualitative comparison between I0G-
Click and IOG-Scribble can be found in Figure 5. Please refer to
our supplementary materials for more examples.

Collaborative Training Strategy: We also evaluate the perfor-
mance of IOG trained with collaborative training strategy (I0G+).
We use Boundary-IoU [96] metric to evaluate the segmentation
quality on edge regions. As shown in Table 6, IOG+ can respec-
tively lead to a performance boost of 0.8% and 1.0% on PASCAL
and COCO when click is employed as the inside guidance. When
choosing scribble as the inside guidance, the performance can be
further enhanced from 84.5% to 85.0% in PASCAL and 84.3% to

5. https://github.com/scaelles/DEXTR-PyTorch
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Method Simulated Inside Manual Inside

Guidance Guidance

0 93.2 90.8

. 10 92.9 91.6
10G-Click 5, 928 923
50 92.0 92.0

IOG-Scribble N.A. 96.4 90.7
I0G-Scribble? N.A. 95.9 94.4

TABLE 5

Robustness to user variance on inside guidance. r denotes the
radius of perturbation applied on the inside click during training. All the
models are trained on PASCAL-10k and tested on PASCAL val set. t
implies that the I0G-Scribble model is fine-tuned on 30% of
PASCAL-1k training set with manually labeled scribbles.

Method Inside guidance dataset TIoU(%) Boundary-IoU(%)
10G Click PASCAL 93.2 78.8
I0G+  Click PASCAL 934 79.6
10G Click COCO 85.2 79.9
I0G+  Click COCO 85.7 80.9
10G Scribble PASCAL 96.4 84.5
I0G+  Scribble PASCAL 96.6 85.0
10G Scribble COCO 88.9 84.3
I0G+  Scribble COCO 89.9 85.9
TABLE 6

Collaborative training strategy. IOG+ implies that the IOG model is
trained with the collaborative training strategy.

85.9% in COCO. Some qualitative comparisons between IOG and
IOG+ can be found in Figure 8.

4.4 Generalization

To verify the generalization capability of our IOG, we perform ex-
tensive experiments on both in-domain and cross-domain datasets
and compare with the state-of-the-art approaches.

4.4.1 In-domain

For in-domain datasets, we compare with the state-of-the-art
DEXTR on both things categories and stuff categories. For things
categories, we follow the setting in [1], and compare the perfor-
mance on two benchmarks, i.e., PASCAL and COCO mini-val
(MVal). For stuff categories, we perform qualitative analysis on
PASCAL-Context [94] and COCO-Stuff [95].

PASCAL+COCO: Following [1], we inspect the model’s gen-
eralization capability from two perspectives: (1) generalization
to unseen classes (Unseen Classes setting); (2) generalization to
other dataset (Generalization setting). For the Unseen Classes
setting, we leverage the model trained on PASCAL and evaluate
its IoU on COCO MVal seen (i.e., images with the same categories
as PASCAL) and COCO MVal unseen (i.e., images with different
categories as PASCAL). For the Generalization setting, we train
the model on PASCAL (or COCO) and evaluate the performance
on COCO M Val (or PASCAL), regardless of the testing categories.
As shown in Table 3, our IOG makes consistent improvements
over DEXTR on various settings despite using only 3 clicks. We
also show that IOG-Scribble significantly outperforms I0OG-Click
with a performance boost of 4.8% on unseen class.

Things—Stuff: In Figure 11, we show some qualitative results
of our IOG fine-tuned on PASCAL-Context [94] and COCO-
Stuff [95] to verify the performance of our IOG when segmenting
“stuff” categories. The results show that our IOG generalizes well
to background classes too.

© 2022 IEEE, Personal use is permitted, but republication/redistribution requires IEEE

Cityscapes

Rooftop

Agriculture-Vision

SSTEM

Fig. 9. Cross-domain performance. Qualitative results of our I0G on
Cityscapes, Agricultural-Vision, Rooftop, and ssTEM.

ImageNet Open-Image

Fig. 10. Qualitative results on ImageNet (top) and Open Image (bottom)
using our proposed 2-stage approach. Note that only bounding box
annotations are provided.

4.4.2 Cross-domain

In the previous section, we have demonstrated the generalization
capability of our IOG on unseen classes and across different
datasets (train on PASCAL and test on COCO and vice versa).
However, images in both the PASCAL and COCO datasets are of
general scenes while a powerful annotation tool should generalize
well even on different imagery types. In the following section,
we examine the generalization ability of our model on different
domains, including aerial imagery (Rooftop [6]), medical images
(ssTEM [8]), street scenes (Cityscapes [5]) and agriculture images
(Agriculture-Vision [7]). Some qualitative examples can be found
in Figures 9.

Cityscapes [5]: Following [54], [53], we first evaluate the
performance of our IOG-Click on Cityscapes. Interestingly, we
found that our PASCAL-trained model already performs on-par
with the Cityscapes-trained methods. This suggests that our IOG
generalizes well even across different domains. Moreover, the
model performance can be further improved by fine-tuning using
only 10% of the new dataset, where our model significantly
outperforms all other baselines. In addition, our IOG-Scribble
further improves the performance to 87.9% with fine-tuning when
scribble is employed as the inside guidance.
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Scenes Methods Train Test Finetune Backbone Number of Clicks  ToU(%)
Curve-GCN [54] Cityscapes Cityscapes N.A. ResNet-50 2 76.3
Curve-GCN [54] Cityscapes Cityscapes NA. ResNet-50 2.4 77.6
Curve-GCN [54] Cityscapes Cityscapes N.A. ResNet-50 3.6 80.2
DEXTR [54] Cityscapes Cityscapes N.A. ResNet-101 4 79.4
10G-Click (ours) PASCAL Cityscapes X ResNet-50 3 719
Street Scenes I0G-Click (ours) PASCAL Cityscapes v/ ResNet-50 3 82.2
10G-Click (ours) PASCAL Cityscapes v ResNet-101 3 82.7
IOG-Scribble (ours) PASCAL Cityscapes v ResNet-101 - 87.6
1I0G-Click (ours) COCO Cityscapes v ResNet-101 3 83.8
10G-Scribble (ours) COCO Cityscapes v ResNet-101 - 87.9
10G-Click+ (ours) COCO Cityscapes v ResNet-101 3 83.9
10G-Scribble+ (ours) COCO Cityscapes v ResNet-101 - 88.2
Curve-GCN [54] CityScapes Rooftop X ResNet-50 2 68.3
Curve-GCN [54] CityScapes Rooftop v ResNet-50 2 78.2
Aerial Imager 10G-Click (ours) PASCAL Rooftop X ResNet-50 3 90.7
ey 10G-Click (ours) PASCAL Rooftop v ResNet-50 3 9.8
10G-Click (ours) PASCAL Rooftop v ResNet-101 3 93.6
1I0G-Click (ours) COCO Rooftop v ResNet-101 3 94.0
10G-Click+ (ours) COCO Rooftop v ResNet-101 3 94.1
Curve-GCN [54] CityScapes ssTEM X ResNet-50 2 60.9
Medical Images 10G-Click (ours) PASCAL ssTEM X ResNet-50 3 81.4
& 10G-Click (ours) PASCAL ssTEM X ResNet-101 3 83.7
T10G-Click (ours) COCO ssTEM X ResNet-101 3 96.1
10G-Click+ (ours) COCO ssTEM X ResNet-101 3 97.0
DEXTR [1] PASCAL Agriculture-Vision v ResNet-101 4 529
10G-Click (ours) PASCAL Agriculture-Vision v ResNet-101 3 66.0
IOG-Scribble (ours) PASCAL Agriculture-Vision v ResNet-101 - 80.6
Agriculture Images 1+ . 4 (ours) COCO  Agriculture-Vision v ResNet-101 3 66.9
I0G-Scribble (ours) COCO Agriculture-Vision v ResNet-101 - 81.6
I0G-Click+ (ours) COCO Agriculture-Vision v ResNet-101 3 67.6
IOG-Scribble+ (ours) COCO Agriculture-Vision v ResNet-101 - 82.7

Rooftop [6]:

TABLE 7

fine-tuned on a small set of the domain dataset (10%).

We also evaluate our IOG-Click on Rooftop [6],

Cross-domain analysis on Cityscapes [5], Rooftop [6], ssTEM [8] and Agriculture-Vision [7]. “Finetune” indicates that the method is

formance on all domains can be substantially improved when

an aerial imagery dataset. Similar to the observation made in
Cityscapes, our IOG-Click outperforms Curve-GCN [54] by a
significant margin even without fine-tuning. Fine-tuning on only
10% of Rooftop dataset can further introduce 2.1% improvement
to the PASCAL-trained model. Similar to Cityscapes, we also
observe that deeper network (ResNet-101) and COCO-trained
model leads to further performance boost.

ssTEM [8]: We follow the evaluation scheme in [54], [53] by
evaluating on ssTEM [8] benchmark. Note that ssTEM does not
have a training split, therefore we do not perform fine-tuning on
this dataset. As shown in Table 7, our IOG-Click significantly
outperforms the baseline by more than 20%, demonstrating the
strong generalization capability of our approach.

Agriculture-Vision [7]: Lastly, we also applied our IOG-Click
on the more challenging Agriculture-Vision dataset [7]. For fair
comparison, we also fine-tuned the officially released DEXTR [1]
using 10% of Agriculture-Vision data. Table 7 shows that our IOG-
Click surpasses DEXTR by a great margin (13.1%). Moreover,
we found that IOG-Scribble further improves upon IOG-Click by
14.6%. This is possibly because the images in Agriculture-Vision
are of much poorer contrast (Figure 9), therefore scribbles play an
important role in outlining the rough object shape and guiding the
segmentation process.

Collaborative Training Strategy: We also observe that per-

© 2022 IEEE, Personal use is permitted, but republication/redistribution requires IEEE

collaborative training strategy is adopted, especially on the more
challenging medical images and agriculture scenes, demonstrating
its effectiveness.

4.5 Robustness to user variance

In the previous experiments, we examine the effectiveness of our
I0G using the simulated inside point as inputs. Nevertheless, in
practice, it is often difficult for the users to reach consensus when
choosing the inside point or drawing a scribble representing the
object although the users usually make consistent choices in anno-
tating the outside points. The inconsistent inputs between training
and testing will often have a negative impact on the segmentation
performance, especially when applied to real annotation scenario.
In this section, we discuss ways to improve the model’s robustness
to user variance when choosing the inside guidance.

For click-based inside guidance, we randomly perturb the
position of the inside points during training. In particular, we first
identify a circular region centered at the inside point extracted
from the ground truth mask with a pre-defined radius (). Then,
we randomly sample a click from this region to serve as the inside
point for training. To validate the effectiveness of the proposed
modification, we collected the inside points annotations on all
instances in PASCAL val set from 5 different users. As shown
in Table 5, we first notice a large performance degradation when
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Fig. 11. Qualitative results on PASCAL [3], PASCAL-Context [94], COCO [30] and COCO-Stuff [95]. Each instance with the simulated inside-
outside points and the corresponding segmentation masks are overlayed on the input image.

Method Backbone Train ToU
(A) Crop ResNet-50 PASCAL-1k 87.5
(B) Geo ResNet-50 PASCAL-1k 89.5
(C) Sim ResNet-50 PASCAL-1k 86.1
(D) Outside only ResNet-50 PASCAL-1k 89.5
(D) Outside only ResNet-101 PASCAL-10k 90.9
(E) 2-stage ResNet-101 PASCAL-10k 91.1
TABLE 8

Extension to dataset with box annotations only. All the results are
reported on PASCAL val using box annotations only.

testing the perturbation-free model with the human-provided in-
puts (from 93.2 to 90.8). However, the performance gaps gradually
reduce when larger perturbation is applied during training. The
model reaches the best trade-off when 7 is 30.

On the other hand, it is unclear how to perform random
perturbation to the generated scribbles in scribble-based inside
guidance. Instead, we collected manually-drawn scribbles by hu-
man annotators on 30% of the PASCAL-1k training set and fine-
tuned the model on this subset to improve the model’s robustness
to real user inputs. Similar to the previous experiment, we also
collected manually annotated scribbles on PASCAL val set from
5 different users and evaluated the performance.

From Table 5, we observed that IOG-Scribble trained with
synthetic scribbles suffers from severe performance degradation
when tested with human-drawn scribbles (from 96.4 to 90.7). Fine-
tuning on 30% of PASCAL-1k train set with collected real user-
drawn scribbles helps reduce the gap significantly (from 5.7% to
1.5% IoU). In overall, our IOG-Scribble significantly outperforms
IOG-Click on both simulated and real user-provided inputs.

4.6 More Discussions

Extension to Datasets with Box Annotations Only: Many
existing off-the-shelf datasets such as ImageNet [4] and Open
Images [41], have provided bounding box annotations. Here, we
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explore how to quickly harvest high-quality instance segmentation
masks using our IOG when only bounding box annotations are
available. Specifically, we consider the annotated bounding box as
an incomplete annotation for our IOG where the inside point is
absent. To this end, we propose a simple two-stage solution using
a small network to predict a coarse mask based on the bounding
box, where the mask is used to infer the inside point candidates
for IOG later. We compare this against the following baselines and
the results are summarized in Table 8.

(A) Crop: We train a network that takes the cropped RGB image
as input and predicts the segmentation.

(B) Geo: We train a network that takes the geometric center of
the box as inside point for segmentation.

(C) Sim: We train our IOG with simulated clicks (Section 3.1)
but using the geometric center of the given box as inside point
during test time.

(D) Outside only: We train a single network that takes the outside
points only to perform segmentation.

(E) 2-stage: We extract the inside point from the segmentation
masks produced by (D) and pass to our IOG for the final
prediction.

We first observe that the setting (C) performs poorly due
to train-test inconsistency. On the other hand, the methods (B)
and (D) have similar performance. This is because the geo-
metric center of the box always locates the same location af-
ter cropping, thus the network learns to ignore this input. By
adopting stronger backbone and more training images, the per-
formance of (D) can be further improved. Finally, taking the
inside point from the segmentation masks predicted by (D) as
inputs for our IOG produces the best result. Some qualitative
results on ImageNet and Open Images are shown in Figure 10.
With the annotated bounding boxes (~0.615M) of ILSVRC-
LOC, we apply our IOG to collect their pixel-level annota-
tions, named Pixel-ImageNet, which are publicly available at
https://github.com/shiyinzhang/Pixel-ImageNet. For more details,
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please refer to our supplementary materials.

5 CONCLUSION

We propose a simple yet effective Inside-Outside Guidance (I0G)
approach for minimizing the pixel-level labeling cost. The pro-
posed IOG requires only three points from the users, i.e. an
inside point near the object center and two outside points that
form a box enclosing the target object. On top of that, we also
proposed an IOG variant that employs coarsely-drawn scribbles
as inside guidance and demonstrated significant improvement
in segmentation quality while only incurring slight annotation
overhead. In addition, our IOG naturally supports interactive
annotation of additional points for further correction. Despite its
simplicity, extensive experiments show that our model generalizes
well across different datasets and domains. Lastly, we contribute
an Intelligent Pixel Annotation Tool (IPAT) with our IOG, which is
employed to construct a new large-scale pixel-level dataset called
Pixel-ImageNet. We hope this work can help ease the pixel-
level data collection for the future research.
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